
University of West Bohemia

Faculty of Applied Sciences

Department of Computer Science and Engineering

Master’s thesis

Time Series Forecasting

using Deep Neural

Networks

Plzeň 2019 Bc. Lada Zadranská

Mı́sto této strany bude

zadáńı práce.

Declaration

I hereby declare that this master’s thesis is completely my own work and

that I used only the cited sources.

Plzeň, 27th June 2019

Bc. Lada Zadranská

Abstract

Recurrent Neural Networks are models designed to operate over sequential

data, used for classification and regression tasks. Types of Recurrent Neural

Networks are described in this thesis and the algorithms are used in the

implementation of a baseline model for time series forecasting. Grid Search

or Bayesian Optimisation are strategies that assist in finding the best

combination of hyperparameters – variables, which have a great impact on

the process of learning.

The purpose of the thesis is to find whether Side-Channel Injection could

improve the accuracy of predictions using RNNs. Mean and slopes and

intercepts of a fitted line are fed as new variables with input data to

the networks and the functionality of this method is verified using the

implementation of the two models. Another RNN structure is introduced

as the Augmented RNN model as a compromise between simple RNNs

and RNN Autoencoders. Several experiments were conducted for the

aforementioned models and the Augmented RNN model was selected as

the model with the best performance using Akaike’s Information Criterion,

Hypothesis Testing and visual result comparison. Another contribution

of this thesis is a detailed overview of the process of implementing RNN

Autoencoders and the techniques used for hyperparameters optimisation.

Keywords: Machine Learning, Recurrent Neural Networks, Long-Short

Term Memory, Gated Recurrent Unit, Seq2Seq, Time Series Forecasting,

Side-Channel Injection, TensorFlow.

Abstrakt

Rekurentńı neuronové śıtě jsou modely pracuj́ıćı s posloupnostmi dat

použ́ıvané pro klasifikačńı i regresńı úlohy. Typy rekurentńıch neuronových

śıt́ı jsou definovány v této práci společně se svými algoritmy, které jsou

použity při implementaci výchoźıho modelu. Grid Search či Bayesovská opti-

malizace jsou metody pomáhaj́ıćı nalézt optimálńı hodnoty hyperparametr̊u

– proměnných, které ovlivňuj́ı rychlost a přesnost učeńı. Tyto metody byly

použity k nastaveńı neuronové śıtě.

Ćılem této práce bylo zjistit, zda může metoda injekce postranńıch kanál̊u

zlepšit přesnost predikćı rekurentńıch neuronových śıt́ı. Pr̊uměr a směrnice

a úsek př́ımky dané lineárńı regreśı jsou použity jako nové proměnné

vstupńıch dat a funkčnost této metody byla ověřena implementaćı těchto

dvou model̊u. Daľśı struktura rekurentńı neuronové śıtě je definována jakožto

Rozš́ı̌rený RNN model, který je kompromisem mezi klasickou rekurentńı

neuronovou śıt́ı a autoenkodéry využ́ıvaj́ıćımi rekurentńı neuronové śıtě.

Pro všechny modely bylo provedeno několik experiment̊u a Rozš́ı̌rený RNN

model byl za pomoci Akaikova informačńıho kritéria, testováńı hypotéz

a analýzy výsledk̊u na zákládě pozorováńı graf̊u vybrán jako nejlepš́ı model.

Daľśım př́ınosem této práce je detailńı přehled postup̊u při implementaci

autoenkodér̊u využ́ıvaj́ıćıch rekurentńı śıtě a popis technik použitých při

optimalizaci hyperparametr̊u.

Kĺıčová slova: Strojové učeńı, rekurentńı neuronové śıtě, Long-Short Term

Memory, Gated Recurrent Unit, Seq2Seq, predikce časových řad, injekce

postranńıch kanál̊u, TensorFlow.

Acknowledgements

I would first like to thank my thesis advisor Ing. Kamil Ekštein, Ph.D. for

his guidance and patience. My thanks also go to Ing. Jakub Sido and Ing.

Ondřej Pražák for their help with implementation. Access to computing and

storage facilities owned by parties and projects contributing to the National

Grid Infrastructure MetaCentrum provided under the programme ”Projects

of Large Research, Development, and Innovations Infrastructures” (CESNET

LM2015042), is greatly appreciated.

Contents

1 Introduction 10

2 Recurrent Neural Networks 12

2.1 Machine learning algorithms 13

2.2 Mathematical background 15

2.2.1 Feedforward propagation 17

2.2.2 Backpropagation . 18

2.3 Long-Term Dependencies . 20

2.3.1 Vanishing gradients 20

2.3.2 Exploding gradients 22

3 Long Short-Term Memory 24

3.1 LSTM Autoencoders . 26

3.2 Gated Recurrent Unit . 30

4 Hyperparameters 32

4.1 Hidden layers and neurons 32

4.2 Activation function . 33

4.3 Learning rate . 34

4.4 Objective function . 35

4.5 Optimiser . 36

4.6 Batch size . 38

4.7 Train ratio . 38

4.8 Gradient Clipping . 39

4.9 Number of epochs . 39

4.10 Hyperparameter optimisation 40

4.10.1 Grad Student Descent 41

4.10.2 Grid Search . 41

4.10.3 Random Search . 41

4.10.4 Bayesian Optimisation 42

5 Time series forecasting 43

5.1 Linear regression . 44

5.2 Näıve method . 45

5.3 Seasonal näıve method . 45

5.4 Forecast evaluation . 46

7

5.5 Akaike’s Information Criterion 46

5.6 Hypothesis Testing . 46

6 Data 47

6.1 Data shape . 47

6.2 Preprocessing . 47

6.3 Datasets . 49

6.3.1 Generated data . 49

6.3.2 ECG data . 50

6.3.3 Corn prices . 50

7 Side-channel injection 52

8 Software toolkit 54

8.1 Python . 54

8.2 TensorFlow . 54

8.2.1 TensorFlow API . 55

8.2.2 TensorBoard . 55

8.3 Matplotlib . 56

8.4 Seaborn . 56

8.5 Scikit-learn . 56

8.6 Pandas . 57

8.7 StatsModels . 57

8.8 SciPy . 57

9 Implementation 58

9.1 Main program . 58

9.2 Find a baseline . 60

9.3 Models with side channels 63

9.4 Augmented model . 64

10 Results 65

10.1 Model selection using Hypothesis Testing 65

10.2 Model selection using AIC 67

10.3 Visual result comparison . 68

11 Conclusion 75

Bibliography 76

Reference . 76

A Backpropagation of LSTM 84

8

A Visualisations 88

List of Abbreviations 93

List of Figures 96

9

1 Introduction

Over the past couple of years, machine learning has become very popular and

its range of applications is still increasing. This thesis focuses on univariate

time series forecasting using neural networks. The thesis is structured in two

logical segments – the theoretical part and the practical part. Each segment

consists of multiple sections.

The first section introduces Recurrent Neural Networks with a brief history,

the mathematical background of their models and possible structures and

applications. There is also an overview of machine learning algorithms to dif-

ferentiate between the supervised learning algorithm, that is used in this

thesis, and others. The problems that may occur when training these types

of networks are summarised at the end of this section, together with several

solutions of how to avoid them. Some of them will be explained in further

detail and applied in the programming part of this thesis.

Long Short-Term Memory networks and Gated Recurrent Units are described

in the second section. Similarly the whole algorithm is examined of how the

predictions are computed. Next, Autoencoders are recapitulated and the

advantages of LSTM Autoencoders using a machine translation task are

explained.

The difference between parameters and hyperparameters is clarified in the

following section, where a list of hyperparameters used in the practical part

is provided. Each of these is analysed with their impacts on a model and

the learning process, and possible methods of setting the hyperparameters

are proposed.

Time series and possible metrics for model selection are described in the

following section. Simple linear regression is performed to extend the model

by adding information about the trend of the time series.

The practical part introduces the datasets used for forecasting and methods

for reshaping the data in order to create a supervised learning problem.

Side-channel injection as a method of how to provide the data with a new

information derived directly from the dataset is described in the following

section. To create a new model using side-channel injection is the main

target of this thesis.

A brief overview of programming language and the libraries used is provided

afterwards.

Thereafter, a basic LSTM Autoencoder model is defined, together with four

10

Introduction

extensions. Each model is run with the three presented datasets.

At the end of the practical part of this thesis, the results of the models are

compared with each other using Hypothesis testing, Akaike’s Information

Criterion and an analysis w.r.t. visualisations of the predictions.

11

2 Recurrent Neural Networks

In this chapter, Recurrent Neural Networks are discussed, together with

their importance in sequential data processing via artificial neural networks.

Readers are introduced to the basics of the whole topic, as well as to the

mathematical background.

Recurrent Neural Networks (RNNs) are Artificial Neural Network (ANN)

models proposed in the 1980s (Rumelhart et al., 1986; Elman, 1990; Werbos,

1988) that allow us to operate over sequences of vectors. Due to their chain-

like structure, RNNs are mostly used as generative models (see Section 3.1).

They are applied in handwritten text generation, machine translation, speech

recognition, video classification, image captioning and other tasks. The

crucial difference between Feedforward Neural Networks (FNNs) and RNNs

is that RNNs have a memory in which they store information computed

from previous inputs, i.e. the last output is influenced not only by the

previous input but by all the inputs that were fed in the network. Figure 2.1

shows a few examples of how the structure of the network may be designed,

depending on whether the input or output (or both) is a sequence. Red

rectangles represent input vectors, blue rectangles represent output vectors

and green rectangles represent (hidden) RNN blocks. There is a dataflow not

only from the input layer through the hidden layer to the output layer, but

the green arrows represent the flow between the RNN block and its successor.

In Figure 2.2 there is no flow between neurons in the same layer, unlike in

Figure 2.3. Feeding the input data into FNN and RNN differs. Considering

a sentence as input data in FNN, in RNN the sentence would be split into

words (or characters, depending on the task) and one word would be fed at

a time.

Figure 2.1: RNN structures based on [38]

12

Recurrent Neural Networks Machine learning algorithms

Figure 2.2: FNN based on [63]

Figure 2.3: Unrolled RNN for 2 time steps

2.1 Machine learning algorithms

Prior to a deeper explanation of RNNs, machine-learning algorithms and

the problems they solve need to be specified. According to their purpose,

machine-learning algorithms can be divided into three categories:

• supervised learning,

• unsupervised learning,

• reinforcement learning.

13

Recurrent Neural Networks Machine learning algorithms

In order to make a system to learn and to be able to evaluate the model

accuracy, the input dataset is usually divided into training data and test

data. The training data are used to fit the parameters of the selected model,

whereas the test dataset is meant to verify how well the model performs on

data that were not used during training. To get the best results (possible),

the test data should be from the same distribution as the training data.

Sometimes a validation dataset is also used, constructed from the training

data. This set cannot be used during the learning phase, it is intended to

assist the updating of hyperparameters correctly. Section 4 [29] provides an

explanation of what a hyperparameter is.

The training dataset of supervised learning algorithms is labelled. Its data

consist of an input data and desired output. During training, the network

learns patterns to output these target values.

Unsupervised learning algorithms have only input data – instead of creating

a mapping from input variables to target variables, the model finds relation-

ships between the inputs and groups them together. This approach is usually

used when data are not able to be manually labelled, or when it is desired

to detect patterns that are not obvious at first sight.

During reinforcement learning, the model finds all the possible states and

picks one to maximise its performance. The system’s behaviour is regulated

by a system of rewards that is determined in advance.

Some of the sources [24] also mention semi-supervised learning algorithms.

The cost of labelling the data can be high, thus we can manually label some

of the unlabeled data, train the model with supervised learning methods and

then feed the remaining data as test data. Predicted labels for these data

are obtained and the model is retrained [24].

In this thesis, the supervised learning algorithm is used, so its algorithm will

be further addressed. It solves classification or regression problems. In clas-

sification tasks, the targets can be divided into discrete classes and the input

variables are assigned to these classes, whereas in regression problems the

targets are continuous output variables [27]. According to the problem and

task, the objective function, which computes the total error between the

output and target values, is chosen.

14

Recurrent Neural Networks Mathematical background

2.2 Mathematical background

The flow between two layers in FNN models represents a mathematical op-

eration using weight matrices and biases. The process of learning consists of

four steps.

The first step is a feedforward propagation. During feedforward propagation,

the model feeds the input data into the network, computes the values of

neurons in each hidden layer (in the direction of the arrows) and then the

value of output. The next step can differ with respect to the type of learning

algorithm. However, as mentioned earlier, the supervised learning algorithm

will be used.

The second step is the comparison of the real output with the predicted one,

passing these variables as arguments to an objective function (explained in

Section 4.4).

As a third step, the backpropagation is performed starting from the output

layer back to the input layer, computing the gradients of the objective func-

tion with respect to the weights and biases of the network.

During the fourth step, the values of these parameters are updated with

respect to the computed gradients in order to minimise the total error.

The difference between FNN and RNN is that the input going to the hidden

layer in RNNs consists not only of the input vector from the input layer but

also of the hidden state. A hidden state is a unit which sees to its own history.

In his work, Elman [23] describes a new network based on Jordan’s network

published in 1986 [37]. Both networks use recurrent connections to create

a memory. While Jordan used these connections to feed previous output to

the hidden layer (see Equation 2.1), Elman feeds activation of the previous

hidden state (in his work named “Context Unit”) to the following one (see

Equation 2.2). Both these networks are depicted in Figures 2.4 and 2.5.

ht = σh(Wxhxt +Whhyt−1 + bh)
yt = σy(Whyht + by)

(2.1)

ht = σh(Wxhxt +Whhht−1 + bh)
yt = σy(Whyht + by)

(2.2)

15

Recurrent Neural Networks Mathematical background

Figure 2.4: Jordan’s recurrent network [23, 183]

Figure 2.5: Elman’s recurrent network [23, 184]

These models are similar simple three-layered networks; however, Elman’s

network is the currently used one in deep learning frameworks such as Tensor-

Flow (to be explained later in this thesis).

To better understand the difference between FNNs and RNNs and also the

16

Recurrent Neural Networks Mathematical background

Jordan’s and Elman’s networks, in Section 2.2.1 the computations are ex-

plained step by step.

2.2.1 Feedforward propagation

Assume a simple three-layered FNN, consisting of an input layer, one hidden

layer and an output layer as the one shown in Figure 2.2. We have an input

x – vector of length N , the hidden layer with vector h of length H and the

output vector ŷ of length M . To connect each element of a vector x with

each element of a vector h (it is a fully-connected, sometimes also called

“dense” network) we define weight matrix1 Wxh of size H ×N and also bias

bh to improve the properties of a neuron2. Bias bh is a vector of length H.

To be able to learn even non-linear functions, we also define a non-linear

activation function σh (more about activation functions in Section 4.2).

To compute the values of elements of the output vector, we repeat this

technique and define a matrix Why of size M ×H, a bias by of length M and

an activation function σy.

The process of computation is described in Equation 2.3.

h = σh(Wxhx+ bh)
ŷ = σy(Whyh+ by)

(2.3)

In Equation 2.2 another variable t representing the individual time steps of

a sequence can be seen. If we have an input sequence x of length N , where

at single time t (t = 1, . . . , N) we feed only one element of the sequence

(scalar) to the network, we denote the element at this time step xt
3. The

hidden layer h compounds of N vectors of length H called the“hidden states”.

Each vector is fed into the “RNN cell” which outputs the hidden state at

the time t + 1. As we need a predecessor to output the first hidden state

h1, we initiate h0 as a vector of zeros of length H. The matrix Whh is the

holder of the recurrent connection going from the hidden state to the next

one. Since the hidden layer has length H, but the input and output vectors

are now just scalars, the matrices Wxh and Why are vectors of length N

and M (although they be still referenced as “matrices”). The matrices do

1Instead of matrices we can sum all the multiplications of the weights with correspond-

ing input neurons flowing to the neuron in the hidden layer. For input i going to hidden

neuron j and the weight ij the value of the hidden neuron j (before the activation) would

be
∑k=H

j=1
∑n=N

i=1 wijxi, but this operation is actually a matrix multiplication.
2it allows moving the threshold of activation function
3xt can be even vector, but here we use just scalar for simplicity.

17

Recurrent Neural Networks Mathematical background

not change during the time t. In RNNs, the hyperbolic tangent is usually

used, applied element-wise as the activation function σh. The choice of an

activation function σy depends on the selected model. See the basic RNN in

Equation 2.4.
ht = tanh(Wxhxt +Whhht−1 + bh)
ŷt = σy(Whyht + by)

(2.4)

2.2.2 Backpropagation

In order to train a network, total error first needs to be computed. For

that an objective function L with parameters W and b representing all the

weights and biases of the network is used. The type of the objective function

differs by the type of a problem defined in Section 2.1. Since the result of

the objective function is an error, we target to minimise it. For such task

the Gradient Descent Algorithm is used.

“The backward pass starts by computing ∂L
∂ŷ

for each of the output units.”[56].

Consequently, the chain rule going all the way to the target weight matrix or

bias is applied. Then the parameters subtracting the gradient are updated.

Usually the gradient is multiplied with a hyperparameter η called the learning

rate. Learning rate controls the convergence of the algorithm – the lower

it is, the longer the training usually takes. A too high learning rate can

cause the gradient to “overshoot” the minimum, or even diverge [47]. For

the FNN defined in Equation 2.3 the gradients and the updates are shown

in Equations 2.5 to 2.124. For simplicity, we neglect dimensions and will not

write the transpose signs.

∂L

∂Why

= ∂L

∂ŷ

∂ŷ

∂Why

∂L

∂Why

= ∂L

∂ŷ
◦ σ′y(Whyh+ by)h

(2.5)

Why := Why − η ·
∂L

∂Why
(2.6)

∂L

∂by
= ∂L

∂ŷ

∂ŷ

∂by
∂L

∂by
= ∂L

∂ŷ
◦ σ′y(Whyh+ by)

(2.7)

4For element-wise multiplication we use the Hadamard product with symbol ◦, the mat-

rix multiplication does not have an operator, the · operator symbolises the multiplication

of an integer with a matrix or a vector or multiplication of two integers.

18

Recurrent Neural Networks Mathematical background

by := by − η ·
∂L

∂by
(2.8)

∂L

∂Wxh

= ∂L

∂ŷ

∂ŷ

∂h

∂h

∂Wxh

∂L

∂Wxh

= ∂L

∂ŷ
◦ σ′y(Whyh+ by)Why ◦ σ′h(Wxhx+ bh)x

(2.9)

Why := Wxh − η ·
∂L

∂Wxh

(2.10)

∂L

∂bh
= ∂L

∂ŷ

∂ŷ

∂h

∂h

∂bh
∂L

∂bh
= ∂L

∂ŷ
◦ σ′y(Whyh+ by)Why ◦ σ′h(Wxhx+ bh)

(2.11)

bh := bh − η ·
∂L

∂bh
(2.12)

With time included in RNNs, the backpropagation algorithm slightly

changes and is called the Backpropagation Through Time (BPTT).

“BPTT unrolls the recurrent neural network and propagates the error

backward over the entire input sequence, one time step at a time. The

weights are then updated with the accumulated gradients.” [10] The fol-

lowing equations are constructed for the model many-to-many where N = M .

∂L

∂Why

= ∂L

∂ŷ

∂ŷ

∂Why

∂L

∂Why

=
M∑
t=1

[∂Lt
∂ŷt
◦ σ′y(Whyht + by)ht]

(2.13)

Why := Why − η ·
∂L

∂Why
(2.14)

∂L

∂by
= ∂L

∂ŷ

∂ŷ

∂by

∂L

∂by
=

M∑
t=1

[∂Lt
∂ŷt
◦ σ′y(Whyht + by)]

(2.15)

by := by − η ·
∂L

∂by
(2.16)

19

Recurrent Neural Networks Long-Term Dependencies

∂L

∂Whh

= ∂L

∂ŷ

∂ŷ

∂hM

M∏
t=1

(∂ht
∂Whh

∂ht
∂ht−1

)

∂L

∂Whh

=
M∑
k=0

∂LM
∂ŷM

◦ σ′y(WhyhM + by)Why

M∏
t=k+1

[(1− h2
t)Whh]

(2.17)

Whh := Whh − η ·
∂L

∂Whh

(2.18)

1 is the vector of ones of length H.

∂L

∂bh
= ∂L

∂ŷ

∂ŷ

∂hM

M∏
t=1

(∂ht
∂bh

∂ht
∂ht−1

)

∂L

∂bh
=

M∑
k=0

∂Lt
∂ŷt
◦ σ′y(WhyhM + by)Why

M∏
t=k+1

[(1− h2
t)]

(2.19)

bh := bh − η ·
∂L

∂bh
(2.20)

∂L

∂Wxh

= ∂L

∂ŷ
◦ ∂ŷ

∂hM
◦

N∏
t=1

(∂ht
∂Wxh

∂ht
∂ht−1

)

∂L

∂Wxh

= ∂Lt
∂ŷt
◦ σ′y(WhyhM + by)Why ◦

N∏
t=1

[WN−t
hh (1− h2

t)Txt]
(2.21)

Wxh := Wxh − η ·
∂L

∂Wxh

(2.22)

2.3 Long-Term Dependencies

2.3.1 Vanishing gradients

As mentioned earlier, to be able to learn and model more complicated types

of data, such as images, audio or video, non-linear activation functions are

used. Two of the most used are the sigmoid function and the hyperbolic

tangent function. See the functions and their derivatives in Equations 2.23

and 2.24.

σ(x) = 1
1 + e−x

dσ(x)
dx

= σ(x)(1− σ(x))
(2.23)

20

Recurrent Neural Networks Long-Term Dependencies

tanh(x) = sinh(x)
cosh(x) = e2x − 1

e2x + 1
dtanh(x)

dx
= 1− tanh2(x)

(2.24)

Figure 2.6: Sigmoid and hyperbolic tangent functions (graphs.py)

Sigmoid function compresses the input data into interval (0, 1), which

makes it useful especially for models with probability as an output. The

range of the hyperbolic tangent function is in the interval (−1, 1) and the

curve is also so-called S-shaped. Both of the functions and their derivatives

are displayed on the graph in Figure 2.6 (on the interval [−4, 4]). Notice

that as |x| increases, the result of both derivatives gets close to zero. If

we have a network with n hidden layers this can cause the gradient to

be too small for the network to learn because, by using the chain rule

during backpropagation, these activations close to zero are multiplied, so

the gradient decreases exponentially. This situation is called the Vanishing

Gradient Problem and was first discovered by Sepp Hochreiter in 1991. It

may seem that a fine solution for this problem is to change the activation

21

Recurrent Neural Networks Long-Term Dependencies

function or to have a shallower network. With RNNs this is sometimes not

possible.

The computation is more complicated with time included, as can be seen

by comparing Equation 2.9 with Equation 2.21, because with the partial

derivatives ∂ht

∂ht−1
we get the product of N Jacobian matrices. The distance

between the next predicted output and the relevant information can be

wide, so to have accurate predictions, we need to hold the information in

the hidden states ht for plenty of time steps, which means N can be a large

integer. “This kind of dependence between sequence data is called the

long-term dependencies” [3], “because the computation of output at time

t depends on input presented at an earlier time τ � t” [6].

Since RNNs use the hyperbolic tangent as the activation function, during

training these models suffer from vanishing gradients, especially in the

earlier layers [50]. Consequently, because there is a problem at the very be-

ginning of the network, the result built up by the whole model is not accurate.

There are a few methods to avoid the Vanishing Gradients Problem, such as:

• initialise weights so that the potential for vanishing gradient is minim-

ised;

• randomly drop most of the weights in Whh (called the Echo State

Network);

• Long Short-Term Memory Networks (LSTMs).

• batch normalisation

The most frequently used solution is the LSTM network defined in Section 3.

Next, another gradient problem is defined.

2.3.2 Exploding gradients

In the same way that a gradient can shrink to zero, it can explode to infinity.

Another proposed solution to the Vanishing Gradient Problem is to change

the activation function. Currently, a very popular activation function is ReLU

22

Recurrent Neural Networks Long-Term Dependencies

– Rectified Linear Unit, first introduced by Hahnloser et al. in 2000 [31].

ReLU(x) = max(0, x)

dReLU(x)
dx

=

 1 x > 0
0 x ≤ 0

(2.25)

ReLU does solve the vanishing gradient in most cases, unless it has all the

values as negative. To address this problem, the function was modified and

Leaky ReLU (and other modifications) was introduced. In practice, many

developers prefer ordinary ReLU, avoiding the vanishing gradient by setting

the learning rate properly. This activation function is very popular also

for faster convergence than the sigmoid or hyperbolic tangent function and

being computationally efficient. ReLU can also be used as a classification

function [1].

In view of the fact that the derivative of ReLU can be 1, with large weight

initialisation or identity activation function5 (which cannot be avoided in

some problems), the norm of the gradients can become very large and

overflow its number implementation in given programming language. The

weights’ components result in NaN (Not a Number) values and can no longer

be updated [8]. This problem is called the Exploding Gradient Problem

introduced by Bengio et al. in 1994, further explained in [51].

This problem may be solved by:

• use of Gradient Clipping (described in Section 4.8);

• use of the Truncated Backpropagation Through Time6;

• use of weight regularisation (L1 or L2 penalty on the recurrent weights);

• data normalisation;

• use of Long Short-Term Memory networks (LSTMs).

Section 3 explains LSTMs in detail.

5f(x) = x
6this method modifies BPTT dropping the gradients in some defined first time steps

– the forward propagation is the same, but the weights are not updated by these gradi-

ents [10]

23

3 Long Short-Term Memory

Long Short-Term Memory networks (first introduced in 1997 by Hochreiter

and Schmidhuber [33]) imitate the way that the human brain processes

sequential data. A good example is reading a text – to be able to remember

valid information, we forget redundant parts of the text. While RNNs have

problems with long-term dependencies, LSTM units solve this issue with

additional features.

Figure 3.1: LSTM cell [19]

Although the article written by Christopher Colah [19] contains more

of a summary of [33], it sheds light on the whole topic of LSTMs. The

notations are very clear and Colah assists the understanding with detailed

visualisations, thus a lot of authors cite his blog. This is the reason why the

notations here are used from Colah rather than from the original paper.

The basic unit is called the memory cell, where its activation Ct is called the

cell state. This variable holds the information of the previous inputs. The

input gate unit it regulates the flow of the input data into the memory cell,

learning what is relevant information for the correct prediction. “Output

24

Long Short-Term Memory

gate unit ot learns to protect other units from perturbation by currently

irrelevant memory contents stored in the memory cell. The gates learn to

open and close access to constant error flow.”[33] The model is described by

the system of equations below. At first the input gate decides which values

will be updated – it closes (activation close to zero) for the irrelevant ones.

it = σ(Wi[ht−1, xt] + bi) (3.1)

The square brackets in Equation 3.1 signify concatenation of the vectors.

The activation of an input to the memory cell C̃t is then computed – these

values are the candidates to be added to memory and propagated further to

other time steps.

g(x) = 4
1 + e−x

− 2 (3.2)

The activation function g is the centred logistic function with range [−2, 2].

C̃t = g(WC [ht−1, xt] + bC) (3.3)

The candidate values are then fed to the cell state, regulated by the input

gate.

Ct = Ct−1 + it ◦ C̃t (3.4)

The hidden state1 is then computed as the filtered version of the cell state,

using the output gate as a filter.

ot = σ(Wo[ht−1, xt] + bo) (3.5)

f(x) = 2
1 + e−x

− 1 (3.6)

The activation function f of the cell state is again a centred logistic function,

but this time with range [−1, 1].

ht = ot ◦ f(Ct) (3.7)

Feeding a continuous input stream, the memory cells may grow and cause

saturation of the activation function f in Equation 3.7. This makes the

derivative of the activation function vanish, therefore the hidden state ht
outputs only the activation of the output gate. This means a complete loss

of the memory and the equation is then equal to simple RNN, see Equation

2.4. Due to this situation, in 1999 the forget gate was presented [26]. The

1also known as the cell output

25

Long Short-Term Memory LSTM Autoencoders

gate learns to reset the cell state by assigning a number between 0 and 1 to

each value in it.

ft = σ(Wf [ht−1, xt] + bf) (3.8)

Thus the Equation 3.4 is adjusted to 3.9.

Ct = ft ◦ Ct−1 + it ◦ C̃t (3.9)

Instead of functions f and g – the centred logistic functions – most of the

up-to-date sources use the hyperbolic tangent function. This is the case even

in TensorFlow, the software library used for implementation in this thesis,

hence the model used further is summarised in Equation 3.10, visualised in

Figure 3.1.
ft = σ(Wf [ht−1, xt] + bf)
it = σ(Wi[ht−1, xt] + bi)
ot = σ(Wo[ht−1, xt] + bo)
C̃t = tanh(WC [ht−1, xt] + bC)
Ct = ft ◦ Ct−1 + it ◦ C̃t
ht = ot ◦ tanh(Ct)

(3.10)

The backpropagation of LSTM is described in Appendix.

3.1 LSTM Autoencoders

In Section 2, machine translation was mentioned as one of the applications

of RNNs and will be used as a good example in this section. When using

a sentence in one language as an input trying to produce a sentence in another

language as accurately as possible, a context is needed. Usage of the LSTM

model defined in Equation 3.10 with the structure many-to-many shown in

Figure 2.1 would not be possible for this task. In Figure 3.2 the model does

not consider the previously predicted word when trying to find the new one.

The problem of the second many-to-many model (Figure 3.3) is that this

model outputs a sentence of the same length or a shorter sentence and does

not take longer outputs into account.

26

Long Short-Term Memory LSTM Autoencoders

Figure 3.2: Many-to-many [19]

Figure 3.3: Many-to-many [19]

To deal with these issues, LSTMs were included in autoencoders.

Autoencoder is an ANN, the aim of which is to make a representation of the

input vector (encoding) and then a reconstruction of the input vector from

this representation. AEs are considered as unsupervised learning algorithms

(because they do not use labelled data), but they use supervised learning

methods – the input is used as the target. Hence the lengths of the input

and output vectors are the same. Between input and output layers are one

or more hidden layers with fewer neurons to reduce the size of the input –

these layers are called the encoder, followed by the representation vector (the

“bottleneck”). The flow continues to other hidden layers, called the decoder,

and to the output layer. The structure is shown in Figure 3.4.

27

Long Short-Term Memory LSTM Autoencoders

Figure 3.4: Autoencoder

See simple autoencoder model in Equation 3.11 with only one hidden layer.

The weight matrix W ′ does not have to rely on the original matrix W , but

can be the transpose of it. The activation functions and biases also do not

need to be the same. The process of learning is similar as in Section 2.2.2,

see [65].

h = σh(Wx+ b)
x′ = σ′h(W ′h+ b′)

(3.11)

Historically, autoencoders were used as a pre-training of ANNs [57].

Currently, they are typically used for dimension reduction, feature variation,

watermark removal or image denoising. The amount of variations increases

with the inclusion of different types of ANNs, such as RNNs.

Autoencoders are designed to work with inputs of fixed length, but in ma-

chine translation, the lengths of the sentences can vary. Use of LSTMs in

autoencoders allows variable lengths not only of the input but also of the

output, see Figure 3.5, having RNN as an encoder and another RNN as

a decoder [17].

This is provided by adding the information of the length of the input and

output sentence in the model. The model still expects a vector of definite

length (the length of the longest sentence), thus a padding is added at the

28

Long Short-Term Memory LSTM Autoencoders

Figure 3.5: LSTM Autoencoder

end for shorter sentences. In machine translation, special characters are used

for the network to know when the sentence begins or ends. The characters2

are usually:

• <GO> – the symbol at the beginning of the decoder, sometimes also

used <START> or <NULL> (in the example in Figure 3.6);

• <PAD> – the token used at the end of a sentence to fulfil the network’s

expectation;

• <UNK> – character which replaces unknown words, i.e. rare words

that are not in the dictionary;

• <EOS> – the end-of-sentence symbol3 [68].

See Figure 3.6 with an example of an English-to-German translator, where

the symbol S illustrates how the cell state and the hidden state from the

encoder are fed to the decoder.

Since the model has a sequence as input and output, it is also called Seq2Seq

(sequence-to-sequence) model. For words to be fed into the network, they

need to be converted to numbers. The preprocessing is performed at the

2interchangeable with tokens or symbols
3some developers use the full stop symbol, depending on the data

29

Long Short-Term Memory Gated Recurrent Unit

Figure 3.6: Neural machine translation [45]

beginning of the process (like data cleansing, lowercasing, etc.), after which

vocabularies of both the languages are created. The simplest conversion of

words to integers is One-Hot Encoding. Here the vector representing one word

has the same length as the number of words and punctuation marks in the

vocabulary (plus the special characters defined before), where all positions

are filled with zeros, except the index of the word in the vocabulary, where the

value is one. A disadvantage of this encoding is that there is no information

about the context or frequency. To avoid this problem, other methods are

used, e.g. Word Embeddings (for further details see [40]). The crucial part of

this conversion is that the task becomes a classification problem and cannot

output other values than the ones defined in the vocabulary. The problem

in this thesis, on the other hand, is a regression problem.

3.2 Gated Recurrent Unit

Despite the fact that in the machine-learning community the name LSTM

Autoencoder is frequently used, Seq2Seq models do not only apply to LSTM

units. There are other variants of LSTM units. To date, the most popular

one is the Gated Recurrent Unit (GRU) by Cho, et al. [17]. The unit is

inspired by the LSTM unit, merging the forget and input gate into an update

gate zt. This unit controls how much information from the previous hidden

state is passed into the next hidden state, allowing long-term dependencies

to be captured without the need to have the cell state. This means that

the unit is simpler to compute, because there are fewer parameters. With

regard to LSTMs, in GRU there are candidate values h̃t which update the

hidden state. To control henceforth redundant information, there is a second

gate, the reset gate rt which decides how much of the previous hidden state

30

Long Short-Term Memory Gated Recurrent Unit

should be forgotten. Values close to zero force the candidate values to ignore

the previous hidden state ht−1, learning short-term dependencies. The GRU

model is defined in Equation 3.12, where the notations are again taken from

Colah4 [19].

rt = σ(Wr[ht−1, xt] + br)
zt = σ(Wz[ht−1, xt] + bz)
h̃t = tanh(Wh[rt ◦ ht−1, xt] + bh)
ht = zt ◦ ht−1 + (1− zt) ◦ h̃t

(3.12)

Figure 3.7: GRU [19]

4Biases were added in the equation and z was interchanged with (1 − z) to match

the original paper [17]. The activation functions are the hyperbolic tangent and sigmoid

as for the LSTM cell and also the default setting of TensorFlow function applied during

implementation.

31

4 Hyperparameters

Hyperparameters are mentioned at the end of Section 3. While parameters

are the variables required to estimate using an optimisation algorithm and

are updated during training, as mentioned in Sections 2.2 and 3 (weights and

biases), hyperparameters are not directly estimated from the data. They are

external to the model and set before the learning phase starts, although some

of them can be tuned during training. The settings of hyperparameters have

a great impact on if and how the model learns and what the predictions are.

In this section, the hyperparameters that were used in the model defined in

Section 9, are introduced:

• number of hidden layers and number of hidden neurons,

• activation function,

• learning rate,

• objective function,

• optimiser,

• batch size,

• train ratio,

• gradient clipping,

• number of epochs.

4.1 Hidden layers and neurons

The first hyperparameter taken into consideration is usually a hidden layer,

or more precisely the number of hidden layers and the number of neurons in

each hidden layer. This hyperparameter depends on the model and type of

ANN used, e.g. for image classification more layers can mean more recognised

features, but too many layers can cause the Vanishing/Exploding Gradient

Problem defined in Section 2.3. The number of hidden layers and hidden

32

Hyperparameters Activation function

neurons in the layers depends on the programmer and the dimension of

the input data. For RNNs there is an inconsistency in understanding what

a hidden layer is. Some sources claim that the model has the same amount

of hidden layers as the number of time steps. This idea makes sense w.r.t.

optimisation, because a large number of time steps (hidden layers in this

case) means a long computational time. On the other hand, taking into

consideration that the hidden layers usually do not share parameters (see

not unrolled RNN in Figure 4.1), in this thesis it is assumed that the RNN

model defined in Equation 2.4 has only one hidden layer.

Figure 4.1: Not unrolled RNN based on [19]

In order to have more hidden layers, another hidden layer can be stacked on

the first one, e.g. in Equation 4.2. This RNN is called the Stacked RNN or

Multi-cell RNN and its possible structure is shown in Figure 4.2. Stacked

LSTMs work on the same principle.

ht = tanh(Wxhxt +Whhht−1 + bh)
jt = tanh(Whjht +Wjjjt−1 + bj)
ŷt = σy(Wjyjt + by)

(4.1)

4.2 Activation function

Activation functions were already mentioned in Sections 2.2 and 2.3. These

functions are considered to be hyperparameters, because they are specified

33

Hyperparameters Learning rate

Figure 4.2: Stacked RNN - 2 hidden layers

beforehand by the programmer. The most popular activation functions

are the hyperbolic tangent function (Equation 2.24), the sigmoid function

(Equation 2.23) and the rectified linear units function (Equation 2.25). For

classification problems, the softmax function is also a very popular activation

function (see [29]). This function is usually used between the last hidden

layer and the output layer, because it squashes the results into the interval

(0, 1), where the sum of these values is one, so they can be interpreted as

probabilities. However, in this thesis, a regression problem is solved and

a prediction of the next real value is needed, not the probability of the input

being classified in a class. There will be no activation function (also known

as identity activation function) in the output layer, see Equation 4.2.

f(x) = x

f(x)
dx

= 1
(4.2)

4.3 Learning rate

Another hyperparameter is also the learning rate, already defined in Sec-

tion 2.2.2. Usually the value is in the interval (0, 1). A too high learning

rate can cause overshooting of the minimum and divergence, whereas a too

low learning rate may not guarantee the minimum being reached after the

given iterations. The behaviour of learning, having simple quadratic function

(y = x2) with different learning rates starting from point [1, 1], is shown in

Figure 4.3, where the learning rate is denoted by alpha.

34

Hyperparameters Objective function

Figure 4.3: Visualisation with different learning rate [5]

4.4 Objective function

Objective function is a function we want to maximise or minimise1 and it

serves as the evaluation of how well the model fits the data. If we have

a labelled data, it is required to minimise the difference between the model’s

prediction and the target value. The parameters of the objective function

are all the learnable parameters of the model. Having the objective function

L, where θ is the set of all the weights and biases in the model, the aim is to

1When maximising the objective function, it is called a reward, when minimising, it is

usually called a loss, cost or error function.

35

Hyperparameters Optimiser

find these weights and biases, so that the condition of Equation 4.3 is met

[32].

argmin
θ

(L(θ)) (4.3)

The result of an objective function is a scalar value, which in minimising

optimisation problems is called a loss or an error and the target is to reduce

it. To find if the model learns, it is best to display the loss every iteration,

and overall this value should decrease.

When dealing with objective functions in a supervised learning algorithm,

they can be divided into two groups, regression losses and classification losses,

and should be chosen with respect to the problem as well as to the data.

We face a regression problem, having time series as an input. The measures

of estimators’ quality for these types of problems are SSE (Sum of Squared

Errors) 4.4, MSE (Mean Squarred Error) 4.5 and MAD2 (Mean Absolute

Deviation) 4.6.

SSE =
N∑
t=1

(yt − ŷt)2 (4.4)

MSE = 1
N

N∑
t=1

(yt − ŷt)2 (4.5)

MAD = 1
N

N∑
t=1
|yt − ŷt| (4.6)

Because we want to know how far on average our predicted values are, we

prefer MSE and MAD. MSE penalises the outliers more than MAD because

of the square, so the objective function in our model will be MSE.

4.5 Optimiser

To correctly update the parameters, an optimisation algorithm is used. The

Gradient Descent algorithm was mentioned in Section 2.2.2. Gradient Des-

cent3 and its optimisations are the most common method of numerically

optimising neural networks. “Gradient descent is a way to minimise object-

ive function L(θ) by updating the parameters in the opposite direction of

the gradient of the objective function ∇θL(θ) w.r.t. to the parameters. The

2also known as MAE (Mean Absolute Error)
3also known as Standard Gradient Descent, Batch Gradient Descent or Vanilla Gradient

Descent

36

Hyperparameters Optimiser

learning rate η determines the size of the steps we take to reach a (local)

minimum.” [55] Gradient Descent (GD) takes the whole training dataset,

computes the sum of accumulated errors and then updates the parameters,

see Equation 4.7 where L(θ) = ∑K
i=1 Li(θ) and K is the number of training

examples. Stochastic Gradient Descent (SGD), on the other hand takes

training examples randomly and updates the parameters after each iteration,

see Equation 4.8, where i is the i-th example. This causes noisier error, but

also faster convergence, especially, when the training dataset is huge or has

very similar examples.

∆θ = θ − η · ∇θL(θ) (4.7)

∆θ = θ − η · ∇θLi(θ) (4.8)

Mini-batch Gradient Descent is a compromise of GD and SGD, because it

updates parameters after feeding a subset of the training data, the size of

which (in Equation 4.9 denoted by B) is given in advance. To prevent cycles,

these examples are chosen randomly. The convergence is usually smoother

than for SGD, because the gradient used for the update is a sum of the

gradients computed for each example in the mini batch.

∆θ = θ − η · ∇θLi:i+B(θ) (4.9)

Nevertheless, both SGD and Mini-batch Gradient Descent are sensitive to

the learning rate. A bad setting can cause fluctuations around minimum

or even divergence. Because their gradients are only approximations of the

true gradient, they do not guarantee that in each iteration the error will

decrease. To improve some of the features, optimisers have been presented

which modify the GD algorithm.

Adam (Adaptive Moment Estimation) is an optimiser that enhances its

predecessors. Like AdaGrad, it changes the learning rate for each parameter,

performing larger updates for infrequently occurring features and smaller

updates for more frequent ones. Just like AdaDelta it prevents a decay of the

learning rate which could cause the model to stop learning. Moreover, Adam

stores momentum changes for each parameter separately. We calculate the

first moment (the mean) mt and the second moment (the uncentred variance)

vt (initialised as vectors of zeros) of the gradients gt and use these values to

update the parameters. There are new variables – exponential decay rates for

the moment estimates β1 and β2 ∈ [0, 1). One iteration is shown in Equation

37

Hyperparameters Batch size

4.10.
gt = ∇θLt(θt−1)
mt = β1 ·mt−1 + (1− β1) · gt
vt = β2 · vt−1 + (1− β2) · g2

t

m̂t = mt

(1− βt1)
v̂t = vt

(1− βt2)

θt = θt−1 − η ·
m̂t√
v̂t + ε

(4.10)

g2
t represents element-wise square gt ◦ gt and all operations on vectors are

element-wise. The variable ε is to avoid dividing by zero and it is taken over

from AdaGrad. Unlike GD, Adam is very good for sparse data; it converges

very fast and is overall a good choice for deep networks [55].

4.6 Batch size

Although in Section 4.5 the term “batch” was used for the whole dataset

and for its subset, the term “mini-batch” was used, in the deep learning

community the terms “batch” and “batch size” are commonly used to mean

“mini-batch”. Batch size is the number of samples fed to the model during

one iteration, in Section 4.5 denoted as B4. Using the Mini-batch Gradient

Descent algorithm, or other algorithms using this approach, in one iteration,

the parameters are updated only once. Batch size can radically affect how

quickly the model converges as well as the results. Large batch size can cause

the model’s ability to generalise being lost. To have the fastest learning, the

samples should be shuffled, i.e. randomly chosen. The more dissimilar the

examples in one batch are, the faster the model learns [41]. The suggested

batch size is 32, 64 or 128, but it largely depends on the number of examples

in the training data.

4.7 Train ratio

Another hyperparameter that can be defined is the ratio of the training data

to the whole dataset. In some cases, the data are split beforehand, but with

4if B = 1 we have SGD, if B = K the algorithm is GD

38

Hyperparameters Gradient Clipping

a time series, usually a whole dataset is obtained. In this situation it depends

on the target of building the model and it is defined by the researcher without

using any hyperparameter optimization. Most deep learning papers suggest

70% of training and 30% of test data, sometimes 80% to 20% or also 90%

to 10%. However, less than 70% is rarely used for training data. In case of

having validation data, the training data ratio is decreased by 10% of the

whole dataset.

4.8 Gradient Clipping

In Section 2.3.2 Gradient Clipping is mentioned as a solution of exploding

gradients. Despite being claimed in [34] that, that LSTM solves problems

with exploding gradients, in practice it is not always true. To provide the

numerical stability of training deep neural network models, a method called

Gradient Clipping was presented.

This method rescales the norm of a gradient when it exceeds a threshold. This

gives us a new hyperparameter – the threshold ξ. The simple algorithm is

shown in Equation 4.11, where ‖g‖ is the Euclidean norm5 of the gradient [50].

g = ∇θL(θ)

g =

 g ‖g‖ < ξ
ξ
‖g‖g ‖g‖ ≥ ξ

(4.11)

4.9 Number of epochs

In one epoch, the whole training dataset is passed forward and backpropag-

ated through the model only once, whereas in one iteration, B observations

(one mini-batch) are fed to the network. Defining how many epochs are the

correct amount so that the model fits the data well, but is not overfitted,

can be challenging. The model is underfitted when it does not capture the

relationship between the independent (x) and dependent (y) variables, with

the possible reason being that it is too simple. The opposite is overfitting,

when the model is too fitted on the training data that it is unable to gen-

eralise to the test data, which leads to making poor predictions, see Figure

4.4. This may be due to a too long training.

5also known as L2 norm

39

Hyperparameters Hyperparameter optimisation

Figure 4.4: Underfitting and overfitting [22]

One solution could be performing several trials with the same model and

hyperparameters, changing only the number of epochs, selecting the amount

that results in the best performance. A disadvantage of this approach is the

long time taken to try all the models and computational inefficiency.

An alternative is a method called Early Stopping. In this method, the

number of epochs is set to a large number and the parameters stored for

every step. Thereafter, the errors of the training and the validation dataset

for each iteration are compared, which are supposed to decrease. When the

error of the validation dataset increases, this is the sign that the training

should stop. There is also a patience parameter which signifies a number

of iterations to observe the worsening validation set error before ending the

training, because the error can fluctuate. After stopping the training, the

stored parameters are used before increasing the validation error to obtain

better performance [29].

4.10 Hyperparameter optimisation

Before the first data feed, the hyperparameters need to be set. Selection

of the proper configuration to result in quick convergence of the algorithm,

can be challenging. There are four main methods used for hyperparameter

tuning [30].

40

Hyperparameters Hyperparameter optimisation

4.10.1 Grad Student Descent

Grad Student Descent also known as the Trial and Error method provides

manual adjustments of the hyperparameters. The model is launched several

times with different hyperparameters. The researcher explores how these

changes affect the results. For this method it is crucial to visualise multiple

different quantities changing over each epoch, such as the error, accuracy (for

classification problems), or distribution of the parameters. The method itself

makes a significant contribution to the understanding of the relationships

between parameters and hyperparameters, but can be very time consuming

and with different models, the dependencies can be slightly different.

4.10.2 Grid Search

Another method is Grid Search which combines manual setting with an auto-

mation. This is a naive approach, where the user defines a grid of dimensions

corresponding to the searched hyperparameters. For each dimension, a range

of possible values is manually set. The algorithm “tries” all the possible con-

figurations to minimise the objective function (or maximise the accuracy).

The configuration with the best performance is then used. In order to reduce

the number of configurations, fewer hidden layers or some rules of thumb

can be used. This method has a high computational cost and can be also

time consuming.

4.10.3 Random Search

Random Search varies from Grid Search in the setting. A user has to define

the range of possible values, but the algorithm chooses the combination of

hyperparameters randomly, resulting in wider exploration of the configura-

tion space. This means that more possible values are tried in fewer iterations,

whereas in one iteration of the algorithm, one configuration of hyperparamet-

ers is passed. A rule of thumb is to prefer Random Search over Grid Search

when the configuration space has more than 4 dimensions.

41

Hyperparameters Hyperparameter optimisation

4.10.4 Bayesian Optimisation

Neither Grid Search nor Random Search take into consideration the

computation history – the picks of the configurations are independent of

each other. Despite the long time required, when applying the Grand

Student Descent method, the researcher slowly modifies the values of

hyperparameters so that in each epoch the error decreases. The aim of

Bayesian Optimisation is to simulate the researcher’s job by the use of

machine learning.

The method constructs a Gaussian Process6 describing the function wanted

to be minimised. The basic assumption of the process is that similar inputs

have similar outputs. The algorithm learns the scales of each dimension for

measuring similarity, according to the different hyperparameter values and

the results w.r.t. these hyperparameters. Apart from the outputs, Gaussian

Processes also predict the expected value of the result and the expected

variance – (prior) probability distribution.

With all available data (mini-batch) and initialisation of the hyperparamet-

ers, the algorithm finds the posterior probability distribution over possible

functions. In the next step, the algorithm computes the acquisition function

using the current posterior distribution, that determines the next picked

combination of hyperparameters in order to maximise the expected improve-

ment. If the result is better (lower error), the algorithm will save this setting

and next it looks for hyperparameters that maximise the expected improve-

ment w.r.t. this configuration. Otherwise it continues with the last kept

setting. Finally, the algorithm updates the prior distribution function w.r.t.

to the current best configuration and new observed data and repeats the

whole process until the number of specified iteration is exceeded. For further

maths-related details of the algorithm, refer to [61].

6“Gaussian distribution is a probability distribution over possible functions.” [39]

42

5 Time series forecasting

Time series are chronologically ordered observations xt recorded at a specific

time t. If the set of time steps is T where t ∈ T is discrete, this is called

a discrete time series whereas if the observations are recorded continuously

over some time interval, the time series is continuous [7]. The target of

time series analysis is usually the construction of a model and fitting it

to the observations in order to study dependencies in data. The aim is

to understand the mechanism of how the observations are generated, find

patterns and predict further development of observed variables [18].

Time series can be split into several components that represent the underlying

pattern type – trend, seasonality, cycles and remaining component.

• Tt: trend – the increasing or decreasing value,

• St: seasonality – the repeating short-term cycle with known frequency,

• Ct: cycles are also repeating, the frequency is not precise, usually longer

than two years,

• Rt: remaining part captures everything else.

If we assume additive decomposition, by adding these components together,

the original time series is obtained.

yt = Tt + St + Ct +Rt (5.1)

If the variation around the trend or magnitude of the seasonal fluctuations

does not differ from the level (expected value) of the time series, additive

decomposition is suitable. Otherwise multiplicative decomposition is more

appropriate.

yt = Tt · St · Ct ·Rt (5.2)

In many decomposition methods, the cycle is combined with the trend.

This chapter summarises some classic time series evaluation and forecasting

methods that were used to extend the model to be presented in Section 9

and for comparison. Most of the definitions were taken from [36].

43

Time series forecasting Linear regression

5.1 Linear regression

Regression is a set of statistical methods used for analysis of the relationship

among variables – dependent y and independent X. The aim is to explain y

using a combination of parameters and X. If X is univariate (to be denoted

as x) and a linear combination of parameters is used, this is a simple linear

regression model. With independent variable x and dependent variable y,

linear regression is a fitted line:

y = β0 + β1x, (5.3)

where β0 is the intercept and β1 the slope of the line. We do not assume,

that the variable y depends only on the variable x, so the random variable ε

is added, to capture all remaining influences. The noise variable is modelled

to be a Gaussian noise, such that ε ∼ N (µ, σ2). Having n observed pairs

(x1, y1), . . . (xn, yn), the regression line has an equation of the form:

yi = β0 + β1xi + εi i = 1, . . . , n. (5.4)

If there are m independent variables, it is a multiple linear regression, see

Equation 5.5, and the equation can be rewritten to the matrix form, see

Equation 5.6.

yi = β0 + β1xi,1 + · · ·+ βmxi,m + εi (5.5)

y = Xβ + ε (5.6)

The unknown parameters β can be estimated with an ordinary least squares

(OLS) method, if the assumptions of the linear regression model in 5.1 are

satisfied [42].

y = Xβ + ε,

where

1. E(εi) = 0 ∀i = 1, 2, . . . , n (the mean of the random variable is

zero),

2. D(εi) = σ2 ∀i = 1, 2, . . . , n (there is no heteroscedasticity1),

1the variance of errors is constant

44

Time series forecasting Näıve method

3. Cov(εi, εj) = 0 ∀i 6= j where i, j = 1, 2, . . . , n (there is no autocor-

relation),

4. ε ∼ N (µ, σ2) (the random variables have normal distribution),

5. X is deterministic and has full rank,

6. the linear regression model is linear in parameters.

(5.7)

Under these conditions when minimising an objective function O(β) using

OLS (Equation 5.8), interpretation of the model is possible and the results are

statistically conclusive. For the Side-Channel Injection, we will not explore

all of these conditions.

O(β) = ‖y −Xβ‖2

b = argmin
β
O(β)

b = (XTX)−1XTy

(5.8)

b is the estimate of parameters β [36].

5.2 Näıve method

One of the simplest forecasting approaches is the näıve method, which sets

all the forecasts to the value of the last observation.

ŷt+h = yt (5.9)

5.3 Seasonal näıve method

For highly seasonal data, the näıve method is slightly modified to fit the

seasonal period.

ŷt+h = yt+h−m(k+1) (5.10)

m represents the number of seasons in a year, and k = bh−1
m
c is an integer

that controls that for the forecast the last set of seasonal components from

the observed points is used.

45

Time series forecasting Forecast evaluation

5.4 Forecast evaluation

To evaluate the (final) forecast, RMSE (Root Mean Square Error) 5.11 is

used, because it is a scale-dependent measure, which means the error is in

the same units as the predictions.

RMSE =

√√√√ 1
N

N∑
t=1

(yt − ŷt)2 (5.11)

5.5 Akaike’s Information Criterion

Neither MSE nor RMSE take into consideration the number of parameters of

a model. For this reason the best of the implemented models will be selected

also w.r.t. Akaike’s Information Criterion (AIC) [2]. AIC is an objective

method of deciding among several statistical models. This criterion penalises

not only models with worse predictions (underfitting), but also models with

a large number of parameters (overfitting). The goodness of parameters is

calculated by the expected log likelihood. Equation 5.12 will be used for

comparing neural network models, where SSE is the Sum of Squared Errors

(SSE = ∑n
i=1(yi − ŷi)2), which means MSE can be used as an argument of

the natural logarithm. k is the number of estimated parameters (weights) in

the model and n is the number of observations.

AIC = n · ln(SSE
n

) + 2k (5.12)

If the ratio n
k

is less than 40, the adjusted model in Equation 5.13 is used

[4], [49].

AIC = n · ln(SSE
n

) + 2k + 2k(k + 1)
n− k − 1 (5.13)

5.6 Hypothesis Testing

It is possible to use Hypothesis Testing to test whether one model performs

significantly better than the other. The selection of a statistical hypothesis

test needs to be done w.r.t. the distribution of errors and other characteristics

of observed data. For this reason, the Hypothesis Testing is further explained

in Section 10.

46

6 Data

6.1 Data shape

AEs are considered as unsupervised learning algorithms using supervised

learning methods (mentioned in Section 3.1). Having a time series such as

daily temperature or stock prices, the data does not have any label. We

use a “lag method” to create the target data. We define w observations that

are used to predict our q predictions. We create a “window” of observations,

where their amount is the width of the window. The window then slides to

the future to create the targets, where the number of time steps q in decoder

can vary from number of time steps in encoder w. In Section 3.1 Figure

3.2 shows 3 time steps as input followed by 3 time steps as output that are

shifted by 3 time steps. This principle is modified to have the possibility of

having different number of time steps of the decoder q from time steps of

the encoder w with a condition w ≥ q.

yt = xt+w (6.1)

As mentioned in Section 4.6, the data samples should be shuffled. Applying

this method to the time series data, would cause a loss of the temporal order.

Instead of shuffling the whole dataset, and then performing the train-test-

split, the data is first split into validation, training and test datasets and

an observation is randomly chosen from the training set. Then this sample

is taken as the first element in the sliding window and the lag method is

performed as defined above. This will provide a random character of the

training and prevent cycles, because the chosen observation will not have the

same position in the window in every iteration [13].

6.2 Preprocessing

Unlike statistical techniques of forecasting, neural networks do not assume

any underlying pattern of the data. Nevertheless, preprocessing of the data

can (and should) be done to output the best forecast possible.

One method for supporting stable convergence, is scaling the data. Unscaled

47

Data Preprocessing

inputs may result in slow convergence and unscaled targets in exploding

gradients. A feature that has an extensively higher range than the others

will influence the result more, neglecting the units. To have all the features

of input in a comparable range, normalisation of ratings is used, namely

Min-Max scaling, see Equation 6.2.

xscaled = (b− a) · x−min(x)
max(x)−min(x) + a (6.2)

The function scales the range in [a, b], where the scale is mostly used in the

range [−1, 1] or [0, 1]. Min-Max scaling gets the values closer to sample mean,

which can suppress the effect of outliers. To properly scale the input data,

firstly a train-test-split is performed, after which the training data are scaled

and this scaling is used on the test data (and validation data). To reverse

the data back to their original scale, Equation 6.3 is used.

x = xscaled − a
b− a

· (max(x)−min(x)) +min(x) (6.3)

Another common transformation of input data is standardisation, whereby

the distribution of observation is scaled to have zero mean µ and standard

deviation σ equal to 1.

xscaled = x− µ
σ

(6.4)

The equation is also referred to z-score. Here the standard deviation and

mean are computed only from the training data, then applied to the test

data. When splitting the data, it is obvious that only sample data are used,

thus it is necessary to use sample mean x̄ and sample standard deviation s,

see Equation 6.5.

xscaled = x− x̄
s

(6.5)

When the data are reversed back to original scale, the scaled data are multi-

plied by the sample standard deviation and added to the sample mean.

A good rule of thumb is to use both of these methods, unless there are

important outliers in the data, the impact of which should not be lost. The

standardization is applied first and the normalization after, so that the train-

ing dataset is within defined scale.

48

Data Datasets

6.3 Datasets

6.3.1 Generated data

First dataset is generated by the script data generator.py. 15 000 samples

are equally distributed over an interval [−50, 50] and assigned to function

f(x) from Equation 6.6.

f(x) = (a− |x|) · cos(x) + ε x ∈ [−a, a] (6.6)

Noise ε ∼ N (0, 1) is added to the modificated cosine function. The dataset

is used as a basic validation that the model works and the aim is to use

more than a common sin(x) to show that the model does not merely copy

previous data.

Figure 6.1: Modified cosine (preprocessing.py)

Since the data is generated, there are no missing values or outliers.

49

Data Datasets

6.3.2 ECG data

The second dataset is a raw ECG signal recorded for 20 seconds, digitised at

500 Hz with 12-bit resolution over a nominal ± 10 mV range, obtained from

a 25-year-old man [43] retrieved from PhysioBank1 [28]. The record contains

10 000 samples and, before using it, the quotation marks were manually

removed out of the dataset and the column ECG I was renamed as ECG.

This dataset was chosen because the data are real and it has a obvious

seasonal component. There are no missing values or outliers.

Figure 6.2: ECG (preprocessing.py)

6.3.3 Corn prices

The third dataset collects daily (workdays) corn prices over the years 1959

to 2019 retrieved from [20]. It consists of the date and the current price of

corn in U.S. Dollars per bushel2. The additional information apart from the

data (15 rows) was deleted, leaving 15 110 dates and corresponding prices.

1Database: ECG-ID Database, Record: Person 01/rec 1, Signals: ECG I
2a measure of capacity equal to 8 gallons (equivalent to 36.4 litres), used for corn, fruit,

liquids, etc. [21]

50

Data Datasets

Figure 6.3: Corn prices (preprocessing.py)

51

7 Side-channel injection

One of the greatest advantages of neural networks over classic methods

is that these models can process multivariate data (and also multivariate

time series) irrespective of the type of network. The goal is to speed up

the training or to have the forecasts more accurate. Some of the classic

methods have been modified to treat multivariate data as well – e.g.

ARIMAX [15], where the letter X represents Exogenous. Another exogenous

(determined outside the model) variable is added to improve forecasts.

A good example are daily restaurant sales as the variable to be forecast, and

a vector of zeros and ones defining holidays. The model needs values (true

or good estimates) of the exogenous variable also for the predicted time steps.

In stock price forecasting, it is common practice to add other stock tickers

as an input in order to take into consideration other unexplored factors [25].

For some datasets, there are no another useful time series available. For this

reason, other inputs computed directly from observed data are used in this

thesis.

The datasets described in Section 6 all consist of two columns - the index

and the observe variable. Although the index could be fed as another

input (two variables per time step), for some data it does not hold any

information. The modified cosine dataset has index values ranging from -50

to 50, which means that there is no information about the repeating periods

(which the cosine function has). For this reason, the index values will not be

used as an input vector, because the aim is to present more general technique.

The first injected side channel is the mean. The mean is computed for

a defined number of time steps m (new hyperparameter) of the last

data before the target data and copied for the whole part as a new

variable. As an example, considering input data [10, 11, 12, 13, 14, 15, 16]
with 7 time steps in encoder, the target dataset is [17, 18] using 2

time steps in decoder. Having m = 10, the mean is computed

from the observations [7, 8, 9, 10, 11, 12, 13, 14, 15, 16] and a value

mean([7, 8, 9, 10, 11, 12, 13, 14, 15, 16]) = 11.5 is copied 7 times and

52

Side-channel injection

concatenated with the defined observations. When there are not enough

observations to have m data points (at the beginning of data), the mean is

computed of the maximum data possible. It is assumed that this method

could improve learning.

The second injected side channel is a slope and intercept of linear regression.

With regard to the mean, there is a new hyperparameter which defines

number of observations used to fit a line. Linear regression for these

observations is performed and the slope and intercept is then fed as two

new variables with the observed input data. It is assumed that these new

variables could provide information on the increasing or decreasing trend

and assist the network to learn it.

Both of the methods prolong the process of training. First, the hyperpara-

meter m needs to be found and second, the dimension of the input is larger,

which results in larger size of the weight matrices.

53

8 Software toolkit

This section is dedicated to an overview of programming language, libraries

and the tools used overall for the implementation.

8.1 Python

Python is an easy-to-use programming language, the standard library of

which offers a wide range of facilities. It is also interoperable with a vast

selection of other libraries, modules and even entire application development

frameworks, which makes it an excellent tool for use in multitude fields of

study, specifically Data Science and Machine Learning. Its additional library

NumPy supports multi-dimensional arrays and adds high-level mathematical

functions useful for data science [66], [48].

8.2 TensorFlow

TensorFlow developed by the Google Brain team is an open-source frame-

work especially used for machine learning applications. It is available for

different operating systems and mobile computing platforms. Implemented

functions and modules are extended by a module tensorflow.contrib which is

not included in the main repository. However users can contribute with own

code or use functions of this module. TensorFlow can also run on multiple

CPUs and GPUs which fastens the training. The platform also provides

checkpoints to save and restore TensorFlow (TF) models built with Estim-

ators and a utility called TensorBoard for visualising computation graphs,

parameters distributions and other features. Since its release in 2015, TF

added the support in 2017 of another open-source neural network interface

– Keras, using it as a high-level API1 for building deep learning models. In

this work, Low Level APIs are used that provide more transparency and the

necessary flexibility.

1Application Programming Interface

54

Software toolkit TensorFlow

8.2.1 TensorFlow API

TensorFlow API provides two major features – a dataflow graph which

stores all the computations with abstract representation of the data and

a session where the actual data are fed and the operations defined in the

graph are exectuted. One big advantage is that the parts of the graph are

executed separately and one can control in a session what part of the graph

is required to be run. The term ”tensor” represents a multi-dimensional

array of objects (generally numbers) with specified properties. Tensors in

TensorFlow represent the data that flow in the computational graph. There

are three major tensor types:

1. Constant – a tensor with a value that does not change,

2. Variable – a tensor that can change its value,

3. Placeholder – an empty tensor without initial value, to which the data

(training examples) are fed in a session.

Variables are used as network parameters which are required to be updated

in order to minimise the error. Before running a session they need to be

initialised with operation global variables initializer().

Through placeholders, different data can be fed in every iteration (mini-

batches). These types of tensors have different properties, but the basics

are name, data type, shape or value. When the shape is defined, it is not

possible to change it. However, in situations where the shape is required to

be changed (for example size of the mini-batch), the value None can be used

to have an unspecified (dynamic) dimension in placeholders. To feed the

data into the placeholders, they are passed inside the feed dict argument to

a method run of class Session. Another parameter of this method is fetches,

where the tensors are specified in the computational graph required to be

evaluated.

8.2.2 TensorBoard

TensorBoard is mentioned in Section 8.2. This is a visualisation software

that comes packaged with TensorFlow to see the connections in the graph

55

Software toolkit Matplotlib

suitable for debugging and optimising the program. In the bookmark Graphs,

the computation graphs can be visualised, using a name scope class that

creates namespaces to differentiate between operations to make the graph

understandable. It is possible to zoom in to what the inputs and outputs

of each operation are, or even the properties of the tensors. To see the

histograms of parameters, the operation summary.histogram needs to be

added, visible in the bookmark Histograms. In the bookmark Distributions,

the distributions of the parameters can be seen. With summary.scalar any

metric that changes over time (iteration) can be added, e.g. the loss, to

be seem in bookmark Scalars, if the model is learning. There are another

bookmarks, but these are not suitable for this model [64].

8.3 Matplotlib

Matplotlib is an open-source Python library used for visualisations of data.

It provides a wide range of different plots [44].

8.4 Seaborn

Seaborn is a library based on Matplotlib, used for more attractive visualisa-

tions of statistical graphs [60].

8.5 Scikit-learn

Scikit-learn is an open-source software library that provides tools for data

analysis. There are classes for preprocessing and overall machine learning

problems, such as classification, regression, clustering or dimensionality re-

duction. It is built on NumPy and Matplotlib [58].

56

Software toolkit Pandas

8.6 Pandas

Pandas is another open-source library for Python used for data analysis. It

is good for data importing. Its class DataFrame is an excellent method for

representing tabular data, assisting in data preprocessing, modification or

slicing [53].

8.7 StatsModels

”StatsModels is a Python module that provides classes and functions for the

estimation of many different statistical models, as well as for conducting

statistical tests, and statistical data exploration.”[62] The module does not

support tensors from TensorFlow.

8.8 SciPy

SciPy is another Python-based open-source library for science and mathem-

atics [59].

57

9 Implementation

9.1 Main program

The main script is defined in main.py. Firstly, all the libraries are imported

and the frequently used ones are given aliases.

import numpy as np

import tensorflow as tf

import pandas as pd

It is also necessary to import other scripts with the defined functions or

classes that the main script will call. In the script hyperparameters.py the

hyperparameters summarised in Section 4 are defined. The user changes

these hyperparameters and in that way modifies the model. In the script

models.py, different models are defined. The script data processing.py is used

for the computations specified in functions that are not in the main script for

clarity, and visualisations. In the script optimize.py, the optimiser described

in Section 4.5 is defined.

import hyperparameters as hp

from models import *

from data_processing import *

from optimize import *

The data below are imported, divided into validation, training and test

dataset (1:8:1) and scaled, using the z-score and Min-Max scaling, so that

the training dataset is within the interval [−1, 1].
data , column = import_data(hp.options[’input_data ’])

data[data.columns [0]] = range(0, len(data))

valid , train , test = train_test_valid_split(

data , hp.options[’train_ratio ’])

valid_scaled , train_scaled , test_scaled = valid , train , test

deviation , mean , valid_scaled[’scaled ’], train_scaled[’scaled

’], test_scaled[’scaled ’], train_scaled_mean = zscore(

valid_scaled[column], train_scaled[column], test_scaled[

column])

58

Implementation Main program

valid_scaled[’scaled ’], train_scaled[’scaled ’], test_scaled[’

scaled ’], scaler = normalization(

valid_scaled , train_scaled , test_scaled , ’scaled ’)

original = column

column = ’scaled ’

columns = []

columns.append(column)

In the model, the network takes the hyperparameters from hyperparamet-

ers.py, whether to use a side-channel or not, the number of time steps in the

encoder and decoder, batch size, number of stacked hidden layers, number

of hidden neurons, learning rate, type of the architecture are defined as well

as the type of RNN unit. This information is used to build the model.

with tf.name_scope(’input’):

encoder_inputs = tf.placeholder(tf.float32 , shape=(

None , options[’steps_enc ’], num_inputs), name

=’encoder_inputs ’)

encoder_inputs_ta = [tf.squeeze(t, [1]) for t in tf.

split(

encoder_inputs , options[’steps_enc ’], 1)]

current_batch_size = tf.shape(encoder_inputs_ta)[1]

decoder_targets = tf.placeholder(

tf.float32 , shape=(None , options[’steps_dec ’

], num_outputs), name=’decoder_targets ’)

decoder_targets_ta = [tf.squeeze(t, [1]) for t in tf.

split(

decoder_targets , options[’steps_dec ’], 1)]

model = init_model(options[’model_type ’], current_batch_size ,

encoder_inputs_ta ,

decoder_targets_ta , num_units ,

options[’cell_type ’])

decoder_outputs = model.prediction

targets = model.target

with tf.name_scope(’loss’):

loss = tf.reduce_mean(

tf.square(decoder_outputs - targets), name=’

loss’)

training = Optimize(loss , gradient_clipping=False)

The model called from the function init model is defined as RNN Autoencoder

59

Implementation Find a baseline

(in Tables referenced as “RNNAutoencoder”) and the structure is shown in

Figure 9.1. The encoder’s and decoder’s parameters are separated from each

other, which means there are twice as many parameters as in single RNN

(e.g. in Equation 3.10).

Figure 9.1: RNN Autoencoder as a baseline model

In TensorFlow Session, the data are fed into placeholders and the network is

trained. Early stopping is applied to stop the training, where the stopping

condition is based on the validation dataset (defined at the beginning of

the time series) when the error (of validation data) has not decreased for

the set number of time steps, the training is stopped and parameters are

restored from iteration, with the lowest error of the validation dataset and

its predictions. To see the training progress, the errors of all three datasets

and their predictions are sent to TensorBoard using summary.scalar. The

predictions are visualised every 100th iteration, to see the progress of the

predictions, not only of the error.

9.2 Find a baseline

Some of the hyperparameters were set w.r.t. experiments conducted during

programming and tuning.

• Activation functions: set to the default functions in TensorFlow, which

means they correspond to the models in Equations 3.10 and 3.12;

60

Implementation Find a baseline

• learning rate: 0.001;

• optimizer: Adam;

• objective function: MSE;

• train ratio: 80% – 10% validation data, 80% training data, 10% test

data;

• gradient clipping: None;

• early stopping: 2 000 iterations without decreasing of MSE of validation

dataset and its predictions stop the training.

To find a baseline model, firstly the number of time steps for both encoder

w and decoder q needs to be defined. Time steps are usually set by the re-

searcher according to the desired number of predicted days, but here Bayesian

Optimisation and the script hopt bo w.py are also used to assist with the

decision. The possible interval of encoder time steps was set to [5, 100] and

decoder time steps to [1, 100], and w ≥ q. The training loop was set to 100

or 300 iterations, both with 50 models, using MSE of the validation dataset

as the function to be minimised. Batch size was set to 250 and number of

stacked hidden layers to 1 with 350 hidden neurons and 2 with 200 hidden

neurons (two different models).

Both the best combination of time steps for validation and the training

dataset are shown in Tables 9.1 and 9.2.

Table 9.1: Time steps exploration: Bayesian Optimization - training
TRAINING ECG COS CORN

100 iter
2x200 [88,1] [5,1] [5,1]

1x350 [100,1] [5,1] [5,1]

300 iter
2x200 [6,1] [99,2] [6,1]

1x350 [5,1] [99,1] [5,1]

As a result model with 100 time steps in encoder and 20 time steps in

decoder is used.

61

Implementation Find a baseline

Table 9.2: Time steps exploration: Bayesian Optimization - validation
VALIDATION ECG COS CORN

100 iter
2x200 [100,17] [100,1] [100,17]

1x350 [100,11] [58,1] [6,1]

300 iter
2x200 [54,48] [96,19] [6,1]

1x350 [41,36] [100,18] [5,1]

The most suitable number of hidden layers and hidden neurons together with

mini-batch size and type of cell (GRU or LSTM) is found using Bayesian

Optimization. Possible configurations were set to:

• number of stacked layers: [1, 5],

• number of hidden neurons in one layer: [10, 400],

• size of mini-batch: [5, 400],

• cell types: [GRU,LSTM].

The limitation is due to a memory error caused by a tensor with too many

elements. For 100 or 300 iterations the Bayesian Optimization was performed

with two different random initialisations:

1. 3 stacked hidden layers, 150 hidden neurons in each layer, mini-batch

size:20, LSTM cell;

2. 1 hidden layer, 10 hidden neurons, mini-batch size: 100, GRU.

50 models for each initialisation were executed for 300 iterations. Both

best combination of hyperparameters in order [number of layers, number of

hidden neurons, mini-batch size, type of RNN cell] for validation and training

dataset is shown in Tables 9.3 and 9.4.

Table 9.3: Hyperparameters exploration: Bayesian Optimization - training
TRAINING ECG COS CORN

[100,20]
1. init [1,385,384,GRU] [1,95,381,GRU] [1,399,392,GRU]

2. init [1,396,363,LSTM] [1,392,385,LSTM] [1,393,391,GRU]

62

Implementation Models with side channels

Table 9.4: Hyperparameters exploration: Bayesian Optimization - validation
VALIDATION ECG COS CORN

[100,20]
1. init [2,344,383,LSTM] [3,234,138,GRU] [1,399,392,GRU]

2. init [1,396,363,LSTM] [3,255,98,GRU] [1,393,391,GRU]

Using more iterations the number of hidden neurons and batch size

converges to the limits. For this reason the hyperparameters are set to

[1, 400, 400, GRU]1. When a baseline is set, 10 experiments for each dataset

are conducted to obtain the errors (MSE) of the targets and predictions.

For the ECG dataset, the experiments were conducted only with LSTM as

the RNN unit.

9.3 Models with side channels

The number of observations m of which the new variables defined in Section 7

are computed is a new hyperparameter, but it is likely to be different for

each dataset, highly depending on fluctuating trend. Grid Search method

was performed to find a suitable m and the process was repeated three times,

each time with different seed. For each m, the model was trained for 300

iterations. The final m equals to a minimum of the averages over the three

trials of the validation error (the errors of targets and prediction of the

validation dataset). The values for both model using linear regression and

model using means as a side channel are recorded in Table 9.5.

Table 9.5: Hyperparameters for side channels
ECG COS CORN

LR 400 120 280

means 40 340 320

1For the ECG dataset several experiments were conducted also with LSTM unit.

63

Implementation Augmented model

For the baseline model, where the data are extended by the new variables

(the algorithm is defined in Section 7), the experiments were conducted 10

times for each dataset. As for the baseline model, no seed was used.

9.4 Augmented model

To lower the number of parameters, new model called “Augmented RNN” is

introduced. This model feeds the outputs of the encoder as an input to the

decoder the same way as RNN Autoencoders, but the parameters are shared

across the whole model. This means that the number of parameters is the

same as in basic RNN, but the model can output predictions derived w.r.t.

own previous predictions, not only fed observations. The structure of the

model is shown in Figure 9.2.

Figure 9.2: New model RNNAugmented

Unlike for machine-learning translation tasks, it is possible to omit decoder,

because the data of observations and the targets are from the same distribu-

tion. The hyperparameters of this model were set to the same values as for

the baseline model. 10 experiments were conducted again.

64

10 Results

The averages of RMSE of the targets and re-scaled predictions of the test

dataset are given in Table 10.1. Since only 10 experiments were conducted

and means are affected by outliers, medians are included in the table.

Table 10.1: Average test RMSE for different models

Models/Data
ECG COS CORN

mean median mean median mean median

RNNAutoencoder 7.6172 8.1292 1.0399 1.0400 0.1900 0.1893

RNNAugmented 8.1357 7.6583 1.0790 1.0817 0.2060 0.2042

LR 16.0131 16.0660 1.0779 1.0611 0.2159 0.1991

means 12.8580 13.6399 1.0468 1.0467 0.2244 0.1933

AE LSTM 9.4129 8.7434 – – – –

Sample means, sample standard deviations and numbers of samples in the

test data for each dataset are written Table 10.2.

Table 10.2: Characteristics of the datasets
ECG COS CORN

sample mean -6.3695 -0.4403 3.7854

sample standard deviation 21.0198 4.1754 0.3651

number of samples 820 1320 1320

10.1 Model selection using Hypothesis Test-

ing

Looking at the results in Table 10.1, the baseline model seems to have

the best performance for all of the datasets. To support this claim,

65

Results Model selection using Hypothesis Testing

statistical significance test need to be applied, to find out, whether the error

difference of the baseline model and others is significant. However, selecting

a statistical hypothesis test for comparing machine learning algorithms

can be challenging and the authors argue, which test is the best to be applied.

For each algorithm and dataset, we have only 10 computed errors. Several

sources recommend the McNemar’s Statistical Hypothesis Test, because it

is suitable for small sample size of data, but the test is suitable for classifiers

only. Another recommended test is the Paired t-test (Student’s or Welch’s),

but one of the assumptions is, that the data are normally distributed.

A non-parametric version of paired t-test is the Wilcoxon Signed-Rank

Test. However, the test assumes that the errors are in pairs, but since seeds

were not used for the experiments, the order of the errors in each sample

could affect the results. Instead, Kolmogorov-Smirnov Test is applied. It is

a non-parametric test, which quantifies the distance between the empirical

distribution functions of two samples and by that decides, whether the two

samples are from the same distribution. If the null hypothesis is rejected

(p-value is less than the chosen significance level), the datasets are not

drawn from the same distribution [11], [52], [12], [54].

For normally distributed data, the Welch’s t-test1 is applied. To decide,

whether the data are Gaussian, Shapiro–Wilk Test is used, because it is

appropriate for small datasets.

P-values of the tests were calculated using SciPy library with the script

results.py and MSE of the test dataset for the models. The results are given

in Table 10.3. For ECG dataset, the null hypothesis cannot be rejected for

Augmented RNN and the RNN Autoencoder with LSTM units, whereas

for both models with side channels the null hypothesis is strongly rejected.

This means that the results of these two models are similar to the baseline

model (especially the Augmented RNN model) and with the significance

level 0.05 and 0.1 we cannot tell that the baseline model is more significant

and better. For the modified cosine dataset the null hypothesis is rejected for

the Augmented RNN model and model using means as a side channel – both

for Kolmogorov-Smirnov test and Welch’s t-test. For the model using linear

regression, the null hypothesis cannot be rejected, but it does not differ much

1Welch’s t-test, unlike the Student’s t-test, does not assume equal variance.

66

Results Model selection using AIC

from the significance level 0.1 (the p-value is low). For dataset with corn

prices, Kolmogorov-Smirnov test does not reject the null hypothesis for the

model using means as the side channel. Both Augmented RNN and model

with linear regression are strongly rejected as to have errors from the same

distribution as the baseline model. The results are quite different for different

datasets. To have more significant results, it is required to conduct more

experiments. However, this hypothesis testing has shown, that for selecting

the best model, it is not sufficient to choose to model w.r.t. results of only

one dataset.

Table 10.3: Computed p-values

Models/Data
ECG COS CORN

K-S Welch’s K-S K-S

RNNAugmented 0.6751 1.148e-07 1.888e-05 1.888e-05

LR 1.888e-05 - 0.1108 0.0069

means 0.0012 0.0443 0.0310 0.3129

AE LSTM 0.1108 - - -

10.2 Model selection using AIC

AIC was defined in Section 5.5. First, it is required to compute the number

of parameters in each model. The weight matrix in the output layer has size

M · H and the bias is a vector of length M . LSTM cell has 3 gates and

1 candidate value, each with a weight matrix of size (N +H) ·H, where N is

the dimension of vector of observations in one time step and H is the number

of hidden neurons. Each of these units has also a bias – a vector of length H.

Hence simple RNN with LSTM units has 4 · [(N +H) ·H +H] +M ·H +M

parameters. RNN Autoencoder has twice as many parameters, because the

weights in RNN cells of an encoder and a decoder are separated. Similarly,

GRU has 3 · [(N +H) ·H +H] parameters. The number of parameters for

each model is:

• GRU Autoencoder – k = 2 · [3 · [(1+400) ·400+400]+400+1] = 965602,

• RNNAgumented – k = 3 · [(1 + 400) · 400 + 400] + 400 + 1 = 482801,

67

Results Visual result comparison

• LR – k = 2 · [3 · [(3 + 400) · 400 + 400] + 400 + 1] = 970402,

• means – k = 2 · [3 · [(2 + 400) · 400 + 400] + 400 + 1] = 968002,

• LSTM Autoencoder – k = 2·[4·[(1+400)·400+400]+400+1] = 1287202.

Due to large numbers of parameters, the values of AIC are large numbers as

well. AIC value was computed for each experiment (using the script aic.py,

model and dataset, and the averages are given in Table 10.4.

Table 10.4: AIC of different models and datasets
Models/Data ECG COS CORN

RNNAutoencoder 2.275e+9 1.414e+9 1.414e+9

RNNAugmented 5.690e+8 3.537e+8 3.537e+8

LR 2.298e+9 1.428e+9 1.428e+9

means 2.286e+9 1.421e+9 1.421e+9

AE LSTM 4.042e+9 – –

The number of parameters strongly penalises the AIC and therefore the

model with the lowest number of parameters has the lowest AIC. Since the

corn dataset has MSE lower than 1, it is the only dataset where the natural

logarithm returns negative number, but it is significantly lower than the

other addends. As a result the criterion considers mostly the number of

parameters and not how well the model predicts.

10.3 Visual result comparison

To see how well the model fits the data, it is a common practice to visualise

the predictions together with the target data. For all three datasets the

experiment where its RMSE is the median2. At the first sight, both methods

with side channels fit the data well for the modified cosine dataset (see

Figures 10.1 and 10.2). However, for the ECG dataset, the models do not

predict as well as the models with only one variable (see Figures 10.5, 10.6,

10.7 10.3 and10.4).

68

Results Visual result comparison

Figure 10.1: Cos – LR

Figure 10.2: Cos – mean

2since the number of experiments is even, it is taken the fifth value in ascending order

69

Results Visual result comparison

Figure 10.3: ECG – LR

To decide, which model to choose from the three models using univariate

data (GRU Autoencoder, LSTM Autoencoder and Augmented RNN), it is

possible to visualise the individual parts of the test data. The Figures A.1

to A.15 are shown in Appendix. As a result we decided to go with the

new model Augmented RNN, because the results are very similar to the

baseline model, it is faster to train the model (i.e. not as time-consuming

70

Results Visual result comparison

Figure 10.4: ECG – mean

Figure 10.5: ECG – baseline

as the RNN Autoencoder) and it is likely to assume, that by optimising the

hyperparameters w.r.t. the augmented model, the results could be improved.

Finally, the results of the third dataset are to be analysed. The MSE results

71

Results Visual result comparison

Figure 10.6: ECG – LSTM Autoencoder

Figure 10.7: ECG – RNNAugmented

of the corn prices data were surprising, because we have assumed, that this

model is going to be the hardest to train. From the graph shown in Figure

10.8 it seems, that the network has learnt the levels of each prediction quite

72

Results Visual result comparison

well and lowering the number of time steps in the encoder and the decoder

(as suggested by the Bayesian Optimisation).

Figure 10.8: Corn – baseline

The Figure 10.9 shows how well does the model perform using the 5 time

steps in the encoder and 1 time step in the decoder. The test targets are

suspiciously well fitted for a dataset with no clear seasonality (visible at

first sight). In Figure 10.10 it is clearly visible, that the predictions are

shifted by 1 time step to the future. The network simply reproduces the last

given observation for each fed mini-batch. However, Näıve method “works

remarkably well for many economic and financial time series” [36] which

means, that the network did not fail to fit the data and 1 time step in the

decoder is an appropriate value.

73

Results Visual result comparison

Figure 10.9: Corn w5 q1

Figure 10.10: Corn w5 q1

74

11 Conclusion

In this thesis, methods for time series forecasting, using machine learning

techniques (RNNs, LSTMs, GRUs, RNN Autoencoders) were described,

along with possible data structures and respective algorithms in detail. Given

this theory a baseline model was implemented. After, the datasets, presented

in Section 6, were modified in order to create a supervised learning problem,

and the baseline model’s hyperparameters, discussed in theoretical part, were

set using Bayesian Optimisation.

In following Section 7 new models, which use additional information derived

directly from the dataset, were introduced. One of the models uses the

mean and the second one slopes and intercepts of linear regression performed

over several previous observations. These values extend the input data as

new variables and the number of previous observations is defined using Grid

Search.

A new structure of RNN was introduced during implementation as a com-

promise between simple RNNs and RNN Autoencoders. This augmented

version of RNN decreases the number of hyperparameters, while having

similar structure as RNN Autoencoders. For every one of these four mod-

els several experiments were conducted. Hypothesis testing and Akaike’s

Information Criterion were used as methods for suitable model selection.

The result of performed experiments is, that the models with side-channel

injection defined in this thesis do not demonstrate any significant advantage

over the baseline model and the augmented model. The baseline model has

on average the best performance, but the Kolmogorov-Smirnov test did not

reject the null hypothesis for all of the models and datasets, which means

that the errors of different models may be drawn from the same distribution.

However, the Augmented RNN model is selected as the best model, because

the results are similar to the baseline model and the structure outperforms

the baseline in AIC. Future work can be focused on performing massive

testing of the new augmented structure by various sets of data.

75

Bibliography

[1] AGARAP, Abien Fred M. Deep Learning using Rectified Linear Units (ReLU)

[online]. 7 February 2019. Retrieved from:

https://arxiv.org/pdf/1803.08375.pdf

[2] AKAIKE, Hirotogu. Information Theory and an Extension of the Maximum

Likelihood Principle. Selected Papers of Hirotugu Akaike. New York, NY:

Springer New York, 1998, 1998, 199-213. Springer Series in Statistics. DOI:

10.1007/978-1-4612-1694-0 15. ISBN 978-1-4612-7248-9. Retrieved from:

http://link.springer.com/10.1007/978-1-4612-1694-0 15

[3] ALESE, Eniola. The curious case of the vanishing & exploding gradient

[online]. In: Learn.Love.AI - Medium. 6 June 2017 [cit. 2019-05-08]. Retrieved

from: https://medium.com/learn-love-ai/the-curious-case-of-the-vanishing-

exploding-gradient-bf58ec6822eb

[4] BAL, Cagatay, Serdar DEMIR and Cagdas ALADAG. A Comparison of

Different Model Selection Criteria for Forecasting EURO/USD Exchange

Rates by Feed Forward Neural Network. International Journal of Computing,

Communication and Instrumentation Engineering [online]. 2016, 3(2) [cit.

2019-06-20]. DOI: 10.15242/IJCCIE.U0616010. ISSN 23491477. Retrieved

from: http://iieng.org/images/proceedings pdf/U0616010.pdf

[5] BALAMULARI, Murugesan. Importance of learning rate in machine learning.

In: Medium [online]. 15 September 2017 [cit. 2019-06-12]. Retrieved from:

https://medium.com/@balamuralim.1993/importance-of-learning-rate-in-

machine-learning-920a323fcbfb

[6] BENGIO, Y., P. SIMARD and P. FRASCONI. Learning long-term

dependencies with gradient descent is difficult. IEEE Transactions on Neural

Networks [online]. 5(2), 157-166 [cit. 2019-05-11]. DOI: 10.1109/72.279181.

ISSN 10459227. Retrieved from: http://ieeexplore.ieee.org/document/279181/

[7] BROCKWELL, Peter J. and Richard A. DAVIS. Introduction to time series

and forecasting. 2nd ed. New York: Springer, c2002. ISBN 03-879-5351-5.

[8] BROWNLEE, Jason. A Gentle Introduction to Exploding Gradients in Neural

Networks. In: Machine Learning Mastery [online]. 18 December 2017 [cit.

2019-05-11]. Retrieved from: https://machinelearningmastery.com/exploding-

gradients-in-neural-networks/

76

BIBLIOGRAPHY BIBLIOGRAPHY

[9] BROWNLEE, Jason. How to Improve Neural Network Stability and

Modeling Performance With Data Scaling. In: Machine Learning Mastery

[online]. 4 February 2019 [cit. 2019-05-11]. Retrieved from:

https://machinelearningmastery.com/how-to-improve-neural-network-

stability-and-modeling-performance-with-data-scaling/

[10] BROWNLEE, Jason. How to Prepare Sequence Prediction for Truncated

Backpropagation Through Time in Keras. In: Machine Learning Mastery

[online]. 28 June 2017 [cit. 2019-05-11]. Retrieved from:

https://machinelearningmastery.com/truncated-backpropagation-through-

time-in-keras/

[11] BROWNLEE, Jason. How to Use Statistical Significance Tests to Interpret

Machine Learning Results. In: Machine Learning Mastery [online]. 3 May

2017 [cit. 2019-06-25]. Retrieved from:

https://machinelearningmastery.com/use-statistical-significance-tests-

interpret-machine-learning-results/

[12] BROWNLEE, Jason. Statistical Significance Tests for Comparing Machine

Learning Algorithms. In: Machine Learning Mastery [online]. 20 June 2018

[cit. 2019-06-25]. Retrieved from:

https://machinelearningmastery.com/statistical-significance-tests-for-

comparing-machine-learning-algorithms/

[13] BROWNLEE, Jason. Time Series Forecasting as Supervised Learning. In:

Machine Learning Mastery [online]. 5 December 2016 [cit. 2019-05-11].

Retrieved from: https://machinelearningmastery.com/time-series-forecasting-

supervised-learning/

[14] BROWNLEE, Jason. What is the Difference Between a Parameter and a

Hyperparameter?. In: Machine Learning Mastery [online]. 26 July 2017 [cit.

2019-06-06]. Retrieved from: https://machinelearningmastery.com/difference-

between-a-parameter-and-a-hyperparameter/

[15] ĎURKA, Peter and Silvia PASTOREKOVÁ. ARIMA vs. ARIMAX – which

approach is better to analyze and forecast macroeconomic time series?.

Mathematical methods in Economics : proceedings of 30th international

conference [online]. 11-13 September 2012 [cit. 2019-06-16]. Retrieved from:

http://mme2012.opf.slu.cz/proceedings/pdf/024 Durka.pdf

[16] CHEN, Gang. A Gentle Tutorial of Recurrent Neural Network with Error

Backpropagation [online]. 14 January 2018 [cit. 2019-06-15]. Retrieved from:

https://arxiv.org/pdf/1610.02583.pdf

[17] CHO, Kyunghyun, Bart VAN MERRIENBOER, Caglar GULCEHRE,

Dzmitry BAHDANAU, Fethi BOUGARES, Holger SCHWENK and Yoshua

77

BIBLIOGRAPHY BIBLIOGRAPHY

BENGIO. Learning Phrase Representations using RNN Encoder–Decoder for

Statistical Machine Translation. In: Proceedings of the 2014 Conference on

Empirical Methods in Natural Language Processing (EMNLP) [online].

Stroudsburg, PA, USA: Association for Computational Linguistics, 2014,

2014, s. 1724-1734 [cit. 2019-06-20]. DOI: 10.3115/v1/D14-1179. Retrieved

from: http://aclweb.org/anthology/D14-1179

[18] CIPRA, Tomáš. Analýza časových řad s aplikacemi v ekonomii: celostátńı

vysokoškolská učebnice pro stud. matem.-fyz. fakult studijńıch obor̊u 11

Fyzikálně matematické vědy. Praha: Státńı nakladatelstv́ı technické

literatury, 1986.

[19] COLAH, Christopher. Understanding LSTM Networks [online]. In: colah’s

blog. 27 August 2015 [cit. 2019-05-11]. Retrieved from:

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

[20] Corn-prices-historical-chart-data.csv. In: MacroTrends: Corn Prices - 45

Year Historical Chart [online]. [cit. 2019-06-17]. Retrieved from:

https://www.macrotrends.net/2532/corn-prices-historical-chart-data

[21] Definition of bushel in English by Lexico Dictionaries: bushel [online]. [cit.

2019-06-24]. Retrieved from: https://www.lexico.com/en/definition/bushel

[22] DESHPANDE, Mohit. A Guide to Improving Deep Learning’s Performance

[online]. In: Zenva. 10 February 2017 [cit. 2019-06-12]. Retrieved from:

https://pythonmachinelearning.pro/a-guide-to-improving-deep-learnings-

performance/

[23] ELMAN, J. Finding structure in time. Cognitive Science [online]. 1990,

14(2), 179-211 [cit. 2019-03-13]. DOI: 10.1016/0364-0213(90)90002-E. ISSN

03640213. Retrieved from:

http://doi.wiley.com/10.1016/0364-0213(90)90002-E

[24] FUMO, David. Types of Machine Learning You Should Know [online]. In:

Towards Data Science. 15 June 2017 [cit. 2019-05-08]. Retrieved from:

https://towardsdatascience.com/types-of-machine-learning-algorithms-you-

should-know-953a08248861

[25] Galovič, Marek. Time Series Forecasting with RNNs [online]. In: Towards

Data Science. 2 November 2018 [cit. 2019-06-16]. Retrieved from:

https://towardsdatascience.com/time-series-forecasting-with-rnns-

ff22683bbbb0

[26] GERS, Felix A., Jürgen SCHMIDHUBER and Fred CUMMINS. Learning to

Forget: Continual Prediction with LSTM. Neural Computation [online]. IEE,

2000, 1999, 12(10), 2451-2471 [cit. 2019-05-13]. DOI:

78

BIBLIOGRAPHY BIBLIOGRAPHY

10.1162/089976600300015015. ISBN 0852967217. ISSN 0899-7667. Retrieved

from: http://www.mitpressjournals.org/doi/10.1162/089976600300015015

[27] GITAU, Catherin. Classification in Supervised Machine Learning: All you

need to know! [online]. In: Learn.Love.AI - Medium. 13 April 2018 [cit.

2019-06-04]. Retrieved from:

https://medium.com/@categitau/in-one-of-my-previous-posts-i-introduced-

machine-learning-and-talked-about-the-two-most-common-c1ac6e18df16

[28] Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PCh, Mark

RG, Mietus JE, Moody GB, Peng C-K, Stanley HE. PhysioBank,

PhysioToolkit, and PhysioNet: Components of a New Research Resource for

Complex Physiologic Signals (2003). Circulation. 101(23):e215-e220.

[29] GOODFELLOW, Ian, Yoshua BENGIO and Aaron COURVILLE. Deep

learning. Cambridge, Massachusetts: The MIT Press, [2016]. ISBN

978-026-2035-613.

[30] GOZZOLI, Allessio. Practical guide to hyperparameters search for deep

learning models [online]. 5 September 2018 [cit. 2019-06-23]. Retrieved from:

https://blog.floydhub.com/guide-to-hyperparameters-search-for-deep-

learning-models/

[31] HAHNLOSER, Richard H. R., Rahul SARPESHKAR, Misha A.

MAHOWALD, Rodney J. DOUGLAS and H. Sebastian SEUNG. Digital

selection and analogue amplification coexist in a cortex-inspired silicon circuit.

Nature [online]. 2000, 405(6789), 947-951 [cit. 2019-05-11]. DOI:

10.1038/35016072. ISSN 0028-0836. Retrieved from:

http://www.nature.com/articles/35016072

[32] HASTIE, Trevor, Robert TIBSHIRANI and J. H. FRIEDMAN. The

elements of statistical learning: data mining, inference, and prediction.

Corrected ed. New York: Springer, 2003. ISBN 03-879-5284-5.

[33] HOCHREITER, Sepp and Jürgen SCHMIDHUBER. Long Short-Term

Memory. Neural Computation [online]. 1997, 9(8), 1735-1780 [cit. 2019-05-11].

DOI: 10.1162/neco.1997.9.8.1735. ISSN 0899-7667. Retrieved from:

http://www.mitpressjournals.org/doi/10.1162/neco.1997.9.8.1735

[34] HOCHREITER, Sepp and Jürgen SCHMIDHUBER. LSTM Can Solve Hard

Long Time Lag Problems [online]. 1997 [cit. 2019-06-12]. Retrieved from:

https://papers.nips.cc/paper/1215-lstm-can-solve-hard-long-time-lag-

problems.pdf

[35] HOLT, Charles C. Forecasting seasonals and trends by exponentially

weighted moving averages. International Journal of Forecasting [online]. 2004,

79

BIBLIOGRAPHY BIBLIOGRAPHY

20(1), 5-10 [cit. 2019-06-22]. DOI: 10.1016/j.ijforecast.2003.09.015. ISSN

01692070. Retrieved from:

https://linkinghub.elsevier.com/retrieve/pii/S0169207003001134

[36] HYNDMAN, Rob and George ATHANASOPOULOS. Forecasting:

principles and practice. 2nd edition. OTexts, 2018. ISBN 978-0987507105.

[37] JORDAN, Michael I. Serial Order: A Parallel Distributed Processing

Approach. Neural-Network Models of Cognition - Biobehavioral Foundations

[online]. Elsevier, 1997, 1997, s. 471-495 [cit. 2019-06-20]. Advances in

Psychology. DOI: 10.1016/S0166-4115(97)80111-2. ISBN 9780444819314.

Retrieved from:

https://linkinghub.elsevier.com/retrieve/pii/S0166411597801112

[38] KARPATHY, Andrej. The Unreasonable Effectiveness of Recurrent Neural

Networks [online]. May 21, 2015 [cit. 2019-02-28]. Retrieved from:

https://karpathy.github.io/2015/05/21/rnn-effectiveness/

[39] KNAGG, Oscar. An intuitive guide to Gaussian processes [online]. 16

January 2019 [cit. 2019-06-23]. Retrieved from:

https://blog.floydhub.com/guide-to-hyperparameters-search-for-deep-

learning-models/

[40] LE, James. The 7 NLP Techniques That Will Change How You

Communicate in the Future: (Part I) [online]. In: Heartbeat. 6 June 2018 [cit.

2019-06-06]. Retrieved from: https://heartbeat.fritz.ai/the-7-nlp-techniques-

that-will-change-how-you-communicate-in-the-future-part-i-f0114b2f0497

[41] LECUN, Yann, Leon BOTTOU, B. Genevieve ORR and Klaus-Robert

MÜLLER. Efficient BackProp [online]. 1998 [cit. 2019-06-06]. Retrieved from:

http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf

[42] LITSCHMANNOVÁ, Martina. JEDNODUCHÁ LINEÁRNÍ REGRESE

[online]. [cit. 2019-06-16]. Retrieved from:

https://homel.vsb.cz/ lit40/STA1/Cviceni/PDF/14cRegrese.PDF

[43] Lugovaya T.S. Biometric human identification based on electrocardiogram.

[Master’s thesis] Faculty of Computing Technologies and Informatics,

Electrotechnical University ”LETI”, Saint-Petersburg, Russian Federation;

June 2005.

[44] Matplotlib: Python plotting [online]. [cit. 2019-06-16]. Retrieved from:

https://matplotlib.org/

[45] MERITY, Stephen. Peeking into the neural network architecture used for

Google’s Neural Machine Translation [online]. In: Smerity.com. 2017 [cit.

80

BIBLIOGRAPHY BIBLIOGRAPHY

2019-06-04]. Retrieved from:

https://smerity.com/articles/2016/google nmt arch.html

[46] MITCHELL, Tom M. Machine Learning. New York: McGraw-Hill, c1997.

ISBN 0070428077.

[47] NIELSEN, Michael. Neural Networks and Deep Learning [online].

Determination Press, 2015 [cit. 2019-03-16]. Retrieved from:

http://neuralnetworksanddeeplearning.com/index.html

[48] NumPy [online]. [cit. 2019-06-16]. Retrieved from: https://www.numpy.org/

[49] PANCHAL, Gaurang, Amit GANATRA, Y.P. KOSTA and Devyani

PANCHAL. Searching Most Efficient Neural Network Architecture Using

Akaike’s Information Criterion (AIC). International Journal of Computer

Applications [online]. 2010, 1(5), 54-57 [cit. 2019-06-20]. DOI:

10.5120/126-242. ISSN 09758887. Retrieved from:

http://www.ijcaonline.org/journal/number5/pxc387242.pdf

[50] PASCANU, Razvan, Tomas MIKOLOV and Yoshua BENGIO. On the

difficulty of training recurrent neural networks. Proceedings of the 30th

International Conference on Machine Learning [online]. Atlanta, Georgia,

USA: PMLR, 2012, 28(3), 1310–1318 [cit. 2019-05-09]. Retrieved from:

http://proceedings.mlr.press/v28/pascanu13.pdf

[51] PASCANU, Razvan, Tomas MIKOLOV and Yoshua BENGIO.

Understanding the exploding gradient problem [online]. 21 November 2012

[cit. 2019-05-11]. Retrieved from: ht-

tps://pdfs.semanticscholar.org/728d/814b92a9d2c6118159bb7d9a4b3dc5eeaaeb.pdf

[52] PIZARRO, Joaq́ın, Elisa GUERRERO and Pedro L. GALINDO. A

Statistical Model Selection Strategy Applied to Neural Networks [online].

Bruges (Belgium): ESANN’2000 proceedings - European Symposium on

Artificial Neural Networks, 2000 [cit. 2019-06-26]. Dostupné z:

https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2000-46.pdf

[53] Python Data Analysis Library – pandas [online]. [cit. 2019-06-16]. Retrieved

from: https://pandas.pydata.org/

[54] RONAGHAN, Stacey. Statistical Tests for Comparing Machine Learning

and Baseline Performance [online]. In: Towards Data Science. 14 March 2019

[cit. 2019-06-26]. Retrieved from: https://towardsdatascience.com/statistical-

tests-for-comparing-machine-learning-and-baseline-performance-4dfc9402e46f

[55] RUDER, Sebastian. An overview of gradient descent optimization

algorithms [online]. 15 June 2017 [cit. 2019-06-07]. Retrieved from:

https://arxiv.org/pdf/1609.04747.pdf

81

BIBLIOGRAPHY BIBLIOGRAPHY

[56] RUMELHART, David E., Geoffrey E. HINTON and Ronald J. WILLIAMS.

Learning representations by back-propagating errors. Nature [online]. 1986,

323(6088), 533-536 [cit. 2019-03-16]. DOI: 10.1038/323533a0. ISSN 0028-0836.

Retrieved from: http://www.nature.com/articles/323533a0

[57] SCHMIDHUBER, Jürgen. Deep learning in neural networks: An overview.

Neural Networks [online]. 2015, 61, 85-117 [cit. 2019-06-04]. DOI:

10.1016/j.neunet.2014.09.003. ISSN 08936080. Retrieved from:

https://linkinghub.elsevier.com/retrieve/pii/S0893608014002135

[58] Sci-kit learn: machine learning in Python [online]. [cit. 2019-06-16].

Retrieved from: https://scikit-learn.org/stable/

[59] SciPy.org [online]. [cit. 2019-06-24]. Retrieved from: https://www.scipy.org/

[60] Seaborn: statistical data visualization [online]. [cit. 2019-06-23]. Retrieved

from: https://seaborn.pydata.org/

[61] SNOEK, Jasper, Hugo LAROCHELLE and Ryan ADAMS. Practical

Bayesian Optimization of Machine Learning Algorithms [online]. 2012 [cit.

2019-06-23]. Retrieved from: http://papers.nips.cc/paper/4522-practical-

bayesian-optimization-of-machine-learning-algorithms.pdf

[62] StatsModels: Statistics in Python [online]. [cit. 2019-06-23]. Retrieved from:

https://www.statsmodels.org/stable/index.html

[63] SUTSKEVER, Ilya. Training Recurrent Neural Networks [online]. 2013 [cit.

2019-02-28]. Retrieved from:

https://www.cs.utoronto.ca/∼ilya/pubs/ilya sutskever phd thesis.pdf. PhD

thesis. University of Toronto.

[64] TensorFlow [online]. [cit. 2019-06-13]. Retrieved from:

https://www.tensorflow.org/

[65] VIEIRA, Armando. Predicting online user behaviour using deep learning

algorithms [online]. 27 May 2016 [cit. 2019-06-04]. Retrieved from:

https://arxiv.org/pdf/1511.06247.pdf

[66] Welcome to Python.org [online]. [cit. 2019-06-16]. Retrieved from:

https://www.python.org/

[67] WERBOS, Paul J. Generalization of backpropagation with application to a

recurrent gas market model. Neural Networks [online]. 1988, 1(4), 339-356 [cit.

2019-05-11]. DOI: 10.1016/0893-6080(88)90007-X. ISSN 08936080. Retrieved

from: https://linkinghub.elsevier.com/retrieve/pii/089360808890007X

82

BIBLIOGRAPHY BIBLIOGRAPHY

[68] XIE, Paul. Practical Guide of RNN in Tensorflow and Keras [online]. In:

Paul’s Blog. 2017 [cit. 2019-06-04]. Dostupné z:

https://paulx-cn.github.io/blog/4th Blog/

83

A Backpropagation of LSTM

Before proceeding to backpropagation, Equation 3.10 is firstly modified, so

that there is no concatenation. We split the weight matrices into two and

add the flow to the output layer, see Equation A.1.

ft = σ(Wfxt + Ufht−1 + bf)
it = σ(Wixt + Uiht−1 + bi)
ot = σ(Woxt + Uoht−1 + bo)
C̃t = tanh(WCxt + UCht−1 + bC)
Ct = ft ◦ Ct−1 + it ◦ C̃t
ht = ot ◦ tanh(Ct)
ŷt = Whyht + by

(A.1)

If the matrix Wf formerly had size H × (H + dimx), where dimx is a length

of the input vector for each example, now Wf has size H × dimx and new

matrix Uf has a size H×H. We define a matrix θ containing all the matrices

and biases (A.2).

θ =


Wf Uf bf
Wi Ui bi
Wo Uo bo
WC UC bC

 (A.2)

We denote the net input of the gates and candidates to the activation func-

tions with a hat and a vector of these net inputs as zt. Having a vector

It = [xt, ht−1, 1], we can rewrite the gate and input to the memory cell

computations as in Equation A.3.

zt =


f̂t
ît
ôt
ˆ̃Ct

 = θIt =


Wf Uf bf
Wi Ui bi
Wo Uo bo
WC UC bC



xt
ht−1

1

 (A.3)

Having L as our objective function, we first find gradients w.r.t. the weight

matrix of our output layer, which is the same as in Equations 2.13, 2.14,

2.15 and 2.16 (considering we again have the model many-to-many where

N = M). Then we denote the partial derivative of the hidden states as δht.

δht = ∂L

∂ht
= ∂L

∂ŷt

∂ŷt
∂ht

= ∂L

∂ŷt
◦Why (A.4)

84

Backpropagation of LSTM

In Equation A.4 only the gradient for the last step is considered
”

using the

same notation as in Section 2.2.1, hM . At previous time steps the hidden

state is influenced not only by the output layer, but also by the gates (going

backward), as will be further explained in Equation A.15. Now the gradients

w.r.t. the cell state and output gate can be defined.

δot = ∂L

∂ht

∂ht
∂ot

= δht ◦ tanh(Ct) (A.5)

δCt = ∂L

∂ht

∂ht
∂Ct

= δht ◦ ot ◦ (1− tanh2(Ct)) (A.6)

Next we compute the gradients w.r.t. the input and forget gate, the candid-

ates and the cell state from the previous step.

δit = ∂L

∂Ct

∂Ct
∂it

= δCt ◦ C̃t (A.7)

δft = ∂L

∂Ct

∂Ct
∂ft

= δCt ◦ Ct−1 (A.8)

δC̃t = ∂L

∂Ct

∂Ct

∂C̃t
= δCt ◦ it (A.9)

δCt−1+ = ∂L

∂Ct

∂Ct
∂Ct−1

+ = δCt ◦ ft (A.10)

The operation + = denotes that this gradient is added to the previous

gradient from time step (t + 1). To get to the net inputs of the gates

and candidates, we need to derive through the activation functions (the

derivatives were shown in Equations 2.24 and 2.23.

δf̂t = ∂L

∂ft

∂ft

∂f̂t
= δft ◦ ft(1− ft)

δît = ∂L

∂it

∂it

∂ît
= δit ◦ it(1− it)

δôt = ∂L

∂ot

∂ot
∂ôt

= δot ◦ ot(1− ot)

δ ˆ̃Ct = ∂L

∂C̃t

∂C̃t

∂ ˆ̃
tC
= δC̃t ◦ (1− tanh2(C̃t))

δẑt =


δf̂t
δît
δôt

δ ˆ̃Ct



(A.11)

85

Backpropagation of LSTM

Equation A.11 gives us δẑt. In Equation A.12 there is the gradient w.r.t. the

parameters corresponding to the forget gate.

∂L

∂Wf

=
M∑
t=1

δf̂txt

∂L

∂Uf
=

M∑
t=1

δf̂tht−1

∂L

∂bf
=

M∑
t=1

δf̂t

(A.12)

Since these parameters are shared across the whole model, they need to be

summed up over the time t = 1, . . . ,M . The computations for the rest of the

parameters are very similar, thus we can use the notation given in Equation

A.3.

δθ = ∂L

∂θ
=

M∑
t=1

δẑtIt =
M∑
t=1


δf̂t
δît
δôt

δ ˆ̃Ct



xt
ht−1

1

 (A.13)

For brevity, to update the parameters, we use a general formula A.14 [16].

θ := θ − η · δθ (A.14)

In Section 4.5, the notation δθ will be replaced by notation ∇θL(θ) to remind

us, that the updates are computed w.r.t. gradient of the objective function

L.

To derive the hidden state, we have two sources – the gates (see δht−1) and

the objective function in Equation A.4.

δht−1 = ft ◦ (1− ft)Ufδof + it ◦ (1− it)Uiδit
+ ot ◦ (1− ot)Uoδot + (1− C̃2

t)UCδC̃t
δht−1 = δf̂tUf + δîtUi + δôtUo + δ ˆ̃CtUC
∂L

∂ht−1
= δht−1 + ∂Lt−1

∂ht−1

(A.15)

A similar principle applies to the cell state as well, as already implied in

Equation A.10. In this case, the sources are not only the objective function,

86

Backpropagation of LSTM

but also the next cell state, see Equation A.16.

δCt−1 = ∂Lt−1

∂Ct−1
= ∂Lt−1

∂ht−1

∂ht−1

∂Ct−1

= ∂Lt−1

∂ŷt−1
◦Why ◦ ot−1 ◦ (1− tanh2(Ct−1))

∂Lt
∂Ct−1

= ∂Lt
∂ht

∂ht
∂Ct−1

= ∂Lt
∂ŷt
◦Why ◦ ot ◦ (1− tanh2(Ct)) ◦ ft

∂L

∂Ct−1
= δCt−1 + ft ◦ δCt

(A.16)

87

A Visualisations

Figure A.1: ECG – RNNAugmented: 1. part

Figure A.2: ECG – RNNAugmented: 2. part

Figure A.3: ECG – RNNAugmented: 3. part

88

Visualisations

Figure A.4: ECG – RNNAugmented: 4. part

Figure A.5: ECG – RNNAugmented: 5. part

Figure A.6: ECG – baseline: 1. part

89

Visualisations

Figure A.7: ECG – baseline: 2. part

Figure A.8: ECG – baseline: 3. part

Figure A.9: ECG – baseline: 4. part

90

Visualisations

Figure A.10: ECG – baseline: 5. part

Figure A.11: ECG – LSTM Autoencoder: 1. part

Figure A.12: ECG – LSTM Autoencoder: 2. part

91

Visualisations

Figure A.13: ECG – LSTM Autoencoder: 3. part

Figure A.14: ECG – LSTM Autoencoder: 4. part

Figure A.15: ECG – LSTM Autoencoder: 5. part

92

List of Abbreviations

AE Autoencoder

AIC Akaike Information Criterion

ARIMAX Auto Regressive Integrated Moving Average with Exogeneous

Input

ANN Artificial Neural Network

API Application Programming Interface

BPTT Backpropagation Through Time

CPU Central Processing Unit

FNN Feedforward Neural Network

GD Gradient Descent

GPU Graphics Processing Unit

GRU Gated Recurrent Unit

MAD Mean Absolute Deviation

MAE Mean Absolute Error

MSE Mean Squared Error

OLS Ordinary Least Squares

RMSE Root Mean Squared Error

RNN Recurrent Neural Network

SSE Sum of Squared Errors

SGD Stochastic Gradient Descent

TB TensorBoard

TF TensorFlow

93

List of Figures

2.1 RNN structures based on [38] 12

2.2 FNN based on [63] . 13

2.3 Unrolled RNN for 2 time steps 13

2.4 Jordan’s recurrent network [23, 183] 16

2.5 Elman’s recurrent network [23, 184] 16

2.6 Sigmoid and hyperbolic tangent functions (graphs.py) 21

3.1 LSTM cell [19] . 24

3.2 Many-to-many [19] . 27

3.3 Many-to-many [19] . 27

3.4 Autoencoder . 28

3.5 LSTM Autoencoder . 29

3.6 Neural machine translation [45] 30

3.7 GRU [19] . 31

4.1 Not unrolled RNN based on [19] 33

4.2 Stacked RNN - 2 hidden layers 34

4.3 Visualisation with different learning rate [5] 35

4.4 Underfitting and overfitting [22] 40

6.1 Modified cosine (preprocessing.py) 49

6.2 ECG (preprocessing.py) . 50

94

LIST OF FIGURES LIST OF FIGURES

6.3 Corn prices (preprocessing.py) 51

9.1 RNN Autoencoder as a baseline model 60

9.2 New model RNNAugmented 64

10.1 Cos – LR . 69

10.2 Cos – mean . 69

10.3 ECG – LR . 70

10.4 ECG – mean . 71

10.5 ECG – baseline . 71

10.6 ECG – LSTM Autoencoder 72

10.7 ECG – RNNAugmented . 72

10.8 Corn – baseline . 73

10.9 Corn w5 q1 . 74

10.10Corn w5 q1 . 74

A.1 ECG – RNNAugmented: 1. part 88

A.2 ECG – RNNAugmented: 2. part 88

A.3 ECG – RNNAugmented: 3. part 88

A.4 ECG – RNNAugmented: 4. part 89

A.5 ECG – RNNAugmented: 5. part 89

A.6 ECG – baseline: 1. part . 89

A.7 ECG – baseline: 2. part . 90

A.8 ECG – baseline: 3. part . 90

A.9 ECG – baseline: 4. part . 90

95

LIST OF FIGURES LIST OF FIGURES

A.10 ECG – baseline: 5. part . 91

A.11 ECG – LSTM Autoencoder: 1. part 91

A.12 ECG – LSTM Autoencoder: 2. part 91

A.13 ECG – LSTM Autoencoder: 3. part 92

A.14 ECG – LSTM Autoencoder: 4. part 92

A.15 ECG – LSTM Autoencoder: 5. part 92

96

	Introduction
	Recurrent Neural Networks
	Machine learning algorithms
	Mathematical background
	Feedforward propagation
	Backpropagation

	Long-Term Dependencies
	Vanishing gradients
	Exploding gradients

	Long Short-Term Memory
	LSTM Autoencoders
	Gated Recurrent Unit

	Hyperparameters
	Hidden layers and neurons
	Activation function
	Learning rate
	Objective function
	Optimiser
	Batch size
	Train ratio
	Gradient Clipping
	Number of epochs
	Hyperparameter optimisation
	Grad Student Descent
	Grid Search
	Random Search
	Bayesian Optimisation

	Time series forecasting
	Linear regression
	Naïve method
	Seasonal naïve method
	Forecast evaluation
	Akaike's Information Criterion
	Hypothesis Testing

	Data
	Data shape
	Preprocessing
	Datasets
	Generated data
	ECG data
	Corn prices

	Side-channel injection
	Software toolkit
	Python
	TensorFlow
	TensorFlow API
	TensorBoard

	Matplotlib
	Seaborn
	Scikit-learn
	Pandas
	StatsModels
	SciPy

	Implementation
	Main program
	Find a baseline
	Models with side channels
	Augmented model

	Results
	Model selection using Hypothesis Testing
	Model selection using AIC
	Visual result comparison

	Conclusion
	Bibliography
	Reference

	Backpropagation of LSTM
	Visualisations
	List of Abbreviations
	List of Figures

