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V Plzni dne May 7, 2020
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

vlastnoručńı podpis
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Abstract
This diploma thesis deals with state estimation using Point-Mass Filter. Mainly two

topics are discussed; first, a two novel designs of unequally located grid points resulting
in improved estimation accuracy with the same computational complexity, second, efficient
implementation of the filter in the publicly available MATLAB toolbox called Nonlinear
Estimation Framework. Part of the thesis is also focused on the analysis of error while
approximating asymmetrical probability density functions by point-mass density. Lastly, the
implemented point-mass filter is validated and compared against other filters by numerical
simulations for various systems including terrain aided navigation type scenarios.

Keywords: state estimation, nonlinear filtering, nonlinear system, point-mass method

Anotace
Tato diplomová práce se zabýva problémem odhadu stavu použit́ım metody bodových

mas. Předně jsou zde diskutovány dvě témata; zaprvé dva nové typy mř́ıžky s nerovnoměrně
rozdělenými body, jež zlepšuje přesnost odhadu při zachováńı stejné výpočetńı náročnosti a
za druhé efektivńı implementace ve veřejně dostupném MATLAB toolboxu ”Nonlinear Es-
timation Framework”. Část této práce se také věnuje analýze chyby aproximace hustotńıch
funkćı pomoćı hustotńıch funkćı bodových mas. Nakonec je implementovaná metoda bo-
dových mas ověřena a porovnána s jinými filtry séríı simulaćı pro odhad stavu r̊uzných
systému včetně ukázky aplikace věnované terénńı navigaci.

Kĺıčová slova: odhadu stavu, nelineárńı filtrace, nelineárńı systém, metoda bodových mas
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NOMENCLATURE
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UKF Unscented Kalman filter

Algorithms Defining Variables

σin Number of STDs covered by the denser grid

σout Number of STDs covered by the whole grid

N number of grid points

Math Symbols and Operations
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Chapter 1

Introduction

State estimation of nonlinear discrete-time stochastic dynamic systems from noisy or incom-
plete measurements has been a subject of considerable research interest for the last several
decades. This topic plays an important role in various fields such as navigation, speech and
image processing, fault detection, and adaptive or optimal control. As the development of
autonomous vehicles or aircraft of all types is a key interest for plenty of renowned compa-
nies like Google, Tesla or Honeywell, the investment into research of problems tied to these
self-driving vehicles is immense. One of the key information for autonomous applications is
knowledge of the position of the controlled object, therefore nearly all automation is tied to
navigation problems.

1.1 Terrain-Aided Navigation

The vehicle position, velocity and attitude (PVA) is usually determined based on its initial
PVA and measurements from the inertial measurement unit (IMU). The IMU consists of
gyroscopes and accelerometers that are used to measure linear accelerations and angular ve-
locities of vehicles. IMU with a processing unit forms the inertial navigation system (INS).
INS provides dead-reckoned estimates of vehicle PVA [9]. The processing unit is config-
ured to process inertial measurement and initial navigation state to estimate navigational
information.

Unfortunately, because of errors in inertial measurements, the inertial navigation infor-
mation diverges in time. The rate of the divergence is driven by the grade (i.e. accuracy) of
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CHAPTER 1. INTRODUCTION

the IMU. To reduce the divergence the INS needs to be frequently re-initiated. The initial-
ization can be done using a variety of absolute sensors, like GPS receiver, magnetometer or
odometer. But as such signals come from the outside of the aircraft, they can be jammed
by a hostile entity, the satellite or sensor can be damaged, etc. The safer solution is to
use information that is not radiated from outside, such as prerecorded terrain maps. The
terrain-aided navigation (TAN) utilizes a measurement of a terrain altitude which is below
the vehicle. The terrain altitude can be measured by various altimeters. This measurement
is then correlated with the horizontal positions via the map, to re-initialize the INS. The
base for all correlating algorithms is the method of state estimation.[3, 16]

1.2 State Estimation

Following the Bayesian approach, a general solution to the state estimation is given by
the Bayesian recursive relations (BRRs) that are used to compute the probability density
functions (PDFs) of the state (in navigation application represented by PVA) conditioned
on the measurements. The conditional PDFs provide a full description of the immeasurable
state of a nonlinear or non-Gaussian stochastic dynamic system (i.e. of a navigated vehicle).
The relations are, however, exactly solvable for only a limited set of models for which the
linearity is usually a common factor. This class of exact Bayesian estimators is represented
e.g., by the Kalman filter (KF). In other cases, an approximate solution to the BRRs has
to be employed. These approximate filtering methods can be divided with respect to the
validity of the resulting estimates into global and local filters [21, 23].

The local filters provide computationally efficient estimates predominantly in the form
of the conditional mean and covariance matrix with potentially limited performance due to
the inherent underlying Gaussianity assumption, which is not always realistic. It should be
also noted that the first two moments usually can not fully describe the immeasurable state.
These filters are represented by the extended Kalman filter, the unscented Kalman filter,
the cubature Kalman filter, stochastic integration filter, etc. [1, 11, 23, 6, 19].

As opposed to the local filters, the global filters provide estimates in the form of con-
ditional PDFs without any assumptions on the conditional distribution family. The global
filters are capable of estimating the state of a strongly nonlinear or non-Gaussian system
but usually at the cost of higher computational demands. Among these, the Gaussian sum
filter [22], the particle filter [4], and the point-mass filter [24] have attracted a considerable
attention [8].
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CHAPTER 1. INTRODUCTION

In this thesis, the point-mass filter (PMF) is considered and further treated. The PMF
is based on a numerical solution to the BRRs using deterministic grid-based numerical in-
tegration rules, which means the BRRs are solved and the conditional PDF is computed at
the grid points only. Although a conceptual design of the PMF is known from the seventies
[21], a TAN application of the PMF is reported as late as nineties [3] mainly because of the
computational complexity of the filter. Therefore, since the development of the PMF, exten-
sive attention is devoted to reducing the computational complexity of the filter by efficient
design. In the literature, two main ways of improving effectiveness can be found;

• Design of the Rao-Blackwellised (or marginalized) PMF [8, 26],

• Efficient convolution in the PMF prediction step [3, 24, 25, 20, 27, 18].

The former approach is based on the decomposition of the state vector into two parts;
nonlinearly and linearly modeled. As a consequence, just a nonlinearly modeled part of
the state is estimated by the computationally expensive PMF and the remaining part of the
state vector can be estimated by a set of computationally cheap KFs. The Rao-Blackwellised
PMF is thus suitable for possibly high-dimensional models with specific conditionally linear
structure and Gaussian noises.

The latter approach typically does not restrict the class of the allowed state-space models,
but it rather focuses on a computationally efficient implementation of the convolution, in the
prediction of the PMF. The PMFs with computationally efficient convolution, using fixed or
time-varying number of grid points, assume equidistantly spaced grid points, i.e., each grid
point has the same vicinity, where the value of the PDF is assumed to be constant. However,
the equidistant layout of the points (i.e., an equidistant approximation of the PDF support)
may not result in an optimal balance between the computational complexity and accuracy
as with the PDF support that has

• A higher volume of the conditional PDF (typically concentrated around the mean),
covered by a denser grid to reasonably well capture the PDF shape,

• A lower volume of the conditional PDF (typically at the tail of the distribution),
covered by a sparser grid, as the tail is typically flatter.

3



CHAPTER 1. INTRODUCTION

1.3 Thesis Goal and Summary

The main goal of the thesis is, thus, to design the PMF with a conceptually new grid respect-
ing conditional PDF support and volume. That means the grid is designed to be dense in
the PDF support with a high volume of the conditional PDF and sparse otherwise. The pro-
posed grid design is further denoted as the density specific grid design (DSG). Additionally,
the proposed PMF is also implemented within the Nonlinear Estimation Framework (NEF),
which is a publicly available MATLAB toolbox [10]. The implementation was thoroughly
tested by comparing implemented PMF with other filters and comparing PMF that is using
standard grid design with PMF using DSG design. The DSG design itself was also tested in
two TAN scenarios.

The rest of the thesis is organized as follows. Chapter 2 is devoted to an overview of the
Bayesian state estimation and mainly to the PMF algorithm itself, its derivation and PMD
moments calculation. Chapter 3 describes and compares the standard and proposed grid
design. After that, Chapter 4 analyses errors made by approximating asymmetrical PDF
using point-mass density. Chapter 5 proposes enhancements to the DSG design and offers
alternatives. Chapter 6 deals with the NEF implementation. Numerical illustrations and
results are then given in Chapter 7. Chapter 8 concludes the thesis.
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Chapter 2

Point-Mass Filter

2.1 System Description

For the purpose of the theoretical part of this thesis consider the following discrete time
state-space model of a stochastic dynamic system with additive noises

xk+1 = fk(xk,uk) + wk, k = 0, 1, 2, . . . , T, (2.1)
zk = hk(xk) + vk, k = 0, 1, 2, . . . , T, (2.2)

where the vectors xk ∈ Rnx , uk ∈ Rnu , and zk ∈ Rnz represent the unknown state of the
system and the known input and measurement at time instant k, respectively. The state and
measurement functions fk : Rnx×nu → Rnx and hk : Rnx → Rnz are supposed to be known.

Particular realizations of the state and measurement noises wk and vk are unknown, but
their PDFs, i.e., the state noise PDF p(wk) and the measurement noise PDF p(vk), are
supposed to be known and independent of the known initial state random variable x0.

2.2 Bayesian Estimation

The point-mass filter is based on the numerical solution to the state estimation which is
derived from the Bayesian recursive relations [1]

p(xk|zk) = p(xk, zk|zk−1)
p(zk|zk−1) = p(xk|zk−1)p(zk|xk)

p(zk|zk−1) , (2.3)

p(xk|zk−1) =
∫
p(xk|xk−1)p(xk−1|zk−1)dxk−1, (2.4)

5



CHAPTER 2. POINT-MASS FILTER

where p(xk|zk−1) is the one-step predictive PDF computed by the Chapman-Kolmogorov
equation (2.4) and p(xk|zk) is the filtering PDF computed by the Bayes’ rule (2.3). The
PDFs p(xk|xk−1) and p(zk|xk) are the state transition PDF obtained from system dynamics
(2.1) and the measurement PDF obtained from measurement equation (2.2), respectively.
The PDF

p(zk|zk−1) =
∫
p(xk|zk−1)p(zk|xk)dxk (2.5)

is the one-step predictive PDF of the measurement. The estimate of the state is given by
the filtering and the predictive PDFs. The recursion (2.3), (2.4) starts from the initial PDF,
i.e., p(x0|z−1) = p(x0).

Considering the model (2.1), (2.2), the state transition PDF and the BRRs (2.3)–(2.5)
should be conditioned also on available sequence of the input uk, ∀k. However, for the sake
of notational simplicity, the input signal is assumed to be implicitly part of the condition
and it is not explicitly stated, i.e., p(xk+1|xk) = p(xk+1|xk; uk), p(xk|zk) = p(xk|zk; uk−1),
and p(xk+1|zk) = p(xk+1|zk; uk).

2.3 Point-mass Density Approximation

The main idea of the PMF is the approximation of conditional PDF p(xk|zm), where m = k

or m = k− 1 (given by (2.3) and (2.4)), by a piece-wise constant point-mass density (PMD)
p̂(xk|zm; ξk) defined at the set of the user-defined discrete grid points ξk = {ξ(i)

k }Ni=1, ξ
(i)
k ∈

Rnx , as follows [5]

p(xk|zm) ≈ p̂(xk|zm; ξk) ,
N∑
i=1

Pk|m(ξ(i)
k )S{xk; ξ(i)

k ,∆k}, (2.6)

with

• Pk|m(ξ(i)
k ) = ckP̃k|m(ξ(i)

k ), where P̃k|m(ξ(i)
k ) = p(ξ(i)

k |zm) is the value of the conditional
PDF p(xk|zm) evaluated at i-th grid point ξ(i)

k , ck = δk
∑N
i=1 P̃k|m(ξ(i)

k ) is a normalisa-
tion constant, and δk is a volume of the i-th point neighbourhood defined below,

• ∆k = [∆k(1),∆k(2), . . . ,∆k(nx)]T defines a (hyper-)rectangular neighbourhood of a
grid point ξ(i)

k , where the PDF p(xk|zm) is assumed to be constant and has value
Pk|m(ξ(i)

k ), and
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CHAPTER 2. POINT-MASS FILTER

• S{xk; ξ(i)
k ,∆k} is the selection function defined as

S{xk; ξ(i)
k ,∆k} = 1, (2.7)

if xk(j) ∈ [ξ(i)
k (j)− ∆k(j)

2 , ξ
(i)
k (j) + ∆k(j)

2 ] for j = 1, 2, . . . , nx, and

S{xk; ξ(i)
k ,∆k} = 0, (2.8)

otherwise, so that∫
S{xk; ξ(i)

k }dxk = ∆k(1)×∆k(2)× . . .×∆k(nx)

= δk. (2.9)

Selection function’s S property is that the neighbourhoods ∆ of any points does not overlap.
Note that in (2.6)–(2.9) the notation x(j) meaning the j-th element of the vector x was used.

The ∆k should be for non-equidistant grids examined in this thesis point dependent,
therefore notation should be ∆(i)

k , for the sake of simplicity this notation is omitted in the
theoretical part of this thesis. Also the number of points N can generally be time dependent
Nk, but this case is not dealt with in this thesis.

Illustration of point-mass PDF approximation (2.6) with omitted time indices is shown
in Fig. 2.1.

From the theoretical point of view the point-mass approximation considered in this thesis
can be viewed as a sum of rescaled uniform distributions. In the literature, however, another
interpretation can be found as well, which is based on a sum Dirac delta functions located
at the grid points [25]. Relevant discussion considering this topic can be found in [8].

Figure 2.1: Illustration of point-mass PDF approximation (grid points - red, grid point
neighbourhood - blue, scaled selection function - green).

7



CHAPTER 2. POINT-MASS FILTER

2.4 Point-Mass Solution to Bayesian Recursive Rela-
tions

Other filtration algorithms are based on assumptions about the estimated system (e.g. lin-
earity, gaussianity, etc.) or approximations. Introducing these restrictions makes it possible
to find an analytical (but approximate) solution to the BRRs. On the other hand, the
point-mass filter is based on their numerical solution using PMD approximation [5].

2.4.1 Derivation of Measurement-Update

Derivation of a PMF measurement-update starts with BRR for posterior density, [5]

p(xk|zk) = p(zk|xk)p(xk|zk−1)
p(zk|zk−1)

= c̃−1
k p(zk|xk)p(xk|zk−1), (2.10)

where p(xk|zk−1) is the predictive density from the last step or from initialization, c̃k is a
normalization constant and

p(zk|xk) = pvk(zk − hk(xk)) (2.11)

is the PDF of a measurement, which is given by (2.2). For example with Gaussian measure-
ment noise

p(zk|xk) = N(zk; hk(xk), cov(wk)). (2.12)

However, only the point-mass approximation of the predictive density is known

p̂(xk|zk−1) =
N∑
i=1

Pk|k−1(ξ(i)
k )S{xk : ξ(i)

k ,∆k}. (2.13)

Using (2.10)

p̂(xk|zk) = ˆ̃c−1
k p(zk|xk)

N∑
i=1

Pk|k−1(ξ(i)
k )S{xk : ξ(i)

k ,∆k}, (2.14)

where ˆ̃ck is an approximation of the normalization constant.

8



CHAPTER 2. POINT-MASS FILTER

Because of the predictive piece-wise constant approximation of the PDF, the measure-
ment PDF can be also evaluated at ξ(i)

k points only 1. Therefore, point-mass approximation
of the measurement-update probability is

p̂(xk|zk) =
N∑
i=1

Pk|k(ξ(i)
k )S{xk : ξ(i)

k ,∆k}, (2.15)

where the value of the filtration PDF at ξ(i)
k is

Pk|k(ξ(i)
k ) = ˆ̃c−1

k p(zk|xk = ξ
(i)
k )Pk|k−1(ξ(i)

k ). (2.16)

The normalization constant equals

ˆ̃ck =
∫ N∑

i=1
p(zk|xk = ξ

(i)
k )Pk|k−1(ξ(i)

k )S{xk : ξ(i)
k ,∆k}dxk. (2.17)

Note that, in this case, the grid support stays the same during measurement-update.

2.4.2 Derivation of Time-Update

Predictive probability is given by the Chapman-Kolmogorov equation (2.4) [5]

p(xk+1|zk) =
∫
p(xk+1|xk)p(xk|zk)dxk, (2.18)

where p(xk|zk) is the filtration density and

p(xk+1|xk) = pwk
(xk+1 − fk(xk)) (2.19)

is a transition PDF of the system, which is given by the dynamics (2.1). Only the approxi-
mate filtration density is known (see previous subsection), therefore

p̂(xk+1|zk) =
∫
p(xk+1|xk)

N∑
i=1

Pk|k(ξ(i)
k )S{xk : ξ(i)

k ,∆k}dxk. (2.20)

In order to solve this relation in a PMF philosophy a new grid {ξ(j)
k+1}Nj=1 has to be defined.

This grid should cover the part of the state-space, where the predictive probability is expected
to be. Now the p(xk+1|xk) can be approximated as

p(xk+1|xk) ≈ p̂(xk+1|xk) =
N∑
j=1

p(ξ(j)
k+1|xk)S{xk+1 : ξ(j)

k+1,∆k+1}. (2.21)

1It could be evaluated at different grid points, but then filtering step is computationally more demaming
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The time-update probability can be then expressed as

p̂(xk+1|zk) ≈
∫
p̂(xk+1|xk)

N∑
i=1

Pk|k(ξ(i)
k )S{xk : ξ(i)

k ,∆k}dxk

=
∫ N∑

j=1
p(ξ(j)

k+1|xk)S{xk+1 : ξ(j)
k+1,∆k+1}

N∑
i=1

Pk|k(ξ(i)
k )S{xk : ξ(i)

k ,∆k}dxk

≈
∫ N∑

j=1

N∑
i=1

Pk|k(ξ(i)
k )p(ξ(j)

k+1|xk = ξ
(i)
k )S{xk : ξ(i)

k ,∆k}S{xk+1 : ξ(j)
k+1,∆k+1}dxk

=
N∑
i=1

N∑
j=1

Pk|k(ξ(i)
k )p(ξ(j)

k+1|xk = ξ
(i)
k )S{xk+1 : ξ(j)

k+1,∆k+1}
∫
S{xk : ξ(i)

k ,∆k}dxk︸ ︷︷ ︸
δk

=
N∑
j=1

N∑
i=1

Pk|k(ξ(i)
k )p(ξ(j)

k+1|xk = ξ
(i)
k )δk︸ ︷︷ ︸

Pk+1|k(ξ(j)
k+1)

S{xk+1 : ξ(j)
k+1,∆k+1}

=
N∑
j=1

Pk+1|k(ξ(j)
k+1)S{xk+1 : ξ(j)

k+1,∆k+1}, (2.22)

where the predictive probability value at a new grid point ξ(j)
k+1 is

Pk+1|k(ξ(j)
k+1) =

N∑
i=1

p(ξ(j)
k+1|xk = ξ

(i)
k )Pk|k(ξ(i)

k )δk,∀j. (2.23)

The expression (2.22) is the most computationally demanding step of the PMF. Note that
the value of Pk+1|k(ξ(j)

k+1) is independent over j, therefore parallel computation can be used
to speed up the algorithm.

2.4.3 Point-Mass Filter Algorithm

The basic algorithm of the PMF can be summarized by the following steps [2, 25]:

Algorithm 1: Point-Mass Filter

1. Initialisation: Determine number of grid points N . Set k = 0, construct the initial
grid consisting of points {ξ(i)

0 }Ni=0, and define the initial point-mass PDF

p̂(x0|z−1; ξ0) =
N∑
i=1

P0|−1(ξ(i)
0 )S{x0; ξ(i)

0 ,∆0}, (2.24)
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approximating the initial PDF, i.e., p(x0|z−1) = p(x0).

2. Measurement update: Compute the filtering point-mass PDF

p̂(xk|zk; ξk) =
N∑
i=1

Pk|k(ξ(i)
k )S{xk; ξ(i)

k ,∆k}, (2.25)

where the value of the filtering PDF at the i-th grid point is

Pk|k(ξ(i)
k ) = p(zk|xk=ξ(i)

k
)Pk|k−1(ξ(i)

k
)∑N

j=1 p(zk|xk=ξ(j)
k

)Pk|k−1(ξ(j)
k

)δk
. (2.26)

3. Grid construction: Based on the filtering estimate (2.25) and state equation (2.1),
construct the new grid of points {ξ(j)

k+1}Nj=1.

4. Time update: Compute the predictive point-mass PDF at the new grid of points
according to

p̂(xk+1|zk; ξk+1) =
N∑
j=1

Pk+1|k(ξ(j)
k+1)S{xk+1; ξ(j)

k+1,∆k+1}, (2.27)

where the value of the predictive PDF at the j-th grid point is given by the convolution

Pk+1|k(ξ(j)
k+1) =

N∑
i=1

p(ξ(j)
k+1|xk = ξ

(i)
k )Pk|k(ξ(i)

k )δk. (2.28)

5. Set k = k + 1 and go to the step 2).

The time update step is most time demanding operation of the PMF.

2.4.4 Multi-Step Prediction and Smoothing

Multi-Step Prediction

Prediction of the l steps by the point-mass approximation is an estimation of PDF p(xk+l|zk),
where l ∈ Nr1. Multi-step prediction consists of applying time update step (2.27) l times for
l step prediction. It means the definition of a new grid and computation of the convolution
is performed l times [13].

11
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Smoothing

Smoothing is a state-estimation task of finding more accurate estimates than filtering ones
utilizing the knowledge of future measurements. Therefore the smoothing PDF is p(xl|zk),
where k is the step that the last measurement came and l = 0, 1, ..., k − 1.

Assuming that the filtering p(xl|zl) and the predictive p(xl+1|zl) PDFs, are known, the
general formula for the basic one-step smoothing algorithm is

p(xl|zk) = p(xl|zl)
∫ p(xl+1|zk)
p(xl+1|zl)

p(xl+1|xl)dxl+1, (2.29)

where l = k − 1 [14].
Using the point-mass approximation, the smoothing PDF can be computed as

p̂(xl|zk; ξk) =
Nl∑
i=j

Pl|k(ξ(j)
l )S{xl; ξ(j)

l ,∆l}, (2.30)

where the value of the smoothing PDF at the j-th grid point is

Pl|k(ξ(j)
l ) = Pl|l(ξ(j)

l )
Nl∑
i=1

Pl+1|k(ξ(i)
l+1)

Pl+1|l(ξ(i)
l+1)

p(ξ(j)
l+1|xl = ξ

(i)
l ), (2.31)

where Nl is the number of points in the grid that is supporting PDFs conditioned by zl. Note
that the smoothing PDF uses the same grid as the filtering PDF. Moreover, all conditional
PDFs (filtering, predictive, and smoothing) for the time instant k have the same grid support.
Furthermore, the p(ξ(j)

k+1|xk = ξ
(i)
k ) is already known from time update step.

2.4.5 PMD Moments Calculation

Because the PMF filter provides estimates in the form of the point-mass density p̂(xk|zm; ξk),
approximating a conditional PDF p(xk|zm), the relations to compute the moments of the
said density are needed for estimates evaluation (e.g. comparison of mean and variance
of filtering PDF with other filters), for analysis and also for an advanced grid setup. The
moments of the conditional PDF, can be easily approximated as

E[xk|zm] ≈ x̂k|m(ξk) =
N∑
i=1

δkPk|m(ξ(i)
k )ξ(i)

k , (2.32)

cov[xk|zm] ≈ P̂k|m(ξk) =
N∑
i=1

δkPk|m(ξ(i)
k )

(
ξ

(i)
k − x̂k|m

) (
ξ

(i)
k − x̂k|m

)T
(2.33)

12
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and general n-th central moment

µnk|m ≈
N∑
i=1

δkPk|m(ξ(i)
k )

(
ξ

(i)
k − x̂k|m

)((
ξ

(i)
k − x̂k|m

)T)⊗(n−1)
, (2.34)

where ⊗ is a Kronecker product. Derivation of the moments computation can be found e.g.
in [8].
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Chapter 3

Point-Mass Filter Grid Design

A critical part of the PMF design is a specification of the grid points in time update step
(2.24) and, by extension, during initialisation (2.27).

When designing a grid, firstly the number of grid points should be decided. The more
grid points N is considered, the better the accuracy of the density approximation can be
achieved but at the cost of higher computational demands. Due to the convolution (2.27),
(2.28), the computational complexity grows quadratically with N . Thus, the number of grid
points is solely driven by the available computational capacity and required precision of the
estimate.

The grid should be designed to cover a significant region of the conditional PDF support
sufficiently well. Therefore, it is necessary to specify two grid characteristics

1. Region of the PDF support to be covered by the grid points,

2. Locations of grid points inside the region.

3.1 Standard Grid Design

3.1.1 Region of the PDF Support

Regarding the first characteristic, it is relatively easy to specify the covered region R of the
PDF support for the initial PDF p(x0|z−1). The region is typically rectangular and centered
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around the mean x̂0|−1 = E[x0|z−1] and is selected so that∫
R
p(x0|z−1) > Pthr, (3.1)

where Pthr is a user defined threshold. For the predictive PDF p(xk|zk−1), the specification of
the region is more involving since the predictive PDF is not available at “Grid construction”
step of Algorithm 1 (the PDF is to be computed in the subsequent step “Time update”). A
reasonable approach is to compute the first two predictive moments of the state

x̂A,k+1|k = E[xk+1|zk], (3.2)
PA,k+1|k = cov[xk+1|zk], (3.3)

and to imagine an approximate Gaussian1 predictive PDF

pA(xk+1|zk) = N{xk+1; x̂A,k+1|k,PA,k+1|k}, (3.4)

where the notation N{x; x̂,P} stands for the Gaussian PDF of the random variable2 x
with the mean x̂ and the covariance matrix P. Then, the sought region R can be found
analogously to (3.1), where the approximate predictive PDF pA(xk+1|zk) (3.4) is used instead
of the initial one p(x0|z−1).

The predictive moments (3.2) and (3.3) are computed on the basis of known filtering
moments (given by (2.32), (2.33), and (2.25)) and state equation (2.1). If the dynamics is
nonlinear, approximate predictive moments can be computed e.g., by unscented transforma-
tion or various numerical integration rules [11, 7].

σ Ellipse

For a scalar random variable x ∈ R with N{x;m,σ2} a region centered around mean value
(be called confidence region) can be found so that there is an α probability that the realization
will be inside this region as shown on top in Figure 3.1. For 1D case

α = P (m− κσ ≤ x ≤ m+ κσ) = P

(
(x−m)2

σ2 ≤ κ2
)

= Fχ2,1(κ2), (3.5)

1The approximate PDF (3.4) is used for the region R determination only. The predictive PDF (2.27) is
computed in this region.

2Note that, for simplicity, the random variable has same notation as its realization.
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where P (X) is a probability measure of set X. For a multidimensional Gaussian distribution
the contour line

constant = 1√
(2π)nxdet (P)

exp
(
−1

2(x−m)TP−1(x−m)
)
, (3.6)

constant′ = (x−m)TP−1(x−m), (3.7)

is an ellipsoid. Then a probability of an event for nx ∈ N dimension normal distribution is

α = P
(
(x−m)TP−1(x−m) ≤ κ2

)
= Fχ2,nx(κ2), (3.8)

where P is the covariance matrix. Now κσ ellipsoid can be defined by all x that satisfy (3.8)
for constant κ. For 2 dimensions the κσ ellipse can be seen at the bottom of Figure 3.1.

Using the mentioned above, the region R from (3.1) can be, for non-Gaussian distribu-
tions, approximately found as an ellipsoid. Note that it is computationally efficient to define
the region as a (hyper-)rectangle around the ellipsoid as shown in Figure 6.1. Most standard
grid designs take advantage of this and DSG design inherits this shape of the grid too.

Alternative approach would be to use the multidimensional Chebyshev’s inequality which
states

P
(√

(x−m)TP−1(x−m) > t
)
≤ nx

t2
. (3.9)
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mm− κσ m− κσ

p(x)

α

x
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(x−m)
T
P

−1(x−m) = κ
2

α

x1

x2

Figure 3.1: PDF, approximation by point-mass density, and approximation error.

3.1.2 Location of Grid Points

Regarding the second characteristic, the grid is usually (hyper-)rectangular with equally
spaced points [3, 8, 18]. However, the equally spaced grid points {ξ(i)

k }Ni=1 result in a point-
mass density with significantly spatially varying approximation error defined as

p̃(xk|zm; ξk) = |p(xk|zm)− p̂(xk|zm; ξk)|, (3.10)

where the notation | · | stands for the absolute value.
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Figure 3.2: PDF, approximation by point-mass density, and approximation error.

The true PDF p(xk|zm) with its point-mass approximation p̂(xk|zm; ξk), and the approx-
imation error p̃(xk|zm; ξk) (3.10) are illustrated in Fig. 3.2. The figure clearly shows spatially
varying approximation error of the point-mass density; the larger the slope of the PDF is, the
larger approximation error is observed. Thus, a large error can be expected in the vicinity
of the mean value, whereas rather a low error at the tail of a majority of distributions (i.e.,
close to the boundary of the grid) as the tail is relatively flat (i.e., almost constant).

Therefore, having a fixed number of grid points N , it might be better to distribute the
grids over the approximated PDF support unequally; more points in the middle of the grid,
less point at the grid boundaries.

3.1.3 Grid Design for Scalar Variable: Illustration

The standard approach to the equidistant grid design lies in the following steps:

Algorithm 2: Illustration of Standard Grid Design

(i) Specification of the region R from (3.1), which is, in the considered scalar case, a line
segment, for example, if Pthr ≈ 0.999999, then the region is a closed line segment of
length ` = 12 with endpoints −6σk+1|k = −6 and 6σk+1|k = 6 [17],

(ii) Specification of an allowed number of the grid points N , e.g. N = 21,
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(iii) Calculation of equidistantly spaced grid points {ξ(i)
k+1}Ni=1, i.e., with the grid point vicin-

ity ∆k+1 = δk+1 = `
N−1 = 0.6 constant for all grid points.

3.2 Density Specific Grid Design

The proposed density specific grid (DSG) design, is based on an unequally spaced placement
of the fixed number of points over the PDF support to be approximated. The main idea is to
approximate the PDF where the volume of the PDF is significant or significantly changing
by a denser grid (as in this area, a slope of the PDF is expected to be significant) and the
tail of the PDF by a sparser grid (as the tail is flat). The DSG design is illustrated for a
scalar variable first and then generalized and discussed for a vector variable.

Even though this idea assumes the approximated PDF is unimodal and symmetric, the
DSG design should work for asymmetrical and multimodal distributions as long as the
”important”/fast-changing part of the PDF is around its mean value, as illustrated in Figure
3.3. This condition is satisfied in many scenarios. Moreover, an alternative approach to the
denser region determination for multimodal PDFs is offered in Section 5.2.

PDF

Grid

Figure 3.3: Illustration of DSG design approximation of non-gaussian PDF.

3.2.1 Region of the PDF Support

The grid construction step precedes the PMF prediction step. The determination of the
PDF support region to be covered by the grid points is only approximate as it is based on
the assumption of the symmetric Gaussian predictive PDF (see discussion in Section 3.1.1).
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However, it must be noted that the assumption is used just for the region determination
and grid point placement; the predictive PDF itself is not restricted by any density-type
assumption.

The regionR for the whole grid is sought analogically to the standard grid but in addition,
another region Rcenter for the denser grid is needed. This Rcenter has the same midpoint but
is smaller than R.

3.2.2 Location of Grid Points

Going back to the approximate predictive Gaussian PDF pA(xk+1|zk) (3.4) used for pre-
dictive PDF region determination and grid construction, let, without loss of generality, an
approximate predictive PDF in the form of the standard normal distribution

pA(xk+1|zk) = N{xk+1; 0, 1}, (3.11)

be considered, i.e., the standard deviation is σk+1|k =
√
Pk+1|k = 1. The newly proposed

DSG design leads to non-equidistantly placed grid points, where a denser grid is constructed
around the estimated predictive mean value (obtained from e.g., UKF prediction step) vicin-
ity and the sparser grid is used at the tail of the PDF. The DSG design is proposed with
minimal computational overhead with respect to a standard grid design.

3.2.3 Standard Grid Design for Scalar Variable: Illustration

The creation of the DSG can be summarized by the following algorithm.

Algorithm 3: Illustration of Density Specific Grid Design

(i) Specification of the region R from (3.1), which is, in the considered scalar case, a line
segment. For example, if Pthr = 0.999999, then the region is a closed line segment of
length ` = 16 with endpoints −6σk+1|k = −6 and 6σk+1|k = 6.

(ii) Splitting region R, defined by the line segment, into two parts; the central part Rcentre

around the mean value x̂k+1|k = 0, where a PDF slope is expected to be significant,
and the remaining tail part Rtail, where a PDF is expected to be almost flat. For
example, the central region Rcentre is defined by a closed line segment of length ` = 6
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with endpoints −3σk+1|k = −3 and 3σk+1|k = 3 and the tail region Rtail is defined by
two closed line segments of length ` = 3 with endpoints −6, −3 and 3, 6, respectively.

(iii) Specification of an allowed number of the grid points N . For example, number of the
grid points is selected as N = 21.

(iv) Allocation of grid points into both subregions Rcentre and Rtail; the former should
contain more grid points than the latter one. For example, the subregion Rcentre is
covered by Ncentre = 3

4N ≈ 17, whereas tail region Rtail by remaining points Ntail =
1
4N = 4. As the tail region is given by two parts (at each side of the central region
Rcentre), each part is covered by 2 points.

(v) Calculation of non-equidistantly spaced grid points {ξk+1}Ni=1 so that the central re-
gion Rcentre is equidistantly covered by Ncentre points and the tail region Rtail by Ntail

points. For example, in Rcentre the grid points are close to each other with the vicinity
∆centre,k+1 = 0.375, but in Rtail the grid point vicinity is ∆tail,k+1 = 1.5.

Ideally, the whole space would be covered by the grid, therefore the selection of N and Pthr

parameters is a trade off between accuracy and computational complexity.

3.3 Comparaison of Standard and DSG Design for Scalar
Variable

The standard grid placement is shown in Fig. 3.4 denoted by blue circles. Usage of equidis-
tantly placed grid points for point-mass approximation of the PDF pA(xk+1|zk) (3.11) results
in the point-mass density p̂A(xk+1|zk; ξk+1) (2.6) with the point-mass density approximation
error p̃A(xk+1|zk; ξk+1) (3.10), which are plotted in Fig. 3.5 with blue dashed line. The DSG
placement is shown in Fig. 3.4, denoted by red crosses and the respective point-mass density
p̂A(xk+1|zk; ξk+1) (2.6) and the approximation error p̃A(xk+1|zk; ξk+1) (3.10) are shown in
Fig. 3.5 with red solid line.

22



CHAPTER 3. POINT-MASS FILTER GRID DESIGN

-6 -4 -2 0 2 4 6
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Figure 3.4: Grid points illustration; standard approach with equal distances, proposed DSG
approach with non-equal distances, both N = 21.
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Figure 3.5: PDF, PMG approximation, and PMG approximation error for standard and
proposed DSG design.

From the approximation error plot in Fig. 3.5 it can be seen, that the DSG design results
in a significantly lower approximation error. To quantify the approximation error of two
considered grid design techniques, let the following integral criterion

Jk+1|k =
∫
p̃(xk|zm; ξk)dxk+1, (3.12)

be defined, which can be understood as an overall PDF approximation error. Numerical
evaluation of the criterion (3.12) results in

• Jk+1|k = 0.1188 for standard equidistant grid points calculation,
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• Jk+1|k = 0.0780 for proposed non-equidistant grid points calculation.

The results indicate that by change from equidistant to non-equidistant grid points location,
the point-mass density approximation error can be reduced by more than 30%. To further
illustrate the advantage of non-equidistant DSG design a standard Gaussian distribution
was approximated by point-mass densities. Three different numbers of grid points N , two
splitting ratios defining Ncentre and Ntail, namely Ncentre ≈ 2

3N and Ncentre ≈ 3
4N , and two

grid design, namely standard and DSG, are considered. The results in the form of the
integral criterion Jk+1|k (3.12) and relative improvement are shown in Table 3.1. It can be
seen, that the proposed non-equidistant DSG design offers a significant improvement in the
point-mass density approximation quality compared to the standard equidistant grid design.

N Ncentre Ntail Jk+1|k (std.) Jk+1|k (DSG) Realative improv. [%]
2/3 1/3

21 14 7 0.1188 0.0940 26 %
31 21 10 0.0795 0.0605 24 %
51 35 16 0.0478 0.0356 26 %

3/4 1/4
21 17 4 0.1188 0.0780 34 %
31 25 6 0.0795 0.0518 35 %
51 39 12 0.0478 0.0323 32 %

Table 3.1: Quality of point-mass density approximation for standard and density specific
grid design.

3.4 Density Specific Grid Design for Vector Variable

The DSG design for the vector state variable follows the idea introduced for the scalar case
and can be summarised by the following general algorithm:

Algorithm 4: Density Specific Grid Design (Vector State Variable)

(i) Determination of approximate Gaussian PDF pA(xk+1|zk) (3.4). Specification of the
threshold Pthr and number of the grid points N .
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(ii) Computation of the region R in the state space which is to be populated by the
grid points. The (hyper-)rectangular region should fulfil the inequality (3.1). A time
efficient computation of the region for the vector variable can be based on marginal
distributions of pA(xk+1|zk).

(iii) Split the region R into two subregions, namely Rcentre and Rtail. The subregion Rcentre

is located around the mean value, whereas Rtail close to the edges of the grid.

(iv) Split N grid points into Ncentre ≈ d3N
4 e and Ntail = N −Ncentre, where the notation d·e

stands for rounding toward positive infinity.

(v) Determine location of Ncentre grid points {ξ(i)
k+1}Ncentre

i=1 to equidistantly cover Rcentre and
location of Ntail grid points {ξ(i)

k+1}Ni=Ncentre+1 to equidistantly cover Rtail.

The points computed by Algorithm 4 form the sought grid for the calculation of the point-
mass predictive PDF p̂(xk+1|zk; ξk+1) (2.27) of the PMF.

It should be noticed that the neighbourhood defined by ∆k in (2.6) is not the same for
all grid points anymore. Thus, definition of i-th grid point ξ(i)

k should be always associated
with definition of the probability Pk|m(ξ(i)

k ) and also with particular ∆(i)
k . The point-mass

density has, instead of (2.6), the following form

p(xk|zm) ≈ p̂(xk|zm; ξk) ,
N∑
i=1

Pk|m(ξ(i)
k )S{xk; ξ(i)

k ,∆
(i)
k }. (3.13)

3.5 User-Defined Design Parameters and Properties

The proposed basic DSG design is based on two user-defined parameters, namely a splitting
ratio for volume of the region R into two subregions Rcentre and Rtail and a splitting ratio
for number of the grid points N into Ncentre and Ntail. Note that the ratio may (and should)
be tuned for particular applications.

If the approximated distribution is not close to symmetric distribution, then the DSG
may not result in an improvement in the approximation quality of the PDF by the point-
mass density. This is analyzed in Chapter 4, employing various approximation errors, with
the presentation of changes in optimal parameters based on approximated PDF. A solution
to this problem is proposed in Chapter 5.
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3.6 DSG Using UKF Prediction and Filtration

The standard DSG design uses only state dynamics (2.1) and the filtration density p(xk|zk)
known from the measurement update to specify grid support for the predictive density
p(xk+1|zk). However, the same grid is also used for definition of the forthcoming filtration
density p(xk+1|zk+1). Moreover, the filtering estimate is usually the one more important
for estimation results. Therefore, it seems beneficial to incorporate the information from
measurement zk+1 in definition of a grid for both p(xk+1|zk) and p(xk+1|zk+1).

This is possible by creating another denser part of the grid centred at the approximate
filtration estimate x̂A,k+1|k+1(3.2). The size of the grid can be again chosen so it satisfies
(3.1) for pA(xk+1|zk+1). However, in order to use this grid design the PMF algorithm has to
run the UKF prediction, UKF filtration (for grid support region determination) and PMF
prediction in predictive step which might not be ideal, mainly for online applications, due to
most computational complexity being shifted to one place in the algorithm. This problem
is illustrated in Figure 3.8 opposed to usual case shown in Figure 3.7.

Algorithm 5: Density Specific Grid Design using Filtration (Vector State Variable)

(i) Determination of approximate Gaussian PDF pA(xk+1|zk) (3.4) and pA(xk+1|zk+1) sim-
ilarly. Specification of the threshold Pthr (for computation of region R) and smaller
Pthr,f (for computation of region Rf ), Pthr,p (for computation of region Rp) and allowed
number of the grid points N .

(ii) Computation of the region R (whole grid), Rf (grid from UKF filtration) and Rp (grid
from UKF prediction), in the state space. The (hyper-)rectangular regions should fulfil
the inequality (3.1) for their appropriate probability mentioned in step (i).

(iii) Splitting the number of points N into two regions, one is Rdense = Rf ∪Rp, the second
one is Rsparse = R\Rdense. The points are split so that the Rdense region is populated
more densely than region Rsparse. See Figure 3.6.

(iv) Determination of location of Ndense grid points {ξ(i)
k+1}

Ndense
i=1 to equidistantly coverRdense

and location of Nsparse grid points {ξ(i)
k+1}Ni=Ndense+1 to equidistantly cover Rsparse.
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CHAPTER 3. POINT-MASS FILTER GRID DESIGN

An example of the resulting grid can be seen in Figure 3.6. Insurance of the grid points
neighbourhoods not overlapping, as the grid is not trivial, is explained in Chapter 6.
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Figure 3.6: Example of grid points distribution in 2 dimensional state space for DSG design
with UKF filtration.
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Figure 3.7: Time diagram of most standard filtration algorithms.
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Measurement update

k = k + 1

zk

Idle

p(xk|z
k)

Not until now the time update can be computed and everything has to be postponed.

Start

Figure 3.8: Time diagram of PMF using DSGf.
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Chapter 4

Analysis of DSG Usage for
Non-Gaussian PDF’s

The DSG design was proposed and analyzed under an assumption that the approximated
PDF is symmetric or is close to being symmetric and also ”heavy” around mean value. In
this chapter, the influence of higher moments kurtosis/skewness, on the accuracy of the
approximation in 1D space is inspected.

Parameters required for the creation of the DSG are the required number of grid points
N and the probability that the tail/center grid is supposed to cover (specified as sigma prob-
abilities σout/σin). The value N should be chosen as high as possible with the only restriction
being the computational capacity i.e. desired time demand. Therefore the parameters that
remain to be chosen are σout and σin.

There are plenty of criteria that can be used to measure the quality of the approximation.
The ones used in this chapter are

• IE - Integral error (7.8) - ∑Nexc
i=1 abs (p(x = ξiexc; ξexc)− p(x = ξiexc; ξapx)),

• ISE - Integral sum error - 1−
∫
p(x; ξapx)dx,

• ME - Mean error - abs
(
E(x)− x̂k|m(ξapx)

)
,

• VE - Var error - abs
(√

var(x)−
√

P̂k|m(ξapx)
)

,

where p(x; ξexc) is an ”exact” PMD with 30000 points and p(x; ξapx) is the analysed PMD
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approximation. The σ combinations are the same for all simulations (each column is corre-
sponding to one index in Figures 8.1 - 8.4)σout

σin

 =
 8 8 ... 8 7.9 7.9 ... 1

7.9 7.8 ... 0 7.8 7.7 ... 0

 . (4.1)

The analysis was conducted on gamma distribution Fig. 4.2, Gaussian distribution Fig.
4.1 for comparison and generalized normal distribution Fig. 4.3.
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Figure 4.1: Gaussian distributions.

4.1 Gamma Distribution - Skewness and Kurtosis

Gamma distribution was chosen due to the fact that it is specified using only four moments
and the analysis can be more intuitive. The approximated PDF

1
Γ(k)θkx

k−1e−
x
θ . (4.2)

Variance, skewness and kurtosis are given by

σ2 = kθ2, (4.3)

µ3 = 2√
θ
, (4.4)

µ4 = 6
k

+ 3. (4.5)

The dynamics of errors based on parameters can be seen in Figures 8.1 - 8.4 in the Appendix.
The errors are greater but comparable to ones obtained from approximating Gaussian dis-
tribution. Interestingly for the Gaussian distribution, the optimal parameters chosen by IE
are independent of the variance of the approximated normal PDF, while other criteria are
dependent.
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IE criterion is lower for the approximations using DSG grids with outer grid σ between
4 and 5. On the other hand, the rest of errors seem to be smaller for the biggest outer grid
and not favouring DSG design that much.

Considering that the estimate, taken only as a mean value, can be ”accurate” even though
the PDF is not ”well approximated” and that PMF’s trait is to provide estimate in the form
of PMD ergo PDF approximation it might be best to focus on the IE.
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Figure 4.2: Gamma distribution.

4.2 Generalized Normal Distributions - Kurtosis

The generalized normal distribution was also analyzed. For this distribution the kurtosis
was varied. However, the findings were the same as for the analysis of gamma distribution.
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Figure 4.3: Generalized normal distributions.

31



CHAPTER 4. ANALYSIS OF DSG USAGE FOR NON-GAUSSIAN PDF’S

4.3 Summary

The proposed DSG design has a few shortcomings. The first problem is that for PDFs with
dominant higher moments (e.g. skewness, kurtosis) the grid should have more parameters.
For example for highly skewed distributions, the denser grid should probably be moved and
stretched on one side to compensate for the steepness.

The second problem is that the user has to specify the size of the outer sparse and inner
dense grid in the form of the STDs that the grids are supposed to cover. (6.3) To set up those,
the user has to possess some insight into the problem. These parameters should ideally be
picked automatically by the algorithm.

The third shortcoming is that the user spcified number of STDs are constant in time
which might not be ideal as the PDF can change greatly in time. In that case, the ideal
choice of those parameters will vary in time. Therefore, ideally, parameters should be time-
varying and picked automatically.

Also, for PDF that does not have the ”high value”/fast-changing part in the vicinity of
mean value, the DSG design is not optimal.

Possible solutions are presented in the following Chapter.
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Chapter 5

Density Specific Grid Design
Enhancements

In this chapter a solution is proposed to the DSG design shortcomings mentioned in the
previous chapter i.e. enhancement is proposed so that compared to the DSG design, the
new design utilise full information about the shape of the predictive PMD. The basic idea
is summed up in the following steps

1. Design of the sparse (outer) grid and evaluation of the predictive probability at these
grid points,

2. Differentiation of “sparse” predictive PMD,

3. Design of the dense (inner) grids in the vicinity of the “sparse” grid points, that are
associated with a large numerical derivative.

5.1 Outer Grid

Instead of focusing on moments while setting up the grid, the idea is that, the proposed
method exploits a property of the Point-Mass time-update, that a PDF value of any single
point can be computed independently. Therefore the algorithm ”probes” the PDF values of
carefully picked points in order to choose the size of the grid support.
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CHAPTER 5. DENSITY SPECIFIC GRID DESIGN ENHANCEMENTS

Algorithm 2: DDG Sparse Grid

1. Define a threshold pthr below which the probability at a grid point is considered to be
negligible and the grid point does not have to be included into the sparse grid. The
threshold setting can be related to computation precision of a given platform.

2. Similarly as in the DSG design [15], compute the predictive moments x̂A,k+1|k (3.2) and
PA,k+1|k (3.3) and set the number of standard deviations (STDs) nσ of the marginal
distributions of (3.4), which are used for specification of an a priori (hyper-)rectangular
region RA to be covered by the grid points.

3. At the boundaries of the region RA select a small set of grid points (see example lower)
and evaluate the predictive probability at these points. If the probability of the point
is (significantly) below the threshold pthr, then the particular point can be shifted
towards the mean. On the other hand, if the probability of the point is (significantly)
over the threshold pthr, then the particular point can be shifted in an opposite direction
from the mean. The shifted points are, then, re-evaluated.

4. When all boundary points are properly set, create a (hyper-)rectangle including all the
boundary points, with a smallest possible volume. This (hyper-)rectangle define R.
As a consequence, the resulting region R need not be symmetrical with respect to the
mean.

5. Define a cardinality of the sparse grid Nsparse and dense grid Ndense = N −Nsparse. Fill
the regionR by equidistantly placedNsparse hyper-rectangular grid points {ξ(j)

sparse,k+1}
Nsparse
j=1

(each sparse grid point is associated with a neighbourhood ∆sparse,k+1).

The illustration for two-dimensional state and points in the rectangles corners and mid-
dles of the sides can be seen in Figure 5.1, where m is the UKF prediction. The rectangular
shape is chosen to keep the computational complexity low.

Note that this method might not yield the best results if the approximated PDF is
multimodal and the areas between modes have the negligible value of PDF. However, this
problem might be lessened by forcing the points to have negligible probability twice in a row
before keeping them set in place.

34



CHAPTER 5. DENSITY SPECIFIC GRID DESIGN ENHANCEMENTS

Numerical illustration for these enhancements is present in Chapter 7.

x1

x2

m

Probability smaller than threshold

Probability larger than thresholdPicked boundaries

σ rectangles

Figure 5.1: Illustration of search for outer grid boundaries.

5.2 Inner Grid

This section offers an alternative way of setting up the denser parts. Again the focus is
steered away from the moments of the approximated PDF to the ability to compute the
probability of any single point. The process is as follows.

Algorithm 3: Sparse Grid PMD Differentiation

1. Compute the PMD for Nsparse sparse grid points according to the convolution (2.28).

2. For each sparse grid point ξ(j)
sparse,k+1 compute the divided difference vector d(j)

k+1 ∈ RF
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according to

d(j)
k+1 =

abs(Pk+1|k(ξ(j)
sparse,k+1)− Pk+1|k(ξ(ı1)

sparse,k+1))∥∥∥ξ(j)
sparse,k+1 − ξ

(ı1)
sparse,k+1

∥∥∥
2

, . . . , (5.1)

abs(Pk+1|k(ξ(j)
sparse,k+1)− Pk+1|k(ξ(ıF )

sparse,k+1))∥∥∥ξ(j)
sparse,k+1 − ξ

(ıF )
sparse,k+1

∥∥∥
2

 , (5.2)

where the index vector ı = [ı1, ı2, . . . , ıF ] is selected so that the closest neighbouring
points are chosen and ‖‖2 is the Euclidean distance. The F depends on what points
are chosen as adjacent, this can be tailored to particular case. If the point is on the
boundary of the grid, the difference is counted only to the existing grid points.

3. Compute the grid points rating according to

d
(j)
k+1 =

F∑
i=1

d(j)
k+1(i), (5.3)

which characterises the overall variability of the PDF in the vicinity of the j-th sparse
grid point ξ(j)

sparse,k+1.

Illustration of this algorithm is in Figure 5.2.
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Figure 5.2: Example of points ratings.

Adjacent points for this thesis implementation are picked as shown in Figure 5.3. For
faster computation in more dimensional state the diagonal grid points do not have to be
taken as adjacent.
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Figure 5.3: Illustration of adjacent points.

Having defined sparse grid points (Algorithm 2) and computed their difference rating
(Algorithm 3), which in fact precisely denotes the state-space regions with significant change
or variability of the conditional PDF, it is possible to construct the dense grid according to
the following algorithm:

Algorithm 4: Dense Grid Design

1. Sort the sparse grid points {ξ(j)
sparse,k+1}

Nsparse
j=1 in a descending order according to their

rating d(j)
k+1 (5.3).

2. Set the splitting ratio r, which determines number of dense grid points rnx used for
covering the vicinity of the j-th sparse grid ξ(j)

sparse,k+1. Reasonable choice is r ∈ {2, 3}1,
but note that the ratio can be varying and it can depend on the rating d(j)

k+1 (5.3); the
higher rating, the higher ratio.

3. Recursively split the vicinity of the ordered grid points, starting from the points with
high rating d(j)

k+1, until the number of the dense grid points Ndense is reached.
1As the DDG design can effectively and precisely find the denser grid design regions, the splitting ration

can be 3 as opposed to the DSG design splitting ratio 2.
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In Figure 5.4 the created grid support, for a PDF close to Gaussian, can be seen.

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Figure 5.4: Example of grid support.

5.3 Summary

With these enhancements, the user parameters changed from setting up two σ probabilities
and the desired number of grid points N , to picking just N and the ratio between split and
non-split points. This effectively solves any problems with the presence of higher moments
in the approximated PDF as long as discussion in Section 5.1 is kept in mind. It also enables
the grid to better adapt in time.

It can be seen that, compared to the recently proposed DSG, the DDG dense (inner) grid
need not be rectangular and thus it more realistically covers the support of the conditional
PDF with the significant volume without any requirement on computation and utilisation
of a set of higher-order moments.
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Chapter 6

Implementation in NEF Toolbox

The NEF is a publicly available1 Matlab toolbox designed for a non-linear state estimation
and identification of discrete dynamic stochastic systems described by the state-space model
of the form (2.1), (2.2). The toolbox consists of mutually linked classes which implement all
functionality needed for state estimation problem. The toolbox has implemented classes for

• System description,

• Random variable description,

• Function definition,

• Estimator definition,

• Performance evaluation,

• System identification.

The System description allows a specification of the system model in a probabilistic or a
structural fashion. The Random variable description (RV) enables a description of the char-
acteristics of RVs related to the model or the estimate. The following PDFs are supported:
uniform, beta, gamma, Gaussian, Gaussian sum, empirical and now also point-mass. The
Function definition enables a description of equations in the state and measurement equa-
tions or PDFs of RVs in the case of the probabilistic system description. The Estimator

1The toolbox is available at http://ntf.kky.zcu.cz/nef.
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definition contains various local and global estimation algorithms as the Kalman filter (KF),
extended KF, unscented KF, divided difference filters, particle filter, Gaussian sum filter,
the ensemble KF, and newly the PMF. The part of NEF for Performance evaluation enables
calculation of various performance metrics related to the estimate quality (mean square er-
ror (MSE), non-credibility index (NCI), etc.). The category System identification contains
methods for the estimation of parameters of a linear state-space model based on measured
data. The NEF thus represents a powerful and complex tool for the state and parameter
estimation of linear and nonlinear systems. Further information on the toolbox structure
can be found in [12].

To add the PMF with standard and newly proposed DSG design, as a powerful filter
suitable for highly nonlinear and non-Gaussian systems, into the NEF estimator repertoire,
two subclasses were implemented; first, for random variable description, allowing manipu-
lations with a point-mass density, second, for estimator definition defining the point-mass
estimator. Both subclasses are particularized below.

Note that due to NEFs firmly given structure and philosophy, the DSG design using UKF
filtration to specify the second denser part of the grid 3.6, was not implemented.

6.1 Random Variable Subclass: nefPointMassRV

First newly implemented class nefPointMassRV is a subclass of the parent random variable
class nefRV. The implemented subclass has been designed to easily create and describe point-
mass density p(xk|zm) (2.6), compute moments, and generate samples. It can also plot PDFs
for one and two dimensional random variables.

The subclass supports a description of point-mass densities that are constant on an
equally and unequally spaced neighbourhood. An instance of the class nefPointMassRV
with equidistant grid can be created (in Matlab) as follows

PointMassDensity = nefPointMassRV(gridPoints, pointsProb,

Delta, 'gridType', 'eqdist');

where the input parameters are

• gridPoints - a matrix of dimension Rnx×N containing all available grid points {ξ(i)
k }Ni=1

so that i-th column of the matrix gridPoints is the i-th point ξ(i)
k ,
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• pointsProb - a vector of dimension RN×1 containing probabilities Pk|m(ξ(i)
k ),∀i,

• Delta - a vector of dimension Rnx×1 defining a neighbourhood of a grid point herein
denoted as ∆k,

• 'gridType', 'eqdist' - a name-value pair meaning that the created grid will have
equidistantly distributed points.

The N is the total number of grid points. An instance of the class nefPointMassRV with
non-equidistant grid, which is needed for the DSG design, is created analogously to the
previous instance as

PointMassDensity = nefPointMassRV(gridPoints, pointsProb, Delta,

'gridType', 'noneqdist');

with two differences

• Delta is a matrix of dimension nx ×N (same dimension as gridPoints), where a
neighbourhood of i-th grid point, i.e., ∆(i)

k in (3.13), is i-th column of the matrix,

• a value 'noneqdist' is used in place of 'eqdist'.

6.2 Estimator Subclass: nefPMF

The second newly implemented class nefPMF is a subclass of the parent estimator class
nefEstimator. The implemented subclass has been designed to easily create point-mass
estimator defined by Algorithm 1 and estimate the state. As any of the other estimators
implemented in the NEF Toolbox [12], the point-mass estimator can be configured to perform
filtering, prediction and smoothing task.

A basic instance of the class nefPMF can be created (in Matlab) as follows

pmfEst = nefPMF(system, 'gridSigma', gridS, 'noGridPoints', N);

where

• system is an instance of the NEF class nefSystem containing state-space model (2.1),
(2.2). Definition of the model in the NEF Toolbox is illustrated in [12],
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• 'gridSigma', gridS is a name-value pair specifying σ-probability that the grid is
trying to cover in predictive step (Fig. 6.1),

• 'noGridPoints', N is a name-value pair specifying the number of grid points N to
be used in predictive grid design.

For use of DSG (section 3.2) design name-value pair 'gridSigmaPredIn', gridSp, speci-
fying σ-probability that the inner dense grid is going to cover in predictive step, has to be
added (Fig. 7.4).

The instance nefPMF provides estimates for all required time steps in the form of instances
of density class nefPointMassRV. Note that the class nefPointMassRV includes methods for
moment computations.

6.3 Grid Design in NEF

Particular application of PMF time-update grid creation in NEF can be summarized by the
following steps (note that, while the algorithm is general, the accompanying figures are all
for two dimensional state) :

Algorithm 6: NEF PMF time-update grid creation

(i) Approximate predictive moments x̂A,k+1|k(3.2),PA,k+1|k(3.3) are counted using UKF
predictive step.

(ii) Grid boundaries are found as the (hyper-)rectangle around lσ−ellipse of
N{0, diag(PA,k+1|k)}, where l is a parameter chosen by the user during estimator class
instance creation. This can be seen in Figure 6.1, though note that in the figure
the boundaries are already rotated and moved to the x̂A,k+1|k. The kσ−ellipse was
discussed in 3.1.1.

(iii) Area inside grid boundaries is filled with evenly distributed points so that the number
of points for each dimension is the same, for example the grid is 2×2, 15×15, 3×3×3
etc.
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(iv) If the user specifies non zero kσ probability for the inner denser grid, then the new
denser grid boundaries are created analogically to the step ii. All points belonging
inside the boundaries are then split into 2nx points, where nx is the dimension of the
state, in a way that the neighborhoods ∆k, of the outer sparse grid, stay the same.
This step, for nx = 2, is shown in Figure 6.3.

(v) The grid is moved to x̂A,k+1|k and rotated so the grid boundaries are parallel with
PA,k+1|k eigenvectors. The possible outcome can be seen in Figure 6.1. The rotation
does not change shape of the neighbourhoods ∆k of points as represented in Figure
6.2.

As follows from (iii), if the nx-th root of the number of sought grid points is not a whole
number, the total number of points has to be bigger/smaller. NEF implementation rounds
the number of points down.

Note that the number of points Ns in a sparse grid created in (iii), when using DSG
design, has to be set up in a way, so that the total number of points after point division
is (nearly) equal to the demanded number of points. The Ns is estimated as ratio between
area of denser and more sparse grid as

N = N

2nx · r − r + 1 , r =
∏bin∏bout

(6.1)

where nx is state dimension, bin and bout are coordinates of such a point that is in the
most distant corner from origin of the denser respectively sparser grid area bounding (hyper-
)rectangle, before its rotation and shifting to x̂A,k+1|k and∏ represents product of all elements
of the consequent vector. Example of how to use NEF for PMF estimation is shown in
Subsection 7.2.1.
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Figure 6.1: Illustration of grid boundaries created from σ ellipse in time update step.

Figure 6.2: Illustration of rotation of a grid by eigenvectors.
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Figure 6.3: Illustration of grid points distribution in 2 dimensional state space for DSG
design.
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Chapter 7

Simulations and Results

Firstly, a static approximation case is shown in order to demonstrate the DSG and DDG dif-
ferences and performance. Secondly, this chapter presents simulation results for the predator-
prey model from the NEF toolbox for all of the hereinbefore presented algorithms. After
that, results for terrain-aided navigation scenarios implemented outside NEF are shown.

7.1 Static Case

A Gaussian mixture was approximated by DSG and DDG designs. This mixture consisted
of four components N{x; x̂i,Pi} with weights wi, where

P1 = P2 = P3 = P4 =
1 0

0 1

 , (7.1)

[
x̂1 x̂2 x̂3 x̂4

]
=
1 2 4 5

4 1 3.5 −3.5

 , (7.2)
[
w1 w2 w3 w4

]
=
[
0.1 0.3 0.4 0.2

]
. (7.3)

The PDF can be seen in Figure 7.1. The errors while approximating this mixture by Stan-
dard, DSG and DDG are presented in Tables 7.1, 7.2 and 7.3. Important to note is that
the σout = 2 and σin = 1 were set up after experiments so the approximation yields best
results. Integral and variance error are smillar, while mean and integral sum error are much
lower when using DDG. Inconsistency when using DSG for approximation of inappropriate
distributions can be also noted.

49



CHAPTER 7. SIMULATIONS AND RESULTS

The Figure 7.2 shows the creation of the outer grid boundaries for this case. The bound-
aries are similar to the ones gotten when using DSG except for asymmetry which is introduced
by the highlighted ”probe” point, see Chapter 5. In Figure 7.3 the used grids can be seen.

Figure 7.1: Gaussian mixture.

DDG 50 200 500
ISE 1.1102 · 10−15 2.2204 · 10−16 2.2204 · 10−16

ME 0.2439 2.5314 · 10−5 6.7043 · 10−6

Table 7.1: Approximation errors DDG design.

DSG 50 200 500
ISE 0.0733 6.3488 · 10−5 3.8642 · 10−5

ME 0.7567 6.1405 · 10−5 3.1102 · 10−4

Table 7.2: Approximation errors DSG design.

EQ 50 200 500
ISE 0.0468 0.0062 5.5585 · 10−8

ME 1.5848 0.0606 2.4479 · 10−5

Table 7.3: Approximation errors equal grid design.
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Figure 7.2: Outer grid boundaries creation.

Figure 7.3: Example of grids for each filter.
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7.2 Dynamic State Estimation using NEF Toolbox

In this section, simulation results from NEF toolbox are presented.

7.2.1 Predator-Prey Model - PMF Standard and PMF DSG

The PMF was implemented for the following two-dimensional nonlinear predator-prey model

xk+1 =
xk+1(1)
xk+1(2)

 =
T · (1− a)xk(1) + Tbxk(1)xk(2)
T · (1 + c)xk(2) + Tdxk(1)xk(2)

+ wk, (7.4)

zk = xk(1) + vk, (7.5)

where the constants are T = 1, a = 0.04, b = c = d = 0.08 and x(j) means j-th element of the
vector x. This model belongs to test examples in NEF Toolbox. The state and measurement
noises are described by the zero-mean Gaussian PDFs with covariance matrices

Q =
0.005 0

0 0.005

 , R = 0.01, (7.6)

respectively. The state initial condition is also a Gaussian random variable with PDF

p(x0) = N{x0;
 0.9
−0.85

 ,
0.001 0

0 0.001

}. (7.7)

NEF Toolbox: Model Definition and Trajectory Simulation

The model (7.4)–(7.7) can be easily defined by the following set of commands [12]:

% number time steps

K = 10;

% function f in state equation

f = nefHandleFunction(@(x,u,w,k)[0.96*x(1)+0.08*x(1)*x(2)+w(1);

1.08*x(2)-0.08*x(1)*x(2)+w(2)],[2 0 2 0])

% function h in measurement equation

H = [1 0];

h = nefLinFunction(H,[],1);

% state noise
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Q = eye(2)*0.005;

w = nefGaussianRV([0 0]',Q);

% measurement noise

R = 0.01;

v = nefGaussianRV(0,R);

% initial condiditon

x0 = nefGaussianRV([0.9;-0.85],1e-3*eye(2));

% creating system

system=nefEqSystem(f,h,w,v,x0);

The model trajectory can be simulated using:

[z,x] = simulate(system,K,[]);

NEF Toolbox: PMF Design and State Estimation

A set of three PMF is configured, namely the following instances of the class nefPMF are
created:

• PMF_exact with N = 1000 equidistantly placed grid points; this filter is assumed to
produce “almost” true state estimates,

• PMF_standard with N = 112 equidistantly placed grid points,

• PMF_DSG with N = 112 non-equidistantly placed grid points.

The above mentioned instances can be defined by the following commands:

PMF exact = nefPMF(system,'gridSigma',6,'noGridPoints',961);

PMF standard = nefPMF(system,'gridSigma',6,'noGridPoints',100);

PMF DSG = nefPMF(system,'gridSigma',6,'noGridPoints',112,

'gridSigmaPredIn',4);

Having the generated data and PMFs’ instances, the state estimation can be realised by

[est PMFexact] = estimate(PMF exact,z,[]);

[est PMFstandard] = estimate(PMF standard,z,[]);

[est PMFdsg] = estimate(PMF DSG,z,[]);
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Figure 7.4: Example of grid at step k = 10 for PMF_DSG.

Example of points distribution for DSG design can be seen in Fig. 7.4. The final estimates
are as the instances of the class nefPointMassRV.

NEF Toolbox: Results

The state estimates mean square errors1 (MSE) and time complexity averages from 1000
Monte-Carlo simulations are summarized in Table 7.4. An example of a grid points distri-
bution at step k = 10 for the filter PMF_DSG can be seen in Fig. 7.4. In Fig. 7.5 there
are examples of PDFs for each filter in the same step. It is apparent that the PMF_DSG is
achieving a better approximation of the part of the PDF with high probability, that mostly
contributes to the computation of moments, by using more points than the PMF_standard
filter.

Before analysing the results in Table 7.4 it is worth noting, that the estimate performance
in this table is compared using the mean square error criterion (MSE) in addition to the
criterion Jk+1|k (3.12) to illustrate the impact of the approximation quality of the point-mass
density on the PMF mean estimate. The criterion J11|10 (3.12) is, in this case with unknown
true density, computed as a difference between the point-mass density of the PMF_exact
(assumed to be almost true) and point-mass density of either the PMF_standard or the

1Moments of any distribution in the NEF Toolbox can be easily calculated as well as various estimate
performance criteria such as MSE, NCI, etc. Details can be found in [12] and references therein or on the
toolbox homepage.
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Figure 7.5: Measurement update pdf for each filter in step k = 10.
MSE MSE Relative Deterioration [%] J11|10 Time [sec]

PMF_exact 0.01546 – – 0.833
PMF_standard 0.01618 5 0.011 0.045
PMF_DSG 0.01548 0.1 0.005 0.048

Table 7.4: Performance of particular PMF designs.

PMF_DSG, i.e., as

p̃(xk+1|zk; ξk+1) = |p̂exact(xk+1|zk; ξk+1)− p̂(xk+1|zk; ξk+1)|, (7.8)

where p̂exact(xk+1|zk; ξk) is a density of the PMF_exact and p̂(xk+1|zk; ξk+1) is a density of
the PMF_standard or the PMF_DSG. Table 7.4 also shows the relative deterioration of the
MSE estimation performance of the PMF_standard and the proposed PMF_DSG with respect
to PMF_exact and the average estimation time for all time steps.

The table reveals that the proposed filter PMF_DSG provides significantly more accurate
not only the density estimates but also the mean estimates using the same number of grid
points as the filter PMF_standard, therefore preserving the computational complexity.

7.2.2 Predator-Prey Model - PMF DSG and Other Filters

For the same model 150 Monte-Carlo (MC) simulations with K = 20 were done in order to
compare PMF DSG design against other filters, mainly against PF. The filters were setup
by the following commands
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estimators = {...
nefUKF(model),... % standard UKF

nefSUKF(model),...% square-root version of the UFK

nefKalman(model),...% Extended Kalman filter in Josephs form

nefSKalman(model),...% squre-root variant of the Extended Kalman filter

nefPMF(model,'gridSigma',6,'noGridPoints',400,'gridSigmaPredIn',3),...% DSG

Point mass filter

nefPMF(model,'gridSigma',6,'noGridPoints',400),...% Points mass filter

nefPF(model pdf,'sampleSize',180)% Particle filter

};

so that PF and PMF takes approximately the same time to compute estimates for one MC
simulation. The Table 7.5 shows comparaison between standard PMF, DSG PMF, PMF
auto with automatically set up boundaries 5.1 and PMF DDG using the difference method
for denser grid creation (see Section 5.2). RMSE is a root of the MSE. It is shown that
PMF filter can be setup in a way that it is more accurate than other filters and also more
accurate than PF with similar computational time. The PMF auto is more precise than
standard PMF. Also, even thought the approximated PDF is close to a Gaussian PDF, the
PMF DDG performs relatively well compared to the PMF DSG.

Filter Predator RMSE Prey RMSE Time
UKF 0.23113 0.069587 0.021447
sUKF 0.23113 0.069587 0.046944
EKF 0.23117 0.069592 0.019402
sEKF 0.23117 0.069592 0.044937
PMF 0.23129 0.069606 0.13489
PMF auto 0.23075 0.069588 0.12917
PMF DDG 0.23067 0.06959 0.19801
PMF DSG 0.23067 0.069571 0.13215
PF 0.23985 0.069956 0.48349

Table 7.5: Performance of filters.

7.3 Terrain-Aided Navigation

Performance of the DSG will be illustrated using a TAN scenarios [8], [3] and [16].
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7.3.1 Cartesian Model

Let a state-space model

xk+1 = xk + uk + wk (7.9)
zk = h(xk) + vk (7.10)

be considered [3]. The two-dimensional state vector x consists of vehicle horizontal position
in north and east directions and the horizontal constant shift vector uk = [300, 300]T can be
known from e.g. inertial navigation system or odometer. The noises w and v are described
as

N{wk;
0

0

 100 0
0 100

}, (7.11)

N{vk; 0, 82}. (7.12)

The measurement function h is a discrete terrain map2 represented by a table function which
assigns vertical position (i.e. altitude) to each combination of latitude and longitude it
covers. The measurement zk itself is a vehicle altitude which can be based on the barometric
altimeter, radar altimeter, or their combination depending on the type of vehicle. Three
PMF filters

• PMFTRUE with high number of grid points N = 7225 providing ”almost true” state
estimate p(xk|zk),

• PMFST with standard equidistant allocation using N = 289 points providing the con-
ditional PDF p̂ST (xk|zk, ξk),

• PMFDSGf using proposed DSGf using N = 286 points providing the conditional PDF
p̂DSGf (xk|zk, ξk),

were implemented and compared in M = 103 Monte-Carlo (MC) simulations. Comparing
criterions were the estimation time and integral error IE = 1

T+1
∑T
k=0

∫
p̃(xk|zk; ξk)dxk 3.10,

where T = 50, both averaged over MC simulations. The results can be found in Table 7.6.
This table shows significant improvement of the IE while using DSG and mild improvement

2The map is from Shuttle Radar Topography Mission (SRTM) an international project spearheaded
by the U.S. National Geospatial-Intelligence Agency (NGA) and the U.S. National Aeronautics and Space
Administration (NASA), see https://www2.jpl.nasa.gov/srtm/index.html.
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of IE for DSGf over DSG. It can also be seen, as discussed in chapter 4, that better quality
of PDF approximation does not have to necessarily imply more accurate mean/variance
estimate. The IE for T = 10 can be see in Figure 7.6.

PMFTRUE PMFST PMFDSG PMFDSGf

RMSE [m] 18.7256 18.7579 18.7271 18.7274
ASTD 22.2339 22.1840 22.2222 22.2237
IE - 0.0223 0.0062 0.0061
N 7225 289 268 268

Table 7.6: PMFs estimation performance.

Figure 7.6: Illustration of the ”true PDF” (left) and point-mas density error of standard and
proposed DSGf layouts (middle, right).

7.3.2 Spherical Model

In this section the PMF was tested on a model from [16]. This model assumes constant
heading course (rhumb line) with constant speed at zero altitude. The state and dynamics
of the system are following

xk =
φk
λk

 =
φk−1 + (ϕ(λk)− ϕ(λk−1)) tan(K)

λk−1 + ∆T‖V ‖
R(λk−1) cos(K)

+ wk, (7.13)

zk = h(xk) + vk, (7.14)
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where φk is latitude, λk is longitude, ϕ(λ) = log
(

1+sin(λ)
cos(λ)

)
, ∆T is the sampling period,

state noise wk is based on sensors grade, K is the constant heading relative to the north
(measurement provided e.g by the compass), ‖V ‖ is a two-norm of known constant velocity
vector V = [VnorthVeast]T (constant heading course) and

R(λ) =

√√√√(r2
1 cos(λ))2 + (r2

2 sin(λ))2

(r1 cos(λ))2 + (r2 sin(λ))2 (7.15)

is Earth radius at latitude λ. Constants r1 and r2 are radius of Earth at equator and pole.
The measurement function h is the same as in the preceding model but the map is in the
Geographic coordinate system. The noises w and v are described as

N{wk;
0

0

1.8 · 10−05 0
0 1.8 · 10−05

}, (7.16)

N{vk; 0, 3}. (7.17)

The results in Table 7.7 are from 100 MC, 10-time step simulations, where N is the
number of points of the grid, RMSE is the square root of the MSE and ASTD is an average
standard deviation of measurement step probability counted as

√
diag(Pk) averaged over

time steps and dimensions.
It can be seen that the PMFDSG performs better than the PMFST. And also the PMFDSGf

shows better performance than standard PMFDSG. The standard DDG did not perform very
well in this task, but the alternative version DDG3 yielded the best result (except PMFTRUE).
In Figure 7.7 an example of first state varible trajectory estimate with standard derivation
can be found.

RMSE[°] ASTD time[s]
PMFTRUE 0.017608 0.017877 1.0523
PMFST 0.021876 0.015839 0.21883
PMFDSG 0.020686 0.015435 0.22041
PMFDSGf 0.020372 0.015552 0.42277
PMFDDG 0.022265 0.01575 0.22191
PMFDDG3 0.018989 0.016562 0.23019

Table 7.7: PMFs estimation performance.
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Figure 7.7: Example of a trajectory of the state x1.

7.3.3 Comparison

The PMF DDG and DSG methods show better performance for the spherical model. It
might be due to nonlinearity of the model. The decision on which model to use depends on
the type of map that is available and also the sensors that can be used (e.g. compass for K,
odometer for u).

Figure 7.8: Example of predictive PDFs of spherical for t = 20.

Figure 7.9: Example of predictive PDFs of Cartesian model for t = 20.

60



Chapter 8

Concluding Remarks

The first objective of this thesis was to get acquainted with the point-mass method in state
estimation and navigation. After that, the aim was to design a new grid for the point-mass
filter that would lead to better estimate accuracy while preserving the computational com-
plexity. Subsequently, the PMF with the new grid design was supposed to be implemented
in the non-linear estimation framework in Matlab and illustrated on a set of navigation type
scenarios.

To fulfil the assignment, firstly a brief introduction and state of the art overview of the
state estimation and terrain-aided navigation was presented. After that, the goal was closely
introduced followed by a description of the thesis organization.

The following part offers an in-depth introduction to Bayesian estimation and subse-
quently covers the topic of point-mass filtering by analysing the problem of the approxima-
tion of probability density functions and point-mass solution to Bayesian recursive relations.
Then a PMF algorithm is described along with multi-step prediction and smoothing.

Finally, the newly proposed density specific grid design is comprehensively described
and compared to a standard grid design. Moreover, an enhanced DSG design using UKF
filtration is presented. All grid designs are described with the help of theoretical algorithms.

In the following chapter, various criterion showing the quality of the PDF approximation
by PMD are compared and the best parameters for the DSG are shown. There is also explored
the influence of kurtosis and skewness on optimal grid parameters. The are pinpointed some
of the DSG design flaws.

The findings are then used for density specific grid design enhancements, offering a new
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way of setting up the outer grid boundary as well as an alternative way of creating denser
grid parts.

After that, the DSG design implementation in the NEF toolbox takes place including the
particular application of the hereinbefore presented standard, DSG and DSGf algorithms.

In the end, simulations were conducted in the NEF toolbox and outside, and the results
illustrate the performance of DSG design PMF in comparison with the standard PMF and
other filters, namely particle filter. This section also contains examples of codes showing
how to use NEF.

Evaluation

It was shown that for an approximation of PDFs that have the ”high value”/fast-changing
part in the vicinity of their mean, it is beneficial to use the DSG design. For other PDFs,
it would be probably better to use the alternative design presented in the Chapter Density
Specific Grid Design Enhancements.

Future work

The DSG design may have more parameters so it can better adapt to PDFs with dominant
higher moments. The parameters should be set up automatically. This could be done,
for example, by a trained neural network. Also, some deeper knowledge about various
approximation errors and their connections would be beneficial. Considering NEF, the DSG
enhancements could be implemented.
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Figure 8.1: Gaussian distribution approximation error for 100 points.
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Figure 8.2: Gaussian distribution approximation error for 100 points - zoomed.
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Figure 8.3: Gaussian distribution approximation error for 1000 points.
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Figure 8.4: Gaussian distribution approximation error for 1000 points - zoomed.
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