

Fakulta elektrotechnická Katedra elektromechaniky a výkonové elektroniky

Bakalářská práce

TIŠTĚNÝ KAPACITNÍ MIKROAKTUÁTOR

Autor práce: David Koutenský Vedoucí práce: Ing. David Pánek, Ph.D.

ZÁPADOČESKÁ UNIVERZITA V PLZNI Fakulta elektrotechnická Akademický rok: 2018/2019

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

(PROJEKTU, UMĚLECKÉHO DÍLA, UMĚLECKÉHO VÝKONU)

Jméno a příjmení:	David KOUTENSKÝ
Osobní číslo:	E16B0194P
Studijní program:	B2612 Elektrotechnika a informatika
Studijní obor:	Elektrotechnika a energetika
Název tématu:	Tištěný kapacitní mikroaktuátor
Zadávající katedra:	Katedra elektromechaniky a výkonové elektroniky

Zásady pro vypracování:

- 1. Proveďte podrobnou rešerši kapacitních mikroaktuátorů s ohledem na jejich realizaci pomocí technologie Aerosol Jet Print.
- 2. Vytvořte model vybraného aktuátoru v programu Comsol Multiphysics.
- 3. Vytvořte výrobní dokumentaci a navrhněte technologii výroby, pokud možno s využitím techniky Aerosol Jet Print.

podle doporučení vedoucího Rozsah grafických prací: Rozsah kvalifikační práce: 30 - 40 stran Forma zpracování bakalářské práce: tištěná/elektronická Seznam odborné literatury:

1. S. D. Senturia: "Microsystem Design", Springer, 2000.

2. M. Husák: Mikrosenzory a mikroaktuátory, Academia, 2008.

Vedoucí bakalářské práce:

Ing. David Pánek, Ph.D. Katedra teoretické elektrotechniky

Datum zadání bakalářské práce: Termín odevzdání bakalářské práce: 13. června 2019

5. října 2018

2 Prof. Ing. Zdeněk Peroutka, Ph.D. děkan

V Plzni dne 5. října 2018

Prof. Ing. Václav Kůs, CSc. vedoucí katedry

Abstrakt

Bakalářská práce se zabývá různými typy elektrostatických mikroaktuátorů. Základem práce je rešerše kapacitních mikroaktuátorů, ve které jsou popsány základní vlastnosti a principy. V rešerši jsou zmíněny mikroaktuátory, které se nejvíce používají. Rešerše také popisuje technologii Aerosol Jet Print a mikrozařízení vyrobené za pomoci již zmíněnené technologie. Následující kapitola obsahuje vybrané geometrie elektrostatických mikroaktuátorů a jejich řešení v softwarovém programu COMCOL Multiphysics. S ohledem na výrobu prostřednictvím technologie Aerosol Jet Print, mechanickou pevnost, silové účinky a elektrické vlastnosti, je v poslední kapitole vytvořen výrobní výkres vybrané geometrie. Hlavním cílem této práce je zjistit, zda je možné vytvořit elektrostatický mikroaktuátor za použití technologie Aerosol Jet Print.

Klíčová slova

elektrostatický mikroaktuátor, elektrostatické pole , elektrostatická síla, Aerosol Jet Print, energie, elektrické napětí, kapacita

Abstract

This bachelor thesis is concerned with different types of electrostatic microactuators. The base of this thesis is the research of capacitive microactuators that explains their basic properties and principles. The research mentions the most frequently used microactuators. It also describes the Aerosol Jet Print technology and the microdevices manufactured using this technology. The following chapter contains chosen geometries of electrostatic microactuators and their solutions in the COMCOL Multiphysics programme. The last chapter contains a manufacture design of the chosen geometry, that has been created with regard to the production using the Aerosol Jet Print technology, mechanical solidity, strength effects and electrical properties. The main goal of this thesis is to find out if it is possible to create an electrostatic microactuators using the Aerosol Jet Print technology.

Keywords

electrostatic microactuator, electrostatic field, electrostatic force, Aerosol Jet Print, energy, voltage, capacity

Prohlášení

Prohlašuji, že jsem tuto bakalářskou práci vypracoval samostatně, s použitím odborné literatury a pramenů uvedených v seznamu, který je součástí této bakalářské práce.

Dále prohlašuji, že veškerý software, použitý při řešení této diplomové práce, je legální.

.....

 podpis

V Plzni dne 9. června 2019

David Koutenský

Poděkování

Tímto bych rád poděkoval Ing. Davidu Pánkovi, Ph.D. za cenné profesionální rady, připomínky a podporu po celou dobu tvorby práce.

Obsah

Se	znan	n použitých symbolů a zkratek	9
Ú٦	vod		10
1	Prin	ncip elektrostatických mikroaktuátorů	11
	1.1	Aktuátor s podélným pohybem	12
	1.2	Aktuátor s příčným pohybem	14
2	Sou	časný stav techniky	16
	2.1	Nejpoužívanější mikroaktuátory	16
		2.1.1 Hřebenový mikroaktuátor	16
		2.1.2 Aktuátor s podélným pohybem	18
		2.1.3 Scratch drive aktuátor	19
	2.2	Aerosol Jet Print	19
		2.2.1 Technologie Aerosol Jet Print	20
		2.2.2 Mikrosenzory vyrobené pomocí Aerosol Jet Print	20
3	Řeš	ení modelů mikroaktuátoru	23
	3.1	Hřebenový aktuátor 1	23
	3.2	Hřebenový aktuátor 2 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	27
	3.3	Hřebenový aktuátor 3	30
	3.4	Paralelní aktuátor	31
	3.5	Fishbone 1	33
	3.6	Fishbone 2	37
4	Tecl	hnická dokumentace s ohledem na výrobu pomocí Aerosol Jet print	40
5	Záv	ěr	43
\mathbf{Se}	znan	a použité literatury	44
\mathbf{Se}	znan	n obrázků	46
Se	znan	n tabulek	47

Seznam použitých symbolů a zkratek

[F]	kapacita
[m]	vzdálenost elektrod
[m]	efektivní vzdálenost posuvu
$[\mathrm{Vm^{-1}}]$	intenzita elektrického pole
$[\mathrm{Vm^{-1}}]$	elektrická pevnost
[-]	koeficient tření
[N]	síla
[N]	gravitační síla
[N]	normálová složka gravitační síly
[m]	velikost mezery
$[{ m Nm^{-1}}]$	koeficient tuhosti
[m]	velikost v ose x
[m]	velikost v ose y
[m]	velikost v ose z
[-]	počet elektrodových párů
[-]	koeficient poréznosti
[m]	poloměr
$[m^2]$	plocha elektrod
$[m^2]$	překrytí elektrod
[m]	tloušťka elektrody
[V]	elektrické napětí
[V]	průrazné elektrické napětí
$[m^3]$	objem
[J]	celková energie
$[\mathrm{F}\mathrm{m}^{-1}]$	permitivita
$[\mathrm{kg}\mathrm{m}^{-3}]$	objemová hustota
[V]	elektrický potenciál
	$\begin{array}{c} [F] \\ [m] \\ [m] \\ [V m^{-1}] \\ [V m^{-1}] \\ [V m^{-1}] \\ [N] \\ [n] \\ [N] \\ [N] \\ [m] \\ [m$

Úvod

Kapacitní mikroaktuátor neboli elektrostatický mikroaktuátor je zařízení, které převádí vstupní veličinu, v tomto případě elektrické napětí, na výstupní veličinu. Výstupní veličinu je možné charakterizovat jako působení síly a následný mechanický pohyb. Mechanická síla se přímo odvíjí od celkové energie mikroaktuátoru, která je přímo úměrná kapacitě a kvadrátu napětí. Vyvolaný mechanický pohyb může být rotační, deformační, lineární apod.

Mikroaktuátory a mikrosystémy jsou progresivní oblastí, která je považována za jednu z průlomových technologií 21. století. Mikropřístroje se dají využít téměř v jakékoliv oblasti vědy a už se v této době hojně využívají. Mikroaktuátory se využívají například pro přesné nastavování polohy a pohybu s objekty, které jsou v řádech mikrometrů. Například pro velmi přesné mikroskopy, mikromanipulátory nebo mikropinzety. Výhody elektrostatických mikroaktuátorů jsou v jejich malé vlastní spotřebě a rychlé akceleraci.

Cílem této práce je prostudovat a zjistit všechny dostupné elektrostatické mikroaktuátory s ohledem na jejich výrobu pomocí technologie Aerosol Jet Print. Vytvořit návrh vybraného aktuátoru v programu Comsol Multiphysics a poté vytvořit výrobní dokumentaci, která by tuto technologii využila. První část práce se zabývá rešerší elektrostatických mikroaktuátorů. Druhá část obsahuje numerická řešení a jejich popis v softwarovém programu COMSOL Multiphysics. Závěrečná část práce se skládá z výrobního výkresu vybraného mikroaktuátoru, podle kterého by bylo možno vyrobit mikroaktuátor pomocí technologie Aerosol Jet Print. Výroba elektrostatických mikroaktuátorů technologií Aerosol Jet Print nebyla ještě zcela prozkoumána a rozvinuta. To je jeden z důvodů vzniku této práce.

1 Princip elektrostatických mikroaktuátorů

Elektrostatické mikroaktuátory pracují na principu coulombovského přitahování opačně nabitých těles, stejný princip platí u desek kondezátoru, které jsou připojeny ke zdroji. Energie, která se nahromadí v kondenzátoru, určuje velikost práce. Takovou práci je aktuátor schopný vykonat. Velikost energie je přímo úměrně závislá na kapacitě aktuátoru. Kapacita aktuátoru je přímo úměrná účinné ploše desek a nepřímo úměrná vzdálenosti kondenzátorových desek. Abychom mohli vyvinout použitelnou sílu při stovkách voltů, musí mít elektrody co nejmenší vzdálenost, ale pouze takovou, při které nenastane průraz dielektrika. Hodnota elektrické pevnosti vzduchu, která závisí na intenzitě elektrického pole, je pro makroskopické objekty přibližně $E_P = 3 \cdot 10^3 \text{ V.mm}^{-1}$. Tato hodnota intezity elektrické energie se s mikroskopickými rozměry zvětšuje až na hodnotu $E_P = 10^5 \text{ V.mm}^{-1}$. To platí v rozměrech přibližně od 500 μ m do 1 μ m.

$$E_{\rm P} = \frac{U_{\rm P}}{d} , \qquad (1.1)$$

kde $E_{\rm P}$ je elektrická pevnost, $U_{\rm P}$ je průrazné napětí a d je vzdálenost elektrod. Z tohoto vzorce je patrné, že není možné přikládat velké napětí při malých vzdálenostech, aby nenastal průraz dielektrika.

Z energie akumulované v elektrostatickém poli kondenzátoru lze vypočítat velikost působící síly. Pro energii elektrostatického systému platí vztah:

$$W_{\rm c} = \frac{1}{2}CU^2 , \qquad (1.2)$$

kde W_c je celková energie kondenzátoru, U je přiložené napětí a C značí výslednou kapacitu. Síla, která zde působí na desky kondenzátoru se rovná gradientu, je určena vztahem

$$\boldsymbol{F} = -\nabla W_{\rm c} \ , \tag{1.3}$$

kde \boldsymbol{F} je působící síla a W_c je celková energie kondenzátoru. Analytický návrh je při řešení aktuátoru velmi často obtížný, protože se zde nelineární působení elektrostatické síly spojuje s mechanickými vlastnostmi struktur aktuátoru. To vyžaduje využívat vhodné softwarové prostředky s využitím numerických metod simulace. Proto se analytické metody používají spíše k vyobrazení koncepce než pro přesné výpočty. S ohledem na trajektorii pohybu vyvolané coulombovskými silami je možné pohyby rozčlenit na několik základních druhů, jenž se v praxi často kombinují. Jsou to především pohyb příčný a podélný, též kombinace těchto pohybů a využití sil, jenž vnikají při vložení dielektrika s rozdílnou dielektrickou konstantou.

Nevýhodou elektrostatických aktuátorů je poměrně vysoké napájecí napětí, které je nutno použít pro vytvoření pohybové síly aktuátoru. Pro příklad, aby byl vytvořen aktuátorový tlak 100 kPa, je nutné použít napětí kolem 150 V při 1 μ m. Akumulovaná energie elektrostatického pole v mikroskopickém režimu je srovnatelná s akumulovanou magnetickou energií. V makroskopickém režimu je akumulovaná magnetická energie systému podstatně větší. To je důvod, proč se nevyplatí používat elektrostatický princip působení síly k pohybu větších strojů. Pro mikroskopické rozměry je to však výhodné, zejména na křemíkových substrátech s využitím mikroelektrických technologií. Elektrostatické systémy mají mnoho výhod, mezi tyto výhody patří: malá teplotní závislost, jednoduché geometrie, ze které lze snadno vypočítat energii i sílu systému, kompatibilita s technologií CMOS a generace velké síly v poměru na velikost zařízení. Jsou menší a lehčí než elektromagnetické aktuátory a mají menší vlastní spotřebu [1].

1.1 Aktuátor s podélným pohybem

Obrázek 1.1: Aktuátor s podélným pohybem

Tento aktuátor je založen na principu působení coulombovských sil na desky kondenzátoru. Po přiložení napětí U začne na elektrody působit síla F_x . Počáteční předpoklad pro elementární určení chování aktuátoru je ten, že se aktuátor pohybuje pouze v jednom směru osy a nepůsobí zde žádné síly v jiných směrech. Pro určení síly je důležité zjistit kapacitu mikroaktuátoru. Kapacitu tohoto mikroaktuátoru lze vyjádřit vztahem:

$$C = \varepsilon \frac{S}{d} , \qquad (1.4)$$

kde C je zmíněná kapacita, ε je permitiva dielektrika, S je plocha desek kondezátoru a d je vzájemná vzdálenost desek. Dále lze díky kapacitě zjistit energii pro tento aktuátor která se určí:

$$W_c = \frac{1}{2}\varepsilon \frac{S}{d}U^2 . aga{1.5}$$

Celková síla, která působí na desky, se následně vyjádří ze vztahu 1.3. V kartézských souřadnicích lze tento směr rozepsat jako:

$$F_{\rm s} = \frac{\partial W_{\rm c}}{\partial \mathbf{s}} = \nabla \ W_{\rm c} \cdot \mathbf{s} \ , \tag{1.6}$$

kde F_s je síla ve směru vektoru **s**. Pokud je do **s** dosazen směrový jednotkový vektor ve směru osy x:

$$F_{\rm x} = \left(\frac{\partial W_{\rm c}}{\partial x}; \frac{\partial W_{\rm c}}{\partial y}; \frac{\partial W_{\rm c}}{\partial z}\right) \cdot (1; 0; 0) \quad , \tag{1.7}$$

tak je působící síla pouze ve směru osy x. Podle obrázku 1.1 je vzdálenost mezi elektrodami d, tato vzdálenost je dosazena za x:

$$|\mathbf{F}| = -\left.\frac{\partial W_{\rm c}}{\partial d}\right|_{U=konst.} \tag{1.8}$$

dosazením z rovnice 1.5 do rovnice 1.8 vystupuje vztah pro sílu ve směru osy x:

$$F_{\rm x} = \frac{1}{2} \varepsilon \frac{S}{d^2} U^2 . \tag{1.9}$$

Tyto vztahy a tento model platí pro nezatížený aktuátor, to v praxi ve většině případů nelze využít. Pro jednoduchost je možné si aktuátor zatížit pružinou, která působí na jednu elektrodu. Druhá elektroda zůstává pevně zajištěna proti pohybu. Síla pružiny působí

Obrázek 1.2: Aktuátor s podélným pohybem zatížen pružinou

proti směru působení aktuátoru. Síla aktuátoru je vyjádřena rovnicí 1.9. Síla pružiny,

která působí proti síle aktuátoru, je vyjádřena rovnicí:

$$F_{\rm pru} = k(d-x) ,$$
 (1.10)

kde x značí aktuální vzdálenost mezi elektrodami. Při vzájemné rovnosti sil vzniká rovnovážná poloha. Z této rovnosti lze nalézt napětí U pro každou vzniklou vzdálenost mezi deskami x:

$$U = \sqrt{\frac{2k(d-x)x^2}{\varepsilon S}} . \tag{1.11}$$

V systému aktuátor-pružina se energie rozděluje na dvě části.Síla aktuátoru a pružiny. Energie tohoto složeného systému je vyjádřena vztahem:

$$W_{\text{celk}} = \frac{1}{2}k(d-x)^2 - \frac{1}{2}\varepsilon \frac{S}{x}U^2 . \qquad (1.12)$$

První část vztahu vyjadřuje přitažlivou sílu, kterou působí pružina na aktuátor, jinak řečeno je to potenciální energie pružiny a druhá část udává, jak působí aktuátor na pružinu, je to energie aktuátoru [1].

1.2 Aktuátor s příčným pohybem

Obrázek 1.3: Aktuátor s příčným pohybem

Když je aktuátoru zamezen pohyb v podélném směru, tak síly, které působí na elektrody, mají pouze příčný směr. Zde lze psát že kapacita je rovna:

$$C = \varepsilon \frac{yz}{d} , \qquad (1.13)$$

kde y a z jsou rozměry ploch elektrod, které jsou v přesahu přes sebe. Vztah platí pouze

za podmínky, že vzdálenost mezi elektrodami a překrytí ve směru osy z se nemění. Pro sílu která působí ve směru osy y pak můžeme psát vztah:

$$F_{y} = -\frac{\partial W_{c}}{\partial y} = \frac{\partial (\frac{1}{2}CU^{2})}{\partial y} = \frac{1}{2}\varepsilon \frac{z}{d}U^{2} . \qquad (1.14)$$

Pro y = L se síla $F_y = 0$. Když je y < L nebo y > L, tak je síla F_y závislá na překrytí. Při podrobnějším zkoumání, které by zahrnovalo i rozptylová pole, lze dostat přesnější výsledek závislosti síly na souřadnici y. [1]

2 Současný stav techniky

Elektrostatické mikroaktuátory jsou v současné době poměrně dost využívány zejména díky malé vlastní spotřebě energie, velké rychlosti odezvy a dobré integraci. Bohužel nedosahují až tak velkých sil oproti magnetickým a tepelným mikroaktuátorům. Kvůli malým rozměrům, zejména v mezeře mezi elektrodami, může dojít k problémům. Do mezery, která je v řádech mikrometrů, se mohou dostat prachové nebo jiné částice. Zde může dojít k nefunkčnosti systému nebo až ke zničení zařízení, pokud by došlo ke zkratu. Napětí přiváděné na elektrostatické mikroaktuátory se pohybuje v rozsahu mezi 9 až 250 V. Platí, že čím menší napětí přivedeme, tím menší odchylky a síly jsme schopni dosáhnout. Maximální přivedené napětí je limitováno problémem, který se nazývá "pull in" efekt. Když napětí dosáhne nebo překročí takzvané "pull in napětí", tak se začnou pohyblivé části mikroaktuátoru fixovat na pevné části. U elektrostatických mikroaktuátorů jsou nejvyužívanější tyto typy designu: Comb-drive aktuátor (hřebenový aktuátor), Paralel plate aktuátor (aktuátor s příčným pohybem) a Scratch drive aktuátor [2].

2.1 Nejpoužívanější mikroaktuátory

2.1.1 Hřebenový mikroaktuátor

Jedním z nejvyužívanějších elektrostatických mikroaktuátorů je Comb-drive aktuátor neboli hřebenový aktuátor. Ten obsahuje dvě elektrody, které jsou od sebe elektricky izolovány dielektrikem. Na tyto elektrody je přiváděno elektrické napětí. Jedna z elektrod je pevná, ta je zafixována proti pohybu a obsahuje n zubů. Druhá elektroda je pohyblivá a ta obsahuje (n - 1) zubů, viz. obrázek 2.1. Tento aktuátor lze navrhnout v široké škále konstrukcí. Lze měnit počet překrývajících se zubů, tvar zubů a překrytí zubů. V hřebenovém aktuátoru se nachází síla, která má dvě složky. Tyto složky jsou: příčná (F_x) a podélná (F_y) . Příčnou sílu, to je v ose y, se snažíme eliminovat, jelikož ovlivňuje správné chování mikroaktuátoru. Podélná síla je využívána k pohybu v ose x. Protože vzdálenosti v podélném směru mezi elektrodami aktuátoru jsou konstatní, mění se kapacita v závislosti na překrytí desek v ose x. Je udržován podélný pohyb, a tím se mění velikost mezery v podélném směru. Velikost x-ové složky síly můžeme analyticky vyjádřit vztahem:

$$F_{\rm x} = \frac{n\varepsilon t_{\rm e}}{h} U^2 , \qquad (2.1)$$

kde *n* je počet elektrodových párů, t_e je tloušťka elektrody, *h* je velikost mezery, *U* je přiložené napětí. Z obou rovnic je zřejmé, že zvýšením elektrodových dvojic(zubů) a zvýšením napětí lze zvyšovat výstupní sílu. Zmenšením mezery se zvyšuje velikost podélné síly pohybu. Zvýšením překrytí elektrod se zvyšuje příčný pohyb síly aktuátoru. Pro zvýšení hustoty výkonu je možné zúžit šířku elektrod pro pevně uloženou elektrodu, ale je nutné znát vlastnosti materiálu. Když by elektrody byly moc úzké, tak by se mohly deformovat a navzájem se dotýkat, což by mohlo zničit celé zařízení. Minimální mezera mezi elektrodami a jejich vychýlení je limitována "pull in" jevem. Je zde omezení jedné třetiny posunu rozteče mezery, pokud je dosáhnuto této kritické hodnoty, tak aktuátor přestává správně fungovat a vzniká zde vertikální levitace vlivem působení elektrostatického pole [2].

Obrázek 2.1: Comb drive aktuátor: postranní pohyb

Přidáním dalších hřebenových aktuátorů je možné dosahovat větších vzdáleností posunu. Lze použít kaskádu tří aktuátorů, která podle [2] zvětší posuv až o 200 %. Pružina spojená s mikroaktuátorem by měla mít malou relativní tuhost ve směru osy x a velkou relativní tuhost ve směru osy y. V ideálním případě by se tuhost pružiny ve směru osy x měla blížit k nule a ve směru osy y k nekonečnu. To je v praxi nemožné [3]. S tímto mikroaktuátorem lze v praxi provádět manipulaci mikroobjektů, používat je jako mikropinzety nebo k nanoposuvům [1]. Inovací hřebenového aktuátoru lze dosáhnout většího posuvu, větší síly nebo pro stejný posuv snížit jízdní napětí. Tento aktuátor má tvar hnacího ústrojí podobný rybí kosti [2]. Je nazýván Fishbone Shaped Electrostatic Comb Drive Microactuator. Důvod větší síly posuvu je takový, že ostré hrany konstrukce vytvářejí hustější elektrostatické pole a takových ostrých hran je v tomto mikroaktuátoru více než v obyčejném hřebenovém aktuátoru. Aktuátor dosahuje při stejném napětí až o 485 % větší pohybovou sílu [4].

Obrázek 2.2: Intenzita elektrického pole na Fishbone Shaped Electrostatic Comb Drive Microactuatoru [4]

2.1.2 Aktuátor s podélným pohybem

Aktuátor s paralelními elektrodami je založen na stejném principu jako hřebenový aktuátor. Rozdíl je pouze v tom, že má místo řady elektrod jen jeden pár. Jednu elektrodu pevnou a druhou pohyblivou. Je zde možnost využití zakřivení elektrod, které umožňuje větší rozsah posunu než běžný aktuátor. Zakřivený aktuátor má malou mezeru mezi místy upevnění elektrody a nosníku. Mezera se zvětšuje se vzdáleností. Podél elektrody je vytvořena izolační vrsta nebo je přidán nárazník, který omezuje pohyb zakřivené elektrody [2].

Obrázek 2.3: (a) Aktuátor s podélným pohybem [2], (b) Aktuátor s podélným pohybem, ve kterém je použit nárazník, převzato z [2]

2.1.3 Scratch drive aktuátor

Je tvořen nosníkem, pevnou elektrodou a pružnou elektrodou, která se může ohýbat. Nosník společně s pružnou elektrodou tvarem připomínají písmeno L. Izolační vrstva odděluje pružnou elektrodu od pevné elektrody. Když přivedeme na elektrody napětí, je pružná elektroda vlivem elektrostatických sil přitahována k pevné elektrodě, až se úplně přiblíží k izolační vrstvě, kterou je pokryta pevná elektroda. Pružná elektroda na straně nosníku se však nemůže přitáhnout k izolační vrstvě, a tak se vlivem sil pohybuje do strany.

Obrázek 2.4: Scratch drive actuator [2]

V případě odpojení napětí, se elektroda vrací zpět do původní polohy a vlivem tření vzniká vertikální pohybová síla. Jestliže se pružná elektroda i s nosníkem bude pohybovat v ose x, tak lze z tohoto aktuátoru vytvořit lineární krokový mikromotor. Tyto aktuátory jsou velmi citlivé na délku ohebné elektrody a použitém napětí. Pokud je přivedeno vyšší napětí nebo se zvýší výška nosníku, tak lze dosáhnout většího kroku [1] [2].

2.2 Aerosol Jet Print

Podle většiny článků a dostupné literatury je nejčastější výroba mikroaktuátorů pomocí litografie, v této práci by měla být využita technologie Aerosol Jet Print. O kapacitním mikroaktuátoru nebyly k dispozici aktuální články. K nalezení byly pouze poznatky o

výrobě tištěných mikrosenzorů, které budou v této práci prakticky využity. Informace a články byly hledány v odborných databázích, ke kterým má Západočeská Univerzita přístup.

2.2.1 Technologie Aerosol Jet Print

Technologie Aerosol Jet Print je poměrně nová technologie, která je zatím v rozvoji a v poslední době zaznamenala exponenciální růst. Avšak je nutný větší technologický pokrok, aby se dala považovat za konkurenční vůči současně používaným technologiím výroby na mikroskopické úrovni. Hlavními výhodami této technologie jsou: menší dopad na životní prostředí, méně kroků při výrobě než při použití klasických vícestupňových metod, menší výrobní náklady a za největší výhodu je považován tisk na téměř jakýkoliv druh podkladu [8]. Princip tohoto výrobního postupu je podobný jako u klasické 3D tiskárny. Požadovaný produkt je skládán postupně z 2D řezů, které se tisknou po vrstvách na sebe. Aerosol Jet Print je schopen pracovat s celou řadou vodivých i nevodivých materiálů viz. tabulka 2.1 [9].

Tabulka 2.1: Materiály které lze použít v Aerosol Jet Print, převzato z [9]

vodivé kovy	nanočástice Ag, Au, Pt, Pd
vodivé polymery	PEDOT, uhlíkové nanotrubice (CNT)
polovodiče	P3HT, PQT, CNTs
odpory	uhlík, oxidy kovů
dielektrika	epoxidy, akryly, polyimidy

Komerční tiskárna může vytisknout přímku o šířce 10 μ m při rychlosti 200 mm/s. Tato technologie je v současné době využívána k výrobě solárních panelů, pasivní elektroniky a snímačů napětí [5].

2.2.2 Mikrosenzory vyrobené pomocí Aerosol Jet Print

Senzor pro kontrolování stavu kompozitních struktur

Obrázek 2.5: Vzor elektrod pro senzor kontrolování stavu kompozitních struktur, převzato z $\left[10\right]$

Pro tisk senzoru byla podle článku [10] použita tiskárna M3D Aerosol jet printer. Za pomoci tiskárny byly na snímaný povrch nanášeny nanočástice stříbra. Slinování materiálů probíhalo dvě hodiny při 200 °C. Typická šířka vytištěných struktur se pohybuje v rozsahu $10 - 20 \ \mu$ m. Tloušťka vrstvy je od 550 μ m do jednoho mm.

Kapacitní dotykový senzor

Na skleněný substrát se natiskne vzor mikrosenzoru, který je vytvořen z nanočástic stříbra. Tento vzor se pak nechá slinout se skleněným substrátem při teplotě 200 °C, po dobu 30 min. Podle článku [7] byl výstupní průměr trysky 150 μ m a tryska byla udržována přibližně 2,8 mm nad podkladem. Rychlost proudění plynu byla udržována v rozmezí 25 až 50 sccm. V atomizéru byl vytvořen aerosol s částicemi stříbra o viskozitě asi 1,5 cP. Velikost částic stříbra se pohybovala mezi 30 až 50 nm.

Obrázek 2.6: Optický snímek dotykového kapacitního senzoru, převzato z [7]

Senzor mechanického namáhání 1

Šířka vytištěných elektrod byla zhruba 80 μ m s mezerou mezi elektrodami 50 μ m. Proces upevnění se uskutečnil slinováním za tepla. Použita byla epoxidová pryskyřice s nízkou viskozitou smíchaná s epoxidovým tužidlem. Stříbrný nanočásticový inkoust obsahuje 20 % pevného stříbra v roztoku na bázi alkoholu. Celková velikost senzoru dosahuje 1 cm x 2 cm [11].

Senzor mechanického namáhání 2

Tento senzor je vyroben na polyimidovém substrátu za použití systému Optomec Aerosol jet 5X. Polyimid má název Kapton R, jeho tloušťka je 150 μ m a celkové rozměry

senzoru jsou: 5 cm x 8 cm (šířka x délka). Substrát se čistí v etanolové lázni 10 minut. Inkoust obsahuje 50 % stříbrných nanočástic stříbra o velikostech od 30 nm do 50 nm. Po vytištění inkoustu se materiály slinují za teploty 200 °C. Připojovací vodiče jsou připojeny pomocí vodivého epoxidu [12].

Obrázek 2.7: Optický obraz tenzometru, převzato z [12]

3 Řešení modelů mikroaktuátoru

V této kapitole je řešeno a hodnoceno řešení různých geometrií kapacitního hřebenového mikroaktuátoru v program COMSOL Multiphysics. Podle článku [5] tisknou průmyslové tiskárny přímky od šířky 10 μ m. Tato práce by měla dosáhnout toho, že tělo mikroaktuátoru bude mít rozměry menší než 3 mm na výšku a 3 mm na šířku. Při návrhnu výrobního procesu zde nastává několik problémů. Tištení mikroaktuátoru pomocí Aerosol Jet Print je založené na aditivním přidáváním materiálu, který není samonosný. Proto musí být tento materiál nanesen na jiný materiál, který by měl být odstraněn. Pokud se tento nosný materiál povede úspěšně odstranit, tak musí být mikroaktuátoru dostatečně pevný, aby dokázal vydržet sílu, která je na něm vytvořena. Na mikroaktuátoru by také měla vzniknout tak velká síla, aby pohnula s tělem mikroaktuátoru a případnou zátěží.

V současné době je využíváno několik typů elektrostatických mikroaktuátorů. Mezi nejvyužívanější patří hřebenový mikroaktuátor, mikroaktuátor s podélnou silou a Scratch drive mikroaktuátor. Pro porovnání byly simulovány dva druhy mikroaktuátorů, hřebenový mikroaktuátor a mikroaktuátor s podélnou silou, Scratch drive aktuátor nebyl simulován, protože by se podle mých předpokladů obtížně vyráběl. Místo tohoto aktuátoru byl simulován Fishbone mikroaktuátor.

3.1 Hřebenový aktuátor 1

V simulaci bylo použito stacionární elektrostatické pole. Pro tento model byly definovány dva parametry: pos a fi. První parametr byl využit pro posuv pohyblivé elektrody v ose x. Druhý parametr byl využit ke změně velikosti napětí. Geometrie tohoto modelu byla vytvořena podle obrázku 3.2. 2D model mikroaktuátoru byl vytvořen pomocí Bézierova polygonu. 3D model vznikl vytažením Bézierova polygonu do prostoru o danou výšku mikroaktuátoru. Kolem geometrie aktuátoru byla vytvořena koule o poloměru 10 mm, pro kterou byla definována Neumanova okrajová podmínka $\frac{\partial \varphi}{\partial n} = 0$. Pro části geometrie aktuátoru bylo použito stříbro, pro ostatní části geometrie byl použit vzduch. Oba materiály byly vloženy z knihovny COMSOL Multiphysics. Jemnost sítě byla nastavena podle konvergenční křivky 3.1 na hodnotu *finer*. Pro řešení modelu byla použita studie *Parametric Sweep*, kde byl použit parametr pos, do kterého byly dosazeny hodnoty od 0 mm do 1 mm s krokem 0,02 mm. Parametr fi byl zadáván o hodnotách: 100 V, 120 V, 200 V, 300 V, 400 V a 430 V. Pomocí objemového integrálu přes celou geometrii a integrováním hustoty elektrické energie pro příslušné napětí a posuv byla, vytvořena tabulka celkové energie. Tato tabulka obsahuje závislost elektrické energie na parametrech pos a fi neboli na posunu elektrod a velikosti napětí. Pomocí vztahu 3.3 lze z již zmíněné tabulky následně vypočítat velikost působící síly, kterou lze graficky znázornit v závislosti na posuvu. Pro tento mikroaktuátor byl vytvořen 3D graf, který vykresluje intenzitu elektrického pole, obrázek 3.3.

Tabulka 3.1: Velikost energie v závislosti na jemnosti sítě pro 430 V a vzdálenost $0,02~\rm{mm}$ mezi elektrodami

síť	počet stupňů volnosti	$W_{\rm e} [{\rm nJ}]$
extrémně hrubá	4318	$127,\!36$
extra hrubá	6722	124,84
hrubší	10916	123,8
normální	17437	119,82
jemná	50685	114,55
jemnější	129914	113,1
extra jemná	417636	110,82
extrémně jemná	1880530	109,5

Obrázek 3.1: Konvergenční křivka hřebenového aktuátoru 1

Tento model má jednu pevnou elektrodu s 12 zuby a jednu pohyblivou elektrodu s 11 zuby. Celý aktuátor je vytvořen ze stříbra. Na pevnou elektrodu je vložena první počáteční podmínka o hodnotách $\varphi = \mathfrak{f}\mathfrak{i}$ a na pohyblivou elektrodu je vložena druhá počáteční podmínka $\varphi = 0$. Mezera mezi zuby h je rovna 50 μm , šířka jednoho zubu t_e je 50 μm , délka jednoho zubu je 1 mm, šířka mezery je 150 μm , délka elektrody a výška celého aktuátoru je 200 μm . Celkové rozměry pohyblivé elektrody tedy jsou: $\mathbf{k_x} = 1, 2 \text{ mm}$, $\mathbf{l_y} = 2,05 \text{ mm}$ a $\mathbf{m_z} = 0, 2 \text{ mm}$. Celkové rozměry pevné elektrody jsou: $\mathbf{k_x} = 1, 2 \text{ mm}$,

Obrázek 3.2: Výkres geometrie 1. hřebenového aktuátoru

l_y = 2,25 mm a m_z = 0,2 mm. Pro pohyblivou elektrodu tohoto mikroaktuátoru lze vypočítat gravitační sílu, z které lze určit třecí sílu. Tu je zapotřebí překonat. Třecí síla je určena vzorcem: $F_t = f \cdot F_n$, kde f je koeficient smykového tření a F_n je normálová složka gravitační síly proti podložce. Pro tento případ platí, že $F_g = F_n$

$$F_{g} = g \cdot \rho \cdot (V_{p} + V_{e}) \cdot q = 9,80665 \cdot 10500 \cdot (1, 1 \cdot 10^{-10} + 0, 82 \cdot 10^{-10}) \cdot 0,5 \quad (3.1)$$

= 9,8851 \mu N , (3.2)

kde g je gravitační konstanta, ρ hustota stříbra, V_p je objem zubů elektrody, V_e je objem elektrody a q je koeficient poréznosti. Za předpokladu, že je aktuátor volně v prostoru, by měl překonat sílu 9,8851 μ N. Jako koeficient poréznosti pro tisknutí pomocí AJP bylo použito 0,5. Rovnici 1.8 lze zjednodušit, aby bylo možné dopočítat sílu přitahování elektrody a graficky ji znázornit v 3.4.

$$|\mathbf{F}| = \frac{\partial W_{\rm c}}{\partial d} \bigg|_{U=konst.} \to |F_x| \approx \frac{W_{\rm n} - W_{\rm n+1}}{x_n - x_{n+1}}$$
(3.3)

 $|F_x|$ je velikost síly ve směru os
y $x, W_{\rm n}$ je energie v dané poloze, $W_{\rm n+1}$ je energie v následujícím poloze,
 x_n je aktuální poloha pohyblivé elektrody
a x_{n+1} je následující poloha

Obrázek 3.3: 3D graf elektrického pole hřebenovém aktuátoru 1 ve vzdálenosti 20 μm a napětím 400 V

pohyblivé elektrody. Z rovnice 2.1 lze analyticky určit sílu:

$$F_{\rm x} = \frac{11 \cdot 8,854 \cdot 10^{-12} \cdot 50 \cdot 10^{-6}}{50 \cdot 10^{-6}} \cdot 120^2 = 1,53 \ \mu \rm{N}$$
(3.4)

Výsledky z analytického řešení vycházejí řádově stejně jako z numerického řešení. Porovnáním výsledků obou řešení je zřejmé, že na velikost síly také závisí překrytí elektrod, protože hodnota F_x se zvyšuje se zvětšující se plochou překrytí zubů. Výsledky analytického řešení pro přiložená napětí jsou v tabulce 3.2.

Tabulka	3.2:	Výsle	dky	síly	$F_{\rm x}$	pro	různá	napětí
---------	------	-------	-----	------	-------------	----------------------	-------	--------

U[V]	$F_{\rm x}$ [μN]
100	$0,\!974$
120	1,402
200	$3,\!896$
300	8,765
400	$15,\!583$
430	$18,\!008$

V grafu 3.4 je vidět x-ová složka síly aktuátoru v závislosti na napětí. Velikost síly F_x se zvyšuje s narůstajícím napětím. Hodnota intenzity elektrického pole zjištěná ze simulací se pohybuje mezi hodnotami 5,85 · 10⁶ V.m⁻¹ při 100 V až do 2,51 · 10⁷ V.m⁻¹

Obrázek 3.4: 2D graf síly 1. hřebenového aktuátoru pro různá napětí

při 430 V, pro vzdálenost 20 μ m mezi hranou zubu a elektrodou. Velikost intenzity elektrického pole, která znamená průraz vzduchu, je přibližně 10⁸ V.m⁻¹. Napětí, které by bylo možné používat, aby nebylo dielektrikum proraženo, je přibližně 1700 V. Aktuátor by se ale nesměl přiblížit na více jak 20 μ m, jinak by nastal průraz dielektrika. Pro napětí 430 V se pohyblivá elektroda může pohybovat až do vzdálenosti 7 μ m, v tomto případě je maximální hodnota intenzity 7,99 · 10⁷ V.m⁻¹.

3.2 Hřebenový aktuátor 2

V tomto modelu byl hřebenový aktuátor parametrizován, tato parametrizace využívá více proměnných, které byly použity v Bézierovo polygonu, který je následně vysunut do prostoru. Celá tato parametrizace je vztažena v Kartézských souřadnicích k prostorovému bodu [0,0,0]. Pro tento model byly definovány tyto parametry: d jako šířka zubu elektrody, s jako mezera mezi zuby elektrody, h1 jako délka zubu elektrody, c jako délka pevné elektrody, parametr vys, který značí tloušťku mikroaktuátoru v ose z, parametr const, o který je posunuta pohyblivá elektroda oproti pevné elektrodě. Tyto parametry jsou použity při vytváření geometrie a částečně pro optimalizaci této geometrie. Další parametr je pos2, kterým je zajištěn posuv ose x. Do parametru U je následně zadáváno napětí a tento parametr je využit v počátečních podmínkách. Parametr ypos je parametr, se kterým se mění šířka zubu elektrody. Pro celý aktuátor je využita funkce Optimization, která upravuje geometrii modelu na základě zadaných parametrů. Pro tento případ je hlavním parametrem celková elektrická energie, kterou by bylo vhodné maximalizovat na základě

změn geometrie. Tyto změny se provádí pro 3 parametry: c, h1 a ypos dle tabulky 3.3.

parametr	od $[\mu m]$	do $[\mu m]$
с	80	120
h1	100	350
ypos	0	25

Tabulka 3.3: hodnoty proměnných parametrů pro Optimization

Parametry geometrie před optimalizací byly zadány dle tabulky 3.4. Geometrie pro tento model je vytvářena dle obrázku 3.5 a vypadá velmi podobně jako na obrázku 3.2. V simulaci bylo řešeno stacionární elektrostatické pole. Pevná elektroda má celkem 12 zubů. Pohyblivá elektroda má pouze 11 zubů. Počáteční podmínka pro pevnou elektrodu je zde zadána $\varphi = U$ a počáteční podmínka pro pohyblivou elektrodu je $\varphi = 0$. Kolem geometrie aktuátoru byla vytvořena koule o poloměru, $r = 5 \cdot (12 \cdot d + 11 \cdot s)$, pro kterou byla definována Neumanova okrajová podmínka $\frac{\partial \varphi}{\partial n} = 0$. Pro části geometrie aktuátoru bylo použito stříbro, pro ostatní části geometrie byl použit vzduch. Oba materiály byly vloženy z knihovny COMSOL Multiphysics. Jemnost sítě byla nastavena podle konvergenční křivky, a to na hodnotu *extra fine*. Pro řešení modelu byla nejprve použita studie

Tabulka 3.4: Hodnoty parametrů pro celý model před optimalizací

$d[\mu m]$	$s[\mu m]$	$vys[\mu m]$	$const[\mu m]$	U[V]	$pos2[\mu m]$	$c[\mu m]$	$h1[\mu m]$	$ypos[\mu m]$
70	140	200	600	430	0	80	100	0

Obrázek 3.5: Výkres hřebenového mikroaktuátoru s proměnnými parametry

Optimization, kde byly použity parametry z tabulky 3.3. Z této tabulky byly zadávány parametry v hodnotách, které jsou v tabulce. Jako objektivní funkce byla vybrána celková elektrická energie, tu je zapotřebí maximalizovat. Ze studie *Optimization* je jako výsledek tabulka parametrů, pro které je elektrická energie nejvyšší. Tyto parametry jsou použity v geometrii. Celková elektrická energie před optimalizací ve stejné vzdálenosti elektrod jako

po optimalizaci byla: $W_c = 49,89$ nJ. Celková elektrická energie po optimalizaci vychází: $W_c = 184,87$ nJ pro c $= 120 \ \mu m$, h1 $= 350 \ \mu m$ a ypos $= 25 \ \mu m$. Z tohoto výsledku je zřejmé, že zvětšováním parametrů roste celková elektrická energie. Změnou parametru ypos se mění mezera mezi pevnou a pohyblivou elektrodou v ose y a tím se mění i kapacita, která hraje zásadní roli v celkové energii. Tento parametr by se teoreticky mohl ještě zvětšovat, aby se zvětšovala i kapacita, ale s ohledem na výrobní technologii je mezera 10 μm mezi elektrodami mezní hodnota. Pro konečnou optimalizaci byly následně změněny parametry, aby byl tento model porovnatelný s ostatními modely. Pro rozměry modelu

$d[\mu m]$	$s[\mu m]$	$vys[\mu m]$	$const[\mu m]$	U[V]	$pos2[\mu m]$	$c[\mu m]$	$h1[\mu m]$	$ypos[\mu m]$
80	180	200	3000	430	0	300	2390	40

Tabulka 3.5: Hodnoty nových parametrů pro celý model po optimalizaci

Obrázek 3.6: 2D graf síly 2. hřebenového aktuátoru

které odpovídají tabulce 3.5 vychází celková elektrická energie $W_c = 1049, 8$ nJ. To je zhruba pětkrát větší energie než u předchozí geometrie. Proto jsou následně použity jen parametry z tabulky 3.5. Celkové rozměry obou elektrod jsou: $k_x = 3$ mm, $l_y = 2,98$ mm a $m_z = 0,2$ mm. Předchozí geometrie měla rozměry: $k_x = 0,6$ mm , $l_y = 2,42$ mm a $m_z = 0,2$ mm. Následně po zjištení optimální geometrie byla použita druhá studie, a to studie *Parametric Sweep*, kde byly použity parametry pos2 a U. Do parametru pos2 byly dosazeny hodnoty od 0 mm do 1 mm s krokem 0,02 mm. Do parametru U byly dosazeny

29

hodnoty 100 V, 200 V, 300 V, 430 V a 860 V. Vložením objemového integrálu přes celou geometrii a integrováním hustoty elektrické energie byla vytvořena tabulka celkové energie v závislosti na parametru **pos2**. Pokud se k parametru **pos2** přičte počáteční vzdálenost mezi elektrodou a koncem zubu elektrody, tak lze vytvořit závislost na vzdálenosti elektrod a graficky ji znázornit, obrázek 3.6. Výsledek z numerické simulace elektrického pole pro napětí 860 V a posuv 10 μ m je: $E = 1, 16 \cdot 10^8$ V.m⁻¹. Zjištěná hodnota přesahuje maximální povolenou intenzitu elektrického pole. Z tohoto důvodu nelze použít napětí 860 V pro předcházející geometrii. Intenzita elektrického pole pro 430 V a posuv 10 μ m je: $E = 5, 81 \cdot 10^7$ V.m⁻¹. Tato hodnota intenzity elektrického pole je nižší než maximální hodnota elektrické intenzity, a tak všechny hodnoty napětí nižší než 430 V lze použít pro předchozí geometrii. Porovnáním s předchozím grafem hřebenového aktuátoru 3.6 zde vychází větší dosahovaná hodnota síly, která má podobný průběh.

3.3 Hřebenový aktuátor 3

Obrázek 3.7: Výkres 3. hřebenového aktuátoru

Geometrie tohoto modelu byla vytvořena podle obrázku 3.7. Tento model má jednu pevnou elektrodu s 23 zuby a jednu pohyblivou elektrodu s 22 zuby. Na pevnou elektrodu je vložena první počáteční podmínka o hodnotách $\varphi = fi$ a na pohyblivou elektrodu je vložena druhá počáteční podmínka $\varphi = 0$. Mezera mezi zuby elektrod je rovna 15 μm , šířka jednoho zubu t_e je 50 μ m, délka jednoho zubu i s elektrodou je 2,5 mm, šířka mezery je 80 μ m a výška aktuátoru je 200 μ m. Celkové rozměry elektrod jsou: $k_x = 2,5$ mm, $l_y = 2,91$ mm a $m_z = 0,2$ mm. Geometrie byla vytvořena v 2D rovině (x - y) za použití Bézierova polygonu. 3D model vznikl vytažením Bézierova polygonu do osy z o danou výšku mikroaktuátoru. V simulaci bylo použito stacionární elektrostatické pole. Pro tento model byly definovány dva parametry **pos** a fi. První parametr byl využit pro posuv pohyblivé elektrody v ose x. Druhý parametr byl využit ke změně velikosti napětí. Kolem geometrie aktuátoru byla vytvořena koule o poloměru 15 mm, pro kterou byla definována Neumanova okrajová podmínka $\frac{\partial \varphi}{\partial n} = 0$. Pro části geometrie aktuátoru bylo použito stříbro, pro ostatní části geometrie byl použit vzduch. Oba materiály byly vloženy z knihovny COMSOL Multiphysics. Jemnost sítě byla nastavena podle konvergenční křivky na hodnotu *extra fine*. Pro řešení modelu byla použita studie *Parametric Sweep*, kde byl použit parametr **pos**, do kterého byly dosazeny hodnoty od 0 mm do 1 mm s krokem 0,02 mm. Parametr fi byl zadáván o hodnotách: 100 V, 120 V, 200 V, 300 V a 430 V. Pomocí objemového integrálu přes celou geometrii a integrováním hustoty elektrické energie pro příslušné napětí a posuv byla vytvořena tabulka celkové energie. Tato tabulka obsahuje závislost elektrické energie na parametrech **pos** a fi neboli na posunu elektrod a velikosti napětí. Pomocí vztahu 3.3 z již zmíněné tabulky lze následně vypočítat velikost působící síly, kterou lze graficky znázornit v závislosti na posuvu 3.8. Tento aktuátor je geometrií

Obrázek 3.8: 2D graf síly 3. hřebenového aktuátoru

velmi podobný předchozímu modelu. Rozdíl je v to, že má na elektrodách zhruba dvakrát více zubů a mezera mezi pevnou elektrodou je o 5 μ m větší. Průběh síly následně vychází podobně jako v minulém případě. Zvlnění řešení je pravděpodobně dáno nízkou hustotou výpočetní sítě.

3.4 Paralelní aktuátor

Pro tento model byly použity stejné parametry jako pro model 3.1. V tomto modelu je řešeno stacionární elektrostatické pole. Jemnost sítě byla nastavena podle konvergenční křivky, a to na hodnotu *normal*. Použitá geometrie byla vytvořena dle obrázku 3.9, výška

Obrázek 3.9: Výkres geometrie paralelního aktuátoru

aktuátoru v ose z je 200 μ m. Kolem geometrie aktuátoru byla vytvořena koule o poloměru 10 mm, pro kterou byla definována Neumanova okrajová podmínka $\frac{\partial \varphi}{\partial n} = 0$. Počáteční podmínka pro pevnou elektrodu je zde zadána $\varphi = fi$ a počáteční podmínka pro pohyblivou elektrodu je $\varphi = 0$. Pro řešení byla použita studie *Parametric Sweep*, kde byl použit parametr **pos**, do kterého byly dosazeny hodnoty od 0 mm do 0, 32 mm s krokem 0, 01 mm. Pro tento typ aktuátoru byla vypočtena gravitační síla podle vzorce:

$$F_{\rm g} = g \cdot \rho \cdot V \cdot q = 9,80665 \cdot 10500 \cdot 9 \cdot 10^{-12} \cdot 0, 5 = 463,364 \text{ nN} , \qquad (3.5)$$

kde V je objem pohyblivé elektrody mikroaktuátoru. Pro tento aktuátor musí tedy síla mikroaktuátoru dosahovat alespoň 463, 364 nN. Na grafu 3.10 je vidět, že se vzdalující se

Obrázek 3.10: 2D graf síly paralelního aktuátoru pro různá napětí

elektrodou klesá síla mikroaktuátoru téměř hyperbolicky. V porovnání grafů 3.4 a 3.10 pak lze vypozorovat další vlastnosti. Je zřejmé, že paralelní aktuátor, který se pohybuje v blízkosti pevné elektrody má téměř stejnou hodnotu přitažlivé síly. Avšak tato síla u paralelního aktuátoru strměji klesá, proto tento aktuátor lze využít k menším posuvům než hřebenový aktuátor. Pro hřebenový aktuátor klesá síla se zvyšující se vzdáleností asi dvakrát pomaleji, a tak s tímto aktuátorem lze dosahovat přibližně dvakrát větších vzdáleností než u paralelního aktuátoru. Velká výhoda paraleního aktuátoru je v geometrii, která není složitá. Z tohoto důvodu je pak jednodušší i výroba.

3.5 Fishbone 1

Obrázek 3.11: Výkres geometrie fishbone 1 aktuátoru

Pro tento model byl definován jeden parametr nazvaný d. Tento parametr byl využit pro posuv pohyblivé elektrody v ose x. Použitá geometrie byla vytvořena dle obrázku 3.11. V obrázku jsou tři neznámé parametry, které se v geometrii mění. Pro první simulaci je parametr s nastaven na 150 μ m, parametr d na 50 μ m a parametry q a t jsou jsou 50 μ m. Pevná elektroda má celkem 42 zubů ve srovnání s pohyblivou elektrodou, která jich má 40. V grafu je tato varianta naznačena jako varianta 1. Pro druhou simulaci byly změněny parametry s a d. Parametr s je v této chvíly nastaven na 180 μ m a parametr d na 20 μ m. Počet zubů zůstává stejný. V grafu jsou tato řešení označena jako varianta 2. Geometrie mikroaktuátoru byla vytvořena z Bézierova polygonu. Z 2D modelu byl vytvořen 3D model vytažením Bézierova polygonu do prostoru. Výška aktuátoru v ose z je 200 μ m. Kolem geometrie aktuátoru byla vytvořena koule s poloměrem 20 mm, pro kterou byla definována Neumanova okrajová podmínka $\frac{\partial \varphi}{\partial n} = 0$. Pro části geometrie aktuátoru bylo použito stříbro, pro ostatní části geometrie byl použit vzduch. Oba materiály byly vloženy z knihovny COMSOL Multiphysics. Jemnost sítě byla nastavena podle konvergenční křivky, a to na hodnotu *extra fine*. Na pevnou elektrodu byla nastavena počateční podmínka $\varphi = 430$ V a 860 V. Na pohyblivou elektrodu byla nastavena počáteční podmínka $\varphi = 0$. Pro řešení modelu byla použita studie *Parametric Sweep*, kde byl použit parametr d, do kterého byly dosazeny hodnoty od 0 mm do 1 mm s krokem 0,01 mm. Vložením objemového integrálu přes celou geometrii a integrováním hustoty elektrické energie byla vytvořena tabulka celkové energie v závislosti na parametru d. Přičtením 0,05 mm lze vytvořit závislost energie na vzdálenosti elektrod. Z předchozí tabulky lze dopočítat velikost působící síly podle vztahu 3.3. Sílu lze graficky znázornit v závislosti na vzdálenosti elektrodu:

$$F_{g} = q \cdot \rho \cdot V \cdot q = 9,80665 \cdot 10500 \cdot 1, 8 \cdot 10^{-10} \cdot 0, 5 = 9,2673 \ \mu \text{N} . \tag{3.6}$$

Aktuátor musí tedy překonat minimálně sílu 9,2673 μ N. Pokud se zvýší napětí které, je

Obrázek 3.12: 2D graf síly fishbone aktuátoru pro první a druhou variantu

přiváděno na elektrody, tak se zvýší i síla působící na pohyblivou elektrodu aktuátoru. Síla pro dvojnásobné napětí se zvyšuje zhruba čtyřikrát. Z grafu 3.12 je patrné, že zvětšením parametru s a zmenšením parametru d se zvyšuje síla pro určité části geometrie. Je-li plocha pohyblivé elektrody mezi zuby pevné elektrody, tak může být síla i záporná a vytlačovat pohyblivou elektrodu z pevné elektrody. Kterým směrem bude přitahována, záleží na poloze pohyblivé elektrody a jejich zubů. Jestliže je elektrodový zub v překrytu s předchozím zubem u pevné elektrody, tak je elektroda tažena do předešlé polohy. Když je elektrodový zub v překrytí s dalším zubem, tak je elektroda tažena ven do nové polohy, kde se pohyb ustálí a síla je v lokálním maximu. V aktuátoru může nastat stav, kdy

jsou zuby pohyblivé elektrody přesně mezi zuby pevné elektrody. V tomto případě jsou velikosti sil stejně velké, ale mají opačný směr, a tak je celková síla nulová. To je zřejmé z grafu 3.12. Pro tento mikroaktuátor byl vytvořen 3D graf 3.15, který vykresluje intenzitu

Obrázek 3.13: 2D graf síly fishbone aktuátoru pro třetí a čtvrtou variantu

elektrického pole. Maximální dosažená intenzita elektrického pole je $6, 35 \cdot 10^7 \text{ V.m}^{-1}$ pro hodnoty napětí 860 V a druhou variantu geometrie.

Pro třetí simulaci bylo znovu použito 430 V a 860 V. Změny byly provedeny pouze v geometrii. Parametr t byl nastaven na 70 μ m, parametr q byl nastaven na 30 μ m, parametr d byl nastaven na 50 μ m a parametr s je v tomto případě 150 μ m. Tato geometrie je v grafu označena jako varianta 3. Ve čtvrté simulaci tohoto modelu zůstanou parametry t a q nastaveny na stejnou hodnotu jako ve třetí simulaci a změní se pouze parametry d a s. Parametr d je nastaven na 20 μ m a parametr s na 180 μ m. Tato simulace je označena v 2D grafu jako varianta 4. Pro tyto simulace byl vytvořen samostatný 2D graf 3.13 pro lepší přehlednost. Pro pátou simulaci bylo opět použito 430 V a 860 V. Změny byly provedeny pouze v geometrii. Parametr t byl nastaven na 30 μ m, parametr q byl nastaven na 70 μ m, parametr d byl nastaven na 50 μ m a parametr s je v tomto případě 150 μ m. Tato geometrie je v grafu označena jako varianta 5. V šesté simulaci tohoto modelu zůstanou parametry t a q nastaveny na stejnou hodnotu jako ve třetí simulaci a změněny jsou pouze parametry t a q nastaveny na stejnou hodnotu jako ve třetí simulaci a změněny jsou pouze parametry t a q nastaven na 20 μ m a parametr s na 180 μ m. Tato simulace je označena v grafu jako varianta 6. Pro tyto simulace byl vytvořen samostatný 2D graf 3.14 pro lepší přehlednost.

Porovnáním jednotlivých grafů síly pro různé druhy geometrií lze vyhodnotit, která

	$F_{\rm x}$ [μN]	$d_{ m e}[m mm]$
varianta 1	216,4471	0,18
varianta 2	388, 1816	$0,\!06$
varianta 3	$279,\!8009$	$0,\!08$
varianta 4	$236,\!0133$	$1,\!00$
varianta 5	$173,\!6962$	$0,\!25$
varianta 6	527,7716	$0,\!04$

Tabulka 3.6: Velikost maximální síly F_x a efektivní vzdálenosti posuvu pro různé varianty geometrie (860 V)

Obrázek 3.14: 2D graf síly fishbone aktuátoru pro pátou a šestou variantu

varianta geometrie by byla optimální. Pro první srovnání se lze podívat na maximální hodnotu síly, kterou může mikroaktuátor vytvořit. Nejvyšší síla je u varianty 6 a nejnižší u varianty 5. Tato síla se zvyšující se vzdáleností prudce klesá, až do záporné hodnoty. Tento jev je nežádoucí, protože se tak snižuje využitelnost aktuátoru pro větší posuv. Tento posuv je naznačen v tabulce 3.6 jako d_e . Tento parametr byl určen tak, že byly porovnány hodnoty F_x s hodnotou F_g . Rozmezí, kdy je F_x větší než F_g , bylo označeno jako d_e . Na základě tohoto kritéria vychází nejlépe varianta 4 a nejhůře vychází varianta 6. Z grafů nelze reálně určit, která geometrie aktuátoru by byla optimální, protože každý aktuátor má jiné vlastnosti. Mikroaktuátor musí být vybrán podle určitých požadavků na sílu a délku posuvu. Varianta 6 má ze zkoušených geometrií největší vytvořenou sílu, ale nejmenší efektivní délku posuvu. Varianta 4 má ze zkoušených geometrií největší efektivních posuv a má poměrně i dostatečnou sílu F_x , podle mého názoru je tato varianta nejpraktičtější ze všech 6 variant. Varianty 1, 2, 3 a 5 nejsou tak efektivní v poměru F_x a d_e , ale pro určité aplikace by mohly mít význam.

Obrázek 3.15: 3D graf intenzity elektrického pole pro fishbone aktuátor

3.6 Fishbone 2

Obrázek 3.16: Výkres geometrie fishbone 2 aktuátoru

Pro tento model byl definován jeden parametr nazvaný d. Tento parametr byl využit pro posuv pohyblivé elektrody v ose x. Použitá geometrie byla vytvořena dle obrázku 3.16. Geometrie mikroaktuátoru byla vytvořena z Bézierova polygonu. Z 2D modelu byl vytvořen 3D model vytažením Bézierova polygonu do prostoru. Celkové rozměry pevné elektrody jsou: $k_x = 2, 2 \text{ mm}, l_y = 1, 2 \text{ mm} \text{ a } m_z = 0, 2 \text{ mm}.$ Celkové rozměry pohyblivé elektrody jsou: $k_x = 2, 2 \text{ mm}, l_y = 1, 2 \text{ mm} \text{ a } m_z = 0, 2 \text{ mm}.$ Kolem geometrie aktuátoru byla vytvořena koule s poloměrem 20 mm, pro kterou byla definována Neumanova okrajová podmínka $\frac{\partial \varphi}{\partial n} = 0$. Pro části geometrie aktuátoru bylo použito stříbro, pro ostatní části geometrie byl použit vzduch. Oba materiály byly vloženy z knihovny COMSOL Multiphysics. Jemnost sítě byla nastavena podle konvergenční křivky, a to na hodnotu *finer*. Na pevnou elektrodu byla nastavena počateční podmínka $\varphi = 100 \text{ V}, 200 \text{ V}, 300 \text{ V}$ a 430 V. Na pohyblivou elektrodu byla nastavena počáteční podmínka $\varphi = 0$. Pro řešení modelu byla použita studie *Parametric Sweep*, kde byl použit parametr d, do kterého byly dosazeny hodnoty od 0 mm do 1 mm s krokem 0,02 mm. Vložením objemového integrálu přes celou geometrii a integrováním hustoty elektrické energie byla vytvořena tabulka celkové energie v závislosti na parametru d. Přičtení 0,05 mm lze vytvořit závislost energie na vzdálenosti elektrod. Z předchozí tabulky lze dopočítat velikost působící síly podle vztahu 3.3. Sílu je možno graficky znázornit v závislosti na vzdálenosti elektrod v ose x, obrázek 3.17. Pro tento aktuátor lze vypočítat gravitační sílu pohyblivé elektrody:

$$F_{\rm g} = g \cdot \rho \cdot V \cdot q = 9,80665 \cdot 10500 \cdot 1,928 \cdot 10^{-10} \cdot 0,5 = 9,9263 \ \mu \text{N} \ . \tag{3.7}$$

Obrázek 3.17: 2D graf síly fishbone 2 aktuátoru

Z obrázku 3.17 je zřejmé, že je síla mikroaktuátoru závislá na geometrii. Změnou geometrie lze zvýšit celkou energii systému, jenž přímo souvisí se sílou. Směr síly záleží na intenzitě elektrického pole. Jsou-li zuby pohyblivé elektrody v poloze mezi zuby pevné elektrody, tak pole, které má větší intenzitu elektrického pole přitahuje pohyblivou elektrodu směrem k sobě, viz. obrázek 3.18.

Obrázek 3.18: 3D graf intenzity elektrického pole pro fishbone 2 aktuátor

39

4 Technická dokumentace s ohledem na výrobu pomocí Aerosol Jet print

V této kapitole je řešena nejoptimálnější geometrie kapacitního mikroaktuátoru z předchozí kapitoly. Porovnáním mikroaktuátorů vznikají tři různé kategorie hodnocení. První kategorie hodnocení vychází ze síly. Druhá kategorie vychází ze vzdálenosti posunu s určitou velikostí síly. Třetí kategorie vychází ze schopnosti výroby geometrie prostřednictvím technologie Aerosol Jet Print a mechanických parametrů. Na základě prvního kritéria vychází z grafů síly, že optimální geometrie jsou: hřebenový aktuátor 2 a hřebenový aktuátor 3, ostatní geometrie nedosahují tak velké síly. Podle druhého kritéria je nejlepší geometrie fishbone 1 varianta 4. V souladu s třetím kritériem, je geometrie paralelního aktuátoru ze všech mikroaktuátorů nejjednodušší na výrobu.

Jako optimální geometrie, s ohledem na předchozí 3 parametry hodnocení, vychází hřebenový aktuátor 2. Jeho maximální x-ová složka síly je pro 430 V zhruba 1750 μ N. Pro vzdálenost posunu mikroaktuátoru s určitým množtvím síly je ve vzdálenosti 1 mm hodnota síly zhruba 400 μ N. Výroba pomocí technologie Aerosol Jet Print zde přichází v úvahu, jelikož podle článku [5] může komerční tiskárna vytisknout přímku o šířce 10 μ m. Třetí kritérium je zde splněno, protože v celé geometrii jsou pouze pravé úhly a nejužší tištěná šířka je 140 μ m. To je čtrnáctkrát větší šířka, než nejmenší šířka, kterou je schopna komerční tiskárna vytisknout.

Obrázek 4.1: 2D graf posuvu v závislosti na přiloženém napětí

Na obrázku 4.2 je znázorněn výrobní výkres vybraného kapacitního mikroaktuátoru. Jsou zde tři nosníky, které jsou znázorněny černou barvou. Nosníky slouží jako kontakty k

Obrázek 4.2: Výrobní výkres hřebenového mikruaktu
átoru $2~{\rm s}$ pružinou

připojení napětí. Výška mikroaktuátoru je m_z = 0,2 mm. Konstrukce celého mikroaktuátoru je navrhnuta ze stříbra. Tato konstrukce byla v programu COMSOL Multiphysics modelována v elektromechanickém modulu. V obrázku 4.1 je posuv v ose x, který dosahuje maximální hodnoty k_x = 17 μ m při napětí 400 V. Posuv v ose y, který nesmí dosáhnout 10 μ m, dosahuje při napětí 400 V přibližně l_y = 2,3 μ m. Pokud by hodnota l_y dosáhla hodnoty 10 μ m, elektrody by se elektricky spojily a vznikl by zkrat.

5 Závěr

V první části této práci byla provedena rešerše elektrostatických mikroaktuátorů. V rešerši jsou zmíněny nejpoužívanější druhy kapacitních mikroaktuátorů, to jsou: s podélným pohybem, hřebenový mikroaktuátor a Scratch drive aktuátor. Hřebenový mikroaktuátor a podélný mikroaktuátor pracují na podobném principu. Oproti Scratch drive aktuátoru jsou jednodušší na výrobu, proto v druhé části práce, kde jsou vytvořeny modely pro různé geometrie mikroaktuátorů, již není Scratch drive mikroaktuátor modelován.

Druhá část práce obsahuje výsledky ze simulací pro vybrané aktuátory. Geometrie mikroaktuátorů byla optimalizována v souladu s minimální možnou tištěnou šířkou technologie Aerosol Jet Print a celkovou energií systému.

Ve třetí části byl vytvořen výkres na základě druhé části práce. Výkres byl vytvořen s ohledem na výrobu za pomoci technologie Aerosol Jet Print a velikost vytvořené síly. K vybranému modelu byla přidána pružina, která by měla brzdit mikroaktuátor a nedovolit dotyk elektrod a následný zkrat. V závislosti na napětí, kterým se mikroaktuátor dá řídit, byla zjištena vzdálenost posuvu systému. Cílem práce bylo navrhnout aktuátor, který by bylo možné vyrobit technologií Aerosol Jet Print. Vzniká zde několik problémů. U této technologie není samotný vytištěný inkoust samonostý, musí se tedy tisknout na nosný substrát. Substrát by měl být dobře opracovatelný a zároveň pevný, aby se mohl přizpůsobit navržené geometrii a vydržel působení mechanických sil. V rešerši byly popsány senzory vytvořené již zmíněnou technologií, jelikož v současné době není mnoho článků o výrobě mikroaktuátorů technologií Aerosol Jet Print. Největší rozdíl a problém této technologie pro výrobu mikroaktuátoru je ten, že se mikroaktuátor oproti senzoru pohybuje. Musí být tedy vytištěn na dvě části nosného substrátu, které nejsou spojeny mechanicky ani elektricky. Z těchto důvodů je výroba pomocí Aerosol Jet Print problematická a zřejmě ji nelze použít samostatně. Pro výrobu bude potřeba kombinovat technologii Aerosol Jet Print s jinou technologií, například fotolitografií.

Seznam použité literatury

- HUSÁK, Miroslav. Mikrosenzory a mikroaktuátory. Praha: Academia, 2008. Gerstner. ISBN 978-80-200-1478-8.
- [2] NIHTIANOV, Stoyan a Antonio LUQUE, ed. Smart Sensors and MEMS: Intelligent Sensing Devices and Microsystems for Industrial Applications. Second Edition. Woodhead Publishing, 2018. ISBN 978-0-08-102055-5.
- [3] OLFATNIA, Mohammad, Siddharth SOOD, Jason J. GORMAN a Shorya AWTAR. Large Stroke Electrostatic Comb-Drive Actuators Enabled by a Novel Flexure Mechanism. Journal of Microelectromechanical Systems. 2013, 22(2), 483-494. DOI: 10.1109/JMEMS.2012.2227458. ISSN 1057-7157. Dostupné také z: http://ieeexplore.ieee.org/document/6381423/
- [4] MEGAT HASNAN, Megat Muhammad Ikhsan, Mohd Faizul MOHD SABRI, Suhana MOHD SAID a Nik Nazri NIK GHAZALI. Modeling of a High Force Density Fishbone Shaped Electrostatic Comb Drive Microactuator. The Scientific World Journal. 2014, 2014, 1-8. DOI: 10.1155/2014/912683. ISSN 2356-6140. Dostupné také z: http://www.hindawi.com/journals/tswj/2014/912683/
- [5] TEH, Kwok Siong. Additive direct-write microfabrication for MEMS: A review. Frontiers of Mechanical Engineering. 2017, 12(4), 490-509. DOI: 10.1007/s11465-017-0484-4. ISSN 2095-0233. Dostupné také z: http://link.springer.com/10.1007/s11465-017-0484-4
- [6] WANG, Dazhi, Kwok Siong TEH, Kwok Siong TEH, Tongqun WANG, Junsheng LI-ANG, Chong LIU a Liding WANG. Fabrication of micro/nano-structures by electrohydrodynamic jet technique: A review. Frontiers of Mechanical Engineering. 2017, 12(4), 477-489. DOI: 10.1007/s11465-017-0461-y. ISSN 2095-0233. Dostupné také z: http://link.springer.com/10.1007/s11465-017-0461-y
- [7] RAHMAN, Md Taibur, Arya RAHIMI, Subhanshu GUPTA a Rahul PA-NAT. Microscale additive manufacturing and modeling of interdigitated capacitive touch sensors. Sensors and Actuators A: Physical. 2016, 1999, 248, 94-103. DOI: 10.1016/j.sna.2016.07.014. ISSN 09244247. Dostupné také z: https://linkinghub.elsevier.com/retrieve/pii/S0924424716303442
- [8] BLUMENTHAL, Tyler, Vincent FRATELLO, Giovanni NINO a Keith RITALA. Aerosol Jet® Printing onto 3D and Flexible Substrates. Quest Integrated Inc., Kent, WA, USA, 2017.

- HEDGES, Martin; MARIN, Aaron Borras. 3D Aerosol jet printing-Adding electronics functionality to RP/RM. DDMC 2012 conference. 2012. p. 14-15.
- [10] SIDDIQUE, Sabrina, Jin Gyu PARK, Petru ANDREI a Richard LI-ANG. M3D aerosol jet printed buckypaper multifunctional sensors for composite structural health monitoring. Results in Physics. 2019,13.10.1016/j.rinp.2019.02.030. ISSN 22113797. DOI: Dostupné také z: https://linkinghub.elsevier.com/retrieve/pii/S2211379718330390
- [11] LI, Shu, Jin Gyu PARK, Shaokai WANG, Richard LIANG, Chuck ZHANG a Ben WANG. Working mechanisms of strain sensors utilizing aligned carbon nanotube network and aerosol jet printed electrodes. Carbon. 2014, 73, 303-309. DOI: 10.1016/j.carbon.2014.02.068. ISSN 00086223. Dostupné také z: https://linkinghub.elsevier.com/retrieve/pii/S0008622314002097
- [12] AGARWALA, Shweta, Guo Liang GOH a Wai Yee YEONG. Aerosol Jet Printed Strain Sensor: Simulation Studies Analyzing the Effect of Dimension and Design on Performance (September 2018). IEEE Access. 2018, 6, 63080-63086. DOI: 10.1109/ACCESS.2018.2876647. ISSN 2169-3536. Dostupné také z: https://ieeexplore.ieee.org/document/8496770/

Seznam obrázků

1.1	Aktuátor s podélným pohybem	12
1.2	Aktuátor s podélným pohybem zatížen pružinou	13
1.3	Aktuátor s příčným pohybem	14
2.1	Comb drive aktuátor: postranní pohyb	17
2.2	Intenzita elektrického pole na Fishbone Shaped Electrostatic Comb Drive	
	Microactuatoru [4]	18
2.3	(a) Aktuátor s podélným pohybem [2], (b) Aktuátor s podélným pohybem,	
	ve kterém je použit nárazník, převzato z [2]	18
2.4	Scratch drive actuator [2]	19
2.5	Vzor elektrod pro senzor kontrolování stavu kompozitních struktur, pře-	
	vzato z [10]	20
2.6	Optický snímek dotykového kapacitního senzoru, převzato z [7]	21
2.7	Optický obraz tenzometru, převzato z [12]	22
3.1	Konvergenční křivka hřebenového aktuátoru 1	24
3.2	Výkres geometrie 1. hřebenového aktuátoru	25
3.3	3D graf elektrického pole hřebenovém aktuátoru 1 ve vzdálenosti 20 $\mu {\rm m}$ a	
	napětím 400 V	26
3.4	2D graf síly 1. hřebenového aktuátoru pro různá napětí	27
3.5	Výkres hřebenového mikroaktuátoru s proměnnými parametry	28
3.6	2D graf síly 2. hřebenového aktuátoru	29
3.7	Výkres 3. hřebenového aktuátoru	30
3.8	2D graf síly 3. hřebenového aktuátoru	31
3.9	Výkres geometrie paralelního aktuátoru	32
3.10	2D graf síly paralelního aktuátoru pro různá napětí	32
3.11	Výkres geometrie fishbone 1 aktuátoru	33
3.12	2D graf síly fishbone aktuátoru pro první a druhou variantu	34
3.13	2D graf síly fishbone aktuátoru pro třetí a čtvrtou variantu	35
3.14	2D graf síly fishbone aktuátoru pro pátou a šestou variantu	36
3.15	3D graf intenzity elektrického pole pro fishbone aktuátor $\ldots \ldots \ldots \ldots$	37
3.16	Výkres geometrie fishbone 2 aktuátoru	37
3.17	2D graf síly fishbone 2 aktuátoru	38
3.18	3D graf intenzity elektrického pole pro fishbone 2 aktuátor	39
4.1	2D graf posuvu v závislosti na přiloženém napětí	40
4.2	Výrobní výkres hřebenového mikruaktuátoru 2 s pružinou	41

Seznam tabulek

2.1	Materiály které lze použít v Aerosol Jet Print, převzato z [9]	20
3.1	Velikost energie v závislosti na jemnosti sítě pro 430 V a vzdálenost $0{,}02$	
	mm mezi elektrodami	24
3.2	Výsledky síly $F_{\rm x}$ pro různá napětí	26
3.3	hodnoty proměnných parametrů pro Optimization	28
3.4	Hodnoty parametrů pro celý model před optimalizací	28
3.5	Hodnoty nových parametrů pro celý model po optimalizaci	29
3.6	Velikost maximální síly $F_{\rm x}$ a efektivní vzdálenosti posuvu pro různé vari-	
	anty geometrie (860 V) \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	36

Přílohy

Seznam příloh

Příloha 1 - Tabulka energie a síly hřebenového aktuátor
u2

d(mm)	W(nJ)100V	W(nJ)200V	W(nJ)300V	W(nJ)430V	W(nJ)860V	I	F(uN) 100V	F(uN) 200V	F(uN) 300V	F(uN) 430V	F(uN) 860V
0,01	55,3962	221,5850	498,5662	1024,2766	4097,1064		95,6649	382,6594	860,9837	1768,8431	7075,3724
0,03	53,4829	213,9318	481,3465	988,8997	3955,5989		34,6799	138,7197	312,1193	641,2318	2564,9271
0,05	52,7894	211,1574	475,1042	976,0751	3904,3004		25,4168	101,6671	228,7510	469,9562	1879,8249
0,07	52,2810	209,1241	470,5291	966,6760	3866,7039		24,3459	97,3835	219,1129	450,1552	1800,6210
0,09	51,7941	207,1764	466,1469	957,6729	3830,6915		20,6934	82,7737	186,2407	382,6213	1530,4851
0,11	51,3802	205,5209	462,4221	950,0204	3800,0818		23,9788	95,9154	215,8096	443,3688	1773,4753
0,13	50,9007	203,6026	458,1059	941,1531	3764,6123		20,6727	82,6909	186,0545	382,2386	1528,9542
0,15	50,4872	201,9488	454,3848	933,5083	3734,0332		24,3754	97,5015	219,3783	450,7005	1802,8021
0,17	49,9997	199,9988	449,9972	924,4943	3697,9771		19,8574	79,4296	178,7166	367,1632	1468,6530
0,19	49,6025	198,4102	446,4229	917,1510	3668,6041		21,7076	86,8304	195,3683	401,3734	1605,4935
0,21	49,1684	196,6736	442,5155	909,1236	3636,4942		22,0356	88,1423	198,3201	407,4376	1629,7505
0,23	48,7277	194,9107	438,5491	900,9748	3603,8992		22,3260	89,3040	200,9340	412,8077	1651,2307
0,25	48,2812	193,1246	434,5304	892,7186	3570,8746		22,0141	88,0563	198,1266	407,0401	1628,1605
0,27	47,8409	191,3635	430,5679	884,5778	3538,3114		19,8835	79,5341	178,9518	367,6465	1470,5859
0,29	47,4432	189,7728	426,9889	877,2249	3508,8997		24,8441	99,3764	223,5970	459,3676	1837,4705
0,31	46,9463	187,7853	422,5169	868,0376	3472,1502		21,6382	86,5527	194,7436	400,0899	1600,3596
0,33	46,5136	186,0542	418,6221	860,0358	3440,1431		21,3998	85,5992	192,5983	395,6825	1582,7301
0,35	46,0856	184,3423	414,7701	852,1221	3408,4884		20,8314	83,3255	187,4823	385,1720	1540,6879
0,37	45,6689	182,6758	411,0204	844,4187	3377,6747		22,6771	90,7083	204,0937	419,2991	1677,1963
0,39	45,2154	180,8616	406,9386	836,0327	3344,1308		21,9943	87,9773	197,9489	406,6751	1626,7003
0,41	44,7755	179,1020	402,9796	827,8992	3311,5968		21,7911	87,1642	196,1195	402,9167	1611,6667
0,43	44,3397	177,3588	399,0572	819,8409	3279,3634		21,1849	84,7396	190,6641	391,7089	1566,8356
0,45	43,9160	175,6640	395,2439	812,0067	3248,0267		21,3313	85,3250	191,9813	394,4149	1577,6595
0,47	43,4894	173,9575	391,4043	804,1184	3216,4735		22,7359	90,9434	204,6227	420,3861	1681,5443
0,49	43,0346	172,1386	387,3118	795,7107	3182,8426		21,2953	85,1811	191,6574	393,7496	1574,9982
0,51	42,6087	170,4350	383,4787	787,8357	3151,3427		22,0148	88,0590	198,1328	407,0528	1628,2111
0,53	42,1684	168,6738	379,5160	779,6946	3118,7785		21,7558	87,0232	195,8022	402,2647	1609,0588
0,55	41,7333	166,9333	375,6000	771,6493	3086,5973		23,3120	93,2481	209,8083	431,0394	1724,1576
0,57	41,2671	165,0684	371,4038	763,0285	3052,1141		21,5103	86,0411	193,5924	397,7248	1590,8992
0,59	40,8369	163,3475	367,5320	755,0740	3020,2961		20,3468	<mark>81,3870</mark>	183,1208	376,2115	1504,8459
0,61	40,4300	161,7198	363,8696	747,5498	2990,1992		23,2134	92,8536	208,9206	429,2157	1716,8627
0,63	39,9657	159,8627	359,6912	738,9655	2955,8620		21,6518	86,6074	194,8666	400,3426	1601,3702
0,65	39,5326	158,1306	355,7938	730,9586	2923,8346		21,5250	86,1001	193,7253	397,9979	1591,9916
0,67	39,1021	156,4086	351,9193	722,9987	2891,9947		22,1444	88,5776	199,2996	409,4500	1637,8000
0,69	38,6593	154,6370	347,9333	714,8097	2859,2387		21,1408	84,5631	190,2670	390,8930	1563,5722
0,71	38,2364	152,9458	344,1280	706,9918	2827,9673		24,3602	97,4409	219,2420	450,4205	1801,6819
0,73	37,7492	150,9970	339,7431	697,9834	2791,9337		20,9494	83,7975	188,5444	387,3540	1549,4161
0,75	37,3303	149,3210	335,9723	690,2363	2760,9453		21,0870	84,3481	189,7832	389,8991	1559,5965
0,77	36,9085	147,6340	332,1766	682,4383	2729,7534		22,4639	89,8554	202,1747	415,3567	1661,4267
0,79	36,4592	145,8369	328,1331	674,1312	2696,5249		22,3053	<mark>89,221</mark> 2	200,7478	412,4252	1649,7009
0,81	36,0131	144,0525	324,1181	665,8827	2663,5308		21,8131	87,2525	196,3181	403,3246	1613,2985
0,83	35,5769	142,3075	320,1918	657,8162	2631,2649		20,8513	83,4053	187,6618	385,5408	1542,1631
0,85	35,1598	140,6394	316,4385	650,1054	2600,4216		22,2644	89,0577	200,3799	411,6693	1646,6773
0,87	34,7145	138,8582	312,4309	641,8720	2567,4881		22,9796	91,9183	206,8162	424,8925	1699,5698
0,89	34,2550	137,0198	308,2946	633,3742	2533,4967		21,3258	85,3032	191,9322	394,3141	1577,2564
0,91	33,8284	135,3138	304,4560	625,4879	2501,9515		22,0936	88,3742	198,8420	408,5099	1634,0397
0,93	33,3866	133,5463	300,4791	617,3177	2469,2707		21,1414	84,5655	190,2725	390,9042	1563,6168
0,95	32,9637	131,8550	296,6737	609,4996	2437,9984		23,1447	92,5789	208,3024	427,9458	1711,7831
0,97	32,5008	130,0034	292,5076	600,9407	2403,7628		21,8320	87,3280	196,4881	403,6739	1614,6955
0,99	32,0642	128,2568	288,5779	592,8672	2371,4688		20,5758	82,3032	185,1823	380,4467	1521,7868
1,01	31,6527	126,6108	284,8742	585,2583	2341,0331						

Příloha 2 - Část tabulky energie a síly Fishbone 2 aktuátoru

d(mm)	W(nJ)100V	W(nJ)200V	W(nJ)300V	W(nJ)430V	W(nJ)860V	F(uN) 100V	F(uN) 200V	F(uN) 300V	F(uN) 430V	F(uN) 860V
0,01	1,0468	4,1874	9,4215	19,3560	77,4242	3,5985	14,3939	32,3863	66,5358	266,1433
0,02	1,0109	4,0434	9,0977	18,6907	74,7628	0,0316	0,1264	0,2843	0,5841	2,3363
0,03	1,0105	4,0422	9,0948	18,6848	74,7394	1,3879	5,5518	12,4915	25,6631	102,6526
0,04	0,9967	3,9866	8,9699	18,4282	73,7129	1,1988	4,7950	10,7888	22,1650	88,6599
0,05	0,9847	3,9387	8,8620	18,2066	72,8263	1,0957	4,3829	9,8614	20,2597	81,0390
0,06	0,9737	3,8949	8,7634	18,0040	72,0159	1,0377	4,1510	9,3397	19,1880	76,7520
0,07	0,9633	3,8533	8,6700	17,8121	71,2484	1,3805	5,5221	12,4247	25,5259	102,1037
0,08	0,9495	3,7981	8,5458	17,5568	70,2273	0,6217	2,4868	5,5953	11,4951	45,9806
0,09	0,9433	3,7733	8,4898	17,4419	69,7675	-0,0499	-0,1997	-0,4494	-0,9233	-3,6930
0,1	0,9438	3,7753	8,4943	17,4511	69,8045	-0,1673	-0,6694	-1,5061	-3,0943	-12,3772
0,11	0,9455	3,7819	8,5094	17,4821	69,9282	-0,3473	-1,3892	-3,1258	-6,4218	-25,6870
0,12	0,9490	3,7958	8,5406	17,5463	70,1851	-4,6819	-18,7278	-42,1375	-86,5692	-346,2768
0.13	0.9958	3,9831	8,9620	18.4120	73.6479	-1.4896	-5,9586	-13,4068	-27,5436	-110,1744
0.14	1.0107	4.0427	9.0961	18.6874	74,7496	-0.0322	-0.1288	-0.2897	-0,5952	-2.3806
0.15	1.0110	4.0440	9.0990	18.6934	74,7734	-0.8964	-3.5855	-8.0673	-16.5738	-66,2951
0.16	1.0200	4.0798	9,1797	18.8591	75,4364	-0.5104	-2.0416	-4,5935	-9.4371	-37,7485
0.17	1.0251	4,1003	9,2256	18,9535	75.8138	5.0412	20.1649	45,3710	93,2121	372,8484
0.18	0.9747	3,8986	8,7719	18.0213	72,0854	1,7299	6,9195	15,5688	31,9852	127,9409
0.19	0.9574	3,8294	8,6162	17,7015	70,8060	1,7164	6.8657	15 4478	31,7367	126,9468
0.2	0.9402	3 7608	8 4617	17 3841	69 5365	1 6958	6 7831	15 2619	31 3548	125 4192
0.21	0.9232	3 6929	8 3091	17,0706	68 2823	1 4196	5 6786	12 7768	26 2493	104 9973
0,21	0,9232	3,6361	8,3031	16 8081	67 2323	1,4190	4 2570	0 5783	10 6782	78 71 27
0,22	0,9090	2 5026	8,1015	16 6112	66 4452	1,0045	4,2570	10 0/152	22,4866	90.0462
0,23	0,8964	2 5440	7 9761	16 2964	65 5457	0.8522	2 4097	7 6606	15 7567	62 0267
0,24	0,8802	3,5443	7,9701	16,3804	64 0155	0,8522	3,4087	9,0090	17 6952	70 7406
0,23	0,8777	3,3106	7,8994	16,2289	64,9133	0,9303	5,8239	0,0002	1,0032	70,7400
0,20	0,8081	3,4720	7,0133	16,0320	64,2081	-0,0991	-0,5905	-0,6921	-1,6327	-7,3309
0,27	0,8691	3,4763	7,8222	16,0703	62,2014	0,7566	3,0331	0,8291	14,0299	36,1197
0,28	0,8015	3,4402	7,7539	15,9300	63,7202	0,0130	2,4024	5,5405	11,3820	45,5305
0,29	0,8554	3,4210	7,0985	15,8102	63,2049	0,4780	1,9120	4,3019	8,8380	35,3522
0,3	0,8300	3,4023	7,0333	15,7276	62,9115	0,5425	1,5096	5,0021	12 9079	23,3282
0,31	0,8472	3,3000	7,0247	15,0045	62,0361	0,0970	2,7902	6 5510	12,6976	51,5912
0,32	0,8402	3,3009	7,5019	15,5555	61,6028	0,7279	2,9110	0,5512	13,4390	33,8300
0,33	0,8329	3,3317	7,4964	15,4009	61,0038	0,3339	1,3355	3,0049	0,1735	24,0939
0,34	0,8290	3,3184	7,4004	15,3392	61,3509	-0,1790	-0,7160	-1,0110	-3,3097	-13,2389
0,35	0,8314	3,3233	7,4825	15,3723	61,4892	-0,4063	-1,0253	-3,0009	-7,5129	-30,0515
0,36	0,8354	3,3418	7,5190	15,4474	61,7898	-0,4243	-1,6970	-3,8183	-7,8445	-31,3778
0,37	0,8397	3,3588	7,5572	15,5259	62,1035	-4,2491	-16,9963	-38,2417	-78,5655	-314,2621
0,38	0,8822	3,5287	7,9396	16,3115	65,2462	-1,1862	-4,7448	-10,6759	-21,9331	-87,7323
0,39	0,8940	3,5762	8,0464	16,5309	66,1235	0,1795	0,/180	1,6154	3,3188	13,2752
0,4	0,8922	3,5690	8,0302	16,4977	65,9907	-1,2189	-4,8/58	-10,9705	-22,5382	-90,1528
0,41	0,9044	3,61/8	8,1399	16,7231	66,8923	-1,0526	-4,2105	-9,4735	-19,4628	-//,8513
0,42	0,9150	3,6599	8,2347	16,9177	67,6708	4,7201	18,8806	42,4813	87,2755	349,1020
0,43	0,8678	3,4/11	/,8099	16,0449	64,1/97	1,4450	5,7798	13,0046	26,/1/3	106,8690
0,44	0,8533	3,4133	/,6/98	15,///8	63,1111	1,3178	5,2/11	11,8599	24,3655	97,4620
0,45	0,8401	3,3605	/,5612	15,5341	62,1364	1,4089	5,6354	12,6/97	26,0497	104,1987
0,46	0,8260	3,3042	7,4344	15,2736	61,0945	1,2630	5,0519	11,3668	23,3525	93,4102
0,47	0,8134	3,2537	7,3208	15,0401	60,1603	0,8090	3,2359	7,2808	14,9581	59,8322
0,48	0,8053	3,2213	7,2479	14,8905	59,5620	1,0104	4,0415	9,0933	18,6816	/4,7265
0,49	0,7952	3,1809	/,1570	14,/037	58,8148	0,7911	3,1642	/,1195	14,6266	58,5064
0,5	0,/873	3,1493	/,0858	14,5574	58,2297	0,/338	2,9352	6,6043	13,5682	54,2/26
0,51	0,7800	3,1199	7,0198	14,4217	57,6870	-0,0390	-0,1562	-0,3514	-0,7219	-2,8875
0,52	0,7804	3,1215	7,0233	14,4290	57,7158	0,8481	3,3924	7,6329	15,6814	62,7255
0,53	0,7719	3,0875	6,9470	14,2721	57,0886	0,3662	1,4647	3,2957	6,7708	27,0831
0,54	0,7682	3,0729	6,9140	14,2044	56,8178	0,4489	1,7954	4,0397	8,2993	33,1974
0,55	0,7637	3,0549	6,8736	14,1214	56,4858	0,2631	1,0524	2,3678	4,8645	19,4580
0,56	0,7611	3,0444	6,8499	14,0728	56,2912	0,7006	2,8023	6,3052	12,9538	51,8151
0,57	0,7541	3,0164	6,7869	13,9433	55,7731	0,6109	2,4434	5,4977	11,2948	45,1792
0,58	0,7480	2,9920	6,7319	13,8303	55,3213	0,2632	1,0527	2,3687	4,8663	19,4653
0,59	0,7454	2,9814	6,7082	13,7817	55,1266	-0,1567	-0,6267	-1,4100	-2,8968	-11,5871
0,6	0,7469	2,9877	6,7223	13,8106	55,2425	-0,3066	-1,2265	-2,7596	-5,6694	-22,6774

Příloha 3 - Část tabulky energie a síly paralelního aktuátoru

d(mm) mm W(µ) W(µ) F(µN) 0.02 -0,58 1,57E-09 1,57E-09 1,252 2,23529 0,03 -0,57 1,62E-09 1,280 2,2688 6,43770 0.03 -0,57 1,12E-09 1,1250 2,23529 0,03 -0,57 1,62E-09 1,2801 2,2455 0.06 -0,55 6,62E-10 0,6681 6,2865 0,066 -0,55 1,08E-10 0,818 4,8706 0,07 -0,33 8,91E-10 0,9208 4,8226 0.08 -0,52 5,76E-10 0,5365 3,9306 0,09 -0,51 7,7152 3,01200 0,11 -0,48 4,76E-10 0,4722 2,0495 0,11 -0,49 6,86E-10 0,6857 3,4907 0,11 -0,48 4,52E-10 0,4720 2,1894 0,11 -0,49 6,86E-10 0,6857 3,4907 0,13 -0,47 4,22E-10 0,4310 0,153 0,141 -0,46 5,98E-10 0,6218	100 V					120 V				
0.02 -0.58 1.57C-09 1.5721 44,7063 0.02 -0.58 2.2684 64,3770 0.03 -0.57 1,12E-09 1,1250 22,3529 0.03 -0.57 1,62E-09 1,6200 32,1882 0.04 -0.56 9,01E-10 0.9015 5,66E-10 0,7665 8,4837 0.05 -0,55 1,1027 1,281 19,4412 0.05 -0.55 6,19E-10 0.6618 6,2896 0.06 -0.54 9,82E-10 0.9815 9,0570 0.06 -0.55 5,16E-10 0.5700 3,3539 0.069 -0.51 7,715E-10 0.8208 4,8296 0.09 -0.51 5,716-10 0.4722 2,0959 0,1 -0,57 7,16E-10 0,7725 5,6600 0.11 -0.94 4,52E-10 0,4520 2,0119 0,12 -0.48 6,51E-10 0,6507 3,1518 0.14 -0.46 4,91E-10 0,4319 2,1484 0,413 -0,44 5,34E-10 0,5552	d(mm)	mm	W(J)	W(nJ)	F(uN)	d(mm)	mm	(L)W	W(nJ)	F(uN)
0.03 -0.57 1,12E-09 1,12E-09 23,329 0.03 -0.57 1,62E-09 1,2081 19,4412 0.06 -0.56 0,66E-10 0,7065 8,4837 0,05 -0.55 1,1027 1,1037 12,2165 0.06 -0.54 6,82E-10 0,6816 6,2386 0,06 -0.54 9,82E-10 0,8910 7,0133 0.08 -0.52 5,70E-10 0,5700 3,3539 0,08 -0.52 8,21E-10 0,8910 7,0133 0.08 -0.52 5,70E-10 0,5700 3,3539 0,08 -0.52 8,21E-10 0,8208 4,8296 0.09 -0.51 5,36E-10 0,54520 2,0119 0,11 -0.49 6,85E-10 0,6587 3,9907 0,13 -0.47 4,22E-10 0,4313 1,741 -0.46 5,90E-10 0,5909 2,5359 0,16 -0.44 3,86E-10 0,3828 1,5131 0,16 -0.44 5,81E-10 0,5205 0,6824	0,02	-0,58	1,57E-09	1,5721	44,7063	0,02	-0,58	2,26E-09	2,2638	64,3770
0.04 -0.56 9.01E-10 0.9015 13.5008 0.04 -0.56 1.30E-09 1.2281 19.4412 0.05 -0.55 7,66E-10 0.7665 8,4837 0.05 -0.55 1,10E-09 1,1037 12.2165 0.06 -0.54 6,82E-10 0.6817 4,8706 0.07 -0.53 8,91E-10 0.9815 9,0570 0.08 -0.52 5,70E-10 0.5365 3,9306 0.09 -0.51 7,73E-10 0.7725 5,6600 0.11 -0.54 9,97E-10 0.4972 2,0959 0.1 -0.57 7,74E-10 0.8857 3,4907 0.11 -0.494 4,52E-10 0.4310 2,1484 0.13 -0.44 5,610 0.6508 2,8971 0.14 -0.464 4,32E-10 0,4319 2,1484 0,13 -0.44 5,221-10 0,5239 2,1379 0.14 -0.44 3,36E-10 0,3614 0,4739 0,18 -0.44 5,56610 0,5556 2,1789 <td>0,03</td> <td>-0,57</td> <td>1,12E-09</td> <td>1,1250</td> <td>22,3529</td> <td>0,03</td> <td>-0,57</td> <td>1,62E-09</td> <td>1,6200</td> <td>32,1882</td>	0,03	-0,57	1,12E-09	1,1250	22,3529	0,03	-0,57	1,62E-09	1,6200	32,1882
0.05 -0.54 6,82E-10 0,7665 8,4837 0.05 -0.54 9,82E-10 0,9815 9,057 0.06 -0.54 6,82E-10 0,6816 6,2896 0,06 -0.54 9,82E-10 0,9815 9,057 0.07 -0.53 6,115-10 0,5700 3,3339 0,08 -0.52 8,21E-10 0,8910 7,7156 0.09 -0.51 5,36E-10 0,3762 2,0959 0,1 -0.5 7,16E-10 0,7159 3,0180 0,11 -0.44 4,75E-10 0,4762 2,04241 0,11 -0.46 6,51E-10 0,6507 3,497 0,13 -0.47 4,32E-10 0,4319 2,1894 0,13 -0.47 5,22E-10 0,5219 3,1528 0,16 -0.44 3,86E-10 0,3838 1,5131 0,16 -0.44 5,66E-10 0,5505 2,7299 0,17 -0.43 3,87E-10 0,3704 0,18 -0,424 5,20E-10 0,5205 0,6824	0,04	-0,56	9,01E-10	0,9015	13,5008	0,04	-0,56	1,30E-09	1,2981	19,4412
0.06 -0.54 6.82E-10 0.6815 6.2896 0.06 -0.54 8.91E-10 0.8815 9.0570 0.07 -0.53 6.19E-10 0.6187 4.8706 0.07 -0.53 8.91E-10 0.8815 9.0570 0.09 -0.51 5.36E-10 0.5365 3.9306 0.09 -0.51 7.71E-10 0.7725 5.6600 0.11 -0.49 4.75E-10 0.4772 2.0959 0.1 -0.5 7.16E-10 0.6887 3.9407 0.13 -0.47 4.52E-10 0.4520 2.0119 0.12 -0.48 6.51E-10 0.5608 2.8971 0.13 -0.47 4.32E-10 0.4310 0.6537 0.14 -0.46 5.90E-10 0.5903 0.9413 0.16 -0.43 3.61E-10 0.3634 1.5131 0.16 -0.44 5.81E-10 0.5636 1.4739 0.17 -0.43 3.61E-10 0.3634 1.0422 0.211 -0.43 5.34E-10 0.5138 1.3338	0,05	-0,55	7,66E-10	0,7665	8,4837	0,05	-0,55	1,10E-09	1,1037	12,2165
0.07 -0.53 6.19E-10 0.6187 4.8706 0.07 -0.53 8.91E-10 0.8910 7.0136 0.08 -0.52 5,70E-10 0.5700 3.3339 0.08 -0.52 8,21E-10 0.844 4,226 0.01 -0.51 5,35E-10 0.5320 2,9959 0.1 -0.57 7,16E-10 0.7129 3.0180 0.11 -0.48 4,72E-10 0.4762 2,4241 0.11 -0.48 6,56E-10 0.6557 3,4590 0.12 -0.448 4,32E-10 0,4710 0,6537 0,14 -0.46 5,90E-10 0,5903 0,9413 0.15 -0.44 3,86E-10 0,3838 1,5131 0.16 -0.44 5,66E-10 0,5535 2,1789 0.17 -0.43 3,87E-10 0,3507 1,3471 0.19 -0.44 5,46E-10 0,5562 2,1789 0.14 -0.42 5,60E-10 0,5555 0,22 0,37 3,4E-10 0,3130 0,1309 0,414	0,06	-0,54	6,82E-10	0,6816	6,2896	0,06	-0,54	9,82E-10	0,9815	9,0570
0.08 -0.52 5,70E-10 0.5700 3,3539 0.08 -0.52 8,21E-10 0.8208 4,8296 0.09 -0.51 5,36E-10 0.5365 3,306 0.09 -0.51 7,77E-10 0,4772 2,0959 0.1 -0.57 7,71E-10 0,4772 2,0959 0.1 -0.48 6,51E-10 0,6857 3,4907 0.12 -0.48 4,52E-10 0,4520 2,0119 0,12 -0.48 6,51E-10 0,6219 3,1528 0.14 -0,47 4,32E-10 0,4100 0,6537 0,14 -0,46 5,90E-10 0,5508 2,8971 0.15 -0,44 3,36E-10 0,3858 1,5131 0,16 -0,44 5,56E-10 0,5538 1,3308 0.18 -0,42 3,51E-10 0,3647 0,772 0,22 0,17 -0,43 5,34E-10 0,5138 1,3308 0.21 -0,44 3,451-10 0,3567 1,4471 0,18 -0,42 5,416 0,44943 0,8320	0,07	-0,53	6,19E-10	0,6187	4,8706	0,07	-0,53	8,91E-10	0,8910	7,0136
0.09 -0.51 5,36E-10 0.5365 3,9306 0.09 -0.51 7,78E-10 0,7725 5,6600 0.11 -0.54 4,97E-10 0,4722 2,0959 0,1 -0.55 7,16E-10 0,7129 3,1480 0.11 -0.49 6,56E-10 0,6857 3,4907 0,12 -0.48 6,51E+10 0,6682 3,49971 0.13 -0.47 4,32E-10 0,4310 2,1894 0,11 -0,44 6,51E+10 0,5033 0,9413 0.14 -0.44 4,386E-10 0,4304 1,7610 0,15 -0.45 5,81E+10 0,5809 2,5359 0.16 -0.44 3,841-10 0,33707 0,9242 0,17 -0,43 5,181-10 0,3372 0,2 -0,44 5,481-10 0,5326 0,824 0,19 -0,41 3,57E-10 0,3270 0,5576 0,22 -0,34 4,411-10 0,4799 0,8030 0,22 -0,33 3,27E-10 0,3270 0,5576 0,22	0,08	-0,52	5,70E-10	0,5700	3,3539	0,08	-0,52	8,21E-10	0,8208	4,8296
0,1 -0,5 4,97E-10 0,4972 2,0959 0,1 -0,5 7,16E-10 0,7159 3,0180 0,11 -0,49 4,76E-10 0,4762 2,4241 0,11 -0,49 6,85E-10 0,6587 3,4907 0,13 -0,47 4,32E-10 0,4319 2,1894 0,13 -0,47 6,22E-10 0,6219 3,1528 0,14 -0,46 4,10E-10 0,4100 0,6537 0,14 -0,46 5,90E-10 0,5556 2,1789 0,15 -0,44 3,86E-10 0,3858 1,5131 0,16 -0,44 5,56E-10 0,5556 2,1789 0,17 -0,43 3,71E-10 0,3567 1,3471 0,19 -0,41 5,14E-10 0,5136 1,9399 0,2 -0,4 3,34E-10 0,3374 1,0422 0,21 -0,38 4,71E-10 0,4769 0,6830 0,21 -0,38 3,72E-10 0,3270 0,5576 0,22 -0,38 4,71E-10 0,4769 0,6800	0,09	-0,51	5,36E-10	0,5365	3,9306	0,09	-0,51	7,73E-10	0,7725	5,6600
0,11 -0,49 4,76E-10 0,4762 2,4241 0,11 -0,49 6,86E-10 0,6857 3,4907 0,12 -0,48 4,52E-10 0,4319 2,184 0,13 -0,48 6,51E-10 0,6508 2,8971 0,13 -0,44 4,01E-10 0,4100 0,6537 0,14 -0,46 5,90E-10 0,5903 0,9413 0,15 -0,45 4,03E-10 0,0348 1,711 -0,15 -0,45 5,81E-10 0,5809 2,338 0,16 -0,44 3,61E-10 0,3170 0,9242 0,17 -0,43 5,34E-10 0,5338 1,3308 0,18 -0,42 3,61E-10 0,3432 0,5782 0,2 -0,4 4,94E-10 0,4433 0,8326 0,21 -0,38 3,77E-10 0,3374 1,0422 0,21 -0,38 4,77E-10 0,3270 0,5576 0,22 -0,4 4,94E-10 0,4489 1,503 0,22 -0,38 3,7EE-10 0,3214 0,3141	0,1	-0,5	4,97E-10	0,4972	2,0959	0,1	-0,5	7,16E-10	0,7159	3,0180
0,12 -0,48 4,52E-10 0,4520 2,0119 0,12 -0,48 6,51E-10 0,6508 2,8971 0,13 -0,47 4,32E-10 0,4319 2,1894 0,13 -0,47 6,22E-10 0,6219 3,1528 0,14 -0,45 4,03E-10 0,4034 1,7610 0,15 -0,45 5,81E-10 0,5566 2,1789 0,16 -0,44 3,61E-10 0,3614 0,4739 0,18 -0,42 5,26E-10 0,5556 2,1789 0,19 -0,41 3,71E-10 0,3614 0,4739 0,18 -0,42 5,26E-10 0,5136 1,9399 0,21 -0,43 3,37E-10 0,3374 1,0422 0,21 -0,34 4,96E-10 0,4659 1,5007 0,22 -0,34 3,18E-10 0,3178 1,1524 0,24 -0,36 4,58E-10 0,4769 0,6758 0,24 -0,36 3,18E-10 0,3178 1,1524 0,225 -0,35 4,58E-10 0,4454 0,0756 </td <td>0,11</td> <td>-0,49</td> <td>4,76E-10</td> <td>0,4762</td> <td>2,4241</td> <td>0,11</td> <td>-0,49</td> <td>6,86E-10</td> <td>0,6857</td> <td>3,4907</td>	0,11	-0,49	4,76E-10	0,4762	2,4241	0,11	-0,49	6,86E-10	0,6857	3,4907
0,13 -0,47 4,32E-10 0,4319 2,1894 0,13 -0,47 6,22E-10 0,6219 3,1528 0,14 -0,46 4,08E-10 0,4004 1,7610 0,15 -0,45 5,81E-10 0,5809 0,5339 0,16 -0,44 3,86E-10 0,3858 1,5131 0,16 -0,44 5,56E-10 0,5556 2,1789 0,17 -0,43 3,71E-10 0,3650 1,3471 0,19 -0,41 5,44E-10 0,5136 1,9399 0,2 -0,4 3,43E-10 0,3142 0,5782 0,2 -0,4 4,94E-10 0,4943 0,8326 0,21 -0.38 3,77E-10 0,3270 0,5576 0,22 -0.38 4,71E-10 0,4709 0,8030 0,23 -0,37 3,21E-10 0,3214 0,3141 0,23 -0,37 4,68E-10 0,4884 0,0733 0,24 -0,35 3,18E-10 0,3183 0,0509 0,24 -0,36 4,58E-10 0,4542 0,4410	0,12	-0,48	4,52E-10	0,4520	2,0119	0,12	-0,48	6,51E-10	0,6508	2,8971
0,14 -0,46 4,10E-10 0,4100 0,6537 0,14 -0,46 5,90E-10 0,5903 0,9413 0,15 -0,44 4,08E-10 0,3858 1,5131 0,16 -0,44 5,56E-10 0,5506 2,1789 0,17 -0,43 3,71E-10 0,3707 0,9242 0,17 -0,43 5,34E-10 0,5205 0,6824 0,19 -0,41 3,57E-10 0,3614 0,4739 0,18 -0,42 5,20E-10 0,5205 0,6824 0,19 -0,41 3,57E-10 0,3374 1,0422 0,21 -0,39 4,86E-10 0,4839 1,5007 0,22 -0,38 3,27E-10 0,3214 0,3141 0,223 -0,37 4,63E-10 0,4629 0,4522 0,24 -0,36 3,18E-10 0,3183 0,509 0,24 -0,36 4,58E-10 0,4584 0,0733 0,25 -0,33 3,02E-10 0,3016 0,6462 0,27 -0,33 4,34E-10 0,44343 0,9306 <td>0,13</td> <td>-0,47</td> <td>4,32E-10</td> <td>0,4319</td> <td>2,1894</td> <td>0,13</td> <td>-0,47</td> <td>6,22E-10</td> <td>0,6219</td> <td>3,1528</td>	0,13	-0,47	4,32E-10	0,4319	2,1894	0,13	-0,47	6,22E-10	0,6219	3,1528
0,15 -0,45 4,03E-10 0,4034 1,7610 0,15 -0,45 5,81E-10 0,5809 2,5339 0,16 -0,44 3,86E-10 0,3858 1,5131 0,16 -0,44 5,54E-10 0,5556 2,1789 0,17 -0,43 3,71E-10 0,3614 0,4739 0,18 -0,42 5,24E-10 0,5205 0,6824 0,19 -0,41 3,57E-10 0,3567 1,3471 0,19 -0,41 5,14E-10 0,5136 1,9399 0,2 -0,4 3,43E-10 0,3270 0,5576 0,22 -0,38 4,71E-10 0,4459 1,5007 0,22 -0,38 3,27E-10 0,3270 0,5576 0,22 -0,38 4,58E-10 0,4629 0,4732 0,24 -0,36 3,18E-10 0,3178 1,1524 0,25 -0,35 4,58E-10 0,4576 1,6595 0,26 -0,34 3,06E-10 0,3063 0,4700 0,26 -0,34 4,41E-10 0,4410 0,6768	0.14	-0.46	4.10E-10	0.4100	0.6537	0.14	-0.46	5.90E-10	0.5903	0.9413
0,16 -0,44 3,86E-10 0,3858 1,5131 0,16 -0,44 5,56E-10 0,5556 2,1789 0,17 -0,43 3,71E-10 0,3707 0,9242 0,17 -0,43 5,34E-10 0,5338 1,3308 0,18 -0,42 3,67E-10 0,3567 1,3471 0,19 -0,41 5,14E-10 0,5136 1,9399 0,2 -0,4 3,43E-10 0,3432 0,5782 0,2 -0,4 4,94E-10 0,4943 0,8326 0,21 -0,38 3,27E-10 0,3274 1,0422 0,21 -0,39 4,63E-10 0,4859 1,5007 0,22 -0,38 3,21E-10 0,3214 0,3141 0,23 -0,37 4,63E-10 0,4529 0,4522 0,24 -0,36 3,18E-10 0,3183 0,0509 0,24 -0,36 4,58E-10 0,4576 1,6595 0,26 -0,34 3,02E-10 0,3016 0,4642 0,27 -0,33 4,34E-10 0,4410 0,6788	0.15	-0.45	4.03E-10	0.4034	1,7610	0.15	-0.45	5.81F-10	0.5809	2,5359
0,17 -0,43 3,71E-10 0,3707 0,9242 0,17 -0,43 5,34E-10 0,5338 1,3308 0,18 -0,42 3,61E-10 0,3614 0,4739 0,18 -0,42 5,20E-10 0,5205 0,6824 0,19 -0,41 3,37E-10 0,3374 1,0422 0,21 -0,39 4,86E-10 0,4439 0,8326 0,21 -0,39 3,37E-10 0,3270 0,5576 0,22 -0,38 4,71E-10 0,4709 0,8030 0,23 -0,37 3,21E-10 0,3178 1,1524 0,25 -0,36 4,58E-10 0,4584 0,0733 0,25 -0,35 3,18E-10 0,3178 1,1524 0,25 -0,35 4,58E-10 0,4576 1,6595 0,26 -0,34 3,02E-10 0,3016 0,6462 0,27 -0,33 4,34E-10 0,4410 0,6786 0,28 -0,322 2,95E-10 0,2837 -0,9457 0,3 -0,31 4,17E-10 0,4469 0,3631 <td>0.16</td> <td>-0.44</td> <td>3.86E-10</td> <td>0.3858</td> <td>1.5131</td> <td>0.16</td> <td>-0.44</td> <td>5.56E-10</td> <td>0.5556</td> <td>2,1789</td>	0.16	-0.44	3.86E-10	0.3858	1.5131	0.16	-0.44	5.56E-10	0.5556	2,1789
0,18 -0,42 3,61E-10 0,3567 1,3471 0,18 -0,42 5,20E-10 0,5205 0,6824 0,19 -0,41 3,57E-10 0,3567 1,3471 0,19 -0,41 5,14E-10 0,5136 1,9399 0,2 -0,4 3,43E-10 0,3374 1,0422 0,21 -0,39 4,86E-10 0,44859 1,5007 0,22 -0,38 3,27E-10 0,3270 0,5576 0,22 -0,38 4,71E-10 0,4709 0,8030 0,23 -0,37 3,21E-10 0,3178 1,1524 0,25 -0,35 4,58E-10 0,4584 0,0733 0,25 -0,35 3,18E-10 0,3178 1,1524 0,27 -0,33 4,34E-10 0,4410 0,6768 0,27 -0,33 3,02E-10 0,3063 0,4700 0,26 -0,34 4,41E-10 0,4433 0,9306 0,28 -0,32 2,95E-10 0,22851 0,6267 0,23 4,25E-10 0,4250 0,8074	0.17	-0.43	3.71E-10	0.3707	0.9242	0.17	-0.43	5.34E-10	0.5338	1.3308
0,12 0,13 0,14 3,57E-10 0,3567 1,3471 0,19 -0,41 5,14E-10 0,5136 1,9399 0,2 -0,4 3,43E-10 0,3374 1,0422 0,21 -0,39 3,87E-10 0,3374 1,0422 0,21 -0,39 4,86E-10 0,4899 1,5007 0,22 -0,38 3,27E-10 0,3270 0,5576 0,22 -0,38 4,71E-10 0,4709 0,8030 0,23 -0,37 3,21E-10 0,3214 0,514 0,23 -0,37 4,58E-10 0,4629 0,4522 0,24 -0,36 3,18E-10 0,3178 1,1524 0,25 -0,33 4,34E-10 0,4410 0,6768 0,27 -0,33 3,02E-10 0,3016 0,6462 0,27 -0,33 4,34E-10 0,4199 0,8351 0,3 -0,32 2,95E-10 0,2895 0,5800 0,29 -0,31 4,41E-10 0,4169 0,8351 0,3 -0,32 2,84E-10 0,2895	0.18	-0.42	3.61F-10	0.3614	0.4739	0.18	-0.42	5.20F-10	0.5205	0.6824
0,2 -0,4 3,43E-10 0,3432 0,5782 0,2 -0,4 4,94E-10 0,4943 0,8326 0,21 -0,33 3,37E-10 0,3374 1,0422 0,21 -0,38 4,86E-10 0,4859 1,5007 0,22 -0,38 3,27E-10 0,3270 0,5576 0,22 -0,38 4,71E-10 0,4629 0,4522 0,24 -0,36 3,18E-10 0,3178 1,1524 0,225 -0,35 4,58E-10 0,4576 1,6595 0,26 -0,34 3,06E-10 0,3063 0,4700 0,26 -0,34 4,41E-10 0,4433 0,9306 0,26 -0,32 2,95E-10 0,22951 0,5607 0,28 -0,32 4,34E-10 0,4433 0,9306 0,29 -0,31 2,90E-10 0,2895 0,5800 0,229 -0,31 4,17E-10 0,4085 -1,3618 0,30 -0,3 2,84E-10 0,2837 -0,9457 0,33 -0,57 1,01E-08 10,1249 201,1762<	0.19	-0.41	3.57E-10	0.3567	1.3471	0.19	-0.41	5.14E-10	0.5136	1.9399
0,1 0,1 <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<>	0.2	-0.4	3.43F-10	0.3432	0.5782	0.2	-0.4	4.94F-10	0.4943	0.8326
0,22 0,32 0,327 0,5576 0,22 0,33 4,71E-10 0,429 0,452 0,23 -0,37 3,21E-10 0,3214 0,3141 0,23 -0,37 4,63E-10 0,4629 0,4522 0,24 -0,36 3,18E-10 0,3183 0,0509 0,24 -0,36 4,58E-10 0,4584 0,0733 0,25 -0,33 3,18E-10 0,3178 1,1524 0,25 -0,33 4,58E-10 0,4576 1,6595 0,26 -0,33 3,06E-10 0,3016 0,6462 0,27 -0,33 4,34E-10 0,4343 0,9306 0,28 -0,32 2,95E-10 0,2951 0,5607 0,28 -0,32 4,25E-10 0,4450 1,3618 0,3 -0,3 2,98E-10 0,2837 -0,9457 0,3 -0,3 4,09E-10 0,4485 -1,3618 0,3 -0,52 0,361 0,4629 0,4250 0,8074 0,30 -0,58 1,1120 0,1169 0,8155	0.21	-0.39	3.37E-10	0.3374	1.0422	0.21	-0.39	4.86E-10	0.4859	1,5007
0.22 0.32 0.321 0.3214	0.22	-0.38	3.27E-10	0.3270	0.5576	0.22	-0.38	4.71E-10	0,4709	0.8030
0.12 0.13 0.13 0.13 0.13 0.13 0.13 0.050 0.14 0.0458 0.0733 0.25 -0.35 3,18E-10 0,3178 1,1524 0,25 -0.35 4,58E-10 0,4576 1,6595 0.26 -0.34 3,06E-10 0,3063 0,4700 0,26 -0.34 4,41E-10 0,4410 0,6768 0.27 -0.33 3,02E-10 0,2951 0,5607 0,28 -0.32 4,25E-10 0,4230 0,8074 0,29 -0.31 2,90E-10 0,2837 -0,9457 0,3 -0.31 4,09E-10 0,4085 -1,3618 0,3 -0.3 2,84E-10 0,2837 -0,9457 0,3 -0,31 4,09E-10 0,4085 -1,3618 0,02 -0,58 6,29E-09 6,2882 178,8251 0,02 -0,58 1,41E-08 10,1249 201,1762 0,04 -0,56 3,61E-09 3,658 54,0033 0,04 -0,56 8,9811 76,3529	0.23	-0.37	3 21E-10	0 3214	0 3141	0.23	-0.37	4 63E-10	0.4629	0.4522
0,1 0,10 0,100 0,	0.24	-0.36	3 18E-10	0 3183	0.0509	0.24	-0.36	4 58E-10	0.4584	0.0733
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.25	-0.35	3 18E-10	0 3178	1 1524	0.25	-0.35	4 58E-10	0,4576	1 6595
0,25 0,34 0,340 0,340 0,34 1,341 0,343 0,343 0,27 -0,33 3,02E-10 0,3016 0,6462 0,27 -0,33 4,34E-10 0,4343 0,9306 0,29 -0,31 2,90E-10 0,2895 0,5800 0,29 -0,31 4,17E-10 0,4169 0,8351 0,3 -0,3 2,84E-10 0,2837 -0,9457 0,3 -0,3 4,09E-10 0,4085 -1,3618 200 V 300 V d(mm) mm W(I) W(nJ) F(uN) d(mm) mm W(I) W(I) F(uN) 0,02 -0,58 6,29E-09 6,2882 178,8251 0,02 -0,58 1,41E-08 14,1485 402,3565 0,03 -0,57 4,50E-09 4,5000 89,4116 0,03 -0,57 1,01E-08 10,1249 201,1762 0,05 -0,55 3,07E-09	0,25	-0.34	3.06E-10	0,3063	0.4700	0,25	-0.34	4.41E-10	0,4410	0.6768
0,27 0,32 2,925E 10 0,295E 0,5072 0,217 0,32 4,37E 10 0,345 0,33074 0,28 -0,32 2,95E 10 0,2295E 0,5000 0,229 -0,31 4,25E 10 0,4255 0,8074 0,3 -0,3 2,84E 10 0,2837 -0,9457 0,3 -0,3 4,09E 10 4405 -1,3618 200 V 300 V 300V <td>0,20</td> <td>-0.33</td> <td>3.02E-10</td> <td>0,3016</td> <td>0,4700</td> <td>0,20</td> <td>-0.33</td> <td>4 34F-10</td> <td>0,4343</td> <td>0,0700</td>	0,20	-0.33	3.02E-10	0,3016	0,4700	0,20	-0.33	4 34F-10	0,4343	0,0700
0,12 0,14 0,113 1,15 0,12 1,15 1,15 1,15 1,15 1,15 1,15 1,15 <t< td=""><td>0.28</td><td>-0.32</td><td>2.95E-10</td><td>0,2951</td><td>0.5607</td><td>0,28</td><td>-0.32</td><td>4.25E-10</td><td>0.4250</td><td>0.8074</td></t<>	0.28	-0.32	2.95E-10	0,2951	0.5607	0,28	-0.32	4.25E-10	0.4250	0.8074
0,3 -0,3 2,84E-10 0,2837 -0,9457 0,3 -0,3 4,09E-10 0,4085 -1,3618 200 V 300 V 300 V 300 V 4 - <td>0.29</td> <td>-0.31</td> <td>2.90E-10</td> <td>0.2895</td> <td>0.5800</td> <td>0.29</td> <td>-0.31</td> <td>4.17E-10</td> <td>0.4169</td> <td>0.8351</td>	0.29	-0.31	2.90E-10	0.2895	0.5800	0.29	-0.31	4.17E-10	0.4169	0.8351
Op Op<	0.3	-0.3	2.84E-10	0.2837	-0.9457	0.3	-0.3	4.09E-10	0.4085	-1.3618
200 V 300 V W(J) W(J) W(J) F(uN) d(mm) mm W(J) W(nJ) F(uN) 0,02 -0,58 6,29E-09 6,2882 178,8251 0,02 -0,58 1,41E-08 14,1485 402,3565 0,03 -0,57 4,50E-09 4,5000 89,4116 0,03 -0,57 1,01E-08 10,1249 201,1762 0,04 -0,56 3,61E-09 3,6058 54,0033 0,04 -0,56 8,11E-09 8,1132 121,5075 0,05 -0,55 3,07E-09 3,0658 33,9346 0,05 -0,55 6,90E-09 6,8981 76,3529 0,06 -0,54 2,73E-09 2,7265 25,1582 0,06 -0,54 6,1346 56,6061 0,07 -0,53 2,47E-09 2,4749 19,4823 0,07 -0,53 5,57E-09 5,5685 43,8351 0,08 -0,52 2,28E-09 2,2801 13,4155 0,08 -0,52 5,1316 9,51301 30,1849 <td></td> <td></td> <td>,</td> <td></td> <td>,</td> <td>,</td> <td></td> <td>,</td> <td>,</td> <td></td>			,		,	,		,	,	
d(mm)mmW(J)W(nJ)F(uN)d(mm)mmW(J)W(nJ)F(uN)0,02-0,586,29E-096,2882178,82510,02-0,581,41E-0814,1485402,35650,03-0,574,50E-094,500089,41160,03-0,571,01E-0810,1249201,17620,04-0,563,61E-093,605854,00330,04-0,568,11E-098,1132121,50750,05-0,553,07E-093,065833,93460,05-0,556,90E-096,898176,35290,06-0,542,73E-092,726525,15820,06-0,546,13E-096,134656,60610,07-0,532,47E-092,2474919,48230,07-0,535,57E-095,568543,83510,08-0,522,28E-092,280113,41550,08-0,525,13E-095,130130,18490,09-0,512,15E-092,145915,72220,09-0,514,83E-094,828335,37500,11-0,491,90E-091,90499,69650,11-0,494,29E-094,285921,81710,12-0,481,81E-091,80798,04760,12-0,484,07E-094,667718,10710,14-0,461,64E-091,63982,61460,14-0,463,69E-093,886719,70470,14-0,451,61E-091,61377,04400,15-0,453,63E-093,36865,8	200 V					300 V				
0.02 -0.58 6.29E-09 6.2882 178,8251 0.02 -0.58 1,41E-08 14,1485 402,3565 0.03 -0.57 4,50E-09 4,5000 89,4116 0.03 -0.57 1,01E-08 10,1249 201,1762 0.04 -0.56 3,61E-09 3,6058 54,0033 0,04 -0.56 8,11E-09 8,1132 121,5075 0.05 -0.55 3,07E-09 3,0658 33,9346 0,05 -0.55 6,90E-09 6,8881 76,3529 0.06 -0.54 2,73E-09 2,7265 25,1582 0,06 -0.54 6,13E-09 6,1346 56,6061 0.07 -0.53 2,47E-09 2,4749 19,4823 0,07 -0.53 5,57E-09 5,5685 43,8351 0,08 -0,52 2,28E-09 2,2801 13,4155 0,08 -0,52 5,1310 30,1849 0,09 -0,51 2,15E-09 2,1459 15,7222 0,09 -0,51 4,8283 35,3750 <	d(mm)	mm	W(J)	W(nJ)	F(uN)	d(mm)	mm	W(J)	W(nJ)	F(uN)
0,03 -0,57 4,50E-09 4,5000 89,4116 0,03 -0,57 1,01E-08 10,1249 201,1762 0,04 -0,56 3,61E-09 3,6058 54,0033 0,04 -0,56 8,11E-09 8,1132 121,5075 0,05 -0,55 3,07E-09 3,0658 33,9346 0,05 -0,55 6,90E-09 6,8981 76,3529 0,06 -0,54 2,73E-09 2,7265 25,1582 0,06 -0,54 6,13E-09 6,1346 56,6061 0,07 -0,53 2,47E-09 2,4749 19,4823 0,07 -0,53 5,57E-09 5,5685 43,8351 0,08 -0,52 2,28E-09 2,2801 13,4155 0,08 -0,52 5,1301 30,1849 0,09 -0,51 2,15E-09 2,1459 15,7222 0,09 -0,51 4,8283 35,3750 0,11 -0,49 1,90E-09 1,9887 8,3835 0,1 -0,5 4,4745 18,8628 0,11 -0,48 </td <td>0.02</td> <td>-0.58</td> <td>6.29E-09</td> <td>6.2882</td> <td>178.8251</td> <td>0.02</td> <td>-0.58</td> <td>1.41E-08</td> <td>14.1485</td> <td>402.3565</td>	0.02	-0.58	6.29E-09	6.2882	178.8251	0.02	-0.58	1.41E-08	14.1485	402.3565
0.04 -0.56 3.61E-09 3.6058 54,0033 0.04 -0.56 8.11E-09 8.1132 121,5075 0.05 -0.55 3.07E-09 3.0658 33,9346 0.05 -0.55 6,90E-09 6,8881 76,3529 0.06 -0.54 2.73E-09 2.7265 25,1582 0.06 -0.54 6,13E-09 6,1346 56,6061 0.07 -0.53 2.47E-09 2.4749 19,4823 0.07 -0.53 5,57E-09 5,5685 43,8351 0.08 -0.52 2,28E-09 2.2801 13,4155 0.08 -0.52 5,13E-09 5,1301 30,1849 0.09 -0.51 2,15E-09 2,1459 15,7222 0.09 -0.51 4,8283 35,3750 0.1 -0.49 1,90E-09 1,9887 8,3835 0.1 -0.5 4,4745 18,8628 0.11 -0.48 1,81E-09 1,6079 8,0476 0,12 -0.48 4,07E-09 4,0677 18,1071 0,13 <td>0.03</td> <td>-0.57</td> <td>4,50E-09</td> <td>4,5000</td> <td>89,4116</td> <td>0.03</td> <td>-0,57</td> <td>, 1.01E-08</td> <td>10.1249</td> <td>201.1762</td>	0.03	-0.57	4,50E-09	4,5000	89,4116	0.03	-0,57	, 1.01E-08	10.1249	201.1762
0.05 -0.55 3.07E-09 3.0658 33.9346 0.05 -0.55 6.90E-09 6.8981 76,3529 0.06 -0.54 2.73E-09 2.7265 25,1582 0.06 -0.54 6,13E-09 6,1346 56,6061 0.07 -0.53 2.47E-09 2.4749 19,4823 0.07 -0.53 5,57E-09 5,5685 43,8351 0.08 -0.52 2,28E-09 2.2801 13,4155 0.08 -0.52 5,13E-09 5,1301 30,1849 0.09 -0.51 2,15E-09 2,1459 15,7222 0.09 -0.51 4,8283 35,3750 0.1 -0.5 1,99E-09 1,9887 8,3835 0.1 -0.5 4,4745 18,8628 0,11 -0,49 1,90E-09 1,9049 9,6965 0,11 -0,49 4,2859 21,8171 0,12 -0,48 1,81E-09 1,6398 2,6146 0,14 -0,46 3,6867 19,7047 0,13 -0,47 1,64E-09	0,04	-0,56	3,61E-09	3,6058	54,0033	0,04	-0,56	8,11E-09	8,1132	121,5075
0.06 -0.54 2.73E-09 2.7265 25,1582 0.06 -0.54 6,13E-09 6,1346 56,6061 0.07 -0.53 2.47E-09 2.4749 19,4823 0.07 -0.53 5,57E-09 5,5685 43,8351 0.08 -0.52 2.28E-09 2.2801 13,4155 0.08 -0.52 5,13E-09 5,1301 30,1849 0.09 -0.51 2,15E-09 2,2801 13,4155 0.08 -0.52 5,13E-09 5,1301 30,1849 0.09 -0.51 2,15E-09 2,1459 15,7222 0.09 -0.51 4,8283 35,3750 0.1 -0.5 1,99E-09 1,9887 8,3835 0.1 -0.5 4,4745 18,8628 0.11 -0.49 1,90E-09 1,9049 9,6965 0,11 -0.49 4,2859 21,8171 0.12 -0.48 1,81E-09 1,8079 8,0476 0,12 -0.48 4,07E-09 4,0677 18,1071 0,13 -0.47	0,05	-0,55	3,07E-09	3,0658	33,9346	0,05	-0,55	6,90E-09	6,8981	76,3529
0,07 -0,53 2,47E-09 2,4749 19,4823 0,07 -0,53 5,57E-09 5,5685 43,8351 0,08 -0,52 2,28E-09 2,2801 13,4155 0,08 -0,52 5,13E-09 5,1301 30,1849 0,09 -0,51 2,15E-09 2,2801 13,4155 0,08 -0,52 5,13E-09 5,1301 30,1849 0,09 -0,51 2,15E-09 2,1459 15,7222 0,09 -0,51 4,8283 35,3750 0,1 -0,5 1,99E-09 1,9887 8,3835 0,1 -0,5 4,4745 18,8628 0,11 -0,49 1,90E-09 1,9049 9,6965 0,11 -0,49 4,2859 21,8171 0,12 -0,48 1,81E-09 1,8079 8,0476 0,12 -0,48 4,07E-09 4,0677 18,1071 0,13 -0,47 1,73E-09 1,7274 8,7576 0,13 -0,47 3,8867 19,7047 0,14 -0,46 1,64E-09	0,06	-0,54	2,73E-09	2,7265	25,1582	0,06	-0,54	6,13E-09	6,1346	56,6061
0.08 -0.52 2,28E-09 2,2801 13,4155 0.08 -0.52 5,13E-09 5,1301 30,1849 0.09 -0.51 2,15E-09 2,1459 15,7222 0.09 -0.51 4,83E-09 4,8283 35,3750 0.1 -0.5 1,99E-09 1,9887 8,3835 0.1 -0.5 4,4745 18,8628 0.11 -0.49 1,90E-09 1,9049 9,6965 0,11 -0.49 4,29E-09 4,2859 21,8171 0.12 -0.48 1,81E-09 1,8079 8,0476 0,12 -0.48 4,07E-09 4,0677 18,1071 0.13 -0.47 1,73E-09 1,7274 8,7576 0,13 -0.47 3,8867 19,7047 0.14 -0.46 1,64E-09 1,6398 2,6146 0,14 -0.46 3,69E-09 3,6886 5,8830 0.15 -0.45 1,61E-09 1,6137 7,0440 0,15 -0.45 3,6308 15,8491 0.16 -0.44	0,07	-0,53	2,47E-09	2,4749	19,4823	0,07	-0,53	5,57E-09	5,5685	43,8351
0.09 -0.51 2.15E-09 2.1459 15,7222 0.09 -0.51 4.83E-09 4.8283 35,3750 0.1 -0.5 1.99E-09 1.9887 8,3835 0.1 -0.5 4.4745 18,8628 0.11 -0.49 1.90E-09 1.9049 9,6965 0.11 -0.49 4.22E-09 4.2859 21,8171 0.12 -0.48 1.81E-09 1.8079 8,0476 0.12 -0.48 4.07E-09 4,0677 18,1071 0.13 -0.47 1.73E-09 1.7274 8,7576 0.13 -0.47 3,8867 19,7047 0.14 -0.46 1.64E-09 1.6398 2.6146 0.14 -0.46 3,69E-09 3,6886 5,8830 0.15 -0.45 1.61E-09 1.6137 7,0440 0.15 -0.45 3,6308 15,8491 0.16 -0.44 1.54E-09 1.5432 6,0525 0.16 -0.44 3,4723 13,6180 0.17 -0.43 1.48E-09	0,08	-0,52	2,28E-09	2,2801	13,4155	0,08	-0,52	5,13E-09	5,1301	30,1849
0,1 -0,5 1,99E-09 1,9887 8,3835 0,1 -0,5 4,47E-09 4,4745 18,8628 0,11 -0,49 1,90E-09 1,9049 9,6965 0,11 -0,49 4,29E-09 4,2859 21,8171 0,12 -0,48 1,81E-09 1,8079 8,0476 0,12 -0,48 4,07E-09 4,0677 18,1071 0,13 -0,47 1,73E-09 1,7274 8,7576 0,13 -0,47 3,89E-09 3,8867 19,7047 0,14 -0,46 1,64E-09 1,6398 2,6146 0,14 -0,46 3,69E-09 3,6896 5,8830 0,15 -0,45 1,61E-09 1,6137 7,0440 0,15 -0,45 3,6308 15,8491 0,16 -0,44 1,54E-09 1,5432 6,0525 0,16 -0,44 3,4723 13,6180 0,17 -0,43 1,48E-09 1,4452 3,6967 0,17 -0,43 3,34E-09 3,3361 8,3175 0,18	0,09	-0,51	2,15E-09	2,1459	15,7222	0,09	-0,51	4,83E-09	4,8283	35,3750
0,1 -0,49 1,90E-09 1,9049 9,6965 0,1 -0,49 4,29E-09 4,2859 21,8171 0,12 -0,48 1,81E-09 1,8079 8,0476 0,12 -0,48 4,07E-09 4,0677 18,1071 0,13 -0,47 1,73E-09 1,7274 8,7576 0,13 -0,47 3,89E-09 3,8867 19,7047 0,14 -0,46 1,64E-09 1,6398 2,6146 0,14 -0,46 3,69E-09 3,6896 5,8830 0,15 -0,45 1,61E-09 1,6137 7,0440 0,15 -0,45 3,6308 15,8491 0,16 -0,44 1,54E-09 1,5432 6,0525 0,16 -0,44 3,4723 13,6180 0,17 -0,43 1,48E-09 1,4827 3,6967 0,17 -0,43 3,34E-09 3,3361 8,3175 0,18 -0,42 1,45E-09 1,4458 1,8954 0,18 -0,42 3,25E-09 3,2530 4,2647 0,19	0,1	-0,5	1,99E-09	1,9887	8,3835	0,1	-0,5	4,47E-09	4,4745	18,8628
0,12 -0,48 1,81E-09 1,8079 8,0476 0,12 -0,48 4,07E-09 4,0677 18,1071 0,13 -0,47 1,73E-09 1,7274 8,7576 0,13 -0,47 3,89E-09 3,8867 19,7047 0,14 -0,46 1,64E-09 1,6398 2,6146 0,14 -0,46 3,69E-09 3,6896 5,8830 0,15 -0,45 1,61E-09 1,6137 7,0440 0,15 -0,45 3,6308 15,8491 0,16 -0,44 1,54E-09 1,5432 6,0525 0,16 -0,44 3,4723 13,6180 0,17 -0,43 1,48E-09 1,4827 3,6967 0,17 -0,43 3,34E-09 3,3361 8,3175 0,18 -0,42 1,45E-09 1,4458 1,8954 0,18 -0,42 3,2520 4,2647 0,19 -0,41 1,43E-09 1,4268 5,3886 0,19 -0,41 3,2103 12,1243 0,2 -0,4 1,37E-09 <	0.11	-0.49	1.90E-09	1.9049	9,6965	0.11	-0.49	4.29E-09	4.2859	21.8171
0,13 -0,47 1,73E-09 1,7274 8,7576 0,13 -0,47 3,89E-09 3,8867 19,7047 0,14 -0,46 1,64E-09 1,6398 2,6146 0,14 -0,46 3,69E-09 3,6896 5,8830 0,15 -0,45 1,61E-09 1,6137 7,0440 0,15 -0,45 3,6308 15,8491 0,16 -0,44 1,54E-09 1,5432 6,0525 0,16 -0,44 3,47E-09 3,4723 13,6180 0,17 -0,43 1,48E-09 1,4827 3,6967 0,17 -0,43 3,34E-09 3,3361 8,3175 0,18 -0,42 1,45E-09 1,4458 1,8954 0,18 -0,42 3,2530 4,2647 0,19 -0,41 1,43E-09 1,4268 5,3886 0,19 -0,41 3,2103 12,1243 0,2 -0,4 1,37E-09 1,3729 2,3127 0,2 -0,4 3,09E-09 3,0891 5,2036	0.12	-0.48	1.81E-09	1.8079	8.0476	0.12	-0.48	4.07E-09	4.0677	18.1071
0,14 -0,46 1,64E-09 1,6398 2,6146 0,14 -0,46 3,69E-09 3,6896 5,8830 0,15 -0,45 1,61E-09 1,6137 7,0440 0,15 -0,45 3,63E-09 3,6308 15,8491 0,16 -0,44 1,54E-09 1,5432 6,0525 0,16 -0,44 3,47E-09 3,4723 13,6180 0,17 -0,43 1,48E-09 1,4827 3,6967 0,17 -0,43 3,34E-09 3,3361 8,3175 0,18 -0,42 1,45E-09 1,4458 1,8954 0,18 -0,42 3,25E-09 3,2530 4,2647 0,19 -0,41 1,43E-09 1,4268 5,3886 0,19 -0,41 3,2103 12,1243 0,2 -0,4 1,37E-09 1,3729 2,3127 0,2 -0,4 3,09E-09 3,0891 5,2036	0.13	-0.47	1.73E-09	1.7274	8,7576	0.13	-0.47	3.89E-09	3.8867	19,7047
0,15 -0,45 1,61E-09 1,6137 7,0440 0,15 -0,45 3,63E-09 3,6308 15,8491 0,16 -0,44 1,54E-09 1,5432 6,0525 0,16 -0,44 3,47E-09 3,4723 13,6180 0,17 -0,43 1,48E-09 1,4827 3,6967 0,17 -0,43 3,34E-09 3,3361 8,3175 0,18 -0,42 1,45E-09 1,4458 1,8954 0,18 -0,42 3,25E-09 3,2530 4,2647 0,19 -0,41 1,43E-09 1,4268 5,3886 0,19 -0,41 3,21E-09 3,2103 12,1243 0,2 -0,4 1,37E-09 1,3729 2,3127 0.2 -0,4 3,09E-09 3.0891 5.2036	0.14	-0.46	1.64E-09	1.6398	2.6146	0.14	-0.46	3,69E-09	3,6896	5.8830
0,16 -0,44 1,54E-09 1,5432 6,0525 0,16 -0,44 3,47E-09 3,4723 13,6180 0,17 -0,43 1,48E-09 1,4827 3,6967 0,17 -0,43 3,34E-09 3,3361 8,3175 0,18 -0,42 1,45E-09 1,4458 1,8954 0,18 -0,42 3,25E-09 3,2530 4,2647 0,19 -0,41 1,43E-09 1,4268 5,3886 0,19 -0,41 3,21E-09 3,2103 12,1243 0,2 -0,4 1,37E-09 1,3729 2,3127 0.2 -0.4 3,09E-09 3.0891 5.2036	0.15	-0.45	1.61E-09	1.6137	7.0440	0.15	-0.45	3.63E-09	3.6308	15.8491
0,17 -0,43 1,48E-09 1,4827 3,6967 0,17 -0,43 3,34E-09 3,3361 8,3175 0,18 -0,42 1,45E-09 1,4458 1,8954 0,18 -0,42 3,25E-09 3,2530 4,2647 0,19 -0,41 1,43E-09 1,4268 5,3886 0,19 -0,41 3,21E-09 3,2103 12,1243 0,2 -0,4 1,37E-09 1,3729 2,3127 0.2 -0.4 3,09E-09 3.0891 5,2036	0,16	-0.44	1,54E-09	1,5432	6,0525	0.16	-0.44	3,47E-09	3,4723	13,6180
0,18 -0,42 1,45E-09 1,4458 1,8954 0,18 -0,42 3,25E-09 3,2530 4,2647 0,19 -0,41 1,43E-09 1,4268 5,3886 0,19 -0,41 3,21E-09 3,2103 12,1243 0,2 -0,4 1,37E-09 1,3729 2,3127 0.2 -0.4 3,09E-09 3.0891 5.2036	0,17	-0,43	1,48E-09	1,4827	3,6967	0,17	-0,43	3,34E-09	3,3361	8,3175
0,19 -0,41 1,43E-09 1,4268 5,3886 0,19 -0,41 3,21E-09 3,2103 12,1243 0,2 -0,4 1,37E-09 1,3729 2,3127 0.2 -0.4 3,09E-09 3.0891 5,2036	0.18	-0.42	1,45E-09	1.4458	1.8954	0.18	-0.42	3,25E-09	3,2530	4.2647
0,2 -0,4 1,37E-09 1,3729 2,3127 0.2 -0.4 3,09E-09 3,0891 5,2036	0.19	-0.41	1,43E-09	1.4268	5.3886	0.19	-0.41	3.21E-09	3,2103	12.1243
	0.2	-0,4	1,37E-09	1.3729	2.3127	0.2	-0.4	3,09E-09	3,0891	5.2036

Pozn. V tištěné verzi je k dispozici pouze část příloh. Všechny přílohy jsou dostupné v elektronické verzi na přiloženém CD.