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ABSTRACT
Nowadays, when one needs a system for image recognition, it is mostly a matter of finding pre-trained CNN and,
sometimes, adding additional training based on transferred knowledge. Accurate 6-DOF object localization in the
image is a more laborious task and requires more complex training data to be available. On the other hand, if we
know the model of the object, it is straightforward to acquire its pose from the image (RGB or RGB-D). In this
paper, we try to show the advantages of mixing deep learning object recognition/detection with classical 6-DOF
pose estimation algorithms, with a focus on applications in service robotics.
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1 INTRODUCTION
1.1 Motivation
It is hard to imagine life without robots. They have
become an inseparable part of our reality and are ap-
plicable in almost every area of life. Robots are used
in factories for transport, production, and quality con-
trol. Telemanipulators, controlled by doctors, are used
to perform surgical procedures. Thanks to robots, haz-
ardous environments (for example, underwater or in
space) can be safely investigated. In the military, their
primary use is to disarm bombs or take other dangerous
actions, saving the life of the soldiers.
Robotics, as an industrial field, is developing rapidly.
According to a report of the International Federation of
Robotics, global robot sales in 2017 increased by 30%
compared to the previous year [oR18]. The develop-
ment in the field of industry is also accompanied by
great progress in the field of research. Modern robots
are able to carry out work that not long ago was only
performed by people. One of the sources of progress is
equipment robots with senses, making them more au-
tonomous.
Eyesight is one of the most important senses of man as
it allows us to perceive most of the information from the
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environment. It is estimated that 83% of human percep-
tion takes place through sight. For comparison, hearing,
smell, touch, and taste are processing 11%, 3.5%, 1.5%,
and 1% of information respectively [SK11]. Therefore,
equipping robots with eyesight becomes an important
research issue.

One of the tasks in service robotics is object manipu-
lation, where robots should cope with everyday things
from the human surrounding. For this task to be per-
formed flawlessly, robots must be equipped with effec-
tive manipulators and grippers and a vision system ca-
pable of accurate object pose estimation. Deep learning
approaches have proven their high quality and accuracy
in object classification multiple times, and are capa-
ble of distinguishing hundreds or thousands of different
classes with minimal impact on performance. Accurate
object pose estimation, on the other hand, is straightfor-
ward to achieve if we know what object we see and we
have its model. In this paper, we try to show the advan-
tages of mixing very popular deep learning approaches
for object classification/detection with classical 6-DOF
pose estimation algorithms in service robotics applica-
tions.

1.2 Paper structure

The rest of the paper is structured as follows. The next
section describes state of the art in object detection and
pose estimation tasks. Section 3 presents proposed sys-
tem structure, followed by the implementation details
in sec. 4. Sample results for a single scenario are pre-
sented in sec. 5, and the last section concludes the paper.
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2 STATE OF THE ART
2.1 Object classification and detection
Object classification answers the question what is on
this picture. Object detection deals with a more com-
plicated task of not only telling what is on the picture,
but also where, for multiple objects at the same time.
The simplest way of creating an object detector is to
apply the classifier multiple times (e.g. sliding win-
dow) on different input scales, but there are also much
more sophisticated techniques. Here the important al-
gorithms for both are presented. The advent of object
detection can be connected with the first Viola-Jones
face detector [VJ01], which, although being still the
sliding window detector, applied methods for quick re-
jection of candidate regions to achieve big performance
gain. Next step in "classical" object detection is HOG
[DT05] with further improvement of deformable part
models [FMR08]. Those solutions were very good at
their time, and to some extent, were able to generalize
on objects different from the initial ones (faces and hu-
mans). As they rely mostly on shape, not texture, it is
hard to use them to distinguish between different sub-
types of similar objects.
Another branch of classification and detection algo-
rithms is based on the image feature points (either clas-
sical SIFT [Low99] or more recent binary descriptors
[RRKB11]). Those can be either compared directly
with the object models (with RanSaC) or their statis-
tics can be used (in the form of a bag of visual words).
The latter can be further extended to create an object
detector [VL09].
All aforementioned approaches were model-based,
handcrafted to a smaller or bigger extent. With the
advent of consumer-grade high power GPUs, the
branch of data-driven approaches emerged, with neural
networks and deep learning playing the main role. In
classification task, the most widely used architectures
are VGG [SZ14], Inception [SVI+16] and ResNet
[HZRS16], with their extensions and new ideas being
published almost constantly [ZSGY19].
Currently, two types of detectors are used to solve the
problem of object detection with the use of CNN, i.e.
one-stage and two-stage. The way of operation of
two-stage detectors consists of two steps: proposing
the regions of interest and classification of these, to-
gether with the improvement of their bounding boxes.
The single-stage detectors immediately determine the
bounding boxes along with the classes of objects, with-
out first detecting the regions of interest. The two-
stage detectors are characterized by high performance
in terms of accuracy but do not always operate in real
time. The single-stage detectors operate in real-time,
but the results are not always as good as those of the
two-stage detectors. The most popular two-stage detec-
tor is Faster R-CNN [RHGS15], while the most com-

monly used single-stage detectors are SSD [LAE+16]
and YOLO [RDGF16].

2.2 Pose estimation
The goal of object pose estimation is to find the position
and orientation of the query object in the scene (relative
to some given coordinate frame, e.g. camera). This task
can be performed either solely in RGB space or using
additional depth information provided by current sen-
sors (like Kinect or Intel RealSense). Contrary to ob-
ject detection (or classification), in general, one needs
an exact model of the object to find its pose.

A simple (yet effective) approach to pose estimation
for textured objects relies on feature points. Those can
be either extracted directly from RGB (like SIFT or
ORB) and then matched against a set of reference views
[Low01] or reprojected to 3D using available depth in-
formation and matched against reference sparse cloud
of feature points. When depth (or 3D in general) infor-
mation is available, features can be computed directly
from 3D [MBO10, RBTH10]. To overcome problems
from multiple matches between the feature points (in
multi-object scenarios), additional hypothesis verifica-
tion can be applied [HCL+13, ATP+13].

For texture-less models, LineMOD [HLI+12] uses mul-
tiple object silhouettes, generated from the rendered 3D
views. Part-based models, along with 3D CAD mod-
els, can also be efficiently used to retrieve the pose of
challenging objects [AME+14]. An interesting branch
is also usage of procedural models [GFJ+18], which,
apart from the pose, estimates also other object param-
eters, like size, radius, etc.

The next advancement in the field was the appli-
cation of trainable RGB-D feature detectors. It is
either based on previous solutions (like extending
LineMOD [TTKK14]) or learning features with the
CNN approaches [GAGM15, KMT+16].

Finally, end-to-end deep learning solutions were
proposed. This problem can be simplified if only
the grasp region candidates are required [TTS+18].
PoseCNN [XSNF17] extracts full 6D pose of the 21
known objects. The authors subdivided the problem
into three main steps: semantic labeling, 3D position
estimation, and final rotation regression, implemented
as the set of components in a multi-task network.
The network was trained on the data generated from
the YCB dataset [CSW+15], providing textured 3D
models of the objects and perfectly labeled test scenes.
SSD-6D [KMT+17] is an approach to extend the SSD
network to work with 3D data. In order to facilitate
the final 6D pose estimation, the authors trained the
network to recognize one of the multiple discrete
viewpoints. Final transformation refinement is done
using classical vision algorithms (based on either
RGB-only or depth-enriched data). One of the latest

ISSN 1213-6972
Journal of WSCG 
http://www.wscg.eu

148

Vol.28, No.1-2, 2020



advancements in the field is YOLOff [GKMM20],
which is also a pair of cooperating networks. First
detects the 3D object patches, which are then passed
through the 3D points regression module, detecting
the corresponding points between the scene and the
model. Final pose refinement is done using classical
algorithms. Those kinds of solutions are, however,
much harder to train than 2D object detectors and
not as popular yet [HMB+18]. As the authors of
[XSNF17] state, sufficient and well-labeled training
data is necessary. On the other hand, for classical
approaches, only a simple model is enough, and no
retraining is needed in case new models are required.

3 PROPOSED SYSTEM STRUCTURE
To take the best of two worlds, we propose the hybrid
system, with CNN based object detector and feature-
point based pose estimator (as a lot of the objects in
human surroundings possess a rich texture). To further
increase the system performance, we decided to use ad-
ditional depth data (from the RGB-D sensor mounted
on the robot). The system is composed of three main
processing blocks (fig. 1) and an additional 3D model
database.

RGB image

Classifier

RPN network

ROIs

Depth image

Pose estimator

6-DOF pose

Refined 
ROIs3D model database

Object
labels

Object
models

Figure 1: System structure

The first block is responsible for regions of interest de-
tection in the RGB image. Service robots usually cope
with a small number of objects visible in a single scene,
and typically don’t require high detection framerates.
In that kind of scenario, separating RPN from classi-
fier doesn’t impact the overall system performance. De-
tected regions are passed to the classifier, which labels
the ROIs with known classes and refines the bounding
boxes. Finally, the object’s pose is estimated using ad-
ditional depth data and the 3D model retrieved from the
database based on the label provided by the classifier.

4 IMPLEMENTATION DETAILS
4.1 Region proposal network
The region proposal network was based on simple
yet popular VGG16 architecture. This architecture
provides a good compromise between complexity (has
only 16 trainable layers) and quality (won the ILSVRC
competition in 2014). Simplified scheme of our RPN is
presented in fig. 2.

VGG16 
up to block5_conv3

rpn_conv1 
ReLU

rpn_out_reg
linear

reshape

rpn_predictions
concatenate

rpn_out_cls
sigmoid

reshape

640 x 480 x 3

30 x 40 x 512

30 x 40 x 12830 x 40 x 128

30 x 40 x 9 30 x 40 x 36

10800 x 410800 x 1

10800 x 5

transferred

trained

other

Figure 2: Region proposal network

The network takes VGA RGB images as the input.
There were nine anchors defined for RPN. As the fea-
ture extracting backbone, the first 13 layers from VGG
were utilized, with an additional convolution added.
After that, the network splits into classification and re-
gression parts. Classification part produces a label (ob-
ject/background) for each anchor box (9 in total). The
regression part produces offsets (for top left corner) and
size corrections (width and height) for each anchor box.

4.2 Classification network
For the classification stage, the ResNet50 was used
as a backbone (fig. 3). Object proposals, cropped to
224×224 pixels, were fed as an input. Two additional
convolution layers further transformed features from
the backbone, and the global average pooling layer pro-
duced final features. After that, network splits into the
classification part (fully connected, all known classes
plus one for background) and bounding box regression
part (also fully connected, four values, like in RPN).

4.3 Pose estimation
After the object detection step, all recognized objects
are cropped from the RGB image along with accom-
panying depth information. Object type information

ISSN 1213-6972
Journal of WSCG 
http://www.wscg.eu

149

Vol.28, No.1-2, 2020



ResNet50
up to activation_48 

cls_pool
global avg. pooling 2D

cls_out_reg
linear

cls_predictions
concatenate

cls_out_cls
softmax

224 x 224 x 3

7 x 7 x 2048

512512

413

17

transferred

trained

other

cls_conv[1-2]
BatchNorm+ReLU

7 x 7 x 512

x 2

Figure 3: Classification and localization network

is used to retrieve the appropriate 3D model from the
model database (both dense point cloud and sparse fea-
ture cloud). Pose estimation is divided into three main
steps (fig. 4). The first one is responsible for feature
extraction and matching. On the cropped RGB image,
SIFT feature points are detected, which are then repro-
jected from 2D image coordinates to 3D world coor-
dinates using available depth information. After that,
those are matched with model features.

When the pairs of matched points are prepared, the
RanSaC is used to estimate the initial rigid transform
between the model and the query image. As this trans-
form is based on a sparse cloud of features, and the
query cloud itself is very low resolution, this transform
often needs refinement. To do this, as the last step, ICP
is used. It tries to find the final transformation between
the full model point cloud and the query point cloud
(built from RGB and depth crops). In the testing sce-
nario, simple ICP with the point-to-plane metric was
used.

5 RESULTS
5.1 Scenario, hardware and dataset
The prepared system was tested on everyday objects
that can be found in the kitchen, mainly tea boxes and
food cans. The assumed scenario was a robot tasked
to find and bring a particular object from the cupboard.
As the system should detect the same kind of objects
that the robot works with, it was trained on some most
popular ones. The set consists of 12 different objects,
and, as there is no available dataset with those, the new
one had to be created. For the training phase of the
detector, there were around 30 images for each object,

RGB crop

3D projection

feature extraction
SIFT

Features
2D keypoints

Depth crop

Pointcloud calculation

Features
3D keypoints

RanSaC

Feature matching

Sparse model 
feature cloud

Dense model 
point cloud

Matched 3D 
points

ICP

Initial transf.

Dense query 
point cloud

Final transf.

Figure 4: Pose estimation module

taken from two angles (front and top) around the ob-
ject. For each image, there was also a mask prepared
for further cropping and preparing augmented train-
ing dataset. Data acquisition setup and sample object
cutout are presented in fig. 5. Pose estimation step
used 3D object models prepared as cuboids or cylin-
ders, with applied scanned textures (1 model per ob-
ject). The whole process of data acquisition follows the
one described in [KS17], and created datasets are pub-
licly available [SLK16].

Figure 5: Training data acquisition – sample image with
generated mask overlay

The data was acquired using the MS Kinect sensor, pro-
viding aligned RGB and depth images with VGA res-
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olution. Test scenes were arranged with the objects
placed inside the cupboard (fig. 6).

5.2 Detection
On the object detection stage, two parts of the net-
work were evaluated. RPN network was trained using
weights transferred from the ImageNet model, and only
the added layers’ weights were optimized using Adam
optimizer with a learning rate of 10e−4. 10000 syn-
thetic images were used for training. The final network
achieved a precision of 0.63 and a recall of 0.98. High
recall suggests that all interesting objects were properly
selected. Low precision means that apart from the ob-
jects of interest (12 classes), others were selected (yel-
low boxes on fig. 6). This is a good result, as it makes
the network robust to changing needs and easy to ex-
tend with new objects. The spurious RPN detections are
filtered on the classification stage. On 4GB GTX 970
(rather mediocre in today’s standards), training took 10
hours. This time is not very short, but the RPN doesn’t
have to be retrained if new objects are added to the sys-
tem.

Figure 6: Sample result of object detection: yellow
boxes – RPN result, green boxes – detected objects.

The classifier also had its initial weights transferred
from the ImageNet model, and also only the top lay-
ers had updated weights. The training was done using
2000 synthetic images (taken from the same set as in
RPN training), and the network achieved its final qual-
ity after only three epochs. This fact makes the pro-
cess of adding new objects very fast. Classifier network
achieved 0.99 precision and 0.98 recall. The training
took 3.5 minutes on GTX 970.

Final tests were conducted for the network cascade,
where the output of the RPN was tied to the classifier
input. This time the precision was still very high (0.99),
but recall dropped to 0.92 (mainly due to one class,
which had the worst statistics in both the RPN and clas-
sifier stage). Sample detections are marked with green
boxes on fig. 6. The top-middle object is not in the
training set, so it was properly ignored by the classifier.

5.3 Pose estimation
The output of the detector is used to cut the single ob-
jects from the RGB and depth image. Due to the lim-
ited resolution of the Kinect sensor, the resulting object
clouds contain only a small number of points (fig. 7a).
It is, however, still possible to fit the 3D model to this
cloud. For the fitting stage, the initial estimation is
done using the RanSaC transformation estimation on
the sparse cloud of SIFT points. Features are calculated
on the RGB image, and their 3D coordinates are calcu-
lated based on the depth image. In 3D models, a sparse
cloud of SIFT points is created on the model creation
stage in a similar way [KL16].

a) b)
Figure 7: 6-DOF pose estimation: a – input, b – result

After the initial transformation is known, the full point
clouds of the object cropped from the scene and the
model are used in ICP refinement. Final transforma-
tion (fig. 7b), along with the known object parameters
(e.g. its size) is then passed to robots grasping subsys-
tem [SS16].

6 CONCLUSION
6.1 Results discussion
The presented system combines the advantages of com-
monly used detection and pose estimation algorithms.
RPN network is trained in such a way, that it is pos-
sible to detect novel objects from similar classes (new
boxes or cans), without the need for further training.
Classification module, in order to correctly recognize
particular instances, has to be trained on data as close
to the target as possible, but as only a few layers are
trained there, this process is rather fast. This makes the
process of extending/modifying known objects dataset
doable in an acceptable time (3.5 minutes in our exper-
iments). Pose estimation part works with the already
preselected data – object that is on the scene is already
known and only the 6-DOF pose has to be fit. Adding
new objects requires no retraining of this stage, as it is
purely procedural.

Performance-wise, the object detection part takes 0.9 s
per image and pose estimation another 1.0 s (on aver-
age, depending on the spatial resolution of the object).
The whole process is definitely not real-time, but for
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the grasping purpose, it is more than enough. After the
first phase (detection) coarse pose of the object can be
calculated, and while the robot moves its arm to the pre-
grasp location, the final object pose is calculated. The
system was tested on the Velma service robot [WBS15],
working in a safe environment (fig. 8).

Figure 8: Robot grasping the object

It is hard to directly compare our solution with those
presented in sec. 2. The most crucial difference, which
makes the comparison unfeasible, is the format of the
training dataset. PoseCNN, SSD-6D, and similar re-
quires pose-labeled images as the input for the training.
We decided that to make the retraining and extending
the system easier, those are not required (and we don’t
have them). On the other hand, one of the strong as-
sumptions in the presented solution is the rich texture
in the objects. In datasets used by the aforementioned
methods, those are a minority.

One comparison can be made in terms of the expected
burden of system extension with new objects. Data-
wise, in our system, one has to supply few (less than 20)
pictures of the new object and scanned textures (as the
many household objects can be modeled with simple
shapes). In contrary, to train the end-to-end solutions,
one has to supply pose-labeled pictures, and there must
be a lot of them to cover most of the possible view-
points. Time-wise, as it was described above, only the
part of the pipeline needs to be retrained, with a smaller
amount of data, which should take less time than re-
training the full end-to-end pipelines.

6.2 Future works
There are multiple ways this system can evolve. For the
training phase, instead of using the pictures of the ob-
ject, one can use the rendered scenes solely [PZL+18],
with perfect masks and no need for hand labeling.

Another possible direction for making the pose estima-
tion better is changing the feature points detector to bi-
nary (if algorithm speed is crucial) or apply depth-based
feature points rectification [Ste18]. ICP transformation

can also be refined by using other ICP flavors (e.g. color
information [LKS16]).

In its current form, the system is general-purpose and
can be applied in multiple scenarios. As it is used in
robotic applications, some extensions facilitating the
hardware available can be made. The biggest impact on
the pose estimation accuracy can be obtained using the
active vision. After the first estimation, when the arm
moves towards the object, additional pictures from the
wrist-mounted sensor can be passed to the pose refine-
ment subsystem, effectively implementing the multi-
camera visual servoing [KZ15]. As the initial pose is
already known, only a few ICP iterations could make
the estimation better.
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[SS16] D. Seredyński and W. Szynkiewicz. Fast
Grasp Learning for Novel Objects. In Recent
Advances in Automation, Robotics and Measur-
ing Techniques, volume 440 of Advances in In-
telligent Systems and Computing, pages 681–692.
Springer, 2016.
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