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ABSTRACT
Physical codes are dependent on a discipline and describe the reality through equations solved on a geometry.
Strong links, or couplings, between them are set up to increase the result accuracy, leading to data exchanges. Me-
chanical codes calculate geometrical deformations which must be tranferred by couplings. Their direct exchange
is generally impossible if coupled codes compute with different models of the same geometry (in practice different
meshes). Moreover, two meshes can only share border(s). This paper focuses on this case: one mesh must follow
the border deformation of the mechanical code mesh.
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1 INTRODUCTION
The French Atomic Energy and Energy Alternatives
Commission 1 (CEA) uses codes to simulate physical
behaviours in nuclear reactors. They are specialized
to a specific domain, such as mechanics, thermohy-
draulics or fuel behaviour. The current CEA approach
is to couple codes to improve the final result accuracy,
leading to data exchanges between codes. These ex-
changes can be of various forms: point values (e.g. a
temperature at a point), data fields (e.g. a pressure on
a surface) or geometrical deformations. A mechanical
code calculates geometrical modifications. Previous
works have been made on the data exchange problem
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1 CEA: French Atomic Energy and Energy Alternatives Commission
(http://www.cea.fr/english_portal)

([BDS07,PV08]). In this paper, we focus on the trans-
fer of deformations calculated by a mechanical code to
a second one in the particular but very important case
where code geometries only share border(s).

The code geometrical models could be CSG or
meshes. In this work, only meshes are considered be-
cause it corresponds to the most encountered situation.
Each code is based on a particular mesh to optimize its
computations with specific dimension (e.g. surfacic or
volumic), properties (e.g. regularity and uniformity)
and cell types (e.g. triangles, quadrangles). Most of
them are composed of hundreds of thousand cells up
to millions of cells. It must be added that the mesh de-
formations must keep the computed data attached to
the mesh for further applications, which is against a
full remeshing.

Based on the differences between meshes, it appears
useful to define a continous function to model the ge-
ometrical deformations. This function can easily be
sampled to any point where a displacement must be
computed. One of the constraint is to interpolate the
deformations and not to approximate them. Another
and natural constraint is that the method must have a
lower processing time order than the code calculation:
e.g. hours when the code execution time is in days (in-
volving generally several hundred thousand cells).
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The remainder of the paper is structured as follows:
section 2 reviews related work. Section 3 presents our
method and its results are proposed in section 4.

2 RELATED WORK
The problem is to transfer an interpolated deformation
between meshes that only share border(s).

In [DGDP10], we addressed the problem of transfer-
ring the deformations between meshes modelling the
same geometry. We introduced a function Fα com-
puted on a network of radial basis functions (RBFs)
after a mandatory simplification step to receive reason-
able computing times. The RBF network is a space de-
formation function ([Wen05]), the deformed area be-
ing the same that the one where the network is com-
puted. This approach is thus not directly applicable.

To address our specific problem, the methods must
be decomposed into two steps: the deformation of the
first area must be applied to the border of the second
area and then the inner part of the second area must be
processed subject to its border deformation. For the
second step, different approaches exist. Full remesh-
ing techniques ([FG08]) are possible. However, it in-
volves the loss of the data attached to the former inner
nodes. In [CSW09], the authors apply a mass-spring
model. It changes the inside point position iteratively
until the complete stabilization. This method is un-
fortunatly too expensive in our case. In [YK09], a
smoothing method optimizes the aspect ratio and re-
duces the element skew of cells. However, some nodes
initially placed inside could finally be outside the mesh
to smooth if new borders are within the initial mesh.
In [Hel03], a Laplacian method is employed. Results
shown are good but deteriorated for large displace-
ments. RBFs are used in [dBvdSB07]. They inter-
polate the variation of node positions located on the
mesh border. RBFs involve to solve a linear system
whose size depends on the number of nodes to inter-
polate. In our case, this number is very high. It in-
duces a computational time that exceeds target set by
the CEA. It is the reason why we introduced function
Fα ([DGDP10]).

3 THE PROPOSED METHOD
3.1 Overview of function Fα

Fα combines a simplification method (not detailed in
this paper but based on [GH97]) which keeps α nodes,
and a RBF network which interpolates these points.
Due to the simplification step, Fα does not interpo-
late the exact deformation. As the kept nodes are
considered the most important ones according to the
simplification method criterion, the induced error is
very low. These nodes are called landmark points
{Li}i=1,..,α ∈ R3. For any point P ∈ R3, function
Fα : R3 → R3 is defined by:

Fα(P) =
α

∑
i=1

λi.φ(‖P−Li‖2) +L (P)

where φ is the C2 Thin-Plate Spline (TPS) such that
φ(r) = r4.log(r). They are centered on landmarks Li.
λi ∈R3 are the network coefficients and L is an affine
function corresponding to global displacements:

L (P) =
3

∑
c=1

λα+c.P(c) +λα+4

where P(c) is the cth coordinate of point P. With the
same notations, the additional constraints are imposed
to take into account the polynomial terms of L :

α

∑
i=1

λi.L
(c)
i =

α

∑
i=1

λi = 0, ∀c = 1,2,3

Centers {Li}i=1,..,α of TPSs are known value positions
that function Fα must interpolate. If Li (resp. L′i) de-
notes the ith node of initial (resp. deformed) mesh used
by the mechanical code, the interpolation condition is:
Fα(Li) = L′i ; i = 1, ..,α . The network coefficients are
thus calculated by solving a linear system involved by
these equations. We define matrix Ψ ∈ Rα×α by:

Ψ =
(

φ(‖Li−L j‖2)
)

1≤i, j≤α

and matrix ξ by ξ = (xi,yi,zi,1)1≤i≤α ∈R4×α , with
(xi,yi,zi) ∈ R3 the coordinates of point Li. Matrix A ∈
R(α+4)×(α+4) of the linear system induced by the RBF
network is defined by:

A =
(

Ψ ξ

ξ T 0

)
; with 0 = (0)4,4 ∈ R4×4

The RBF calculation using TPSs implies a dense
matrix A, symmetric but with a zero-filled diagonal.
Parameter α must be small enough to have acceptable
computation time and memory space used, involving
an error during the deformation calculation.

The disadvantages exposed above are due to two
aspects of TPSs. Functions φ(r) are exponentially
growing, global to the whole data and equal to zero
when r = 0. Ψ is symmetric, because: ∀1 ≤ i, j ≤ α ,
φ(‖Li −L j‖2) = φ(‖L j −Li‖2), but not positive defi-
nite since φ(‖Li − Li‖2) = φ(0) = 0. A is dense and
symmetric with zero diagonal. That prevents to use
efficient methods for solving the linear system, like it-
erative methods.

3.2 Definition of a new function Fσ
α

In order to overcome the difficulties detailed in the pre-
vious section, we propose in this paper to use functions
with compact support. Their advantage is to vanish
when the distance between two centers Li and L j of the
RBF exceeds a threshold, leading to spare matrices Ψ

and A. According to [RA10], the most efficient func-
tions are the CS-RBF, Compactly-Supported Radial
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Basis Function, proposed by Wendland ([Wen05]).
For meshes in R3, φ(r) = (1− r)4.(4r + 1) if r < 1,
φ(r) = 0 otherwise. This function is defined on inter-
val [0,1] with φ(0) = 1 and ∀r ∈]0,1[, 0 < φ(r) < 1.
This provides a matrix Ψ symmetric positive defi-
nite, sparse and diagonally dominant. However, this
function requires a support size. Although works
have already been focused on solving this problem
([OBS05]), it remains open.

We introduce parameter σ . For a given CS-RBF,
we calculate the minimal radius si of the ball contain-
ing σ centers {L}. The global support size S is ob-
tained to ensure that every CS-RBF involve at least σ

centers (e.g. S = max1≤i≤α si). Its calculation is in
O(α.log(α)) and is only done once. A new interpola-
tion function, denoted Fσ

α , is defined. It corresponds
to Fα ([DGDP10]) with TPS replaced by CS-RBF. Its
support size is calculated via σ as detailed above.

3.3 Mesh deformation
Transferring deformations to a mesh only sharing bor-
ders with the one used by the mechanical code can be
realized through Fσ

α . Our whole method is detailed
in figure 1, every step being described below. To be-
gin, a mesh is computed from the geometry of the
whole device (1a). The mechanical code calculation

Figure 1: The outlines of our method

Figure 2: The thermohydraulic code mesh deforma-
tion (top: original, bottom: modified by our method)

is launched (1b). A function Fσ
α is computed after this

step to interpolate the geometrical deformations com-
puted by the mechanical code (1c). The initial mesh
of the second code is then computed (2a), again from
the geometry of the whole device. To be able to mod-
ify this mesh, its borders are extracted (2b). Common
parts between these borders and the first code mesh
are extracted and displaced (2c) applying function Fσ

α

previously obtained. These modifications can then be
applied to all borders of the second code mesh (2d).
The boundary of the second code mesh have been dis-
placed. A function Fσ

α is finally calculated to interpo-
late the evolution of the second mesh border position
(2e). Once applied to all inner nodes, the second mesh
is completely modified (2 f ).

4 EXPERIMENTAL RESULTS
The use case is an experimental device composed by
two pipes placed inside a research reactor. The first
one, called pressure tube, encapsulates an experiment
and isolates it from the rest of the reactor. It is posi-
tioned into a second one, called a device holder. Be-
tween these pipes, a water flow evacuates the heat
emitted by the experiment. The case presented is the
thermohydraulic study of the water.

The reactor core heats both pipes leading to
anisotropic tube dilatations and water thickness vari-
ation. Cooling is no longer homogeneous inducing
different pipe deformations and some thermohydraulic
phenomena can occur. A coupling between a me-
chanical code and a thermohydraulic code is valuable.
The presented method allows to modify the thermohy-
draulic code mesh according to the geometrical modi-
fications calculated by the mechanical code. Both ini-
tial meshes do not discretise the same geometry. The

WSCG 2011 Poster Papers 23



first one is a mesh of both tubes, whereas the other
represent the water separating them. Both meshes
share common borders. The first mesh is composed of
14,110 nodes and 37,330 tetrahedra, and the second
one 223,737 nodes and 1,025,622 tetrahedra. Fig-
ure 2 illustrates our results. Both tubes are deformed
and the water section is then modified. The most im-
portant area is located at the bottom of the pressure
tube. Pipe deformations involves a water section varia-
tion: a shrinkage on one side and an enlargment on the
other side. One can see on figure 2 that our method al-
lows to shrink and to stretch smoothly the mesh cells.
Computing time of steps is detailed in table 1. The
device holder deformation is interpolated by function
F100

∞ , noted F(DH), where α = ∞ means the simplifica-
tion is not processed. The same choice, noted F(PT ),
is made for the pressure tube. F(W ) corresponds to the
water mesh modification. Its parameters, chosen ex-
perimentally, are α = 5000 and σ = 100. The whole
use case calculation is achieved in 13min 19s. In com-
parison, it is performed in 1h 7min 37s with function
Fα . The computer used is a PC 64bits under Linux,
using a single core at 1.6GHz and with 4GB of RAM.

step computing time # nodes

F(DH)
calculation 2min 04s 9,302
application 3min 24s 52,453

F(PT )
calculation 36s 4,816
application 1min 22 s 39,962

F(W )
calculation 37s 5,000
application 5min 07 s 131,322

Table 1: Computing time detail for each step

Table 1 shows the method performances in terms of
computation time compared with the number of nodes
used. For information, the thermohydraulic code re-
quires several days while our method updates its mesh
within less than 15min. As the experimental device
study is not yet achieved, we cannot definitely con-
clude about our method accuracy, but thermohydraulic
experts at the CEA validate our results.

5 CONCLUSION AND DISCUSSION
The proposed method allows to transfer deformations
computed on a mesh to another mesh sharing com-
mon borders. Based on previous works, a new func-
tion Fσ

α is established. It interpolates the displacement
of a large number of nodes. This function is the re-
sult of a simplification step and the computation of a
network of Radial Basis Functions having a compact
support. The constraints imposed by the CEA are all
well respected. The complete validation of the method
will be performed when the device development will
be achieved, but according to specialists, results are
promising.

An interesting perspective would be to calculate au-
tomatically σ , parameter controlling the compact sup-
port. For the non-uniform mesh case, one idea might
be to establish a grid centered in each RBF center and
calculate the value of σ to have all grid cells which
contain at least one (or more) other(s) center(s).
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