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Abstract
Type 1 incoherent feed-forward loop (I1-FFL), which behaves as a pulse
generator, is the most common transcription network motif in both bacteria
and yeast. This work proposes a new design of pulse generator in yeast
cell induced by pheromone. Pheromone induction is used for activation of
the direct path of I1-FFL and also induced dead Cas9 (dCas9) production.
dCas9 implemented from the CRISPR-Cas9 system is used for the repression
in the indirect path. Mathematical model of the system is introduced and
unknown parameters are experimentally identified. 2 mutations of sgRNA
are examined and it is shown, that their use changes the dynamic behavior
of the system.
Keywords: pulse generator, incoherent feed-forward loop, mathematical
model, CRISPR, dCas9, yeast

Abstrakt
Nekoherentní dopředná smyčka typu 1 (I1-FFL), která se chová jako pulzní
generátor, je nejběžněji se vyskytujícím typem transkripčních sítí v bak-
teriích i kvasinkách. Tato práce uvádí nový design pulzního generátoru,
který je indukovaný feromonem. Indukce feromonem je použita pro akti-
vaci přímé dráhy I1-FFL a také pro indukovanou produkci „mrtvé“ Cas9
(dCas9). dCas9, převzaté z CRISPR-Cas9 systému, je použito pro represi
v nepřímé dráze. Je představen matematický model navrženého systému a
neznámé parametry jsou identifikovány experimentálně. Jsou zkoumány 2
mutace sgRNA a je ukázáno, že jejich použitím dojde ke změně dynamic-
kého chování systému.
Klíčová slova: pulzní generátor, nekoherentní dopředná smyčka, matema-
tický model, CRISPR, dCas9, kvasinka
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1 Introduction

This work focuses on design, analysis, and construction of the pulse gen-
erator in eukaryotic cells. An incoherent feed-forward loop can serve as a
pulse generator. Pulse generator introduced in this theses uses pheromone
induction in the direct path and dead Cas9 in the indirect path. Yeast Sac-
charomyces cerevisiae, one of the most well-known and studied eukaryotic
organism, was used in this theses as a model organism.

CRISPR-Cas9 system is highly studied system adapted from naturally
occurring immune system in bacteria. It is used for genome editing and
thanks to its simple design has high potential in many applications. An
adjusted version of the system, which uses dead Cas9 (mutated Cas9 pro-
tein), can be used for gene regulation. This work uses dCas9 for repression
of pGRR promoter as designed in [1].

The yeast pheromone response pathway is one of the best investigated
signaling pathways in yeast. The pathway serves for transduction of extra-
cellular signal in the form of pheromone to the cell nucleus, where a certain
set of genes is activated. In the work, it was discovered that pGRR promoter
is not only repressed by dCas9 but also activated by pheromone. Another
pheromone-induced promoter was also used for regulation of the dCas9 gene.
This work uses pheromone induction as the step input of the designed sys-
tem.

Research of existing studies of CRISPR-Cas9 and single guide RNA
structure is described in Chapter 1. Chapter 2 focuses on the characteriza-
tion of pGRR promoter and design of the actual pulse generator. Possible
modification of sgRNA that may influence the dynamic behavior of the pulse
are discussed. Next part describes newly introduced mathematical model of
the designed system. Previously studied model [2] is used to transform con-
stant pheromone input into new time-dependent input. Chapter 4 focuses on
the identification of unknown model parameters using experimentally meas-
ured data. 2 modified sgRNA structures were constructed and measured.
Parameters related to these changes cannot be directly measured. However,
thanks to the pulse generator model, they were indirectly identified using
measured data.
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2 Biological background

2.1 CRISPR Cas9 system
CRISPR-Cas, short for clustered regularly interspaced short palindromic re-
peats, was adapted from naturally occurring genome editing system in bac-
teria, where it serves as an immune system. This defense system provides
sequence-specific recognition, targeting, and degradation of exogenous nuc-
leic acid [3]. The core element of CRISPR-Cas is an array of identical DNA
repeats separated by spacers. Spacers are derived from foreign genetic ele-
ments such as viruses. The repeat-spacer arrays are transcribed and pro-
cessed into mature RNA, which then forms a complex with Cas protein
and guide it toward homologous nucleic acid sequence present in exogen-
ous element (eg. virus), leading to its cleavage [4]. There are six different
prokaryotic CRISPR types [5]. This work focused on Type II CRISPR Cas9
system using Streptococcus pyogenes Cas9 protein.

Cas9 is a large 1368-amino-acid long multidomain protein that cuts DNA
3 bp upstream of the PAM sequence. PAM (proto-spacer adjacent motif) is
short (2-6bp) sequence that follows the target DNA region and is required
for target recognition and cleavage [6]. Cas9 protein consists of two lobes,
the alpha-helical recognition lobe (REC) and nuclease lobe (NUC), contain-
ing HNH nuclease domain (cleaves the DNA strand complementary to the
guide RNA sequence) and RuvC nuclease domain that cleaves DNA strand
opposite the complementary strand. Another important part is a C-terminal
domain containing PAM-interacting site, which is disordered in Cas9 inact-
ive structure (the apo-Cas9 structure) [7].

Cas9 needs to be assembled with guide RNA in order to recognize and
cleave the DNA. Guide RNA can be either native crRNA-tracrRNA or syn-
thetically generated sgRNA (single guide RNA) [8]. Guide RNA contains
a 20bp spacer sequence, that is complementary with target DNA. Upon
guide RNA binding, Cas9 undergoes a substantial structural rearrangement
from an inactive conformation to a DNA recognition-competent conforma-
tion [7]. Experiments have shown that Cas9 initiates the target DNA search
by probing for proper PAM sequence before searching for potential guide
RNA complementarity [9]. Proper target recognition triggers local DNA
melting and forming of Watson-Crick base pairing between the guide RNA
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and target DNA strand, followed by other structural changes [10]. HNH and
RuvC domains than each cleave one strand of the target DNA. The whole
process is depicted in Figure 2.1.

Figure 2.1: Schematic representation of CRISPR-Cas9-mediated target
DNA recognition and cleavage [7]

2.2 Single guide RNA (sgRNA)
The guide RNA is an RNA sequence that recognizes the target DNA region
and directs there the Cas nuclease for editing. The RNA is made up of two
parts, crispr RNA (crRNA), which contain a sequence complementary to the
target DNA and tracrRNA, which serves as a binding scaffold for the Cas
nuclease [11]. 22 nucleotide sequence of crRNA basepairs with tracrRNA
complementary region to form a single structure. Chimeric sgRNA (single
guide RNA) is a single transcript, that retains the secondary structure of
crRNA:tracrRNA [8].

2.2.1 Structure
sgRNA comprises of 6 different modules: the spacer, the lower stem, the
upper stem, the bulge, the nexus, and the harpins [12].
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Figure 2.2: sgRNA modules [12]

The 20 nucleotides long spacer sequence determines the location of Cas9
cleavage [8]. 10-12 nt sequence on the 3’ end of the spacer is called seed
region, which is required for initial DNA interrogation [13]. Cas9 makes
interactions with the lower stem, the bulge and upper stem (in some sources
also called repeat–antirepeat duplex), and the nexus. It makes much less
contact with the harpins and the linker between the nexus and harpins [7]
[12].

2.3 Dead Cas9 (dCas9)
Dead Cas9 (dCas9) is a cleavage-inactive form of Cas9, created by mutating
both nuclease domains of Cas9 (mutations H840A, D10A). These mutations
do not affect the ability to bind DNA but completely abolish endonuclease
activity [7]. dCas9 is widely used in CRISPR interference (CRISPRi) and
CRISPR activation (CRISPRa) system. These systems serve for gene down-
regulation or overexpression respectively [14].

Figure 2.3: Comparison of Cas9 and dCas9 (CRISPRi) activity [14]
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In CRISPRi, dCas9 can either repress gene on its own, or it can be
fused to other protein repression domains for stronger repression [1]. One
of the commonly used domains is KRAB domain (the Krüppel associated
box) present in human zinc finger proteins [15]. This work uses dCas9 fused
to Mxi1 domain [1], which showed the strongest repression of the pGRR
promoter [16].

2.4 Pheromone activated transcription factor
Ste12

Yeast Saccharomyces cerevisiae haploid cells use pheromone signaling during
their mating process. Following pheromone stimulation, a signal is trans-
mitted through yeast pheromone response pathway from cell membrane to
nucleus, resulting in the transcriptional induction of at about 200 genes.
Changes in gene expressions are detectable at least 15 minutes after pher-
omone induction [17]. The Ste12 protein is a transcription factor of these
mating genes. In an inactive state, Ste12 is part of Ste12/Dig1/Dig2 com-
plex. Phosphorylated Fus3 and Kss1 proteins phosphorylate Dig1 and Dig2
followed by their unbinding of Ste12 and its activation [18]. There are ap-
proximately 1390 molecules of Ste12 in each cell [19] and their number in-
creases after pheromone induction due to positive feedback [20].

Activated Ste12 protein binds as a dimer to PRE element of mating genes
promoters [21]. Following table shows some of the PRE sequences reported
in the literature. It has been shown that some minor mismatches do not
influence Ste12 binding [22].

Table 2.1: Sequences of PRE elements

Sequence Source
TTGAAACA [21]
ATGAAAACA [21]
TGAAACA [21], [23]
ATGAAC [24]
ATGAAA [24]
ATGAAACA [22]
GGAAACA [25]
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3 Problem definition

3.1 Incoherent feed-forward loop
The incoherent feed-forward loop (IFFL) is a transcription network motif
consisting of 2 transcription factors X and Y and one regulated gene Z.
When X is active, it binds to a promoter of Z, which initiates the production
of protein Z. At the same time, X also activates the production of Y. Y
serves as a repressor of promoter Z. When enough molecules of protein Y
are produced, the level of protein Z decreases. This type of incoherent feed-
forward loop, which has a positive direct path and a negative indirect path,
is called the incoherent type 1 feed-forward loop (I1-FFL) [26] [27]. I1-FFL
us the most common incoherent configuration in both bacteria and yeast
[28].

Transcription occurs when the activator is bound and to a much lesser
extent when both the activator and the repressor are present. Therefore,
the input function of the promoter is X AND NOT Y [27].

Figure 3.1: Scheme of I1-FFL

Since Z level first increases and then decline to a lower level, the I1-FFL
can act as a pulse generator [28].

3.2 Pulse characteristics
Peak

The peak is defined as the maximal value of the pulse.
Peak time

The peak time is the time when the pulse reaches its peak.
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Basal level
The basal level is the value of the pulse at time t = 0 min.

Amplitude
This paper defines amplitude as the value of peak minus basal level value.

Final value
The final value is defined as the pulse value at the end of the measurement.
It is not necessary the minimal value the pulse can reach.

Rising edge
The rising edge is the pulse transition from low to high.

Falling edge
The falling edge is the pulse transition from high to low.

Rise time
The pulse rise time is the time required for the rising edge of the pulse to
go from 10% to 90% of amplitude.

Fall time
The pulse fall time is the time required for the falling edge of the pulse to
go from 90% to 10% of amplitude.

Pulse width
The pulse width is the time difference between the 50% amplitudes of the
rising and falling edges.

Definitions of the rising edge and the falling edge, the rise time and the
fall time and the pulse width are adapted from [29].

3.3 dCas9-Ste12 pulse generator design
The goal is to design a pulse generator in a eukaryotic cell, specifically
yeast Saccharomyces cerevisiae. Output of the designed system triggered
by a constant input (step input) should have pulse shape. When examining
the behaviour of constitutive (constantly active) promoter pGRR5,7 (further
denoted by pGRR) [16], it was discovered, that its activity is elevated after
pheromone induction. This knowledge was not described in the original
article.
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Figure 3.2: pGRR activation after pheromone induction, the value in t = 0
min represents basal promoter activity without pheromone induction

By further examination, there are several potential PRE elements cap-
able of active Ste12 binding. One was directly documented in the literature
and two have only minimal mismatch.

Table 3.1: Potential PRE elements of pGRR promoter

pGRR sequence Location on pGRR Direction Reported se-
quence

Source

ATGAAC 285-290 reverse ATGAAC [24]
TGAAAC 367-373 forward TGAAACA [21], [23]
ATGCAAC 491-496 forward ATGAAACA or

TGAAACA
[22] [21]

By design, the pGRR promoter can be significantly repressed by dCas9,
because it contains two protospacers that can be targeted by sgRNA [16].
Since the promoter can be both activated and repressed, it is suitable for
pulse generator design.

The pulse generator is designed as follows

1. Ste12 protein is activated by pheromone

2. pGRR promoter expression is induced by active Ste12
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3. dCas9 production is induced by active Ste12 (dCas9 gene is placed
downstream of pFIG promoter, that is regulated by Ste12)

4. pGRR promoter is eventually repressed by dCas9

β-lactamase is used as a reporter of pGRR activity.

Figure 3.3: Pulse generator scheme

3.4 sgRNA variations
As mentioned before, Cas9 (respectively dCas9) makes contact with some
parts of the sgRNA. Therefore, mutations of the sgRNA sequence may in-
fluence Cas9 activity. It has been discovered, that alternation of the bulge
region abolished Cas9 activity. Complete removal of harpins is required for
the same effect, but minor mutations are tolerable [12]. Even though [12]
states, that mutations in lower stem and upper stem did not abolish Cas9
activity, a deeper examination of the data shows, that the mutations affect
the level of the activity.

This paper examines, how mutations of sgRNA influence dCas9-Mxi1
repression activity. One mutation of the lower stem and one mutation of
uppers stem were chosen from article [12]. Lower stem variant introduces
double mutation at the base of the lower stem. Upper stem mutant com-
pletely removes the upper stem and loop but maintains the bulge structure.
Figure 2.7 shows secondary structures of chosen sgRNA mutants. Secondary
structures were calculated using mflod tool [30]. Secondary structures were
chosen based on their similarity to previously described sgRNA secondary
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structure (Figure 2.2). For the control and the lower stem variant, the sec-
ondary structures are structures with lowest free energies (∆G = −30.03
for control and ∆G = −27.69 for lower stem variant), meaning they are
considered the most stable ones. Upper stem mutant structure is one with
the second lowest free energy ∆G = −22.31 however, this energy is within
5% interval of the lowest energy for this sequence (∆G = −23.43).

(a) control (b) removed upper stem and loop

(c) lower stem variant

Figure 3.4: sgRNA secondary structures, calculated using mfold [30]

Table 2.3 summarizes data obtained from the article. Cas9 activity was
measured using T7E1 assay in human HEK293 cells. This assay evaluates
mutation hit-rate at given locus [31]. Biochemical cleavage was evaluated in
vitro using sgRNA, Cas9, and target DNA mixture. AAVS1 and VEGFA are
names of used target DNA sequences. The percentage cleavage is defined
as a ratio between the sum of area under peaks for cleavage bends, and
the sum under both parental and cleavage bends. Meaning, the higher the
percentage cleavage, the more effective was the Cas9 targeting.
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Table 3.2: Effect sgRNA mutations on Cas9 activity, data from [12]

Type of mutation Name in article Cleavage
AAVS1

Cleavage
VEGFA

Biochemical
cleavage

control control 54 49 92
removed upper
stem and loop

GV34 52 35 86

lower stem variant GV21 19 not repor-
ted

92

Data show that in vitro, mutations of sgRNA has minimal effect on Cas9
efficiency. The efficiency of Cas9 seems to be target sequence specific. Upper
stem removal decreases Cas9 efficiency by 30% for VEGFA target sequence,
however, there is a minimal difference for AAVS1 sequence. Lower stem
mutation significantly decreases Cas9 efficiency (to 35%).

Effects of these two mutations on dCas9-Mxi1 activity are further ex-
amined in this paper. The hypothesis is, that mutations in sgRNA influence
the strength of dCas9 and sgRNA bond, which decreases the repression
activity of dCas9. The activity is less influenced by upper stem removal
than by lower stem mutation.
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4 Modelling

4.1 Yeast pheromone signaling model
Yeast pheromone response pathway has been extensively researched and
several models were introduced. Using 35 differential equations, [32] mod-
els the whole pathway from Ste2 activation by pheromone to Ste12 targets
activation. This model highly simplifies many complex circuits present in
the pathway and excludes protein production and degradation. To the con-
trary, [33] uses more than 70 equations and includes feedback, induced gene
expression and translocation of key pathway components.

This work uses a complex yeast pheromone signaling model described in
[2] to simulate the behavior of phosphorylated Fus3 (Fus3PP) in response
to pheromone induction. This model comprises of approximately 230 rules
written in BioNetGen language that include expression, degradation, inter-
actions of proteins, state transformation and several feedback loops. Used
rates were obtained from other models or directly observed in yeast. 25% of
rates were estimated.

For purposes of this paper, the degradation of pheromone by Bar1 was ex-
cluded from the model. 7000s long simulations of the model were performed
using alpha factor in a range from 1000 to 10000 molecules (10 nM to 100
nM), concentrations below 1000 molecules showed no response and satur-
ation of the response is reached at approximately 6000 molecules (60nM).
Every simulation was performed twice and the mean was calculated since
the used NFsim algorithm is stochastic [34].

When compared to measured data, actually used yeast strains are less
sensitive to pheromone. At least 1uM of pheromone is required for meas-
urable response and saturation is reached at 5uM of pheromone. Output
data of simulations were kept, however, pheromone was rescaled to better
corresponded with the measured data.

4.1.1 Fus3PP - transformation of the pheromone in-
put

The aim was to transform input in the form of constant pheromone concen-
tration into new time-dependent Fus3PP input. This simplification of the
pathway is acceptable since the main focus of this work is on the pulse gen-
erator model which directly follows in Fus3PP. The actual comprehensive
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dynamic behavior of all pathway components is therefore insignificant.

Time-dependent changes of Fus3PP were approximated by Gamma dis-
tribution probability density function.

f(X) = 1
Γ(k)Θk

Xk−1e− X
Θ (4.1)

Where random variable X is replaced by time t.
For k ≥ 1, mode (corresponding to the peak time of Fus3PP) is equal to

mode = (k − 1)Θ (4.2)

We can obtain normalized function using substitution X = peakT ime.

g(t) =
1

Γ(k)Θk · tk−1 · e− t
Θ

1
Γ(k)Θk · peakT imek−1 · e− peakT ime

Θ
= tk−1 · e− t(k−1)

peakT ime

peakT imek−1 · e1−k (4.3)

Fus3PP(t) function is then multiplication of function g(t) by peak value.

Fus3PP (t) = peakV alue · tk−1 · e− t(k−1)
peakT ime

peakT imek−1 · e1−k (4.4)

Variable parameters peakV alue and peakT ime are modeled as Hill func-
tions dependent on pheromone concentration. For peakV alue the function
is increasing with increasing pheromone, for peakT ime the function is de-
creasing.

peakT ime(pheromone) = a1
aa3

2
aa3

2 + pheromonea3
+ a4 (4.5)

peakV alue(pheromone) = b1
pheromoneb3

bb32 + pheromoneb3
+ b4 (4.6)

Parameters a1, a2, a3, a4 and b1, b2, b3, b4 can be easily obtained from yeast
pheromone signaling model simulation results using simple fitting algorithm.

Variable shape parameter k is also modeled as Hill function.

k(pheromone) = c1
pheromonec3

cc32 + pheromonec3
+ c4 (4.7)

Parameters c1, c2, c3, c4 were obtained using Matlab fminunc minimiza-
tion function on Fus3PP simulated data. For more information on used
fitting methods see section Fitting methods.
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4.1.2 Ste12 activation
In response to pheromone induction, Ste12 negative regulators Dig1 and
Dig2 are released from Ste12 protein due to their phosphorylation by Fus3PP,
leading to Ste12 activation [35]. Similarly to [33], this complex mechanism
was simplified using Hill function, where the rate of Ste12 activation is de-
pendent on Fus3PP concentration. Activated Ste12 is further denoted by
Ste12a.

v18[t] = Fus3PP [t]q · k1

kq2 + Fus3PP [t]q (4.8)

This approximation does not accurately model the delay in Ste12 activ-
ation at higher pheromone concentrations. However, this delay is present in
measurement of real yeast cells, where changes in gene expression caused by
Ste12a are detectable at least 15 minutes after pheromone induction [17].
It was discovered, that this can be significantly improved by shifting the
peakT ime of Fus3PP in time. This change causes slightly worse approxim-
ation of Fus3PP but significantly improves Ste12a approximation. The shift
in the peakTime was considered in shape parameter k modeling.
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Figure 4.1: Examples of Fus3PP approximation and modeled Ste12 activa-
tion, blue lines represent results from Yeast pheromone signaling model, red
lines are approximations
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4.2 Pulse generator model
In order to model the behavior of design pulse generator and possibly charac-
terize parameters that are not directly measurable, however, have an impact
on system behavior, a mathematical model of the pulse generator system
was designed.

4.2.1 Model definition
Ste12 activation is dependent on current concentration of Fus3PP.

Ste12
Fus3PP,q,k1,k2



k3

Ste12a (4.9)

Ste12a binds to PRE region of pFIG1 promoter leading to its activation
and expression of dCas9. Cooperativity of Ste12a binding to the promoter
is considered. Based on literature search, Ste12a binds to a promoter as a
dimer [21], therefore m = 2.

m · Ste12a+ pFIG1
l1


l2
Ste12a.pFIG1 (4.10)

Ste12a.pFIG1 l4→ Ste12a.pFIG1 + dCas9 (4.11)

Formation of sgRNA.dCas9 complex is crucial for proper binding to
pGRR promoter and its repression.

dCas9 + sgRNA
l16


l17
sgRNA.dCas9 (4.12)

As discovered in this work, Ste12a serves as a transcription factor of
pGRR promoter. This promoter also contains spacers allowing sgRNA.dCas9
binding. Cooperativity of Ste12a binding, as well as sgRNA.dCas9 binding
to pGRR promoter, was considered. The pulse generator model includes all
possible states of pGRR promoter and ways to obtain them.

These are

1. pGRR promoter is not bound by any transcription factor.

2. Ste12a binds to an unoccupied pGRR promoter

n · Ste12a+ pGRR
l3


l5
Ste12a.pGRR (4.13)
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3. sgRNA.dCas9 binds to pGRR promoter, that is already occupied by
Ste12a

p · sgRNA.dCas9 + Ste12a.pGRR
l7


l8
sgRNA.dCas9.Ste12a.pGRR

(4.14)

4. sgRNA.dCas9 binds to unoccupied pGRR promoter

p · sgRNA.dCas9 + pGRR
l10


l11
sgRNA.dCas9.pGRR (4.15)

5. Ste12a binds to pGRR promoter that is already occupied by sgRNA.dCas9

n · Ste12a+ sgRNA.dCas9.pGRR
l14


l15
sgRNA.dCas9.Ste12a.pGRR

(4.16)

β-lactamase (BLA) is produced on different levels by pGRR promoter in
all 4 possible states.

Ste12a.pGRR l6→ Ste12a.pGRR +BLA (4.17)

sgRNA.dCas9.Ste12a.pGRR l9→ sgRNA.dCas9.Ste12a.pGRR +BLA

(4.18)

sgRNA.dCas9.pGRR l12→ sgRNA.dCas9.pGRR +BLA (4.19)

pGRR
l13→ pGRR +BLA (4.20)

Degradation of dCas9, sgRNA and β-lactamase is omitted. The total
concentration of sgRNA is assumed constant. Initial concentrations of dCas9
and derived complexes are considered zero. The model is described by 11
non-linear ODEs with the same number of state variables. The variables
represent the species concentrations in nM per cell.
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Figure 4.2: Schematic of the system structure. Ste12 activation is indicated,
however the non-active Ste12 protein itself is not included in the model.

Table 4.1: Ordinary differential equations

dpGRR
dt

= −v3 − v10 + v5 + v11
dpFIG1

dt
= −v1 + v2

ddCas9
dt

= v4 − v16 + v17
dBLA
dt

= v6 + v9 + v12 + v13
dsgRNA

dt
= −v16 + v17

dsgRNA.dCas9
dt

= v16 − v17 − p · v7 + p · v8 − p · v10 + p · v11
dSte12a.pGRR

dt
= v3 − v5 − v7 + v8

dsgRNA.dCas9.pGRR
dt

= v10 − v11 − v14 + v15
dsgRNA.dCas9.Ste12a.pGRR

dt
= v7 − v8 + v14 − v15

dSte12a
dt

= v18 − v19 −m · v1 +m · v2 − n · v3 + n · v5 − n · v14 + n · v15
dSte12a.pFIG1

d
= v1 − v2
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Table 4.2: Rate equations

v1 = l1 · Ste12a[t]m · pFIG1[t]
v2 = l2 · Ste12a.pFIG1[t]
v3 = l3 · Ste12a[t]n · pGRR[t]
v4 = l4 · Ste12a.pFIG1[t]
v5 = l5 · Ste12a.pGRR[t]
v6 = l6 · Ste12a.pGRR[t]
v7 = l7 · sgRNA.dCas9[t]p · Ste12a.pGRR[t]
v8 = l8 · sgRNA.dCas9.Ste12a.pGRR[t]
v9 = l9 · sgRNA.dCas9.Ste12a.pGRR[t]
v10 = l10 · sgRNA.dCas9[t]p · pGRR[t]
v11 = l11 · sgRNA.dCas9.pGRR[t]
v12 = l12 · sgRNA.dCas9.pGRR[t]
v13 = l13 · pGRR[t]
v14 = l14 · Ste12a[t]n · sgRNA.dCas9.pGRR[t]
v15 = l15 · sgRNA.dCas9.Ste12a.pGRR[t]
v16 = l16 · dCas9[t] · sgRNA[t]
v17 = l17 · sgRNA.dCas9[t]
v18 = Fus3PP [t]q ·k1

(kq
2+Fus3PP [t]q)

v19 = k3 · Ste12a[t]

In total model has 38 parameters (20 pulse model parameters, 4 Ste12a
simulation parameters and 14 parameters approximating Fus3PP). 16 para-
meters were obtained from literature, 5 parameters were estimated, 12 para-
meters were calculated and 5 parameters were obtained by fitting to actual
data.

See Appendix for parameter values and initial concentrations.

4.2.2 Model in the context of measured data
The output of the model is the expression rate of β-lactamase at each sim-
ulation point in one cell. The output of the measurement is the rate of
∆486−t0OD change in discrete time points (see Results for more informa-
tion). In order to fit the model to the measured data, conversion between
these two outputs is required.

In the first several minutes, the curve of ∆486−t0OD is approximately
linear.
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∆486−t0OD = s · t (4.21)

Hydrolysis of nitrocefin by β-lactamase follows Michaelis-Menten kinet-
ics, a model of enzyme kinetics. Under certain assumptions such as that en-
zyme (β-lactamase) concentration is much lower than substrate (nitrocefin)
concentration and the total amount of enzyme is constant, the initial reac-
tion rate is described by Michaelis-Menten equation [36].

v0 = Vmax[S]
kM + [S] = kcat[ET ][S]

kM + [S] (4.22)

Where [S] is substrate concentration, [ET ] is total enzyme concentra-
tion, kcat constant represents the maximum number of enzymatic reactions
catalyzed per second and kM Michaelis constant. Assuming that concentra-
tion of nitrocefin [N ] is very high and therefore constant, the initial rate of
nitrocefin hydrolysis (production rate of hydrolyzed nitrocefin N∗) is

v0N∗ = kcat[N ]
kM + [N ] [BLA] = M · [BLA] (4.23)

Based on previous measurements [37] [38], it is assumed that concen-
tration of hydrolyzed nitrocefin ∆N∗ (∆N∗ = N∗(t) − N∗(0)) is linearly
dependent on ∆486−t0OD. Initial concentration of hydrolyzed nitrocefin is
close to zero.

∆N∗ = m ·∆486−t0OD (4.24)

After substitution we get

v0N∗ · t = m · s · t (4.25)

[BLA] = m

M
· s (4.26)

Concentration of β-lactamase in sample is linearly dependent on slope s.
1 unit of β-lactamase (U) can be defined as the amount of enzyme needed

to degrade 1nmol of nitrocefin in 1 hour. Absorbance difference 1U resulting

19



from degradation of 1nmol of nitrocefin was measured to be 0.03. The
concentration of β-lactamase in U units can be calculated as

[β] = s

0.03 (4.27)

The model simulates the behavior of one cell, however actual measure-
ment reflects a concentration of BLA produced by a sample containing many
cells. Using optical density measurement (OD600 = 1), there are approxim-
ately 3 · 107 cells in 1 ml [39]. Volume of measured samples V2 was 100ul,
the yeast cell volume V1 is 29µm−3 [19]. Assuming that [BLA] is a concen-
tration of β-lactamase in the whole sample and [bla] is a concentration of
β-lactamase produced by one cell and OD600 is an optical density of the
sample, we get

[BLA] = OD600 · 3 · 107 · V1

V2
· [bla] (4.28)

Presuming that expression rate of β-lactamase P ∗ is constant in the
collection time period ∆t, the concentration of produced β-lactamase is equal
to

[bla] = P ∗ ·∆t (4.29)

Since OD600 of all samples is normalized to 1, sample volume and used
concentration of nitrocefin are kept constant, using several substitutions we
get

P ∗ = [bla]
∆t =

[BLA]
OD600·3·107· V1

V2

∆t =

m
M

·β·0.03
OD600·3·107· V1

V2

∆t (4.30)

β = K · P ∗ (4.31)

Amount of β-lactamase β is linearly dependent on expression rate of β-
lactamase P ∗. Using this equation and only one extra parameter K, the
described model can be fitted to data obtained from measurements and
therefore developed model corresponds to the actual system.
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4.2.3 Approximate production rate
The output of the model is the activation rate P ∗ of β-lactamase from pGRR
promoter at each time point of the solution. Measurements were however
obtained only in discrete time point (15 minutes intervals, from 15 minutes
after induction to 90 minutes after induction). For simplification, we can
assume, that the production rate P ∗ is constant in the 15 minutes interval.
Amount of produced β-lactamase is then

[BLA] = P̄ ∗ · t (4.32)

We can calculate this approximate rate P̄ ∗ using linear regression on
β-lactamase curve of the model, assuming that the curve starting point is
shifted to zero and collecting time is 15 minutes. The rate is calculated in
units nM/h. This rate is then fitted to measured data using the previously
derived equation.

β = K · P̄ ∗ (4.33)

Approximate rate P̄ ∗ is our estimate of the rate, that would produce the
measured amount of β-lactamase during the collecting time. Actual rate P ∗

is however not constant in time.

P ∗(t) = l6 · Ste12a.pGRR(t) + l9 · sgRNA.dCas9.Ste12a.pGRR(t)
+ l12 · sgRNA.dCas9.pGRR(t) + l13 · pGRR(t)

(4.34)

Based on the modeling results, it was discovered, that this approximate
rate is roughly equal to P ∗ in the middle of the collection interval (7.5
minutes). The difference is a couple of seconds.
When both measured data and P ∗ are displayed, the measured data are
placed in the middle of the collection interval, because of the proximity of
the P ∗ value equal to P̄ ∗ used for fitting and also because the whole interval
was used for P̄ ∗ calculation.

4.3 Fitting methods
For all fitting methods used in this paper, the function for minimization was
a function computing mean square error between the estimated values and
measured data (or data obtained from previous simulations).

21



f(x) = MSE(Y, Ȳ ) = 1
N

N∑
i=1

(Yi − Ȳi)2 (4.35)

Where Y is a vector of estimated values and Ȳ is a vector of measured
data and N the length of Y (number of intervals).

For example, when fitting the approximate expression rate P̄ ∗ obtained
from model to measured amount of β-lactamase β, the function to minimize
is

f(x) = MSE(K · P̄ ∗, β) (4.36)

fminunc

Fminunc is a Matlab function, that finds a minimum of unconstrained mul-
tivariable function [40] . It was used in Fus3PP approximation, specifically
in k-parameter fitting. Fminunc minimizes function f(x) for given initial
conditions x0 using Quasi-Newton Algorithm.

fmincon

Fmincon is a Matlab function, that finds a minimum of constrained nonlinear
multivariable function [41]. This function was used in the pulse generator
model fitting to measured data. Fmincon find minimum of function f(x)
specified by

• Linear inequality constraint

c(x) ≤ 0 (4.37)

• Linear equality constraint

ceq(x) = 0 (4.38)

• Nonlinear inequality constraint

A · x ≤ b (4.39)

• Nonlinear equality constraint

Aeq · x = beq (4.40)
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• lower and upper bounds

lb ≤ x ≤ ub (4.41)

We can then further specify other options such as stopping criteria, used
algorithm and way of displaying results.

One of the stopping criteria is first-order optimality tolerance. First-
order optimality is a measure of how close a point it to optimal. The first-
order optimality measure must be zero at minimum, but a point with first-
order optimality equal to zero is not necessarily a minimum. Which means
that first-order optimality is a necessary condition but not a sufficient con-
dition [42].

For an unconstrained problem, the first-order optimality is defined as the
infinity norm of gradient ∇f(x). For a constrained problem, the first-order
optimality is more complex. It is based on Karush-Kuhn-Tucker condition,
which is analogous to the condition, that gradient must be zero at a min-
imum, but is modified to take constraints into account [42].

Karush-Kuhn-Tucker condition uses the Lagrangian function

L(x, λ) = f(x) +
∑

λg,igi(x) +
∑

λh,ihi(x) (4.42)

Vectors λg and λh are Lagrange multiplier vectors and their length is same
as number of constrains.

Karush-Kuhn-Tucker conditions are

∇L(x, λ) = 0 (4.43)
λg,igi(x) = 0,∀i (4.44)

These conditions are then solved by the algorithm.
Minimization algorithm used in this work was interior-point algorithm.

Following is a summary of [43].

Interior point algorithm uses barrier function (in form of a logarithmic
term) to include defined constraints into the minimization problem. Defining
the original problem as

min
x
f(x), h(x) = 0 and g(x) ≤ 0 (4.45)

Interior point algorithm redefines this problem to
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min
x,s

fµ(x, s) = min
x,s

f(x)− µ
∑
i

ln(si), subject to h(x) = 0 and g(x) + s = 0, µ > 0

(4.46)

Slack variables si correspond to inequality constraints and must be posit-
ive. As µ decreases to zero, the minimum of the function fµ should approach
the minimum of f . This redefinition of the problem creates a sequence of
equality constrained problems, that are easier to solve than the original
inequality-constrained problem.

The solver can now use one of two types of steps at each iteration

• A direct step in (x,s), also called a Newton step

• A conjugate gradient step

At each iteration, the algorithm attempts to decrease a merit function

fµ(x, s) + ν ‖(h(x), g(x) + s)‖ (4.47)

If the attempted step does not decrease the merit function, the step
is rejected and the algorithm attempts a new step. The parameter ν can
increase with iteration number to force the solution towards feasibility.

In the direct step, a new complex equation derived from Karush-Kuhn-
Tucker conditions is defined. This equation uses Hessian H of the Lagrangian
of fµ, Jacobian of the constraint function g, Jacobian of the constraint func-
tion h. This equation is then solved and steps ∆x and ∆s are obtained. If
Hessian H is not positive definite, the direct step can not be used and the
algorithm attempts the conjugate gradient step.

As the output of minimization, we not only get desired parameters but
also the value of function f(x) (mean square error of found solution and ac-
tual data), number of iterations, number of performed calculation of function
f(x) and the first-order optimality. The output also includes information,
whether the optimization process was successful and if not, what was the
cause of its termination.
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5 Results

5.1 Experimental data measurement
β-lactamase is an enzyme, that can hydrolyze substrates such as nitrocefin.
Hydrolyzation of nitrocefin by β-lactamase is accompanied by a color change
from yellow to red [44]. This color change can be measured by a spectropho-
tometric method measuring optical density (OD) of the sample at 486 nm
and 700 nm. At 486 nm, hydrolyzed nitrocefin shows the absorbance peak
[45]. At 700 nm, the absorbance of the background is measured.

For measurements, yeast strain transformed with pGRR promoter con-
trolling β-lactamase production, corresponding sgRNA and dCas9 on pheromone-
inducible promoter pFIG1 were used. See Appendix Materials and methods
for detailed plasmid construction. Alpha factor was used as pheromone since
used strains were MATa cells.

Yeast samples were grown overnight in YPD medium, diluted into SDC
medium in the morning and let grow for another 3 hours. Samples were
then normalized to OD600 0.1. Several tubes with 90µl of the normalized
sample were prepared. 10µl of alpha factor (Sigma Aldrich) was added into
the first tube, to get 4µM (respectively 5µM) final concentration of alpha
factor in the tube. In 15 minutes the same amount of alpha factor was ad-
ded to the second tube. In the meantime, all tubes were incubated in 30◦C,
slowly rotating. This process of 15 minutes intervals was performed for 75
minutes.

Cells were then spin down at 3000 rpm for 3 minutes and 100µl of new
medium containing alpha factor was added. For one of the tubes, this was
the first alpha factor induction. Samples were then incubated for 15 more
minutes in 30◦C. Tubes were then spin down at 3000 rpm for 4 minutes
and 50µl of each supernatant was mixed in with 40µl SDC and 10µl of
1mM nitrocefin and absorbance at 486 nm (OD486) and 700 nm (OD700)
was measured for 45 minutes. These measurements were then multiplied
by 2 since the actual β-lactamase in the sample was diluted twice in the
measurement.

The remaining sample was vortexed and 20µl of each sample was mixed
with 80µl SDC and OD600 was measured. Obtained data were then re-
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calculated to correspond to the original sample. Optical density measure-
ment at 600 nm (OD600) was then used for normalization of the nitrocefin
hydrolysis data.

For each sample and concentration, this measurement was done in 3
replicates in 3 days.

5.1.1 Data normalization
The optical density of the background OD700 was subtracted from the op-
tical density OD486 corresponding to the hydrolyzed nitrocefin.

∆486OD = OD486−OD700 (5.1)

Since we are interested in the differences in the change of ∆OD486 among
all the samples, we need to shift starting points of these trends to zero.
∆486OD in time = 0 min of each sample was subtracted from the rest of the
∆486OD values.

∆486−t0OD(t) = ∆486OD(t)−∆486OD(t = 0) (5.2)

∆486−t0OD data were normalized using OD600 data. Final values there-
fore correspond to OD600 = 1.

In the first 30 minutes, ∆486−t0OD trend is approximately linear. Data
were therefore linearly interpolated. Obtained slope s (in units ∆486OD/h)
characterize the speed of ∆486−t0OD change, which corresponds to the speed
of nitrocefin hydrolysis.

As previously described slopes s were transformed to β-lactamase units
U.

[β] = s

0.03 (5.3)

Mean and standard deviation were calculated from 3 measured replicates.

5.2 Simple β-lactamase production model
The goal is to identify 6 unknown parameters of the pulse generator model:

• l4 - production rate of dCas9 from Ste12a bound pFIG1 promoter
(Ste12a.pFIG1)
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• l6 - production rate of BLA from Ste12a bound pGRR promoter (Ste12a.pGRR)

• l9 - production rate of BLA from sgRNA.dCas9 and Ste12a bound
pGRR promoter (sgRNA.dCas9.Ste12a.pGRR)

• l12 - production rate of BLA from sgRNA.dCas9 bound pGRR pro-
moter (sgRNA.dCas9.pGRR)

• l13 - production rate of BLA from unbound pGRR promoter

• K - parameter, that scales P ∗ to β-lactamase concentration β (β-
lactamase units)

In order to identify 2 of these 6 parameters (l13 and K), a simple model
of β-lactamase production from unbound pGRR promoter was developed.
This model uses only 1 reaction rule and is described by two ODEs.

pGRR
l13→ pGRR +BLA (5.4)

dpGRR

dt
= 0 (5.5)

dBLA

dt
= l13 · pGRR (5.6)

Used yeast strain was incubated for 15 minutes in 3 replicates without
pheromone and supernatant was used to measure the amount of produced
β-lactamase in the same way as described in section Measuring method.
The simple model was then fitted to this data. Interior-point algorithm was
used, lower bound was set to 0 and upper bound to 1 for parameter l13 and
infinity for K. First-order optimality tolerance was set to 1 · 10−5. There
were no other constraints. Table 5.1 summarizes obtained results.

Measured β-lactamase concentration was β = 23.55 U .

l13 [s−1] K MSE First-order
optimality

K · P̄ ∗ Num. of
iterations

0.0234 7.0747 1.229 · 10−11 2 · 10−5 23.55 6

Table 5.1: Fitting results of parameters l13 and K identification

Obtained parameters l13 and K are then used is the pulse generator
model.
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5.3 Pulse generator model identification
Next step was the identification of 4 remaining unknown parameters (l4, l6,
l9 and l12).

We assume that:

1. Production of BLA from Ste12a.pGRR is greater than from unbound
pGRR promoter

l6 > l13 (5.7)

2. Production of BLA from Ste12a.pGRR is grater than or equal to the
production from sgRNA.dCas9.Ste12a.pGRR

l6 ≥ l9 (5.8)

3. Production of BLA from sgRNA.dCas9.pGRR is significantly lower
than the production from Ste12a.pGRR

l6 > l12 (5.9)

These are linear inequality constraints used in minimization. There are
no nonlinear constraints or linear equality constraints. We also assume that
all parameters are positive, so the lower bound is zero. In order to keep all
the parameters in similar scale as the other parameters used in the model
and assuming that production rate of protein is within interval 10−1−101s−1

[2], the upper bound was set as 5.
For minimization, the interior-point algorithm was used, setting first-

order optimality tolerance to 1 · 10−5. Two sets of data were used, measured
at alpha factor concentrations 4µM and 5µM . When using more than
5µM of pheromone, the pulse behavior does not change (saturation was
reached). 4µM induction result in peak value, that is approximately 50%
of the maximal possible peak. The model was fitted simultaneously to both
of these concentrations.

Table 5.2 summarizes obtained results.

l4 [s−1] l6 [s−1] l9 [s−1] l12 [s−1] MSE First-order
optimality

Num. of
iterations

1.1 1.0433 0.0017 0.9433 121.07 9.3 · 10−7 24

Table 5.2: Results of the pulse generator model identification
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Figure 5.1: Approximation of measured data by pulse generator model with
identified parameters. Black lines correspond to approximate rate P̄ ∗ mul-
tiplied by scaling parameter K. Red stars represent measured data.

Based on obtained parameters, we can conclude that expression of β-
lactamase from sgRNA.dCas9 bound pGRR promoter (parameter l12) is sig-
nificantly lower than the expression from Ste12a bound promoter (para-
meter l6). Surprisingly, the results suggest that when both Ste12a and
sgRNA.dCas9 are bound to the pGRR promoter, the production of β-lactamase
is still quite high (parameter l9), even though it is lower than production
from promoter bound only to Ste12a.
Figure 5.2 shows time development of some state variables. After 4000 nM
pheromone induction, we can see, that in the first 25 minutes expression
from pGRR is mostly influence by Ste12a, meaning the BLA production is
high. sgRNA.dCas9.pGRR reaches 50% of its concentration at around 27
minutes, which is also the time when the pulse (corresponding to 4000nM
of pheromone induction) reaches its peak and starts to decrease (Figure 5.3,
black curve).
Concentration of sgRNA.dCas9.Ste12a.pGRR is only in 10−4 scale, which is
10 times less than Ste12a.pGRR concentration scale and 100 time less than
sgRNA.dCas9.pGRR concentration scale. This means that pGRR promoter
in state sgRNA.dCas9.Ste12a.pGRR is the least common and production of
BLA is less influenced by this state.
5000 nM pheromone induction is followed by a quicker response of the sys-
tem. More dCas9 is produced. The peak of Ste12a.pGRR is at 9 minutes.
sgRNA.dCas9.Ste12a.pGRR influences BLA production more than in case of
4000 nM pheromone induction, however still 10 times less than sgRNA.dCas.pGRR.
The pulse shape is also influenced by relatively quick Ste12a deactivation.
Such deactivation was predicted by the complex yeast pheromone signaling
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model [2], model used for Fus3PP and Ste12a characterization in this work.
It is however not clear, whether this deactivation is so quick because this
deactivation is slower in other models [32] [33].
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Figure 5.2: Time curves of some state variables of the pulse generator model
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Figure 5.3: Simulation results of BLA production rate P ∗ (solid lines) mul-
tiplied by K, presented together with experimental results (stars).
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5.4 Effect of sgRNA variations on pulse dy-
namics

2 variants of mutated sgRNA were chosen, constructed and transformed into
yeast cells. β-lactamase production from these strains after pheromone in-
duction was measured using the same method as in the case of non-mutated
sgRNA. Used concentrations of pheromone were 4µM and 5µM . 3 replic-
ates were measured and mean and standard deviation were calculated.

In order to identify, how these mutations influence pulse generator re-
sponse, the pulse generator model was fitted to obtained data. Based on
literature research, it was expected, that changes in sgRNA structure in-
fluence its binding to dCas9 and possibly also binding of sgRNA.dCas9 to
promoter pGRR. Therefore this time, parameters l4, l6, l9, l12, l13 and K

were kept constant. The fitting process focused on 4 parameters that de-
scribe sgRNA, dCas9 a pGRR binding. These are

• l16 - association of sgRNA and dCas9 (1.8 · 10−3nM−1s−1)

• l17 - dissociation of sgRNA.dCas9 (0 s−1)

• l7 - binding of sgRNA.dCas9 to pGRR promoter (1 · 10−3nM−1s−1)

• l8 - dissociation of sgRNA.dCas9 from pGRR promoter (2.9 · 10−4s−1)

Values in parentheses were used in the pulse generator model (using non-
mutated sgRNA) and were obtained from the literature (see Appendix for
sources). All these parameters cannot be directly measured. However, using
the design model, we can identify them indirectly.

When fitting the model to both measured concentration, the MSE was
high and the fit was not good for both concentrations. Therefore, fitting was
performed only on one concentration of pheromone (4000 nM) and mean
square error of simulation results for 5000 nM pheromone was calculated
afterward. Based on calculated mean square errors, this leads to good fit for
4000 nM. However, the approximation when using 5000 nM of pheromone
is not so good (especially in the case of lower stem mutation).

Interior point algorithm was used, first-order optimality tolerance was
set to 1 · 10−5. Lower bound of all parameters was 0, upper bound was 1.
No constraints were used.
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5.4.1 Removed upper stem
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Figure 5.4

Figure 5.4 shows measured β-lactamase produced by strain with sgRNA that
has completely removed upper stem. Standard deviation bars are included.
Solid lines represent simulated production rate P ∗ in time multiplied by K.
Fitting results are summarized in table 5.3.

l16 [nM−1s−1] 0.0038 MSE (4000nM) 10.527
l17 [s−1] 0.0983 MSE (5000nM) 426
l7 [nM−1s−1] 0.0105 First-order optimality 1 · 10−5

l8 [s−1] 0.099 Num. of iterations 89

Table 5.3: Fitting results for strain with removed upper stem sgRNA muta-
tion.

Looking at the obtained parameters, we can see that the parameter l16,
which corresponds the association of sgRNA and dCas9, remained almost
unchanged (3.8 ·10−3 vs. original 1.8 ·10−3). On the other hand, dissociation
of sgRNA.dCas9 is present (there was no dissociation in the original model).
Both association to and dissociation from the promoter are quicker, partic-
ularly the dissociation parameter l8 is almost 350 times higher, meaning the
stability of sgRNA.dCas9.pGRR complex is significantly worse.
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Figure 5.5: Time curves of some state variables of the modified pulse gener-
ator model. Result after 4000 nM pheromone induction.

Figure 5.5 shows, that thanks to present dissociation, concentration of
sgRNA.dCas9 complex is lower. Ste12a is more often bound to the pGRR
promoter on its own, which leads to higher production of β-lactamase.
Ste12a.pGRR complex also influences this production later in time, com-
pared to the control (the case when non-mutated sgRNA was used).
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5.4.2 Lower stem variant

t [min]
0 10 20 30 40 50 60 70 80 90

β
 [U

]

0

50

100

150

200
4000 nM measured
4000 nM model
5000 nM measured
5000 nM model

Figure 5.6

Figure 5.6 shows measured β-lactamase produced by strain with sgRNA
mutated at the lower stem. Standard deviation bars are included. Solid
lines represent simulated production rate P ∗ in time multiplied by K. Fitting
results are summarized in table 5.4.

l16 [nM−1s−1] 1.029 · 10−5 MSE (4000nM) 85.3185
l17 [s−1] 0.99382 MSE (5000nM) 1110
l7 [nM−1s−1] 0.000317 First-order optimality 9.8411 · 10−6

l8 [s−1] 0.99951 Num. of iterations 17

Table 5.4: Fitting results for strain with lower stem variant sgRNAmutation.

Based on the fitting results in Table 5.4, it is obvious that in the case
of lower stem mutation, all 4 identified parameters significantly changed.
Both the association rate of sgRNA with dCas9 and the association rate
of sgRNA.dCas9 to pGRR promoter are lower, which means that both of
these processes are slower. In addition to that, both the dissociation of
sgRNA.dCas9 from the promoter and the dissociation of the sgRNA.dCas9
complex itself are significantly quicker. All of these changes mean that the
sgRNA.dCas9 complex and sgRNA.dCas9.pGRR complex have both very
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short duration.
These findings are confirmed in Figure 5.7, where some state variables are
shown. The concentration of sgRNA.dCas complex is 10 000 times lower
than in case of non-mutated sgRNA (shown in figure 5.5). sgRNA.dCas9
binds pGRR promoter only sporadically, which means that β-lactamase pro-
duction is almost exclusively influenced by Ste12a.
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ator model. Result after 4000 nM pheromone induction.
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5.4.3 Comparison of pulse characteristics
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Figure 5.8: Comparison of control sgRNA, sgRNA with removed upper stem
and sgRNA mutated at lower stem. Lines correspond to BLA production
rate P ∗.

control removed
upper stem

lower stem
variant

Peak [nM/h] 7.44 8.74 9.52
Peak time 24 min 9 s 32 min 35 min 55 s
Basal level [nM/h] 3.33 3.33 3.33
Amplitude [nM/h] 4.11 5.41 6.19
Final value [nM/h] 0.98 2.68 4.06
Rise time 11 min 32 s 15 min 15 s 16 min 24s
Fall time 31 min 16s 32 min 3 s > 48 min
Pulse width 33 min 30s 42 min 13 s 48 min 54s

Table 5.5: Pulse characteristics of P ∗ - 4000 nM of pheromone

Table 5.5 describes pulse characteristics of all 3 examined sgRNA variants
after 4000 nM pheromone induction. Model predicts, that the basal level
of all 3 variants is the same. This is because the dCas9 initial condition
is equal to zero (no leaky production of dCas9 is assumed). Therefore, the
change in sgRNA structure does not effect uninduced β-lacatamase produc-
tion. Actual measurements showed slight vertical shift of the basal level,
where the lowest level was obtained for non-mutated sgRNA, the highest for
lower stem variant. The differences were however only minor.
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Peak time, amplitude and final value are all the lowest when non-mutated
sgRNA is used. This confirms, that in this case sgRNA.dCas9 complex is
the most stable one and influences β-lactamase production already at peak
time. The final value is noticeably lower than in other cases, showing that
sgRNA.dCas9 strongly effects β-lactamase later in time.
Maximal peak value, amplitude and the final value were obtained using the
lower stem variant of sgRNA. This confirms our hypothesis (based on data
from article [12]) that in this case, sgRNA.dCas9 complex is the least stable.
This is also supported by the fact, that peak time is not reached until 35
minutes after induction, meaning the sgRNA.dCas9 complex does not affect
β-lactamase production earlier in time. During the studied time period, the
pulse does not reach back to the basal level, which even further confirms
that sgRNA.dCas9 is highly unstable.
sgRNA variant with removed upper stem shows weaker sgRNA.dCas9 activ-
ity than non-mutated sgRNA, however still stronger activity than lower stem
variant. The final value is lower than the basal level, but the pulse width is
almost 10 minutes longer than in case of non-mutated sgRNA, showing that
the pulse dynamic is slower.

control removed
upper stem

lower stem
variant

Peak [nM/h] 13 14.63 16.51
Peak time 10 min 20 s 17 min 57 s 24 min 2 s
Basal level [nM/h] 3.33 3.33 3.33
Amplitude [nM/h] 9.67 11.3 13.18
Final value [nM/h] 2.66 3.56 5.92
Rise time 5 min 28 s 6 min 55 s 9 min
Fall time 43 min 49 s 47 min 34 s > 49 min
Pulse width 59 min 47 s 60 min 20 s 66 min 29s

Table 5.6: Pulse characteristics of P ∗ - 5000 nM of pheromone

Table 5.6 also shows pulse characteristics, but after 5000 nM of pher-
omone induction. Since the fitting algorithm was performed using only data
after 4000 nM of pheromone induction, results in Table 5.6 are less accur-
ate, especially in the case of lower stem variant, where the MSE of measured
data and fitted P̄ ∗ is high. For the control (non-mutated sgRNA) results are
more accurate because both pheromone concentrations data sets were used.
Nevertheless, data in table 5.6 again confirm, that the lower stem variant
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sgRNA forms the weak complex with dCas9. The peak value is the highest,
the final value is higher than the basal level, the pulse width is longer than
in the other cases. Looking at the actual measured data in Figure 5.6, we
can see that the peak is even higher than predicted by the model and also
the final value is significantly higher than the basal level.
For all examined variants, the peak is higher, when 5000 nM induction is
used. This is in compliance with the fact that more Ste12 is activated and
therefore more β-lactamase is produced. The peak is reached quicker than
in 4000 nM case. This can be caused either by the higher concentration of
Ste12a itself or the fact, that more dCas9 is produced and therefore level of
dCas9 required for repression of pGRR is reached quicker.
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6 Discussion

This work introduces a new design of the pulse generator in Saccharomy-
ces cerevisiae cells. Pulse generator was designed based on the well-known
model of type 1 feed-forward loop. The possibility to activate pGRR pro-
moter (originally designed in [1] as a promoter repressed by dCas9) by pher-
omone was discovered in this work. This discovery was used in the direct
path of the feed-forward loop. Indirect repression path used dCas9 protein
fused to Mxi1 repression domain. dCas9 gene was placed downstream of
pFIG1 promoter, which is activated after pheromone induction. The whole
pulse generator is thus switched on by pheromone addition. The designed
generator was constructed and transformed into yeast cells and its output
was measured using β-lactamase as a reporter. Output was investigated for
2 concentrations of pheromone used as input.
The behavior of the pulse generator was examined using a newly developed
mathematical model. Model input in the form of constant pheromone was
transformed into time and pheromone-dependent input in form of phos-
phorylated Fus3 protein using a previously described model of the yeast
pheromone signaling pathway. This transformation is acceptable since our
interest lies in the dynamic of the actual pulse generator and not in the
complex behavior of the yeast pheromone signaling pathway. Since some of
the parameters of the pulse generator model were unknown, experimental
data were used for their identification. Expected pulse like behavior was
confirmed both experimentally and using the model. It was shown, that
the temporal response of the system to a constant step input has pulse like
shape.
Furthermore, it was suggested that changes in parameters corresponding to
sgRNA binding to dCas9 and their subsequent DNA binding may modify
dynamic behavior of the pulse. 2 mutated versions of sgRNA that change
its structure were examined. One introduced mutation into the lower stem
of sgRNA, the other completely removed upper stem. The negative impact
of these mutations on Cas9 activity was previously illustrated [12]. It was
expected, that lower stem mutation will have a greater impact on pulse be-
havior than removal of upper stem. Both structured were incorporated into
the pulse generator and output was measured. Using the obtained data,
changes in the model parameters were examined. It was shown, that even
though these parameters could not be directly measured, the designed model
can be used for their identification.
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Results showed, that both mutations change the behavior of the pulse gener-
ator. Identified model parameters suggest that sgRNA with mutated lower
stem forms the least stable complex with dCas9, resulting in weaker repres-
sion. Because of it, dCas9 has only a minor impact on β-lactamase produc-
tion. The peak of the pulse is reached later in time than when non-mutated
sgRNA is used and amplitude is greater. Also during the examined period
the final value of the pulse does not decrease under the basal level. On the
contrary, pulse with non-mutate sgRNA design reached the final value that
was lower than the basal level for both used pheromone concentrations.
Removal of the upper stem has also impact on pulse dynamic, however smal-
ler than in the lower stem mutation case. Model parameter corresponding to
sgRNA and dCas9 association remains almost unchanged. Other paramet-
ers changed, however not so significantly. The final value is lower than the
basal level after 4000 nM pheromone induction and equal to the basal level
after 5000 nM pheromone induction. Peak time and value are also greater
than in the case of non-mutated sgRNA.
In future work, the focus can be on the examination of other possible muta-
tions of sgRNA and their incorporation into the pulse generator. A different
model of the complex yeast pheromone signaling pathway can be adapted
since the model used in this work shows quicker deactivation of pheromone-
induced transcription factor Ste12 than other models. Another improvement
of results can be reached by measuring pulse response to more input pher-
omone concentrations and subsequent model fitting.

40



Bibliography

[1] Luke A Gilbert, Matthew H Larson, Leonardo Morsut, Zairan Liu,
Gloria A Brar, Sandra E Torres, Noam Stern-Ginossar, Onn Brandman,
Evan H Whitehead, Jennifer A Doudna, et al. Crispr-mediated modular
rna-guided regulation of transcription in eukaryotes. Cell, 154(2):442–
451, 2013.

[2] Ryan Suderman and Eric J. Deeds. Machines vs. ensembles: Efective
mapk signaling through heterogeneous sets of protein complexes. PLoS
Computational Biology, 9(10), 2013.

[3] Rodolphe Barrangou. The roles of crispr–cas systems in adaptive im-
munity and beyond. Current opinion in immunology, 32:36–41, 2015.

[4] Rodolphe Barrangou. Crispr-cas systems and rna-guided interference.
Wiley Interdisciplinary Reviews: RNA, 4(3):267–278, 2013.

[5] Kira S Makarova, Yuri I Wolf, Omer S Alkhnbashi, Fabrizio Costa,
Shiraz A Shah, Sita J Saunders, Rodolphe Barrangou, Stan JJ Brouns,
Emmanuelle Charpentier, Daniel H Haft, et al. An updated evolution-
ary classification of crispr–cas systems. Nature Reviews Microbiology,
13(11):722, 2015.

[6] Francisco JM Mojica, César Díez-Villaseñor, Jesús García-Martínez,
and Cristóbal Almendros. Short motif sequences determine the targets
of the prokaryotic crispr defence system. Microbiology, 155(3):733–740,
2009.

[7] Fuguo Jiang and Jennifer A Doudna. Crispr–cas9 structures and mech-
anisms. Annual review of biophysics, 46:505–529, 2017.

[8] Martin Jinek, Krzysztof Chylinski, Ines Fonfara, Michael Hauer, Jen-
nifer A Doudna, and Emmanuelle Charpentier. A programmable dual-
rna–guided dna endonuclease in adaptive bacterial immunity. Science,
337(6096):816–821, 2012.

[9] Samuel H Sternberg, Sy Redding, Martin Jinek, Eric C Greene, and
Jennifer A Doudna. Dna interrogation by the crispr rna-guided endo-
nuclease cas9. Nature, 507(7490):62, 2014.

41



[10] Fuguo Jiang, David W Taylor, Janice S Chen, Jack E Kornfeld, Kaihong
Zhou, Aubri J Thompson, Eva Nogales, and Jennifer A Doudna. Struc-
tures of a crispr-cas9 r-loop complex primed for dna cleavage. Science,
351(6275):867–871, 2016.

[11] Synthego. CRISPR101 - Your Guide to Understanding CRISPR.

[12] Alexandra E Briner, Paul D Donohoue, Ahmed A Gomaa, Kurt Selle,
Euan M Slorach, Christopher H Nye, Rachel E Haurwitz, Chase L
Beisel, Andrew P May, and Rodolphe Barrangou. Guide rna func-
tional modules direct cas9 activity and orthogonality. Molecular cell,
56(2):333–339, 2014.

[13] Fuguo Jiang, Kaihong Zhou, Linlin Ma, Saskia Gressel, and Jennifer A
Doudna. A cas9–guide rna complex preorganized for target dna recog-
nition. Science, 348(6242):1477–1481, 2015.

[14] Lei S Qi, Matthew H Larson, Luke A Gilbert, Jennifer A Doudna,
Jonathan S Weissman, Adam P Arkin, and Wendell A Lim. Repur-
posing crispr as an rna-guided platform for sequence-specific control of
gene expression. Cell, 152(5):1173–1183, 2013.

[15] Stuart Huntley, Daniel M Baggott, Aaron T Hamilton, Mary
Tran-Gyamfi, Shan Yang, Joomyeong Kim, Laurie Gordon, Elbert
Branscomb, and Lisa Stubbs. A comprehensive catalog of human krab-
associated zinc finger genes: insights into the evolutionary history of a
large family of transcriptional repressors. Genome research, 16(5):669–
677, 2006.

[16] Miles W Gander, Justin D Vrana, William E Voje, James M Carothers,
and Eric Klavins. Digital logic circuits in yeast with crispr-dcas9 nor
gates. Nature communications, 8:15459, 2017.

[17] Christopher J Roberts, Bryce Nelson, Matthew J Marton, Roland
Stoughton, Michael R Meyer, Holly A Bennett, Yudong D He, Hongyue
Dai, Wynn L Walker, Timothy R Hughes, et al. Signaling and circuitry
of multiple mapk pathways revealed by a matrix of global gene expres-
sion profiles. Science, 287(5454):873–880, 2000.

[18] Lee Bardwell. A walk-through of the yeast mating pheromone response
pathway. Peptides, 26(2):339–350, 2005.

[19] Ty M Thomson, Kirsten R Benjamin, Alan Bush, Tonya Love, David
Pincus, Orna Resnekov, C Yu Richard, Andrew Gordon, Alejandro

42



Colman-Lerner, Drew Endy, et al. Scaffold number in yeast signal-
ing system sets tradeoff between system output and dynamic range.
Proceedings of the National Academy of Sciences, 108(50):20265–20270,
2011.

[20] Joseph W Dolan and Stanley Fields. Overproduction of the yeast ste12
protein leads to constitutive transcriptional induction. Genes & devel-
opment, 4(4):492–502, 1990.

[21] YL Yuan and S Fields. Properties of the dna-binding domain of the
saccharomyces cerevisiae ste12 protein. Molecular and Cellular Biology,
11(12):5910–5918, 1991.

[22] Gwenael Badis, Esther T Chan, Harm van Bakel, Lourdes Pena-
Castillo, Desiree Tillo, Kyle Tsui, Clayton D Carlson, Andrea J Gossett,
Michael J Hasinoff, Christopher L Warren, et al. A library of yeast tran-
scription factor motifs reveals a widespread function for rsc3 in targeting
nucleosome exclusion at promoters. Molecular cell, 32(6):878–887, 2008.

[23] Joseph W Dolan, Celia Kirkman, and Stanley Fields. The yeast ste12
protein binds to the dna sequence mediating pheromone induction. Pro-
ceedings of the National Academy of Sciences, 86(15):5703–5707, 1989.

[24] Rhonda Harrison and Charles DeLisi. Condition specific transcription
factor binding site characterization in saccharomyces cerevisiae. Bioin-
formatics, 18(10):1289–1296, 2002.

[25] Sheetal Raithatha, Ting-Cheng Su, Pedro Lourenco, Susan Goto, and
Ivan Sadowski. Cdk8 regulates stability of the transcription factor phd1
to control pseudohyphal differentiation of saccharomyces cerevisiae.
Molecular and cellular biology, 32(3):664–674, 2012.

[26] Shai Kaplan, Anat Bren, Erez Dekel, and Uri Alon. The incoherent
feed-forward loop can generate non-monotonic input functions for genes.
Molecular systems biology, 4(1):203, 2008.

[27] Uri Alon. An introduction to systems biology: design principles of bio-
logical circuits. Chapman and Hall/CRC, 2006.

[28] Shmoolik Mangan and Uri Alon. Structure and function of the feed-
forward loop network motif. Proceedings of the National Academy of
Sciences, 100(21):11980–11985, 2003.

[29] Keysight Technologies Inc. Pulse Parameter Definitions.

43



[30] Michael Zuker. Mfold web server for nucleic acid folding and hybridiz-
ation prediction. Nucleic acids research, 31(13):3406–3415, 2003.

[31] Diagenode. CRISPR/Cas9 editing: mutation detection with mismatch
cleavage assay.

[32] Bente Kofahl and Edda Klipp. Modelling the dynamics of the yeast
pheromone pathway. Yeast, 21(10):831–850, 2004.

[33] Danying Shao, Wen Zheng, Wenjun Qiu, Qi Ouyang, and Chao Tang.
Dynamic studies of scaffold-dependent mating pathway in yeast. Bio-
physical journal, 91(11):3986–4001, 2006.

[34] Michael W Sneddon, James R Faeder, and Thierry Emonet. Efficient
modeling, simulation and coarse-graining of biological complexity with
nfsim. Nature methods, 8(2):177, 2011.

[35] Kerry Tedford, Sammy Kim, Danne Sa, Ken Stevens, and Mike Tyers.
Regulation of the mating pheromone and invasive growth responses in
yeast by two map kinase substrates. Current Biology, 7(4):228–238,
1997.

[36] Michaelis L and Menten M. Kinetik der invertinwirkung biochem. Bio-
chemische Zeitschrift, 49:333–369, 1913.

[37] Abcam. Beta Lactamase Activity Assay Kit, 3 2015. Version 1.

[38] Guoliang Zhen, Verena Eggli, Janos Vörös, Prisca Zammaretti, Mar-
cus Textor, Rudi Glockshuber, and Eva Kuennemann. Immobilization
of the enzyme β-lactamase on biotin-derivatized poly (l-lysine)-g-poly
(ethylene glycol)-coated sensor chips: a study on oriented attachment
and surface activity by enzyme kinetics and in situ optical sensing.
Langmuir, 20(24):10464–10473, 2004.

[39] Audra Day, Colette Schneider, and Brandt L Schneider. Yeast cell
synchronization. In Cell Cycle Checkpoint Control Protocols, pages 55–
76. Springer, 2004.

[40] Matlab fminunc. [online]. [cited 2019-05-06] Available at: https://
www.mathworks.com/help/optim/ug/fminunc.html.

[41] Matlab fmincon. [online]. [cited 2019-05-05] Available at: https://
www.mathworks.com/help/optim/ug/fmincon.html.

44

https://www.mathworks.com/help/optim/ug/fminunc.html
https://www.mathworks.com/help/optim/ug/fminunc.html
https://www.mathworks.com/help/optim/ug/fmincon.html
https://www.mathworks.com/help/optim/ug/fmincon.html


[42] Matlab first-order optimality. [online]. [cited 2019-05-05]
Available at: https://www.mathworks.com/help/optim/ug/
first-order-optimality-measure.html.

[43] Matlab fmincon interior point algorithm. [online]. [cited 2019-
05-06] Available at: https://www.mathworks.com/help/optim/
ug/constrained-nonlinear-optimization-algorithms.html#
brnpd5f.

[44] Cynthia H O’Callaghan, A Morris, Susan M Kirby, and AH Shin-
gler. Novel method for detection of β-lactamases by using a chromo-
genic cephalosporin substrate. Antimicrobial agents and chemotherapy,
1(4):283–288, 1972.

[45] Zhangming Mao, Feng Guo, Yuliang Xie, Yanhui Zhao, Michael Ian
Lapsley, Lin Wang, John D Mai, Francesco Costanzo, and Tony Jun
Huang. Label-free measurements of reaction kinetics using a droplet-
based optofluidic device. Journal of laboratory automation, 20(1):17–24,
2015.

[46] Michael E Lee, William C DeLoache, Bernardo Cervantes, and John E
Dueber. A highly characterized yeast toolkit for modular, multipart
assembly. ACS synthetic biology, 4(9):975–986, 2015.

[47] Austin T Raper, Anthony A Stephenson, and Zucai Suo. Functional
insights revealed by the kinetic mechanism of crispr/cas9. Journal of
the American Chemical Society, 140(8):2971–2984, 2018.

[48] Hanhui Ma, Li-Chun Tu, Ardalan Naseri, Maximiliaan Huisman,
Shaojie Zhang, David Grunwald, and Thoru Pederson. Crispr-cas9
nuclear dynamics and target recognition in living cells. J Cell Biol,
214(5):529–537, 2016.

[49] Samuel E Clamons and Richard M Murray. Modeling dynamic tran-
scriptional circuits with crispri. BioRxiv, page 225318, 2017.

[50] Vlatko Stojanoski, Dar-Chone Chow, Liya Hu, Banumathi Sankaran,
Hiram F Gilbert, BV Venkataram Prasad, and Timothy Palzkill. A
triple mutant in the ω-loop of tem-1 β-lactamase changes the substrate
profile via a large conformational change and an altered general base for
catalysis. Journal of Biological Chemistry, 290(16):10382–10394, 2015.

45

https://www.mathworks.com/help/optim/ug/first-order-optimality-measure.html
https://www.mathworks.com/help/optim/ug/first-order-optimality-measure.html
https://www.mathworks.com/help/optim/ug/constrained-nonlinear-optimization-algorithms.html#brnpd5f
https://www.mathworks.com/help/optim/ug/constrained-nonlinear-optimization-algorithms.html#brnpd5f
https://www.mathworks.com/help/optim/ug/constrained-nonlinear-optimization-algorithms.html#brnpd5f


[51] DM Mueller and GS Getz. Steady state analysis of mitochondrial rna
after growth of yeast saccharomyces cerevisiae under catabolite repres-
sion and derepression. Journal of Biological Chemistry, 261(25):11816–
11822, 1986.

46



A Materials and methods

A.1 Yeast strains.
Yeast strain used for assays was BY4741 (MATa ∆far1 ∆bar1 his3∆1 leu2∆0
met15∆0 ura3∆0). Firstly, a plasmid carrying BLA on pGRR promoter was
integrated into the strain using High efficient yeast transformation. This
strain was used for pGRR promoter characterization after pheromone in-
duction. dCas9-Mxi on pFIG1 pheromone-inducible promoter was then in-
tegrated into this strain. Finally, different kinds of sgRNA constructs were
integrated to create a library of sgRNA mutant strains.

A.2 Plasmid construction.
All plasmids were constructed using Golden Gate technology, specifically
MoClo cloning method [46].

• pFIG1-dCas9-Mxi1-URA3 dCas9 was created from Cas9 by double
assembly, using PCR products, that mutated Cas9 sequence (muta-
tions H840A, D10A). dCas9 was than fused to Mxi1 domain [1] (ordered
as GBlock) and placed under control of pFIG1 promoter on a backbone
carrying uracil marker.

• pGRR-FLP-BLA-HIS3 pGRR promoter (pGRR5,7) was ordered as
a GBlock [16]. FLP sequence (allows BLA transport from the cell) was
fused to TEM1 β-lactamase sequence, and placed on pGRR promoter
on a backbone carrying histidine marker.

• sgRNA-r5-LEU2 Spacer sequence r5 was taken from [16] and ordered
as primers and amplified. Cassette for sgRNA expression from MoClo
kit [46] was amplified by PCR and cloned into integration backbone
with leucine marker.

• sgRNA-r5-LEU2 mutants Mutated sgRNA sequences were taken
from [12], ordered as primers and amplified. Fragments were then
cloned into previously created sgRNA cassette carrying leucine marker.
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B Used parameters

Table B.1: Pulse model parameters.

Name Value Description Source
l1 3.7460 · 10−4 nM−1s−1 Ste12a and pFIG1 association rate [2]
l2 0.03 s−1 Ste12a.pFIG1 dissociation rate [2]
l3 3.7460 · 10−4 nM−1s−1 Ste12a and pGRR association rate [2]
l4 1.1 s−1 dCas9 production rate from Ste12a.pFIG1 this work
l5 0.03 s−1 Ste12a.pGRR dissociation rate [2]
l6 1.0433 s−1 BLA production rate from Ste12a.pGRR this work
l7 1 · 10−3 nM−1s−1 sgRNA.dCas9 and Ste12a.pGRR association

rate
[47]

l8 2.9 · 10−4 s−1 sgRNA.dCas9.Ste12a.pGRR dissociation
rate into sgRNA.dCas9 and Ste12a.pGRR

[48]

l9 0.9433 s−1 BLA production rate from
sgRNA.dCas9.Ste12a.pGRR

this work

l10 3 · 10−3 nM−1s−1 sgRNA.dCas9 and pGRR association rate
l11 2.9 · 10−4 s−1 sgRNA.dCas9.pGRR dissociation rate [48]
l12 0.0017 s−1 BLA production rate from

sgRNA.dCas9.pGRR
this work

l13 0.0234 s−1 BLA production from pGRR this work
l14 3.7460 · 10−4 nM−1s−1 Ste12a and sgRNA.dCas9.pGRR association

rate
[2]

l15 0.03 s−1 Ste12a.sgRNA.dCas9.pGRR dissociation
rate into Ste12a and sgRNA.dCas9.pGRR

[2]

l16 1.8 · 10−3 nM−1s−1 sgRNA and dCas9 association rate [49]
117 0 s−1 sgRNA.dCas9 dissociation rate [49]
k1 0.1nM−1s−1 Ste12 activation rate [33]
k2 10nM Ste12 activation rate this work
k3 0.011 s−1 Ste12a deactivation rate this work
m 2 Ste12a cooperativity (pFIG1) [21]
n 1 Ste12a cooperativity (pGRR) this work
p 1 sgRNA.dCas9 cooperativity this work
q 2 Fus3PP cooperativity this work
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Table B.2: Fus3PP approximation parameters.

Name Value Description Source
a1 5130.6 peakTime Hill function coefficient this work
a2 3095.3 peakTime Hill function coefficient this work
a3 5.6 peakTime Hill function coefficient this work
a4 300 peakTime Hill function coefficient this work
b1 26.4 peakValue Hill function coefficient this work
b2 4346.7 peakValue Hill function coefficient this work
b3 17.3 peakValue Hill function coefficient this work
b4 3 peakValue Hill function coefficient this work
c1 6.5 parameter k Hill function coefficient this work
c2 3000 parameter k Hill function coefficient this work
c3 3.5 parameter k Hill function coefficient this work
c4 1.25 parameter k Hill function coefficient this work
tshift 2000 s peakTime shift lower boundary this work
Tshift 720 s peakTime shift this work

Table B.3: Other parameters and used constants.

Name Value Description Source
kcat 714 s−1 enzyme kinetic parameter for hydrolysis of

nitrocefin by BLA
[50]

kM 30000nM enzyme kinetic parameter for hydrolysis of
nitrocefin by BLA

[50]

V1 29µm−3 cell volume [19]
3 · 107 number of cells in 1ml (OD600 = 1) [39]
0.03 β-lactamase normalization unit this work

K 7.0747 P ∗ scaling parameter this work
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Table B.4: Initial concentrations

Name Value Source
pGRR 0.0395nM this work
pFIG1 0.0395nM this work
sgRNA 39nM [51]
dCas9 0nM this work
Ste12a 0nM this work
sgRNA.dCas9 0nM this work
Ste12a.pGRR 0nM this work
Ste12a.pFIG1 0nM this work
sgRNA.dCas9.pGRR 0nM this work
sgRNA.dCas9.Ste12a.pGRR 0nM this work
BLA 0nM this work
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C List of abbreviations

CRISPR clustered regularly interspaced short palindromic repeats

DNA deoxyribonucleic acid

RNA ribonucleic acid

PAM proto-spacer adjacent motif

sgRNA single guide RNA

dCas9 dead Cas9

PRE pheromone response element

IFFL incoherent feed-forward loop

pGRR pGRR5,7 promoter

Fus3PP phosphorylated Fus3 protein

Ste12a activated Ste12 protein

OD optical density

ODE ordinary differential equations

BLA β-lactamase

MSE mean square error

PCR polymerase chain reaction
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