Cortex-M Simulator

Tom4s Jakubik
Faculty of Mechatronics, Informatics
and Interdisciplinary Studies
Technical University of Liberec
tomas.jakubik @tul.cz

Abstract—This paper describes a project of simulator
of Cortex-M microprocessors. This project builds on
top of Unicorn Engine, which is used to simulate the
ARM core. Benefit of this project is capability to load
a production firmware and to replace microprocessor
peripherals. The same firmware can be executed on
a physical board and the same firmware can be simulated.
This allows quick continuous integration and testing for
development of embedded firmware.

Keywords—cortex-m; simulation; embedded electron-
ics; continuous integration

I. INTRODUCTION

Modern software development uses principles
known as Continuous Integration (CI) [1]. The soft-
ware being developed is built under controlled en-
vironment and tested with unit and integration tests.
The results are immediately used by the developers to
prevent regression and to continue the development.
More continuous operations usually follow, but they
are out of scope of this article.

These CI techniques are not common in Micro Con-
troller Unit (MCU) embedded firmware development
[2]. Some unit tests can be done, but many integration
tests require the hardware board where the MCU is
placed. This simulator can provide new options in this
area.

There is the Unicorn Engine project based on
QEMU [3] which, apart from other things, can simulate
the ARM core. This CortexM_Simulator project builds
on top of Unicorn and adds the option to emulate
peripherals and the rest of the real Cortex-M MCU.
The same binary firmware which is simulated can later
be sent to the customer.

The simulation can be advantageous in several situ-
ations. It may be used for fuzzing and simulated many
times with random inputs to cover as many potential
bugs as possible.

Another use might be an IOT device which sleeps
for hours between each activity. A full integration test
of this device might take days, but days of simulation
can take only moments of real time.

Some applications require testing many devices
communicating together. That would be costly, because
of a lot of hardware. In simulation only a bigger CI
server is needed and it can be shared or rented.

And as a last point, it can also be more practical for
an engineer to stay in his office and use a simulator

ISBN 978-80-261-0892-4, ©University of West Bohemia, 2020

MCD Application Team
STMicroelectronics Sophia Antipolis
Valbonne
France
st.com

instead of going into the lab and setting up proper test
conditions.

A. State of the Art

There are Open Virtual Platforms (OVP) [4] estab-
lished by Imperas. It is more mature solution, but it
follows a slightly different philosophy. There are also
QEMU and SystemC based emulators [5]. The em-
phasis of these projects is to provide simulation of the
entire hardware. From the point of firmware developer,
it can be difficult to recreate all the hardware virtually
and it can be difficult to connect the simulation to other
components on the host PC [6]. Simulator described in
this article is focused on replacing Hardware Abstrac-
tion Layer (HAL) functions to simplify the process and
allow reusing the simulation for more MCUs.

There are also proprietary instruction set simulators
from Keil or IAR, yet these don’t handle peripherals
and cannot simulate production firmware.

There is also another class of cycle accurate simula-
tors [7]. They are usable to prevent timing atacks, but
less comfortable in validation of the entire system.

II. PRINCIPLES OF THE SIMULATOR

Basic idea of this simulator is either to emulate
MCU hardware as is or to replace parts of the firmware
which are using it.

As an example, firmware sends a byte of data to
a serial communication line via UART peripheral. This
is done by writing the byte into the 7DR register. We
can either emulate the TDR register and log the value
each time it is written or we can replace the UART
writing function from the firmware.

Emulating peripheral hardware registers might be
closer to reality, but replacing HAL of the firmware
is much easier. It would be very difficult or impossible
to emulate the peripheral exactly which implies that the
HAL has to be validated separately on a real hardware.
For modern MCUs, the manufacturer already provides
extensive HAL which is validated by its many cus-
tomers as well as the manufacturer itself [8]. It is
not necessary to repeat the validation process again
and it is not necessary to include the HAL code into
the simulation. Replacing the HAL interface has also
advantages of portability, because different processor
families have different registers, but the same HAL
interface.

This simulator provides tools for both methods.

Authorized licensed use limited to: Univ of West Bohemia in Pilsen. Downloaded on November 05,2020 at 10:59:37 UTC from IEEE Xplore. Restrictions apply.



ELF User Replacement Code
file
LA
-~ C I
o 2 o g
o _8 g © €35
o) —
c el °° =| 22
af & 8 =
g
hooks . ‘hook g v
riggere
firmware ~{rig
Unicorn Engine

Fig. 1. Replacing Function

A. Replacing a Hardware Register

Unicorn Emulator has the ability to add hooks for
write or read of a particular memory. It will run the
firmware instructions and when there is an access to the
register address, the simulation is stopped. Simulator
user will then have a callback to input/output data,
manage interrupts or change the simulation state. When
done, the simulation resumes.

In case for the TDR register, it is very simple, but
common peripherals have tens of registers and it gets
complicated quickly.

B. Replacing a Firmware Function

The firmware being simulated is the same binary
which runs on the MCU. Replacing a function doesn’t
mean changing the firmware. The simulator is able to
intercept the function when the firmware is running,
emulate the behavior instead of the firmware and skip
the original firmware function.

There are several steps to replace a function as
depicted on Fig.1. Similar process can be used to
replace interrupt handlers or global variables.

1) Matching the Function Address: As a first step
and before running the simulation, the replaced func-
tion needs to be matched in the simulated firmware.
Simulator obtains the firmware as an ELF file. It uses
arm-none-eabi tools to extract a table of symbols and
addresses. These symbols are compared to a name of
the function which needs to be replaced. This way the
function can move in the firmware during development
and it is still found. At least as long as the function
interface stays the same.

When the function address is known, it can be added
as a hook to the Unicorn Engine. In this case, the
simulation is stopped as soon as Program Counter (PC)
loads the function address when the firmware tries to
branch into the replaced function.

2) Getting Function Parameters: Now we have the
simulator stopped at the beginning of the replaced
function. The next step is to get function parameters.

ARM has standardized the way of passing function
parameters [9]. In case of extreme link-time optimiza-
tion, the linker might break the standard, but in most
cases, linker will keep the compiled interfaces.

Authorized licensed use limited to: Univ of West Bohemia in Pilsen. Downloaded on November 05,2020 at 10:59:37 UTC from IEEE Xplore. Restrictions apply.

The replacement callback needs to know the order
and types of parameters and provide them to the
simulator. The parameters are parsed from the Rn
registers or MCU stack. When the callback finishes
processing, it can return a value back to the firmware.

Regular parameters are passed as 4 byte items in
core registers, difficulties begin with passing and re-
turning structures. Extra care needs to be put into the
structure format and alignment. The alignment is usu-
ally size of the biggest element. When the alignment
fits, it is possible to pass whole structures between
the arm compiled firmware and the x86_64 compiled
simulator callback.

3) Skipping the Original Function: At the end of
the callback, the Link Register (LR) can be copied to
PC register and the simulation is resumed. This is to
skip the firmware function and continue from the point
where the function returns.

C. Interrupts

The interrupt controller NVIC, used in the Cortex-M
processors, is emulated in the simulator library.

When interrupt is set to pending, the simula-
tor checks priorities and stops the simulation. The
firmware code can be stopped at any moment as on
a real MCU. This allows to catch potential deadlocks,
but the differences in timing might reveal different
problems than which appear on a real MCU.

The simulator pushes context on stack, looks for the
interrupt vector at the beginning of the firmware and
switches PC register to the interrupt routine. There is
also a special EXC_RETURN value in the LR register
as in a real MCU [10]. It is used at the end of the
interrupt routine to stop the simulation again and return
PC register to the main code or resume lower priority
interrupt.

D. Replaced Interrupts

Another option is to use an interrupt replacement,
skip the HAL code and call the application handler
immediately. Continuing the previous example, since
we skipped the HAL code for UART on the way down
to the hardware to transmit, we can also skip the HAL
code on the way up when receiving.

When the interrupt is triggered, the simulator will
check that there is a replacement interrupt and will not
use the interrupt vector. Instead, user replacement will
get a callback to prepare function parameters. Then
an address of some higher level firmware function is
loaded into PC register instead of the interrupt vector.
Another user callback is called when the firmware
function returns to get the return value.

This mechanism was implemented as a complement
to replacement functions because of two reasons. The
HAL code which processes the interrupt wasn’t initial-
ized and could fail instead of calling the higher level
function. Second reason is that interrupt handlers usu-
ally immediately start writing into hardware registers
to clear interrupt flags. All these registers would have
to be emulated just to pass program into a higher level
function.



The function address and utilities to work with
parameters are similar to replacing a function.

E. Advanced Features

1) Global Interrupts Disable: The replacements
work only for functions which are listed in the ELF
file. Inline functions are directly copied into other code
and cannot be replaced. Unfortunately, some hardware
oriented functions are made inline to optimize the code.

Standard ARM CMSIS functions are usually put into
init functions and can be replaced together with the init
function. One exception are functions __enable_irq(),
its disable counterpart and PRIMASK control. These
functions are usually used in a macro to disable and
enable interrupts around critical sections. It is used
instead of mutexes in a bare metal firmware.

To solve this common issue, the simulator has an
option to scan the disassembly of the firmware and
look for all instructions which work with PRIMASK.
Bit PRIMASK, stored in CONTROL core register, dis-
ables interrupts globally. It can be controlled only by
4 different instructions. All uses of these instructions
are found and a hook is added for each one. The simu-
lator then automatically enables and disables interrupts.

2) Bootloaders: One element which is usually not
tested properly and which takes a long time to test is
a bootloader. In case of Over The Air (OTA) update,
the firmware has to be completely functional, including
the communication stack. Any mistake can prevent you
from fixing that mistake.

The replacements in the simulator are separated to
modules. Each module can match the names from
a different ELF file. One for bootloader and another
for application. The modules can deactivate RAM
based replacements when the MCU switches between
application and bootloader.

3) C++ Firmware: Some developers are starting
to use C++ for embedded firmware development. Us-
ing C++ linker mangles the function names to al-
low for overloading and all the C++ goodies. The
arm-none-eabi tools, used to parse the ELF file, can
demangle C++ names back into useful names. It is
possible, given correct function parameters, to match
the demangled name and replace C++ function or
method.

Methods can be replaced easily with object pointer
as a first parameter, but the object pointer can be
useless. Compiler can put data into C++ object in any
way and it might be impossible to decipher the correct
data structure.

III. USING THE LIBRARY TO CREATE A SIMULATOR

The simulator library needs to be compiled with user
code into a C++ simulator. Lot of code specific to
hardware and firmware needs to be added, but with
some precautions much of it can be reusable for other
projects.

A. Recommended Layout

A good practice is to design only the replacements
and keep the testing to an external program.

Connect
) Downlink Data
Uplink Data
Server

¢TCP
specific UART di
simulation raklo
control \ /pac ets

radio interrupt
| User Replacement Code

T
replacement
templates

interrupt
memory controller

mapping ) )
CortexM_Simulator Library
/
user firmware
simulation

Radio_IRQHandler() /
Uart_Send(char byte)

Unicorn Engine

C++ Code

e o —— — —

Fig. 2. Recommended Layout

Let’s imagine we want to test a brand new IOT
device. The recommended architecture is depicted on
Fig.2.

The Unicorn Engine is the lowest layer of the
simulator application. It simulates the firmware binary.
Above it, there is the simulator library. It provides all
utilities needed to replace the peripherals and control
the simulation easily. On top of the C++ application,
there are the replacements specific to the hardware and
firmware being simulated.

The replacements report all necessary information
via TCP connection to an external testing suite. In this
case, there is a Python script which logs UART trace,
controls the simulation and forwards the radio packets
to an IOT server. This script is also responsible for
setup of the testing scenario and for evaluating the test
results.

For a simple device, the test logic could be included
in the C++ simulator, but separating the test outside
has advantages. Perhaps it would be easier to write the
test in Go and perhaps we need to test two devices
communicating with each other instead of server. All
could be done without changing the simulator itself.

B. Writing Replacements

It is not easy to create all replacements necessary
to simulate a new device. The way to start is to find
which peripherals are used by the device and which
are important to test the device. Peripherals which are
used by the firmware, but are not necessary for the
simulation can be replaced with dummy functions.

Authorized licensed use limited to: Univ of West Bohemia in Pilsen. Downloaded on November 05,2020 at 10:59:37 UTC from IEEE Xplore. Restrictions apply.



A very important part is usually the timing. The
timing should be kept in mind from the beginning,
since it flows through most parts of the simulation and
the test. Currently, time is not handled by the simulator
and needs to be managed when replacing Real Time
Clock (RTC) peripheral or other source of time for the
firmware.

The replacements are usually created by inherit-
ing C++ classes. For simple replacements, there are
method templates which automatically deduce the pa-
rameters of simple functions, but inheriting manually
has more capabilities. User code needs to complete the
inherited class by providing virtual callbacks. These
callbacks are used when the replaced variable, register
or function are accessed. Part of these classes are useful
methods to read or write the replaced variable, to work
with function parameters or object which can control
the simulation.

During the development, it is common that the
simulated firmware will run for a while and then
it tries to access a piece of hardware which is not
yet emulated. The simulator will end with an error,
giving user the information about program counter and
address that the firmware tried to access. Next step is
to look into the firmware disassembly and MCU user
manual and create new replacement for this hardware.

IV. CONCLUSION

We were able to successfully simulate an IOT device
and do a simple test of its functionality. This test was
done in a few seconds which is much quicker than the
same binary firmware running on a real hardware. Real
device spends several minutes waiting to comply with
duty cycle limitation.

We didn’t compare the speed nor accuracy with state
of the art simulators as neither of these parameters are
important to the purpose of this project. The accuracy
is defined by QEMU and by the HAL replacements
written by the user. The purpose is to provide easy to
use tool for firmware developers and add another layer
of validation between unit tests and a real hardware.

We cannot yet recommend fully relying on this
simulator in production. In the end, the results should
be validated on a physical hardware, but it could serve
as a quick integration test for firmware developers. It
is a promising platform to start adding CI features to
embedded development.

A. Future Development

The simulator is now usable to test a simple device,
but each device needs a lot of custom code. There are
possibilities to simplify the custom code and add com-
mon functionality to the library. Some improvements
are simple, such as emulating BASEPRI register, but
some are more difficult.

1) Operating Systems and Floating Point: The sim-
ulator cannot run operating systems or firmware using
floating point unit. The limitations come from the
interrupt controller and its stack operations. Features
necessary for the correct behavior will come in next
Unicorn release, but were not available in time of
writing this article.

Authorized licensed use limited to: Univ of West Bohemia in Pilsen. Downloaded on November 05,2020 at 10:59:37 UTC from IEEE Xplore. Restrictions apply.

2) Simplify the Interface: There are C++ templates
used to ease writing of the replacements, but they are
quite experimental. There is a lot of space to improve
the C++ template magic.

3) Universal Communication Module: Since most
applications will use some kind of connection to an
outside test suite, it might be beneficial to add an
optional universal communication module. The module
would set up a TCP connection and have common
communication protocol.

4) Universal Timing Module: A lot of simulation
time can be saved, when the low-power device is sleep-
ing. The simulator can have a virtual time and advance
it forward each time the device tries to sleep. Problems
are hidden in the events that might happen during the
advanced period. A lot of development is needed to
solve problems with interfacing the generalized test
suite outside the simulator to synchronize the events.

5) GDB connection: The firmware being simulated
can misbehave when the replacements are not devel-
oped properly. Connection to GDB would help to de-
bug the simulator as well as the simulated firmware. At
least one project for Unicorn-GDB connection already
exists [11].

ACKNOWLEDGMENT

This project was started during an internship
at STMicroelectronics which supported the project
through the beginnings.

Initial impulse for the development of this simulator
was a BasicMAC project [12]. It uses the Unicorn
Engine to simulate firmware in a simpler but less
reusable way.

REFERENCES

[1] M. SHAHIN, M. A. BABAR, and L. ZHU, “Continuous
Integration, Delivery and Deployment: A Systematic Review
on Approaches, Tools, Challenges and Practices,” IEEE Access,
2017.

[2] L. E. Lwakatare, T. Karvonen, T. Sauvola, P. Kuvaja, H. H.
Olsson, J. Bosch, and M. Oivo, “Towards DevOps in the
Embedded Systems Domain: Why is It So Hard?” in 49th
Hawaii International Conference on System Sciences (HICSS),
2016.

[31 N. A. Quynh. Unicorn Engine. [Online]. Available:
https://www.unicorn-engine.org/
[4] Open Virtual Platforms. Imperas. [Online]. Available:

http://www.ovpworld.org/

[5] G. Delbergue, M. Burton, F. Konrad, B. L. Gal, and C. Jego,
“QBox: an industrial solution for virtual platform simula-
tion using QEMU and SystemC TLM-2.0,” in 8th European
Congress on Embedded Real Time Software and Systems (ERTS
2016), 2016.

[6] OVP Peripheral Modeling Guide, 1.8.6 ed., Imperas, 2019.

[7] J. Bauer and F. Freiling, “Towards cycle-accurate emulation
of cortex-m code to detect timing side channels,” in 2016
11th International Conference on Availability, Reliability and
Security (ARES), 2016.

[8] UM1884 Description of STM32L4/L4+ HAL and low-layer
drivers, Tth ed., STMicroelectronics, 2017.

[9]1 Procedure Call Standard for the Arm Architecture, Release
2019Q1.1 ed., Arm Ltd, 2019.

[10] Cortex-M4 Devices Generic User Guide, B ed., Arm Ltd, 2011.

[11] L Hallé. unicorn-gdbserver. [Online]. Available:
https://github.com/isral 7/unicorn-gdbserver
[12] Basic MAC Repository. Semtech. [Online]. Available:

https://github.com/lorabasics/basicmac



