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ABSTRACT

Since RGB-D sensors became massively popular and are used in a wide range of applications, depth data com-
pression became an important research topic. Live-streaming of depth data requires quick compression and de-
compression. Accurate preservation of information is crucial in order to prevent geometric distortions. Custom
algorithms are needed considering the unique characteristics of depth images. We propose a real-time, lossless
algorithm which can achieve significantly higher compression ratios than RVL. The core elements are an adaptive
span-wise intra-image prediction, and parallelization. Additionally, we extend the algorithm by inter-frame differ-
ence computation and evaluate the performance regarding different conditions. Lastly, the compression ratio can
be further increased by a second encoder, circumventing the lower limit of four-bit per valid pixel of the original
RVL algorithm.
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1 INTRODUCTION

Over the past years, RGB-D sensors became an im-
portant topic in many research areas, including com-
puter graphics and computer vision. Their popularity
increased enormously when Microsoft released its first
Microsoft Kinect, an inexpensive, small, and easy-to-
use RGB-D camera, which captures rectangular color
images and corresponding depth images. Since then,
even smaller RGB-D sensors were developed, which
are now integrated into many devices. Prominent exam-
ples are the Intel RealSense RGB-D cameras, the sub-
sequently released Kinect V2, and Azure Kinect cam-
eras from Microsoft, whose sensors can also be found in
the augmented reality headsets HoloLens 1 and 2, and
Lidar scanners. Depth images can also be calculated
by using two RGB cameras and semi-global matching
(SGM).

Common applications are, for example, telepresence
[BKKF13, CK12, SST+18], Virtual/Augmented real-
ity (VR/AR) applications with remote sensors captur-
ing real word scenes [JSM+14], gesture and object
recognition and tracking [CJK15], 3D reconstruction
[NIH+11,WMS16] and SLAM (simultaneous localiza-
tion and mapping) [MT17, WKJ+15].

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

In many cases, the data needs to be streamed over a net-
work beforehand, which runs into the problem of lim-
ited network bandwidth, i.e., 100 Mbit/s or 1 Gbit/s for
Ethernet, or 300-450 Mbit/s for 802.11n WiFi. The sen-
sors accumulate a large amount of data, and the band-
width becomes a limiting factor quickly, especially if
multiple sensors are combined for better coverage. For
instance, a sensor with Full HD color resolution and the
depth with a resolution of 512×424 (Kinect V2) pro-
duces more than 6.6 MB of raw data per frame. At a
typical frame rate of 30 Hz, the network would have to
support at least 1.60 Gbit/s. More recent depth sensors
often support even higher resolutions. For example, the
new Azure Kinect is able to capture color, depending
on the mode, up to a resolution of 4K, and has a one-
megapixel depth sensor.

Data compression is essential in order to reduce the re-
quired bandwidth. This enables lower-bandwidth sce-
narios, makes room for other payloads, and increases
the number of possible cameras. Individual compres-
sion of color and depth images is, in general, com-
putationally less expensive than compressing recon-
structed 3D data like point clouds or surfaces. There-
fore, this approach is often preferred for real-time ap-
plications [LBW+15]. The color component of RGB-D
sensors can easily be compressed with standard image
and video compression algorithms like JPEG [Wal92]
or H.264 [WSBL03] as they are optimized precisely for
this task.

However, applying the same encoders to the depth data
would often result in sub-optimal compression perfor-
mance or, more crucial, severe artifacts, and geometric
distortions [Wil17]. The reason for this is that depth
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data usually is represented in a different format, 13
or 16-bit single channel, and has inherently different
characteristics than natural color images. In general,
depth images consist of more homogeneous regions
with abrupt discontinuities at object borders. In addi-
tion, individual not-captured pixels and regions of in-
valid pixels are scattered throughout the image, if not
filtered beforehand.

In recent years, the research and development of com-
pression algorithms specially designed for depth im-
ages became an important topic. Creating efficient and,
at the same time, geometry-preserving (lossless) ones
is still a very active area of research.

Our work focuses on analyzing and improving the novel
RVL algorithm [Wil17], especially regarding achiev-
ing higher compression ratios. More detailed, our main
contributions are:

• An improved adaptive intra-image prediction step
for the RVL algorithm, enhancing its compression
ratio.

• The addition of a final entropy-coder stage, further
enhancing the compression ratio.

• A multi-threaded implementation of the RVL algo-
rithm and variants speeding it up further.

• An additional inter-frame delta step as well as an
examination of its effectiveness regarding the com-
pression ratio over different application scenarios.

• Extensive experiments comparing the effectiveness
of various lossless depth compression algorithms for
different range cameras.

2 RELATED WORK

Data compression is an important and widely used
topic in computer graphics, image processing, and
many other research areas. For example, [KÖP13]
and [BÖK11] present methods to achieve compact
representations of surface-light interactions like sub-
surface scattering and BRDFs. The output of RGB-D
sensors is often visualized in 3D as mesh or point cloud;
therefore, a lot of focus was put on compressing these
geometric representations. In 2007 MPEG issued a call
for proposals on point cloud compression to develop
an ISO standard [SPB+19]. Point cloud compression
algorithms are mostly based on spatial data structures
like an octree. For example, [MBC17] is based on
octrees and is also able to exploit temporal redundan-
cies. [TCF16] introduced a time-varying approach that
can predict graph-encoded octree structures between
consecutive frames. Real-time capable mesh-based
compression and streaming techniques like proposed
by [MSA+13] and [BGTB12] are in most cases lossy
algorithms. As both of these representations, point

clouds, and meshes, are three dimensional, it is more
challenging to find and encode redundancy in the data
efficiently. Specialized data structures are needed and
raise the complexity and computation time for high
compression ratios.

A different approach is to encode the raw depth
images. Many standard lossless image and video
codecs like PNG [RK99], JPEG-LS [WSS96, WSS00]
or H.264 [WSBL03] can be applied, but the re-
sults are rather poor, founded in the inherent
differences between natural images and depth im-
ages [SMAP16, Wil17, HKR18].
Similarly, general-purpose compression algorithms can
be applied on depth images, but intrinsically are not
optimized for this kind of data. Therefore they are not
ideal solutions.

In recent years some effort was made to adapt
common video codes like H.264 and its successor
HEVC [SOHW12] to suit depth data better. [PKW11]
proposed an encoding scheme to convert the single-
channel depth data to the RGB format used by H.264
and VP8, reducing the occurring artifacts. This tech-
nique still produces noise at the borders. [LBW+15]
developed a hybrid lossless-lossy algorithm, where
the first bits are encoded lossless, and the remaining
ten bits are compressed using H.264. The HEVC
standard [SOHW12] features an extension called
3D-HEVC designed for 3D video coding, which uses
the multiview texture videos plus depth maps (MVD)
format. This extension addresses the compression
of depth images through multiple techniques. The
complexity is rather high. Aimed at lowering it and
enhancing the compression speed, [ZCH+15] proposed
multiple modifications exploiting depth map and
texture video correlation. Further speedups can be
gained by limiting costly intra-image compression
steps to regions, where they are effective according to
a decision model based on tensor feature extraction, as
proposed by [HE19].

Recently, [HKR18] proposed another technique in
which even noisy depth images and videos are encoded
through planar segmentation. Each frame gets seg-
mented into a number of planes by using the Graph
Cut algorithm over the image defined as a Markov
Random Field. While the proposed method achieves
a high Rate-Distortion performance, it is rather time-
consuming and only effectively applicable to scenes
that can be approximated by planes.

Most work of depth image compression is about
lossy compression. Lossless solutions are quite
rare. [MZC+11] combines run-length encoding and
variable bit length coding for lossless encoding of
depth images. [Wil17] took a similar but even sim-
pler approach and achieves with the proposed RVL
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algorithm higher speeds at comparable compression
ratios.

3 OUR APPROACH

We created a pipeline of four steps (Fig. 1) to compress
depth images losslessly from real sensors with a high
compression ratio. If we have a sequence of images,
we optionally calculate deltas between the frames. Af-
terward, we define spans and calculate individual pre-
dictors for each of them, before it will be compressed
by RVL’s [Wil17] alternating run-length and variable-
length coding. To decrease the lower bound of RVL, we
decided to use Zstandard as a final, optional step. The
focus lies on captured 16-bit depth values, which can
be handled as a single channel grayscale image. The
corresponding color images are not considered in this
work.

RVL consists of alternating run-length coding of
zero-values, which represents invalid pixels, and
variable-length coding for the rest. Like many com-
pression algorithms, RVL compresses not the raw pixel
values but the residuals, which remain after calculating
the delta to a prediction of the current value. This leads
to a decorrelation of the data, which in turn improves
the effectiveness of subsequent compression steps.
Smaller residuals have a low entropy, and fewer bits
are needed to encode them. In the case of RVL, the
prediction of the current pixel value is simply the last
valid pixel, which is, in most cases, the pixel to the left.

3.1 Adaptive Span-Based Prediction

One crucial aspect was to improve the simple inter-
image delta calculation of RVL to generate smaller
residuals. As the employed decorrelation heuristic is
not ideal, we propose to replace it with an adaptive se-
lector of different predictor functions. In lossless com-
pression, the transformations and functions applied in
the compression stage must be reversible in the corre-
sponding decompression stage; hence, the used predic-
tion method must be encoded in the form of bitflags,
too, because all the transformations must be reversible.
Pixel-wise switching of the predictors leads to too many
bitflags. Therefore the image is dynamically partitioned
into spans of valid pixels in our approach. A span can
be described as a one-dimensional block of a fixed num-
ber of consecutive pixel values. Invalid zero-pixels are
skipped. Figure 2 shows an example partitioning of pix-
els into spans of length four. Using spans instead of 2D
blocks reduces the computational complexity and leads
to faster computation.

Our adaptive prediction then works as follows: For each
valid pixel p in the span S, all possible predictor func-
tions Predi(p) are evaluated and the one, which in total

leads to the smallest absolute residuals, gets chosen for
all pixels in the span to calculate the final residuals rp:

rp = Predk(p) (1)

where

k = argmin
i∈[0,3]

{

∑
p∈valid(S)

|Predi(p)|

}

(2)

A high-level overview of our prediction can be seen in
Algorithm 1.

Algorithm 1 Span-Based Prediction

Require: inputImage

initialize data structures
for each non-zero pixel do

calculate possible predictor values
increment corresp. accumulated span errors
if span is full then

choose best predictor in span

save predicorID and corresp. pixel deltas
reset span errors

end if

end for

We decided to use four different predictor functions,
which then can be represented by exactly two bits per
span. In principle, the actual predictors, as well as their
quantity, are easily exchangeable, focusing either on
computationally simpler and, therefore, faster ones or
more complex and effective ones. To predict a pixel
p, we opted to use RVL’s standard predictor, given in
Equation 3, as default case, as it is similar to the com-
mon “left pixel” approach, but handles the occurrences
of intermixed zero-pixels very well by skipping them.
In Fig. 3, this process is illustrated.

Additionally, we use predictors based on the delta to the
upper pixel (Eq. 4), the average of the left and upper
pixel (Eq. 5), and lastly, the result of a combination of
the left, upper and upper left pixels (Eq. 6).

Pred0(p) = pX − pA (3)

Pred1(p) = pX − pB (4)

Pred2(p) = pX −
pA + pB

2
(5)

Pred3(p) = pX − (pA + pB − pC) (6)

Equation 6 is used as the default case in the Paeth
[RK99, pp. 159–162] as well as the MED predictors
[WSS96]. We use only this part of them as our fourth
predictor because it is computationally less expensive
than using the complete Paeth or MED predictor. Tests
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frame
delta

span-based
adaptive

prediction

run-length
and variable-
length code

Zstandard
compressed

image

Figure 1: The pipeline of our approach. Stages in dashed lines are optional. They allow a better balance between
compression ratio and compression speed. First stage: frame delta, second: our span-based adaptive intra-image
prediction, third: RVL’s run-length and variable-length coding, fourth: an additional Zstandard [Col16] pass.

Figure 2: The pixel grid segmented in spans of four
valid pixels (red boxes). Invalid pixels (grey) are
skipped.

Figure 3: The prediction for pixel p depends on the
pixel itself (X) and its neighbors last (A), above (B),
and above left (C). Contrary to B and C, A is the last
valid pixel and, therefore, not fixed, as the right image
depicts.

we conducted showed that using the full MED predic-
tor is much more time consuming, but does not improve
the compression ratio significantly.

In this way, the number of additional bits needed for the
predictor representation can be significantly reduced,
while retaining the ability to adapt to the local image
characteristics dynamically. The exact number of pre-
dictor bits for the image can be computed as

x =

⌈

(n− z)

s

⌉

· ⌈log2 ( f )⌉ (7)

where n denotes the number of pixels in the image, z the
number of zero-pixels, s the span size and f the number
of predictor functions.

3.2 Inter-Frame Delta Computation

Another aspect we concentrated on is adding a frame
delta component as a first step in the algorithm’s
pipeline. This is a commonly used technique in video
compression, where differentials between subsequent
images are encoded instead of individual images one by
one. Figure 4 illustrates the process. The effectiveness
depends on the application scenario, the content, and
how dynamic it is. At least in cases where the change
between the images is small, or only some dynamic
elements occur, this technique should be beneficial for
the compression ratio and speed. In the original RVL
paper [Wil17], it is mentioned that such a frame delta

Figure 4: Frame delta computation: Sequence of im-
ages Ii and the corresponding differential images Di be-
tween every two consecutive ones.

calculation was experimented with but the compression
was even worse. According to the paper, the test scene
was a dynamic scene in which the camera constantly
moved, which would be the worst-case scenario for this
kind of technique. It is not clear if other scenarios were
tested. For our pipeline, we designed the frame delta
computation as an optional first stage so that it can be
skipped in scenarios where it is not effective. Another
aspect to consider is the inherent noise of the sensor.
Some pixels switch between being valid and invalid,
and in addition, the depth readings continuously vary,
even for physically static objects. This results in a
decreased effectiveness of frame delta computation but
can be compensated for by temporal filtering as a pre-
processing step (at least to some degree). Depending
on how intelligent and vigorous the employed filter
is, other artifacts may be introduced, which could be
tolerated depending on the application.

3.3 Further bit reduction

The coding of the residuals in RVL is done by variable
bit length, where each valid pixel is at least one nibble
(four bits) long. For each nibble, the first bit functions
as a continuation bit and the other three bits are used
to represent (a part of) the actual value of the resid-
ual. Therefore, in a single nibble, a residual r ∈ [0,7]
can be represented. In cases where image regions are
very homogeneous, and the computed residuals are fre-
quently below this maximum value of seven, the algo-
rithm can lead to comparatively poor compression re-
sults. We propose to couple RVL with a second encoder
without such a limitation to mitigate this drawback. In
our approach, the compressed output of RVL is, there-
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fore, further processed by Zstandard [Col16]. As a
combination of a dynamic dictionary-based component
with a sliding search window and an ANS-based en-
tropy component, Zstandard can potentially compress
symbols smaller than four bits. According to empirical
tests, Zstandard performed best as a backend.

3.4 Parallel Execution

To mitigate the inevitably increasing computation time
by the more complex prediction, we implemented
multi-threaded versions. The principle is the same
for all variants: first, for each thread, all necessary
data and an output buffer are initialized, then the
image, represented as a one-dimensional buffer, is
segmented into blocks by the number of threads.
Lastly, the compressed parts are stitched together
to one continuous block. Especially our improved
prediction step in the compression stage should benefit
from parallel execution as it is computationally the
most expensive part and there are only locally very
confined dependencies between the pixel computations.

4 RESULTS

All of our tests were conducted on an Intel Core i7-
7800X, 16 GB of system memory, and under Windows
10 x64 Enterprise using the Visual Studio 2017 com-
piler. Each test was performed multiple times, and the
average was taken.

We recorded sequences of depth images of six differ-
ent test scenes with the Azure Kinect RGB-D camera
in both of the two available modes, narrow and wide
field of view (NFOV, WFOV). In NFOV, the depth
is recorded in 640×576 at 30 Hz and in WFOV at
1024×1024 at 15 Hz. Each depth value is represented
as a 16-bit integer (short). Four of those scenes were
static, and two dynamic. In the first dynamic scene, the
camera is fixed, and a person moves in front of the cam-
era. In the second scene, the camera is handheld and
moved around. For the static scenes, 30 frames were
recorded, while for the dynamic ones, 120 frames are
used. Additionally, we tested three single depth images
from the Middlebury dataset [SP07] with very homoge-
neous depth values, and a dynamic scene of 600 frames
from TUM [SEE+12], in which the camera (Kinect 1)
is handheld, slightly shaken, and people moving, while
seated.

In each test case, we omit the first recorded frame from
the evaluation as we do a lot of initialization work
for the algorithms here (e.g. reserving memory) which
holds for the rest of the test. The measurements of all
the other subsequent frames in a test are then averaged.

The Azure Kinect camera has the unique attribute that
the output depth-image is rectangular, but depending

Figure 5: Example depth images of four different
scenes. We record the first three with the Azure Kinect
in different modes (NFOV, WFOV, NFOV with crop-
ping). The last scene from TUM [SEE+12].

on the mode, the content is only hexagonal or spheri-
cal. The corners are zero-pixels. While this is the stan-
dard output of the camera and could be representative
for other cases, where significant static areas fail to get
captured by an RGB-D sensor, it is a rather uncommon
situation. In order to not only test the standard configu-
ration but also more broadly comparable scenarios, we
also evaluate depth maps cropped by 25 %. As a result,
most of the static invalid regions are dropped.

Figure 5 shows a selection of our test scenes. For an
overview of all scenes and corresponding metrics, we
refer to Figure 11 and Table 2 in the supplementary
material.

We compare our novel compression algorithm against
the original RVL algorithm [Wil17], PNG [RK99] as a
classical lossless image compression algorithm that is
widely used, and LZ4 as a fast representative for the
LZ77 family of dictionary-based encoders. Addition-
ally, as an example of a modern and efficient entropy
coder, we decided to use an ANS implementation by F.
Giesen [Gie14]. In empiric tests, this implementation
performed best. Lastly, Zstandard as dictionary coder
is also compared.
For our algorithm Pred, we chose a span size of 16 valid
pixels. For our PredZ variant, which extends Pred by
applying Zstandard for further bit reduction, we chose
a span size of 16 valid pixels, and two as Zstandard
compression parameter. These configurations yielded
the highest compression ratios, while still achieving in-
teractive speeds. For algorithms featuring a selectable
acceleration (or compression) factor, we tested them in
multiple configurations and chose the one, which min-
imized the difference of the compression ratio in com-
parison to our algorithm. In the case of PNG, a quality
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Figure 6: Average combined compression and de-
compression speed over compression ratio for all al-
gorithms. Algorithms with asterisk mark our algo-
rithms. Our PredZ algorithm achieves the highest abso-
lute compression ratio, while still delivering real-time
performance.

level of five was chosen, for LZ4, an acceleration factor
of one, and for Zstandard a compression value of six.

The first test we conducted is a general comparison of
all the algorithms in terms of their respective compres-
sion ratio cr and combined compression and decom-
pression speed sp. Equations 8 and 9 describe the cal-
culation of the metrics.

sp =
2×ob

ct +dt
(8)

cr =
ob

cb
(9)

ob stands for the original image size in megabytes, ct

and dt for the compression and decompression times in
seconds and cb for the compressed size in megabytes.

Figure 6 presents the results of this initial compari-
son, where for each algorithm, the thread configuration
was selected, which yielded the best compression rate;
therefore, the number of threads was not equal for all
algorithms. For this test, the mean over all scenes and
modes were taken. The asterisks identify our algorithm
variants.

It can be seen that, on average, ANS is not competitive
in our test, neither in speed nor compression ratio. LZ4
is the fastest but compresses rather poor. PNG has a
high compression ratio of 5.9:1 but at the cost of a very
slow combined speed. RVL achieves good performance
and a compression ratio of nearly 4.4:1. Our span-based
adaptive prediction Pred can boost the compression ra-
tio on average by 6.5 %, but the performance decreases
considerably. A regression in performance to a certain
degree was to be expected by the inherently more com-
plex delta computation and less efficient memory ac-
cesses. A possible explanation for the strength of the

Predictor ID 0 1 2 3
Usage % 24.4 26.6 21.2 27.7

Table 1: Distribution of adaptively selected predictors,
average over all scenes and modes.

drop in performance, despite the rather low complexity
predictors, might be the lack of optimization done com-
pared to RVL. Interestingly, the general-purpose Zstan-
dard algorithm can achieve an even higher compres-
sion ratio of roughly 5.8:1. However, it is also slower.
Lastly, with our most sophisticated variant PredZ, we
achieve the best compression ratio of more than 7.6:1,
which is significantly higher than the ones of RVL or
Zstandard. At the same time, the combined compres-
sion and decompression speed of 67.2 MB/s is more
than sufficient to maintain interactive frame rates. For
more comprehensive data of this test, we refer to Fig-
ure 12 in the supplementary material.

To further analyze the effectiveness of our span-based
adaptive prediction component, we counted the fre-
quency how often each predictor is chosen as the best
one per image. Table 1 shows the percentages averaged
over all scenes and frames.

Each predictor is equally used, which indicates that the
adaptive prediction works as intended, and all of the
chosen predictors complement each other to effectively
reduce the average residual in contrast to a static pre-
diction like it is used, for example, in the original RVL
algorithm.

For all subsequent tests, we only consider the most
promising algorithms and omit the ones without com-
petitive results, namely ANS, LZ4, and PNG.

In order to review our multi-threading implementation
and analyze the behavior of the algorithms with increas-
ing parallel execution, we performed all tests as well
with two, four, and eight threads. Measuring initial
thread creation overhead is prevented by early thread
allocation. The multi-threading performance is shown
in Fig. 7, in general, the combined speed rises.

As expected, the performance gains shrink with more
threads as a result of diminishing returns. However, we
were able to achieve considerable speedups for RVL,
although it has low arithmetic complexity and therefore
becomes quickly memory-bound. With four threads,
the performance increased by factor 1.42. Our more
complex RVL-based algorithm benefits highly from the
parallel execution, as increasing the threads from one
to four leads to a speedup of 2.16. While all algorithms
gain performance by multi-threading, at least for up to
four threads, the speedup is generally much lower than
the theoretical optimum. This may be partly because
not all parts of the algorithms are multi-threaded, e.g.,
merging the results, and that some sections of the al-
gorithms are rather bandwidth- than compute-bound.
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Figure 7: The image illustrates the impact of paral-
lelization on the combined compression and decom-
pression speed for different algorithms. All algorithms
including RVL and our RVL-based ones benefit from
parallel execution.

An evaluation of the timings of the individual parts of
our Pred algorithm indicates that the more computa-
tionally complex prediction stage benefits significantly
more from the parallelization than the run- and variable
length coding stage. Furthermore, the decompression
component does not profit as much as the compression
component. The compression ratio did slightly, but not
considerably, decrease with more threads, as it was ex-
pected due to the separated image blocks. In the case
of Zstandard, the compression ratio decreased the most
with 2.68 %. RVL, on the other hand, had a decrease of
less than 0.1 %. The compression ratio of our adaptive
prediction dropped by 0.25 %.

To analyze the effectiveness of frame delta coding in
RVL, each test is executed with and without our imple-
mentation of the addition as well as with and without
a preceding temporal filter (see the last paragraph of
section 3.2), which makes four variants. The filter we
implemented and use is rather simple and only meant
as an example. Nonetheless, we aimed at preserving
the legit information (in contrast to the sensor noise)
and avoiding motion artifacts. It works as follows:
Pixels of an incoming image will get ignored, whose
delta to the corresponding pixels of each of the last two
images is below 2 %.

The combination of frame delta coding and temporal
filtering increases the compression ratio for all algo-
rithms the most, as is shown in Figure 8. While the
combination of frame delta coding and temporal filter-
ing, in general, leads to substantial improvements, our
algorithm PredZ still achieves the highest compression
ratio of up to 13.8:1. It should be noted though, that
with temporal filtering, the compression pipeline is not
strictly lossless anymore.
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Figure 8: Comparison of the impact of our inter-frame
delta computation on the compression ratio, both with
and without a preceding temporal filter. The compres-
sion ratio increases hugely with the combination of
temporal filter and frame delta, but using frame delta
computation without the preceding filter also, most of-
ten, accomplishes notable gains.
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Figure 9: The image illustrates the impact of the scene
type (static, dynamic content, dynamic camera) on the
performance of the frame delta computation with and
without filtering. Static scenes benefit the most by the
combination of temporal filtering and frame delta com-
putation.

With only the frame delta extension, the compression
ratio still increases for Pred and RVL, which contra-
dicts the statement of [Wil17]. It should be considered
that for our tests we took the average of static and also
highly dynamic scenes. Nonetheless, RVL’s compres-
sion rate increased by 18.54 % and with our improved
prediction by 11.1 %. Zstandard does not benefit from
frame delta, but only from the temporal filter instead,
although the confidence interval is very wide. Surpris-
ingly, the data indicates that our PredZ performs best
with the raw data compared to the others.

A detailed breakdown w.r.t. different classes of scenes
and their influence on the compression ratio, while
computing frame delta, can be seen in Fig. 9.
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Figure 10: The image displays the individual
compression- and decompression speed for different al-
gorithms. The decompression is significantly faster for
everyone.

The results indicate that the type of the scene, static
or dynamic, or more specifically, the amount and the
intensity of movement of the content and the camera
itself, do have a significant impact on the compres-
sion rate. Without temporal filtering, the average com-
pression rate of all algorithms is about equal. Accord-
ing to Fig. 8, not all algorithms benefit directly from
frame delta. If, however, such a filter is used, the influ-
ence of the scene type raises strongly, specifically rather
static scenes can be compressed extremely well. Inter-
estingly, sometimes the scene which involves camera
movement is better compressible using both, the tem-
poral filter and frame delta, instead of the scene, where
the camera is static and only parts of the captured envi-
ronment move.

How the combined speed of the tested algorithms is dis-
tributed over compression and decompression can be
seen in Fig. 10. The decompression speed generally
outperforms the compression speed, especially in the
case of Zstandard.

5 CONCLUSION AND FUTURE

WORK

We proposed a lossless RVL-based algorithm for real-
time depth image compression aimed at high com-
pression ratios. Our experiments show that our algo-
rithm achieves the highest compression ratios compared
to competing real-time capable algorithms. With our
method, depth images can be compressed up to 73 %
smaller than with the original RVL algorithm and 30 %
smaller than with the slower Zstandard. Using tem-
poral filtering beforehand, we accomplish even higher
compression ratios of 13.8:1, which is still the high-
est compared to the other evaluated algorithms but the
compression pipeline becomes lossy. Thanks to parallel
execution, our performance is still sufficient for typical
RGBD-sensor frame rates and real-time streaming in
bandwidth-limited applications. Finally, we were able
to show that the original RVL can also be sped up with
multi-threading, and it can, for some use-cases, benefit

significantly from frame delta computation. As future
work, further improvements could be made by optimiz-
ing the span-based prediction stage to lower the com-
putation times, and maybe even SIMD can be applied.
Also, it may be worth to investigate zigzag scan and
to use a block-based adaptive prediction instead. The
latter may exploit a possibly higher spatial coherency,
however, increase the computational complexity fur-
ther. Another promising idea would be to integrate the
inter-image- into the intra-image delta computation by
also using the neighbor pixel values from the previous
frame as possible predictors.
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