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Abstract
The diploma thesis deals with the problem of semantic segmentation of auto-
motive images using a deep neural networks. DeepLabV3+, the state-of-the-art
model on Cityscapes dataset, was re-implemented using Keras and TensorFlow
frameworks. The model was pretrained on ImageNet dataset and then using a
transfer learning was transformed to perform a semantic segmentation on City-
scapes dataset. The performance of the model was verified on the validation
set of Cityscapes dataset, the model achieved the performance of 73.55% IoU.
In the end, the model was fine-tuned using the KPIT dataset to perform a se-
mantic segmentation of fish eye camera automotive images. A few experiments
were executed on the KPIT dataset. The best model achieved a performance
of 59.26% IoU on the validation set.

Abstrakt
Tato diplomová práce se zabývá semántickou segmentací obrazu z kamery
auta pomocí hlubokých neuronových sítí. Aktuálně nejlepší model aplikující
sémantickou segmentaci na Cityscapes datasetu DeepLabV3+ byl kompletně
re-implementován s použitím frameworků Keras a TensorFlow. Tento model
byl předtrénován na ImageNet datasetu a poté byl transformován pomocí Ci-
tyscapes datasetu k tvorbě sémantické segmentace. Kvalita tohoto modelu byla
ověřena pomocí validačního setu ze Cityscapes datasetu, na kterém model do-
sáhl výkonosti 73.55% IoU. Na závěr byl model přetrénován pomocí KPIT
datasetu, aby vytvářel sémantickou segmentaci obrazu ze zadní kamery v autě,
na které je čočka zvaná rybí oko. Na KPIT datasetu bylo provedeno několik
experimentů. Nejlepší model dosáhl výkonosti 59.26% IoU na validační sadě.
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1 Introduction

1.1 Semantic Segmentation
Semantic segmentation is one of the fundamental topics of computer vision.
The goal of semantic segmentation is to assign a class label to every pixel
in an image. It can be considered as image classification at the pixel level.
Because the label is predicted for every pixel in the image, the task is also
commonly referred as dense prediction. The labels could include a person, car,
or road, i.e. the general pattern that can occur in the image. It is one of a few
algorithms helping us to understand the context of an environment we know
so far. Therefore semantic segmentation is widely used in autonomous vehicles
where the context of the environment is crucial.
In order to properly understand how semantic segmentation is tackled by mod-
ern deep learning architectures, it is important to know that it is not an isolated
field. Rather it is a natural step in the progression from coarse to fine inference.

Figure 1.1: An illustration of the progression from coarse to fine inference [25].

The origin could be located at classification, which consist of making a predic-
tion for the whole input image. The next step towards fine-grained inference is
localization or detection, which is providing not only the classes but also addi-
tional information regarding the spatial location of those classes. Then there is
the semantic segmentation providing a dense prediction, i.e. the classification
of every single pixel, where the objective is to generate an output map of the
same size as the size of the input image. Further improvements can be made,
such as instance segmentation, which separate labels for different instances of
the same class. In the task addressed in this thesis, instance segmentation is
not necessary since it does not make any sense to separate each instance of
predicted class.
Figure 1.2 shows some examples of labels from Pascal VOC 2010 dataset [12].
Each class is represented by a specific color. From segmentation map like these
it is possible to evaluate a brief context. For example from upper right image
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can be extracted an information that there are two people riding a bicycle on
the road in front of the building and there is a car behind the fence.

Figure 1.2: Example of semantic segmentation from Pascal VOC 2010 [12].

1.2 Motivation
As mentioned in 1.1 semantic segmentation is widely used in self-driving vehicles.
For autonomous cars is crucial to have the semantic information about it’s en-
vironment. The goal of this thesis is to implement state-of-the-art model for
semantic segmentation and use it for processing the images from rear camera
in a car. The thesis is developed in cooperation with Digiteq Automotive s.r.o.
Digiteq is a member of Volkswagen group focusing on developing and testing
an in-car software. The topic field Computer Vision and Tools works on a
problem of autonomous reversing and parking using a rear camera of a car.
The outcome will be the state-of-the-art semantic segmentation model which
can be used to coarsely label the internal data. These data will be then used
for training the algorithms which automatically detects the obstacles using the
images from rear camera while reversing.
Rear camera in a car uses a fish eye lens to extend its angle of view. The
distortion of the image makes image processing even more complicated. The

8



semantic segmentation model must be adjusted to these conditions. The in-
tention is to train the semantic segmentation model using public datasets and
then fine-tune it with internal traces from fish eye camera.
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2 Related Work

Semantic segmentation with the goal to assign a label to every pixel in an image
is one of the fundamental topics in computer vision. The researches have been
addressing this topic since the digital images became a thing. The algorithms
have been improving over the years, starting from simple image threshold-
ing classifying pixel into two classes to a deep neural networks performing a
multi-class segmentation with outstanding results. Deep convolutional neural
networks based on the Fully Convolutional Neural Network show striking im-
provement over the systems relaying on hand-crafted features on benchmark
tasks. Especially, the architectures employing a encoder-decoder structure have
been proven to perform the semantic segmentation with a very good results.

2.1 Semantic Segmentation Before Deep Neural
Networks

In computer vision, a simple image segmentation is the process of partitioning
a digital image into multiple segments (sets of pixels). Image segmentation is a
long standing computer vision problem. However, semantic segmentation is the
technique of segmenting image with understanding of image in pixel level. In
other words, semantic segmentation is analysis and classification of each pixel
into multiple classes.
Quiet a few algorithms have been designed to solve this non-trivial task, such
as Watershed algorithm, image thresholding, K-means clustering, Conditional
Random Fields, etc.

2.1.1 Image Thresholding
Image thresholding is the simplest and probably the oldest algorithm to do
the segmentation of the image. This method is a process of dividing an image
into two (or more) classes of pixels, i.e. foreground and background. In order
to obtain thresholded image, usually, the original image is converted into a
grayscale image and then the thresholding technique is applied. This method
is also known as Binarization as the image is converted into a binary form. In
detail, if the intensity value of a pixel is lesser than the threshold value, it is
converted to 1 (white). If the value of a pixel is greater than the threshold
value, the pixel is converted to 0 (black).
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There is only one issue in the implementation of this very simple algorithm,
the optimal threshold has to be determined. In a simple applications, the
threshold can be set statically by the designer of the method. For the real
world case, the automatic determination of the threshold is necessary. In 1979
Nobuyuki Otsu [21] came up with an idea of algorithm called Otsu’s method,
which became the most common method for automatic determination of the
threshold. The threshold is determined by minimizing intra-class intensity
variance, or equivalently, by maximizing the inter-class variance. The algorithm
exhaustively searches for the threshold that minimizes the intra-class variance,
defined as weighted sum of variances of the two classes:

σ2
ω(t) = ω0(t)σ2

0(t) + ω1(t)σ2
1(t), (2.1)

where weights ω0 and ω1 are the probabilities of two classes separated by the
threshold t, and σ2

0 and σ2
1 are variances of these two classes. The desired

threshold T corresponds to the minimum intra-class variance:

T = min
t

(σ2
w(t)) (2.2)

Fig. 2.1 shows an example of thresholding using Otsu’s method. On the left
side there is an original image in grayscale, in the middle is the binary image
after thresholding, and on the right is shown the histogram of intensity with
denoted threshold.

Figure 2.1: An illustration of thresholding using Otsu’s method.

2.1.2 Conditional Random Fields
Random field approaches are a popular way of modeling spatial regularities in
images. Their application range from low-level noise reduction to a high-level
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object or category recognition and semi-automatic object segmentation. Early
work focused on generative modeling using Markov Random Fields. Condi-
tional Random Field (CRF) models have become more popular owing to their
ability to directly predict the segmentation (labeling) given the observed image.
Conditional Random Fields are an effective tool for a variety of different data
segmentation and labeling tasks including visual scene interpretation, which
seeks to partition images into their constituent semantic-level regions and assign
appropriate class labels to each region. For accurate labeling it is important to
capture the global context of the image as well as local information.
Jakob Verbeek and Bill Triggs [29] in their model represent the image as rect-
angular grid of patches at a single scale, associating a hidden class label with
each patch. The CRF model incorporate 4-neighbor couplings between patch
labels. The local image content of each patch is encoded using texture, color
and position descriptors. For texture they compute the 128-dimensional SIFT
descriptor of the patch and vector quantize it by nearest neighbor assignment
against a ks = 1000 word texton dictionary learned by k-means clustering of all
patches in the training set. Position is encoded by overlaying the image with an
m×m grid of cells (m = 8) and using the index of the cell in which the patch
falls as its position feature. Each patch is thus encoded by three binary vectors
(with ks, kh and kp = m2 bits), each with a single bit set correspondingly to
the observed visual word. Their CRF observation functions are simple linear
functions of these three vectors.
The experiments show that models based on histogram of visual words were
very successful for image categorization (deciding whether or not the image
whole belongs to a given category of scenes). Motivated by this, Verbeen
et al. [29] in their models take the global context into account by including
observation functions based on image-wide histograms of the visual words of
their patches. The hope was that this would help to overcome the ambiguities
that arise when patches are classified in isolation.
In the end, they defined a conditional model for patch labels that incorporates
both local patch level features and global aggregate features. Let xi ∈ {1, ..., C}
denote the label of patch i, yi denote the W dimensional concatenated binary
indicator vector of its three visual words (W = ks + hh + kp), and h denote
the normalized histogram of all visual words in the image, i.e. ∑

patches,i yi
normalized to sum one. The conditional probability of the label xi is then
modeled as:

p(xi = l|yi, h) ∝ exp(−
W∑
w=1

(αwlyiw + βwlhw)), (2.3)

where αwl, βwl are W × C matrices of coefficients to be learnt. This can be
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thought of as a multiplicative combination of a local classifier based on the
patch-level observation yi and a global context or bias based on the image-wide
histogram h.
The performance of the segmentation models was measured on Microsoft Re-
search Cambridge (MSRC) dataset. The dataset consists of 240 images with
partial pixel-level labels. The labels assign pixels to one of nine classes, but
about a 30% of the pixels are unlabeled. For evaluation 20× 20 pixel patches
with centers at 10 pixel intervals were used.
To obtain a labels of patches, pixels were assigned to the nearest patch center.
Patches are allowed to have any label seen among their pixels, with unlabeled
pixel being allowed to have any label. To map the patch-level segmentation
back to the pixel level they assign each pixel the marginal of the patch with the
nearest center. The performance of 84.9% was attained by the model taking
into account local and global context and not deleting unlabeled pixel (only
exclude them from metrics evaluation).
In Fig. 2.2 are visualized a few segmentation results of MSRC dataset. The
segmentation maps were post-processed by applying a Gaussian filter over the
pixel marginals with the scale set to half of the patch spacing.

Figure 2.2: Samples from MSRC with segmentation and labeling [29].

2.2 Semantic Segmentation Using Deep Neural
Networks

In spite of many traditional image processing techniques the deep learning
methods has been a game changer in the field of computer vision. Neural
networks set state-of-the-art in all image processing tasks including semantic
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segmentation. The most successful deep learning semantic segmentation archi-
tectures can be broadly thought of as an encoder-decoder architectures. The
encoder is usually a pre-trained classification network like VGG or ResNet.
The decoder part is supposed to semantically project the discriminative fea-
tures from encoder onto the pixel space to get a dense classification of every
pixel in the input image. One of the very early deep convolutional neural net-
works used for semantic segmentation is Fully Convolutional network (FCN). A
variety of more advanced FCN-based approaches have been proposed to address
this issue, including SegNet, U-Net, and DeepLab.

2.2.1 The History of Neural Networks
The original idea of neural network came up in half of 20th century. The first
step towards neural networks took place in 1943, when Warren McCulloch and
Walter Pitts [19] wrote a paper on how neurons might work. A 15 years later,
a neuro-biologist Frank Rosenblatt began work on The Perceptron [23]. A res-
ult coming from his research was a built-in hardware and is the oldest neural
network still in use. A single layer perceptron was found to be useful in classi-
fying a continuous-valued set of inputs into one or two classes. The perceptron
computes a weighted sum of the inputs, subtracts a threshold, and passes one
of two possible values out as the result. In 1959, Bernard Widrow and Marcian
Hoff of Stanford developed models ADALINE and MADALINE [31], which
were the first neural networks applied to a real world problem - Adaptive fil-
tering eliminating echoes in phone lines. The research on neural networks
was stagnated after Minsky and Papert [20] in 1969 discovered the limits of
perceptron capabilities. A key trigger for renewed interest in neural network
learning was re-discovering a backpropagation algorithm by Paul Werbos [30]
who first proposed that it could be used for neural networks. A few years later
after Werbos method was re-discovered Rumelhart, Hinton and Williams [24]
showed experimentally that this method can generate internal representations
of incoming data in hidden layers of neural networks. The training algorithm
was finalized by Yann LeCun in 1998 when Graident-Based Learning Applied to
Document Recognition [16] was published. It is a long detailed paper on convo-
lutional nets, graph transformer networks, and discriminative training method
for sequence labeling. The real breakthrough for convolutional neural networks
came up in 2012 after improving the optimized GPUs. In that year AlexNet
by Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton [15] won ImageNet
Large Scale Visual Recognition Challenge (ILSVRC). The model used a convo-
lutional neural network obtaining a Top-5 error rate of 15.3% (the next best
result trailed far behind with 26.2%). Since then, convolutional neural net-
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works (CNN) set state-of-the-art in many computer vision tasks and were not
outdated so far.

2.2.2 FCN for Semantic Segmentation
Fully Convolutional Network (FCN) for Semantic Segmentation [17] was the
first model that re-architects and fine-tunes classification networks to direct,
dense prediction of semantic segmentation. In classification networks, conven-
tionally, an input image is downsized and goes through convolution layers and
fully connected layers, and output a predicted label. If the fully connected
layers turn into 1× 1 convolutional layers and the image is not downsized, the
output will not be a single label. Instead, the output is a feature map with
smaller resolution than the input image (due to max pooling). If the output is
upsampled to the original resolution, then the pixelwise label map is obtained.
In detail, ILSVRC classifiers were cast into FCNs and augmented for dense
prediction with in-network upsampling and a pixelwise lost. Next, the au-
thors built the novel skip architecture that combines coarse, semantic and
local appearance information to refine the prediction. Three deep convolu-
tional neural networks were taken into consideration. AlexNet architecture
that won ILSVRC2012, VGG nets and GoogLeNet which did exceptionally
well in ILSVRC2014. Each of the networks was decapitated by discarding the
final classification layer, and all fully connected layers were converted to convo-
lutions. They append a 1×1 convolution with channel dimension 21 to predict
scores of each of the PASCAL classes at each of the coarse output locations,
followed by a deconvolution layer to bilinearly upsample the coarse outputs to
a pixel-dense output.
Fine-tuning from classification to segmentation gave a reasonable predictions
for each of the networks. Even the worst model achieved ∼ 75% of state-of-the-
art performance. The segmentation equipped VGG16 (FCN-VGG16) already
appeared to be state-of-the-art at 52.6 mean IoU performance on the test set.
Training on extra data even raised the performance to 59.4 mean IoU.
While fully convolutional classifiers can be fine-tuned to segmentation with
even high score on the standard metrics, their output is unsatisfactorily coarse.
The 32 pixel stride at final prediction layer limits the scale of the detail in the
output. The authors addressed this problem by adding a links that combine
the final prediction layer with lower layers with finer strides. Combining fine
layers and coarse layers lets the model make predictions that respect global
structure. Adapting the net using the multi-resolution layer combinations im-
proves the final performance of the net to 62.7% mean IoU on the VOC2011
test set and 62.2% on the VOC2012 test set setting the state-of-the-art, while
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simultaneously simplifying and speeding up learning and inference [17].

2.2.3 SegNet
SegNet [1], by University of Cambridge, was originally submitted to 2015
CVPR, but it was not officially published. Instead, it was published in 2017
TPAMI. SegNet has an encoder network and a corresponding decoder network,
followed by a final pixelwise classification layer as illustrated in Fig. 2.3. The
encoder consist of 13 convolutional layers which correspond to 13 convolutional
layers from the VGG16 network. Each of the encoder layers has a correspond-
ing decoder layer and hence decoder network has 13 layers. The final decoder
output is fed to a multi-class soft-max classifier to produce class probabilities
for each pixel independently.

Figure 2.3: An illustration of SegNet architecture [1].

Each encoder in encoder network performs convolution with a filter bank to
produce a set of feature maps. The feature maps are then batch normalized
and an element-wise rectified-linear non-linearity (ReLU ) is applied. Following
that, max-pooling with a 2× 2 window and stride 2 (non-overlapping window)
is performed to sub-sample the result by a factor of 2. Max-pooling is used to
achieve translation invariance over small spatial shifts in the input image. Sub-
sampling results in a large input image context (spatial window) for each pixel
in the feature map. While several layers of max-pooling and sub-sampling can
achieve more translation invariance for robust classification correspondingly
there is a loss of spatial resolution of the feature maps. The increasingly lossy
(boundary detail) image representation is not beneficial for segmentation where
boundary delineation is vital. The authors of SegNet decided to address this by
capturing and saving boundary information in the encoder feature maps before
sub-sampling is performed. Due to memory limitations the stored information
was reduced to only max-pooling indices, i.e. the locations of the maximum
feature value in each pooling window is memorized for each encoder feature
map.
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The appropriate decoder in decoder network upsamples its input feature map
using memorized max-pooling indices from the corresponding encoder feature
map to produce a sparse feature map. This SegNet decoding technique is
illustrated in Fig. 2.4. These feature maps are then convolved with a trainable
decoder filter bank to produce dense feature maps. A batch normalization
step is then applied to each of these maps. The high dimensional feature
representation at the output of the final decoder is fed to a trainable soft-max
classifier to classify each pixel independently. The output of the classifier is a K
channel image of probabilities where K is the number of classes. The predicted
segmentation corresponds to the class with maximum probability at each pixel.

Figure 2.4: An illustration of upsampling using max-pooling indices in SegNet
[1].

The performance of SegNet was quantified on two scene segmentation bench-
marks. The first task is road scene segmentation (CamVid dataset [2]) which
is of practical interest for various autonomous driving related problems. The
second task is indoor scene segmentation (SUN RGB-D dataset [26]) which is
of immediate interest to several augmented reality tasks. The model perform-
ance was benchmarked against several other well adopted deep architectures
for segmentation such as FCN, DeepLab and DeconvNet. All the architectures
were adopted to use the same hyper parameters and to output the same res-
olution output feature maps. According to the original paper results, SegNet
architecture outperforms all other architectures in all the metrics (Class aver-
age, Global average, mean Intersection over Union, and Boundary F1 measure)
on CamVid dataset. The experimental results on SUN RGB-D dataset shows
some interesting points. All the deep architectures share very low mean IoU
and boundary metrics. The global and class averages are also very small. In
terms of mIoU SegNet outperformed FCN and DeconvNet but has a slightly
lower mIoU than DeepLab-LargeFOV which is probably caused by the CRF
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post-processing used in DeepLab model. The authors predicate the overall very
poor performance to a large number of classes in this segmentation task, many
of which occupy a small part of the image and appear infrequently.

2.2.4 U-Net
U-Net [22] was published in a year 2015. This deep neural network architecture
was designed for biomedical image segmentation. The network architecture is
illustrated in Fig. 2.5. It consists of a contracting path (left side) and an
expansive path (right side) which is basically encoder-decoder architecture in
common notation. The contracting path follows the typical architecture of
a convolutional network. It consists of the repeated application of two 3 ×
3 convolutions, each followed by ReLU activation and a 2 × 2 max pooling
operation with stride 2 (no overlapping window). At each downsampling step
the number of channels is doubled. Every step in expansive path consists of an
upsampling of the feature map followed by a 2×2 convolution (up-convolution)
that halves the number of channels, a concatenation with corresponding feature
map from contracting path, and two 3×3 convolutions, each followed by ReLU.
At the final layer a 1×1 convolution is used to map each 64-component feature
vector to the desired number of classes.
The architecture of U-Net is very similar to SegNet [1] architecture. The dif-
ferences are that the architectures are designed for different segmentation task.
U-Net transfers the entire feature maps from encoder to decoder (grey lines in
Fig. 2.5) which is then concatenated with the corresponding feature map from
decoder, instead of using only max-pooling indices as it is in SegNet. Transfer-
ring the entire feature maps makes the U-Net model much larger and it needs
more memory.
As for the tasks of biomedical segmentation there is very little training data
available, the authors used excessive data augmentation by applying elastic de-
formations to the available training images. This augmentation allows the net-
work to learn invariance to such deformations, without the need to have these
transformations in the annotated image corpus. This is particularly important
in biomedical segmentation, since deformation used to be the most common
variation in tissue and realistic deformations can be simulated efficiently.
The experimental evaluation of the U-Net was performed on three different
segmentation tasks. The first task was the segmentation of neuronal structures
in electron microscopic recordings. The dataset was provided by the EM seg-
mentation challenge what was started at ISBI 2012. The training data is a set
of images from serial section transmission electron microscopy of the Droso-
phila first instar larva ventral nerve cord (VNC). The U-Net achieved without
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Figure 2.5: An illustration of U-Net architecture [22].

any further pre- or post-processing a warping error of 0.0003529 setting new
best score. Then the U-Net was applied to a cell segmentation task in light
microscopic images. This segmentation task was part of the ISBI cell tracking
challenge 2014 and 2015. In this challenge U-Net achieved an average IoU of
92%, which is significantly better than the second best algorithm with 83%.
The last dataset was DIC-HeLa, which are HeLa cells on flat glass recorded
by differential interference contrast (DIC) microscopy. Here the architecture
achieved an average IoU of 77.5% which is again significantly better than the
second best algorithm with 46%.
The U-Net architecture achieved very good performance on different biomedical
segmentation applications. Thanks to used data augmentation with elastic
deformation, it only needs very few annotated images for learning.

2.2.5 DeepLab
DeepLab is a state-of-the-art semantic segmentation model designed and open-
sourced by Google. The architecture of DeepLab was evolving over the years
starting from DeepLabV1 in year 2014 to DeepLabV3+ in 2019. Each of the
innovated versions brings some new ideas and significantly improves the per-
formance.

19



Unlike the other architectures, instead of downsampling the feature maps by
max-pooling, DeepLab uses an algorithm called Atrous Convolution. Atrous
convolution allows to effectively enlarge the field of view of filters without
increasing the number of parameters or the amount of computation. The al-
gorithm will be explained in more detail in Chapter 3. Mathematically, atrous
convolution y[i] for a one-dimensional signals x[i] with a filter w[k] of length K
and rate r is defined as:

y[i] =
∑
k

x[i+ r · k]w[k] (2.4)

Success of DeepLabV1 [3] in the task of semantic segmentation is due to some
advancements added to the previous state-of-the-art models, specifically to the
FCN model. The advancements address reducing feature resolution and redu-
cing localization accuracy due to DCNNs invariation. Due to multiple pooling
operations, there is a significant reduction in spatial resolution. DeepLabV1
remove the down-sampling operator from the last few layers of DCNN and in-
stead up-sample the filters in subsequent convolutional layers resulting in fea-
ture maps being computed at a higher sampling rate. In order to capture fine
details, DeepLabV1 implements a fully connected Conditional Random Field
(CRF). The CRF potential incorporate smoothness terms that maximize label
agreement between similar pixels. The model takes the images as input and
passes through DCNN architecture with atrous convolution layers resulting in
coarse map. This map is then up-sampled to the original size of the image, and
fully connected CRF is applied to the map to improve segmentation results.
To improve the performance of DeepLabV1 architecture, DeepLabV2 [4] ad-
dress the issue of existence of objects at multiple scales. The proposed solution
is using Atrous Spatial Pyramid Pooling (ASPP). The idea is to apply multiple
atrous convolutions with different rates to the input feature map, and fuse them
together. As object of the same class can have a different scales in the image,
ASPP helps consider the different scales which can improve accuracy.
The previous versions are able to encode multi-scale contextual information by
probing the income features with filters at multiple rates (atrous convolution)
and multiple effective fields of view (ASPP). The goal of DeepLabV3 [5] was
to capture sharper object boundaries by gradually recovering the spatial in-
formation. The architecture of DeepLabV3 adopts the novel encoder-decoder
architecture with atrous separable convolution. The general encoder-decoder
structure have been successfully applied to many computer vision tasks, includ-
ing object detection, human pose estimation, and also semantic segmentation.
In addition to encoder-decoder network, DeepLabV3 also applies depthwise
separable convolution to increase computational efficiency. The standard con-
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volution is factorized into a depthwise convolution followed by a pointwise
convolution. Specifically, the depthwise convolution performs a spatial con-
volution independently for each input channel. The pointwise convolution is
employed to combine the output from the depthwise convolution and to change
the number of channels.
DeepLabV3+ [6] extends version three by adding a simple yet effective de-
coder module to further refine the segmentation results especially along object
boundaries. Compared to DeepLabV3 encoder part (backbone) uses Modified
Aligned Xception [10] as its main feature extractor. All max-pooling oper-
ations are replaced by depthwise separable convolution with striding. The
encoder is based on reducing the input image resolution by a factor of 16 (i.e.
output_stride = 16). Instead of simply upsample the features by 16, the de-
coder firstly upsamples the features by a factor of 4 and concatenates them with
corresponding low-level features. After concatenation, a few 3×3 convolutions
are applied and the feature map is upsampled by a factor of 4 to perform the
prediction. The architecture of encoder-decoder structure with ASPP module
is visualized at Fig. 2.6.

Figure 2.6: Encoder-Decoder structure with Atrous spatial pyramid pooling
[6].
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3 DeepLab

After a research from the chapter above it was decided that the actual state-of-
the-art model on Cityscapes [9] dataset will be used. In a time of working on
this thesis the best results on Cityscapes dataset were archived by DeepLabV3+
[6] model created by Google researchers. Another reasons to choose this model
were open source implementation on Github and a public paper published on
Arxiv.

3.1 Evolution of DeepLab
The DeepLab model was evolving over the years. In following sections it is
going to be briefly described how the algorithms were improving over all four
official papers written by Google Inc. authors [3–6]. The most important ideas
the authors came up with were Atrous convolution (and its combination with
another successful algorithms) and Atrous Spatial Pyramid Pooling.

3.1.1 DeepLab V1 + V2
Since DeepLabV1 and DeepLabV2 architecture is very similar, they will be
summed up together. Both models use Deep Convolutional Neural Networks
withAtrous Convolution and Fully Connected Conditional Random Field (CRF).
The main difference is that DeepLabV2 uses additional technology called At-
rous Spatial Pyramid Pooling (ASPP) and implement newer deep convolutional
neural network.

Atrous Convolution

The approach illustrated at the Fig. 3.1 is known as the hole algorithm (at-
rous algorithm) and has been developed before for efficient computation of the
undecimated wavelet transform [18]. The authors of DeepLab transferred this
approach to deep convolutional neural networks and created atrous convolution.
The implementation of this algorithm was done by modifying the standard con-
volution. The kernel of standard convolution is extended by inserting a zeros
between trainable parameters in the kernel and therefore extending the size of
the kernel. How many zeros are inserted into each "hole" is specified by new
parameter called rate. In fact the standard convolution could be considered as
a special case of atrous convolution where rate r = 1. The motivation to use
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this approach is that using atrous convolution with striding to reduce the resol-
ution of feature maps works more efficiently and with less loose of information
than using a max-pooling. Atrous convolution is computed as follows:

y[i] =
∑
k

x[i+ r · k]w[k] (3.1)

From the equation it is obvious that when r = 1, it is the standard convolution.
When r > 1, it is the atrous convolution which is the stride to sample the input
sample during convolution. Some of the papers also call this algorithm dilated
convolution.

Figure 3.1: The difference between (a) Standard convolution and (b) Atrous
convolution [4]

Atrous Spatial Pyramid Pooling (ASPP)

Atrous spatial pyramid pooling is actually an atrous version of spatial pyramid
pooling, in which the concept has been used in SPPNet [13]. In ASPP, multiple
parallel atrous convolution with different rate is applied in separate branches
to the input feature map, and than all output feature maps are concatenated
together. This approach helps to increase accuracy by taking into account
different object scales. Fig. 3.2 shows the idea of using ASPP with rates 6, 12,
18 and 24 applied to the same input feature map.
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Figure 3.2: The illustration of Atrous spatial pyramid pooling [4]

Fully Connected Conditional Random Field (CRF)

A trade-off between localization accuracy and classification performance seems
to be inherent in DCNNs: deeper models with multiple max-pooling layers have
proven most successful in classification tasks, however the increased invariance
and the large receptive fields of top-level nodes can only yield smooth responses.
As illustrated in Fig. 3.3, DCNN score maps can predict the presence and rough
position of objects but cannot really delineate their borders. An alternative
direction based on coupling the recognition capacity of DCNNs and the fine-
grained localization accuracy of fully connected CRF which were traditionally
employed to smooth noisy segmentation maps was pursued in DeepLab V1
and V2 papers. As illustrated in Fig. 3.3, the score maps are typically quite
smooth, therefore the integration of fully connected CRF model help to achieve
better accuracy. The model employs the energy function:

E(x) =
∑
i

Θi(xi) +
∑
i,j

Θi, j(xi, xj), (3.2)

where x is the label assignment for pixels, Θi(xi) = −logP (xi) is unary poten-
tial, where P (xi) is the label assignment probability at pixel i as computed by
DCNN. The pairwise potential is computed as the following expression:

Θi,j(xi, xj) = µ(xi, xj)
[
ω1 exp(−‖pi − pj‖

2

2σ2
α

− ‖Ii − Ij‖
2

2σ2
β

) + ω2 exp(−‖pi − pj‖
2

2σ2
γ

)
]
,

(3.3)
where µ(xi, xj) = 1 if xi 6= xj, and zero otherwise. The remaining expression
uses two Gaussian kernels in different feature spaces: the first, ‘bilateral’ kernel
depends on both pixel positions (denoted as p) and RGB color (denoted as I ),
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and the second kernel only depends on pixel positions. The hyper parameters
σα, σβ and σγ control the scale of Gaussian kernels. Fully connected CRF as
applied at the network output after bilinear interpolation.

Figure 3.3: Score map (input before softmax function) and belief map (output
of softmax function) for Aeroplane [4]

Architecture

The Fig. 3.4 shows the DeepLab V1 and V2 model architecture. First, the in-
put image goes through a deep convolutional neural network such as VGG-16
or ResNet-101 with the use of atrous convolution to reduce the degree of signal
downsampling (from 32x to 8x). In DeepLabV2 the ASPP module is added
before the interpolation to improve the recognition and localization of objects
at different scales. Then the output from a neural network is bilinearly inter-
polated to the original resolution and goes through the fully connected CRF to
fine tune the segmentation result and improve capture of the object boundaries.
DCNNs ResNet-101 and VGG-16 were both pre-trained on ImageNet [11] and
than trained and tested on PASCAL VOC-2012 [12]. In the time of publishing
both models DeepLabV1 resp. DeeplabV2 set the new state-of-the-art at the
PASCAL VOC-2012 semantic image segmentation task, reaching 71.6 % resp.
79.7 % IoU accuracy in the test set.
However, CRF is a post-processing process which makes DeepLabV1 and Dee-
pLabV2 become not an end-to-end learning framework. Therefore, it is not
used in DeepLabV3 and DeepLabV3+ anymore.

3.1.2 DeepLab V3
The authors of the paper tried to rethink the DeepLab architecture and came
up with a more enhanced DeepLabV3. The proposed model does not use
a Conditional Random Fields post-processing anymore and yet outperforms
DeepLabV1 and DeepLabV2.
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Figure 3.4: The illustration of architecture of the models

Going Deeper with Atrous Convolution

DeepLabV3 designed modules with atrous convolution laid out in cascade.
There are duplicated several copies of the last ResNet block, denoted as block4
in Fig. 3.5. Each of these blocks consists of three 3×3 convolution, and the last
one contains stride 2 except for the last block (this is similar to original Res-
Net). But it was discovered that consecutive striding is harmful for semantic
segmentation since detail information is decimated. Thus, atrous convolution
with rates determined by desired output_stride is applied, as shown in Fig. 3.5
where output_stride = 16. In proposed model the authors experiment with
cascaded ResNet blocks up to Block7, which has output_stride = 256 if no
atrous convolution is applied. Motivated by multi-grid methods a different at-
rous rates withing Block4 to Block7 are proposed in the model. In particular,
Multi_grid = (r1, r2, r3) is defined as the unit rates for the three convolutional
layers within these blocks. The final atrous rate for convolutional layer is equal
to the multiplication of the unit rate and the corresponding rate. For example,
when output_stride = 16 and Multi_grid = (1, 2, 4), the three convolutions
will have rates = 2 · (1, 2, 4) = (2, 4, 8) in the Block4 respectively [5].

Atrous Spatial Pyramid Pooling

The ASPP from DeepLabV2 [4], where four parallel atrous convolutions with
different atrous rates are applied on the top of feature map, is revisited with
proposing some improvements. Newly a batch normalization is included within
ASPP. The authors discovered that as sampling rate becomes larger the number
of valid filter weights become smaller. In the extreme case where the rate value
is close to the feature map size, the 3× 3 filter, instead of capturing the whole
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Figure 3.5: The comparison of a cascaded modules and their output_stride (a)
without and (b) with atrous convolution

image context, degenerates to a simple 1 × 1 filter since only the center filter
weight is effective. To overcome this problem and incorporate global context
information to the model, the following was adopted. Global average pooling
in one of the last feature maps of the model, feed the resulting image-level
features to a 1× 1 convolution with 256 filters (and batch normalization), and
then bilinearly upsample the feature to the desired spatial dimension. In the
end, the improved ASPP consists of one 1 × 1 convolution and three 3 × 3
convolutions with rates = (6, 12, 18) when output_stride = 16 and the image-
level features, as shown in Fig. 3.6. The results of all the branches are then
concatenated and pass through another 1× 1 convolution (also with 256 filters
and batch normalization) before the final 1×1 convolution which generates the
final logits. Note that the rates are doubled when output_stride = 8.

Figure 3.6: Architecture of DCNN parallel modules with atrous convolution
and ASPP.

Experimental Evaluation

The ImageNet pretrained ResNet is adapted to the semantic segmentation by
applying atrous convolution to extract dense features. The proposed models
were evaluated on the PASCAL VOC 2012 semantic segmentation benchmark
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which contains 20 foreground object classes and one background class. The per-
formance is measured in terms of pixel Intersection over Union (IoU) averaged
across the 21 classes. As a DCNN ResNet-50 and ResNet-101 adopted with
atrous convolution and ASPP were used for evaluation. By using deeper net-
work, multi-grid method, different output_strides, pretraining on MS-COCO
and applying a bootstrap method, DeepLabV3 model achieves the performance
of 85.7% on the test set. Finally, model pretrained both on ImageNet [11] and
JFT-300M dataset [27] results in a performance of 86.9% on PASCAL VOC
2012 test set.

3.1.3 DeepLab V3+
DeepLabV3+ is the latest version of DeepLab models. This model extends
DeepLabV3 by a decoder module to refine the segmentation results. The model
consists of a DCNN backbone, ASPP and the decoder.

Backbone

DeepLab V3+ model uses the classical encoder-decoder architecture. In the
paper the encoder is also called backbone. The backbone is supposed to extract
features from a high resolution image and transform it to the lower resolution
feature vector. The original paper and original implementation provides two
different backbones ResNet-101 [14] and Modified aligned Xception [8]. As
already described in section 3.1.2, for DeepLab models the key parameter of
the deep convolutional neural network is the ratio of input image to the final
output resolution denoted as output_stride. Same as in DeepLabV3 model, the
output_stride = 16 (or 8) is attained by implementing an atrous convolution
and removing striding from last one (or two) block(s). Inspired by the success of
ideas from Xception model [8], the depthwise separable convolution is adopted
into the backbone together with atrous convolution.

Atrous Spatial Pyramid Pooling with Depthwise Separable Convolu-
tion

This model improves algorithms from DeepLabV3 [5] by using successful ideas
from other papers. The authors combined together atrous convolution with
depthwise separable convolution to create atrous separable convolution. And
then they also implemented atrous separable convolution into atrous spatial
pyramid pooling.
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Atrous Convolution Atrous convolution is a powerful tool that allows to
explicitly control the resolution of features computed by deep convolutional
neural networks and adjust filter’s field-of-view in order to capture multi-scale
information, generalizes standard convolution operation. In the case of two-
dimensional signals, for each location i on the output feature map y and a
convolution filter w, atrous convolution is applied over the input feature map
x as follows:

y[i] =
∑
k

x[i+ r · k]w[k], (3.4)

where the atrous rate r determines the stride with which input signal was
sampled. Note that standard convolution is a special case in which rate r = 1.
The filter’s field-of-view is adaptively modified by changing the rate value.

Depthwise Separable Convolution Depthwise separable convolution (or
group convolution) is a powerful operation to reduce the computation cost
and number of parameters while sometimes even increasing performance. It is
factorizing a standard convolution into a depthwise convolution followed by a
pointwise convolution. This significantly reduces the computation complexity.
The reason is that the depthwise convolution is performed independently for
each input channel. After that the pointwise convolution actually combines the
output from the depthwise convolution.

Atrous Separable Convolution Depthwise separable convolution decom-
poses a standard convolution into a depthwise convolution (applying a single
filter for each input channel) and pointwise convolution (combining the outputs
from depthwise convolution across channels). In DeepLabV3+ model the at-
rous separable convolution was introduced where atrous convolution is adopted
in the depthwise convolution as shown in Fig. 3.7.

Figure 3.7: (a) Depthwise convolution, (b) a pointwise convolution and (c)
atrous separable convolution (shown with rate = 2) [6]
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Atrous Spatial Pyramid Pooling DeepLabV3 [5] employs atrous convolu-
tion to extract the features computed by deep convolutional neural networks at
an arbitrary resolution. Here, the output stride is denoted as the ratio of input
image spatial resolution to the final output resolution (before global pooling or
fully connected layer). For the task of image classification, the spatial resolution
of the final feature maps is usually 32 times smaller than the input image resol-
ution and thus output stride = 32. For the task of semantic segmentation, it is
better to adopt output stride = 16 (or 8) for denser feature extraction. Addi-
tionally, DeepLabV3+ augments the Atrous Spatial Pyramid Pooling module,
which probes convolutional features at multiple scales by applying atrous con-
volution with different rates, with the image-level features. The last feature
map before logits is used in the original DeepLabV3+ as the encoder output
in proposed encoder-decoder structure. Note the encoder output feature map
contains 256 channels and rich semantic information [6]. Fig. 3.8 shows the
proposed encoder-decoder structure applying atrous spatial pyramid pooling in
the encoder to extracts features from the backbone at a multiple scales.

Figure 3.8: Encoder-Decoder structure with Atrous spatial pyramid pooling [6]

Decoder

In the original paper a simple yet effective decoder is proposed as illustrated
in Fig. 3.8. The encoder features are first bilinearly upsampled by a factor
of 4 and then concatenated with the corresponding low-level features from the
network backbone that have the same spatial resolution (third Xception block
before striding). Then another 1 × 1 convolution is applied on the low-level
features to reduce the number of channels, since the corresponding low-level
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features usually contain a large number of channels (e.g., 256 or 512) which may
outweigh the importance of the rich encoder features and make the training
harder. After the concatenation a 3 × 3 convolution is applied to refine the
features followed by another simple bilinear upsampling by a factor of 4. It
was proven that using output_stride = 16 for the encoder module strikes the
best trade-off between speed and accuracy. The performance is marginally
improved when using output stride = 8 for the encoder module at the cost of
extra computation complexity [6].

3.2 Re-Implementation of DeepLabV3+
Even tough there is an open source original implementation of DeepLab V3+
in TensorFlow published on Github, it was decided to make complete re-
implementation of the model. First reason to do that was that the official
implementation done by Google is not very well documented and poorly read-
able. Another reason was that the original repository does not provide the
whole implementation of the architecture of the layers in the model. The rep-
resentation of the model is made only by a frozen graph which means no change
to the architecture of the model can be made. And last but not least is that
the model will be used as out-of-the-box solution, therefore the complete con-
trol over the model and understanding is necessary. Due to these reasons it
was decided to create a custom re-implementation. Programming language Py-
thon and the machine learning framework Keras with TensorFlow backend was
chosen to be used for the re-implementation.

3.2.1 Keras + TensorFlow
Keras is a high-level neural networks API, written in Python and capable of
running on top of TensorFlow, CNTK, or Theano. It was developed with
a focus on enabling fast experimentation. This deep learning library allows
easy and fast prototyping, supports convolutional neural networks and runs
seamlessly on CPU and GPU [7].

3.2.2 Backbone
The original implementation offer to use 2 different backbones: ResNet-101
and Xception. Due to time limitation it was chosen to re-implement only
one backbone. According to the official results from the original paper and
Cityscapes leader board, the model with Xception backbone reached slightly
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better performance, therefore it was chosen to re-implement model only with
Xception backbone.
Xception backbone architecture was implemented same as in the original im-
plementation - Modified Aligned Xception. This architecture was created by
MSRA team [10] by modifying original Xception model by:

• Adding more layers.

• Max pooling operations replaced by depthwise separable convolution with
striding.

• Adding extra batch normalization and ReLU activation after each 3× 3
depthwise convolution.

Depthwise Separable Convolution

Depthwise separable convolution was implemented as shown in Fig. 3.9. First
there is a depthwise convolution applied to each channel separately followed
by batch normalization and ReLU activation. Then the dependency between
channels is captured by a pointwise convolution (again follow by a batch nor-
malization and ReLU activation). Applying a pointwise convolution also allows
to change the dimension.

Figure 3.9: Depthwise separable convolution. In concrete, here n = 3. [8]
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Compared with conventional convolution, a 3 × 3 depthwise separable con-
volution is not performed across all channels which means, that the number
of connections is lower making the model lighter. Less connections also res-
ults in lower number of trainable parameters which reduces the computation
complexity and makes a training easier.

Xception Architecture

The actual architecture is shown at Fig. 3.10. The modifications of the original
Xception are denoted by orange color. In short, the Xception architecture is a
linear stack of blocks with depthwise separable convolution layer and residual
connections organized into 3 blocks - Entry Flow, Middle flow and Exit flow.
Each of the blocks consists of three 3×3 depthwise separable convolutions and
residual connection. In Entry flow and in the first block of Exit flow the last
convolution layer is with striding to reduce the resolution of output feature map
by a factor of 2. In case of blocks with striding, to achieve same resolution of
output from residual connection and separable convolutions, the residuum goes
through a pointwise convolution with striding. At the end of the block, the
results from separable convolutions and residual connection are then merged
together by a Addiction layer. At this setting the output_stride = 16, but
according to the experimental evaluations from the original paper the model
attains slightly better performance when during evaluation output_stride = 8.
Therefore in the implementation there is a possibility to set stride = 1 in the
third block in Entry flow.
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Figure 3.10: Visualization of architecture of Modified Aligned Xception [10]

3.2.3 Atrous Spatial Pyramid Pooling
In addition, DeepLabV3+ model augments Atrous Spatial Pyramid Pooling
used in DeepLabV3 [5] module, which probes convolutional features at multiple
scales by applying atrous convolution with different rates. The last feature map
before classification layer from backbone is used. In concrete, input feature map
has a resolution 16 (or 8) times smaller than the input image and has 2048
channels when Xception backbone is used. To this feature in ASPP module is
applied:

• 1× 1 pointwise convolution,

• 3× 3 atrous convolution with rate 6 (or 12),

• 3× 3 atrous convolution with rate 12 (or 24),

• 3× 3 atrous convolution with rate 18 (or 36),

• Global Average Pooling.

Where all convolution layers are with padding valid and followed by a batch
normalization and ReLU activation. Global Average Pooling is applied at each
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channel separately and then the output is upsampled to the same resolution as
output feature maps from convolutions. Note that each of the layers applied in
ASPP has 256 channels. These output feature maps are therefore concatenated
by Concatenate layer and transformed by 1× 1 pointwise convolution with 256
filters, batch normalization and ReLU activation. As a difference from the
original implementation on the top of this pointwise convolution layer is added
a Dropout with rate = 0.1 to help the generalization of ASPP module and to
reduce overfitting. The output feature map from ASPP module is bilinearly
upsampled by a factor of 4 and is one of the inputs of decoder module.

3.2.4 Decoder
The decoder part of the architecture is supposed to decode the encoded low
level features and perform a classification. In the original paper the authors
proposed two encoders and compared the results of model with each of them.
The first one could be considered as a naive decoder design. This decoder
only bilinearly upsamples the last feature map by output_stride. This version
with naive decoder is actually very similar to DeepLabV3 [5] architecture with
only difference of upsampling a feature map and then classifying unlike during
training of DeepLabV3 the ground truths were downsampled. The approach
with upsampling feature maps instead of downsampling ground truth attained
the performance of 77.21% on PASCAL VOC 2012 [12] val set.
To improve over this naive baseline they employed a decoder module at top of
encoder output as shown in Fig. 3.8. In the decoder module, they considered
three places for different design choices, namely (1) the 1× 1 convolution used
to reduce channels of the low-level feature map from encoder module, (2) the
3 × 3 convolution used to obtain sharper segmentation results, and (3) which
encoder low-level features should be used [6].
In the re-implementation it was decided to implement the second proposed
decoder which is still simple yet more effective and significantly improves the
performance. The inputs to the decoder module are (1) a low-level feature
from encoder (2) and the output from ASPP module. The low-level feature
from encoder must be one of the feature maps from the encoder block with
corresponding resolution to the output from ASPP. In concrete, in Xception
backbone it is block2 from Entry flow, because the resolution of input feature
maps to convolution layers in this block are 4 times smaller than the resolution
of the input image. Which of these feature map to use is a designer choice. For
the baseline model in the re-implementation the input to third convolution layer
is used. As shown in Fig. 3.8 the skipped low-level feature first goes through
a 1× 1 feature map to reduce a number of channels to 48 followed by a batch
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normalization and ReLU activation. Then the feature map is concatenated with
the output from ASPP module. After that, a 3 × 3 convolution is applied to
refine the segmentation results. On the top of the module a classification layer
is added. Classification is done by a 1×1 convolution layer with channels equal
to the number of classes in the dataset. In the end, the results are upsampled
by a factor of 4 to obtain the feature map of the same resolution as the input
image.
Since the DeepLabV3+ model is fully convolutional (even a classification layer),
any resolution of the input image can be segmented because no layer is resolu-
tion dependent.

3.3 Fine-tuning and Transfer Learning
Fine-tuning is a deep learning method in which a developed model for some
task is reused as a starting point model on a similar task. It is a very popular
method which enable having a well performing models even with a little training
data. In practice the usual process is to fine-tune existing network trained on a
large dataset like ImageNet by continue training on a smaller dataset relevant
to the given task. Provided that the dataset is not drastically different in
context to the original dataset (e.g. ImageNet), the pre-trained model should
have learned the features that are relevant to given classification problem.
Transfer learning is a machine learning method where a model developed for
one task is reused as a starting point for a model on a second task. It is
a popular approach in deep learning where pretrained models are used as the
starting point saving the time and resources required to develop neural network
models on related problem. As a transfer learning could be also considered a
part of creating DeepLab architecture where classification network (Xception
backbone) pretrained on ImageNet to perform a classification was reused as a
starting point for the semantic segmentation task.
In practice, both fine-tuning and transfer learning of deep learning architec-
tures is usually done by truncating the last classification layer (usually softmax
layer) of the pretrained network and replace it with the new classification layer
that is relevant to the new problem. For example, pre-trained network on Im-
ageNet comes with a softmax layer with 1000 classes. The task of semantic
segmentation on Cityscapes dataset requires the classification into 19 classes,
the new classification softmax layer of the network will have 19 channels instead
of 1000.
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4 Evaluation

The DeepLab V3+ model was trained end-to-end without piecewise pretraining
of each component. The model was first pretrained on ImageNet [11] to extract
dense feature maps by atrous convolution. Then the model was fine-tuned for
semantic segmentation using the Cityscapes dataset [9]. The evaluation was
performed on the validation set of Cityscapes dataset.
The same training protocol as in original paper [6] was followed, i.e. the same
learning rate schedule, crop size 513 × 513, fine-tuning batch normalization
parameters, and using the augmentations during the training.

4.1 Datasets for Semantic Segmentation
For the task of semantic segmentation are overall being used algorithms of su-
pervised learning. The key ingredient for supervised learning models is to have
access to enough labeled data for the training. Luckily for the researchers there
were created some large public datasets available free for the non-commercial
use. There are many computer vision datasets created for different computer
vision tasks such as image classification, object detection and semantic seg-
mentation.

4.1.1 ImageNet
The digital era has brought with it an enormous explosion of data. There are a
uncountable numbers of photos on Flickr, videos on YouTube and even larger
number for images in the Google Image Search database. By exploiting these
data, more sophisticated and robust algorithms could be trained, resulting in
better applications for users. Jia Deng et al [11] introduced a database called
ImageNet, a large-scale ontology of images, which is solving the problem of
organization of such huge amount of image data.
ImageNet [11] is ongoing research effort to provide researchers an easily ac-
cessible image database. The image database is organized according to the
WordNet hierarchy. Each meaningful concept in WordNet, possibly described
by multiple words or word phrases, is called a synset. There are around 80
000 noun synsets in WordNet. The ImageNet database aim to to provide on
average 500−1000 images to illustrate each synset. Images of each concept are
quality-controlled and human-annotated. In its completion, the database will
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offer tens of millions of cleanly sorted images for the most of the concepts in
the WordNet hierarchy.
Hierarchy ImageNet organizes the different classes of images in a densely
populated semantic hierarchy. The main asset of WordNet lies in its semantic
structure, i.e. ontology concepts. Similarly to WordNet, sysnets of images in
ImageNet are interlinked by several types of relations, Although one can map
any dataset with category labels into a semantic hierarchy using WordNet, the
density of ImageNet is unmatched by others. For example, it is very unlikely
that any computer vision dataset offers images of 147 dog categories.
Accuracy The goal is to provide a clean dataset at all levels of the WordNet
hierarchy. But achieving a high precision for all depth of the ImageNet tree is
very challenging because the lower in the hierarchy a synset is, the harder is to
classify, e.g. Siamese cat versus Burmese cat.
Diversity ImageNet constructed with the goal that objects in images should
have variable appearances, positions, view points, poses as well as background
clutter and occlusions. In an attempt to tackle the difficult problem of quan-
tifying image diversity, average image of each synset is computed and lossless
JPG file size is measured which reflects the amount of information in an image.
The idea is that a synset containing diverse images will result in a blurrier
average image, the extreme being a gray image, whereas a synset with a little
diversity will result in a more structured, sharper average image. Therefore, a
smaller JPG file size is expected to be smaller of the average image of a more
diverse synset.
The first construction of ImageNet database involved collecting candidate im-
ages for each synset. The average accuracy of image search results from the
internet was around 10%. A large set of candidate images was collected (over
10k images for each synset). To collect a highly accurate dataset, cleaning of
the data must have been applied. They relied on humans to verify each can-
didate image collected in previous step for a given synset. This was achieved
by using Amazon Mechanical Turk (AMT), an online platform where users are
a set of candidate images and the definition of the target synset and asked to
verify whether each image contains object of the synset.
The creation of ImageNet database was crucial for the growth of computer
vision, especially for the growth of deep learning. ImageNet became the central
resource for a broad of range of vision related research. In fact, almost every
deep convolutional neural networks used for any computer vision task (image
classification, detection, segmentation, etc.) is first pretrained on ImageNet.
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4.1.2 Cityscapes
The resurrection of deep learning had a major impact on the current state-of-
the-art in machine learning and computer vision. A major contributing factor
for the deep neural networks success is the availability of large-scale dataset.
Therefore, in a year 2016 a team from Daimler AG R&D, Max Planck In-
stitute for Informatics and TU Darmstadt Visual Inference Group decided to
take another step in visual understanding of complex urban street and created
Cityscapes Dataset [9]. Despite the existing gap to human performance, scene
understanding approaches have started to become essential components of ad-
vanced real-world systems. A particularly popular and challenging application
involves self-driving cars, which make extreme demands on system performance
and reliability. Research progress was heavily linked to the existence of data-
sets such as KITTI Vision Benchmark Suite, CamVid and Leuven datasets.
These urban scene datasets are often much smaller than Cityscapes Dataset
and does not fully capture the variability and complexity of real-world inner-
city traffic scenes. Cityscapes Dataset is specifically tailored for autonomous
driving in an urban environment involving a very wide range of highly complex
inner-city street scenes that were recorder in 50 different cities. Cityscapes
significantly exceeds previous efforts in terms of size, annotation richness, and,
more importantly, regarding scene complexity and variability.
Data recording and annotation methodology was carefully designed to capture
high variability of outdoor street scenes. Several hundreds of thousands of
frames were acquired from a moving vehicle during span of several months,
covering spring, summer and fall in 50 cities. For comparability and compatib-
ility with existing datasets they provided low dynamic-range (LDR) 8 bit RGB
images that are obtained by applying a logarithmic compression curve. Such
tone mapping is common in automotive vision, since they can be computed
efficiently and independently for each pixel. 5000 images were manually selec-
ted from 27 cities for dense pixel-level annotation, aiming for high diversity of
foreground objects, background and overall scene layout.
The dataset provides coarse and fine annotations at pixel level including instance-
level labels for humans and vehicles. These 5000 fine pixel-level annotation con-
sist of layered polygons guaranteeing highest quality levels. For 20 000 coarse
pixel-level annotations, accuracy on object boundaries was trade off for an-
notation speed. The authors defined 30 visual classes for annotation, which are
grouped into eight categories: flat, construction, nature, vehicle, sky, object,
human and void. Classes that are too rare are excluded from the benchmark,
leaving 19 classes for evaluation.
Densely annotated images were split into separate training, validation and test
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sets. The coarsely annotated images serve as additional training data only.
It was chosen not to split the data randomly, rather in a way that ensures
each split to be representative of the variability of different street scenarios.
Specifically, each of three splits is comprised of the data recorder with the
following properties in equal shares:

• In large, medium, and small cities.

• In the geographic west, center, and east.

• In the geographic north, center, and south.

• At the beginning, middle, and end of the year.

Following this scheme resulted in a unique split consisting of 2975 training and
500 validation images with publicly available annotations, as well as 1525 test
images with annotations withheld for benchmark purposes.
Finally, defined 30 classes divided into 8 groups are:

• Flat - road, sidewalk, parking*, rail track*.

• Human - person, rider.

• Vehicle - car, truck, bus, on rails, motorcycle, bicycle, caravan*, trailer*.

• Construction - building, wall, fence, guard rail*, bridge*, tunnel*.

• Object - pole, pole group*, traffic sign, traffic light.

• Nature - vegetation, terrain.

• Sky - sky.

• Void - ground*, dynamic*, static*.

Note that labels marked with * are not included in any evaluation and treated
as void (or in the case of license plate as the vehicle mounted on).

4.1.3 KPIT traces
The dataset called KPIT traces is an internal non-public dataset that belongs
to Volkswagen. The dataset consists of 5134 images taken from the fish eye
rear camera in the car and 117 calibration images. The calibration images
includes the chessboard in many different positions which allows to calculate the
actual calibration of the camera. The annotation includes 5 classes: freespace,
vegetation, vehicle, pedestrian and other. The classes are divided into 2 groups:
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Obstacle classes and Freespace classes. Currently the machine learning modules
are designed only to recognize obstacles and freespace (therefore dividing into
2 groups). In the future, the car should be also able to recognize what type
of obstacle is behind the car to react accordingly (therefore more labels in the
annotation).

4.2 Evaluation metrics
To quantify the performance of the model, the well designed metrics are ne-
cessary. There many ways how to measure the prediction results. The most
essential for semantic segmentation would be an Pixel Accuracy and Intersec-
tion Over Union (IoU) (also known as Jaccard Index) and F1 score(also known
as Dice Coefficient).
The metrics were calculated per each class and then the mean value represents
the quantified result of the model. During evaluation, for each class at each
image a binary bitmap was created setting a pixel to 1 if the pixel was assigned
to the given class and zero otherwise for both - predictions and ground truths.
Out of these bitmaps, a rate of TP, TN, FP and FN were calculated.

• TP (True positive) - number of pixels that were classified to the class
and should have been.

• TN (True negative) - number of pixels that were not classified to the
class and should have been.

• FP (False positive) - number of pixels that were classified to the class
and should have not been.

• FN (False negative) - number of pixels that were not classified to the
class and should have not been.

Pixel Accuracy
Pixel Accuracy is the percent of pixels in the image that were classified correctly.
It is perhaps the easiest metric to understand conceptually. Unfortunately, it
is definitely not the best one. There is an issue when evaluating semantic
segmentation using pixel accuracy. This issue is called class imbalance and
may occur if there are a very few pixels of one class in the image. For instance,
lets consider a simple problem of detecting an object, which is present only in
5% of pixels in ground truth and the model make a prediction of no object
detected in the image. The pixel accuracy would be equal to 95% in this case
which looks really good, but the actual result is really bad. Despite this issue,
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this metric has some information value, therefore it make sense to calculate it.
The calculation was done according to the formula:

accuracy = TP + TN

TP + TN + FP + FN
(4.1)

Intersection Over Union (IoU)
The Intersection Over Union (IoU), also known as Jaccard index, is one the
most common metrics used widely to evaluate semantic segmentation. It is
very straight forward metrics which is proven to be extremely effective. As
expressed by the formula 4.2 (and visualized in Fig. 4.1) the IoU is the area of
overlap between predicted segmentation and the ground truth divided by the
area of union between the predicted segmentation and the ground truth. The
metric ranges from 0 to 1 (0-100%) with signifying 0 as no overlap and 1 as a
perfect overlap.

IoU = ||A ∩B||
||A ∪B||

(4.2)

Using a binary bitmaps, the metric can be rephrased in terms of true/false
positives/negatives as:

IoU = TP

TP + FP + FN
(4.3)

For multi-class segmentation, the mean IoU of the image is calculated by taking
the IoU of each class and averaging them.
To compare this metric with pixel accuracy, lets consider the scenario with
class imbalance. The calculation have to be done separately for each class and
then the result is average of IoU of each class. First calculate the IoU of the
object class. The object was not detected, thus the area of intersection is 0 and
then the IoU is 0. For the second class (background) the area of intersection is
95 and the area of union is 100, thus the IoU is 0.95. In this scenario, the mean
IoU of the image is 47.5%. Without a doubt that is a much better indicator of
the success of the segmentation.
F1 score
F1 score, also known as Dice Coefficient, is doubled the area of overlap between
the prediction and ground truth divided by the total number of pixels in both
images. This metric is very similar to IoU and the results of these metrics are
positively correlated. This metric is basically the function of Precision and
Recall. It seeks the balance between precision (how precise was the prediction)
and recall (how many actual positives model captured).

F1 = 2||A ∩B||
||A||+ ||B|| (4.4)
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Figure 4.1: IoU calculation visualized [28]

Using a binary bitmaps, the metric can be rephrased in terms of true/false
positives/negatives as:

F1 = 2 · TP
2 · TP + FP + FN

(4.5)

4.3 Augmentations
Limited amount of available training data is the major obstacle of every deep
learning model. There are many ways to address complications associated with
limited amount of data in machine learning. Image augmentations is one very
useful technique in building convolutional neural networks that can increase
the size of the training set without acquiring new images. The idea is to
duplicate available images with some variation so the model can learn from
more generalized examples. The process must be executed carefully to avoid a
model learning non-sense data that will not appear in validation and test sets.
The augmentations used for training of DeepLabV3+ model were horizontal
flip, random scale and color space transformations.
Horizontal Flip
A horizontal flip is one of the basic methods to create augmentations. A hori-
zontal flip usually does not change the meaning of the image (unlike the vertical
flip). The car or the street in Cityscapes images still make a perfect sense even
if it is horizontally flipped. This augmentation only creates and problem with
the texts, because horizontally flipped text is not readable. But since analysis
of the text in the image in not the goal of this model, the only thing that had to
be taken care of was to correctly flip also the ground truth during the training.
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Random Scale
Training the model with lower resolution images than the original resolution
creates a possibility to make a crops and therefore increase the number of
training images. The Cityscapes dataset images have a resolution 2048× 1024.
The DeepLabV3+ model was trained on 513× 513 crops.
Color Space Transformations
Image data is encoded into 3 stacked matrices, each of size height × width.
These matrices represent pixel values for an individual RGB color value. The
effectiveness of color space transformations is fairly intuitive to conceptualize.
The color space transformations done during the training were performed as
increasing/decreasing the brightness or the contrast of random crops in the
images.

4.4 Evaluation on Cityscapes Dataset
The implemented DeepLabV3+ model with Xception backbone was evaluated
on the Cityscapes dataset. Cityscapes is a large-scale dataset containing high
quality pixel-level annotations of 5000 images (2975, 500, and 1525 for the
training, validation, and test sets respectively). The dataset also includes a
20,000 coarsely annotated images which can be used for the training. However,
because the goal of the re-implemented model is not to achieve the best results
on Cityscapes benchmark, it was decided to not use them.
The Tab. 4.1 shows attained result of evaluation on the Cityscapes valida-
tion set quantified using IoU and F1 metrics. The overall result of the model
is obtained by averaging the result of each class. As discussed in Sec. 4.2,
the accuracy might not be the most appropriate metric to evaluate semantic
segmentation. However, the information of what percentage of the pixels was
correctly classified could be interesting, hence during evaluation accuracy was
also calculated. The model achieved an accuracy of 89.53%.
The Tab. 4.2 shows the IoU result on Cityscapes validation set mentioned in
the original paper and the result of the re-implemented model. The original
implementation achieved a better class performance (∼ 5%). It is caused by
the authors using also 20,000 coarsely annotated images from Cityscapes data-
set and pretraining on JFT-300M [27] dataset. Since the aim of this thesis
is to obtain a reasonable result and not to reproduce the original results, the
performance of 73.55% IoU is satisfying enough. Interesting point is that the
re-implemented model achieved a comparable results in terms of category IoU
(only 1% less). This result shows that model more often confuses a similar
objects which belongs to the same category (human/rider, building/wall, mo-
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IoU F1 score
road 94.5248% 80.5162%

sidewalk 82.0718% 72.4319%
building 86.6678% 73.0096%
wall 65.7022% 74.5499%
fence 62.3170% 60.1392%
pole 61.2422% 56.2688%

traffic light 65.4054% 78.0368%
traffic sign 53.1085% 60.8097%
vegetation 93.1282% 78.3386%
terrain 58.9070% 81.0753%
sky 89.5487% 76.7635%

person 77.5181% 60.7598%
rider 65.9915% 87.1013%
car 85.6959% 84.4297%
truck 77.9868% 90.3239%
bus 69.1686% 86.0706%
train 70.9835% 91.6874%

motorcycle 69.8926% 92.7908%
bicycle 67.5234% 68.5998%

average 73.5465% 76.5107%

Table 4.1: Cityscapes validation set results for each class.

torcycle/bicycle etc.).

class IoU category IoU
Original 78.79% 87.99%
Re-Implemented 73.55% 86.83%

Table 4.2: Comparison of the original result with result of the re-implemented
model.

Fig. 4.2 shows the comparison of segmentation results 4.2c with the original
image 4.2a and the ground truth 4.2b. As one can see, the model is struggling
with the recognition of a car hood in the bottom of the image and with dis-
tinguishing between the terrain (light green) and vegetation (dark green). The
classes terrain and vegetation are from the same class category - nature, which
means that confusing them does not affect the category results. The result
visually looks quite well, perhaps a little noisy, but all the objects in the image
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were recognized.

(a) Original image [9]. (b) Ground truth [9].

(c) Segmentation prediction.

Figure 4.2: The comparison of the segmentation with its ground truth and
original image.

Fig. 4.3c shows the segmentation with wrongly classified objects. In the ground
truth 4.3b the advertising tables were marked as void but the model predicted
them as a fence. Very interesting is that the fence was also predicted in the car
hood. The reason is, that as we can see in the original image, the advertisement
is reflected in the car hood.
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(a) Original image [9]. (b) Ground truth [9].

(c) Segmentation prediction.

Figure 4.3: The comparison of the segmentation with its ground truth and
original image.

4.5 Evaluation on KPIT Traces
The aim of this thesis was to create a model, which performs a semantic seg-
mentation of the images from fish eye camera with a reasonable results. The
KPIT dataset of 5134 images from fish eye camera was randomly divided into
training and validation set (80%/20% respectively). Then the re-implemented
DeepLabV3+ model pretrained on ImageNet [11] and Cityscapes [9] was fine-
tuned using the KPIT training set.
The two different approaches was employed to fine-tune the model. The first
one consisted of replacing a classification layer with the new one and freezing
weights in all layers except for the classification layer. The results of this
experiment are denoted in Tabs. 4.3,4.4,4.5 as FW (frozen weights). The second
approach was to replace a classification with the new one and fine-tune the
whole model. Results from second experiment are in Tabs. 4.3,4.4,4.5 as NFW
(not frozen weights).
Because of that the dataset is non-public and this is the first effort to perform
the semantic segmentation, there are no results available for comparison and
benchmarking. Therefore, the results were mostly evaluated visually with de-
velopers and managers involved in the project dealing with image processing
of rear camera. However, to set a baseline for future work and to compare
the results of the experiments the evaluation was also quantified using the IoU
metric. The result of evaluation is shown in Tab. 4.3.

47



class IoU category IoU
Frozen weights 58.32% 63.19%
Not frozen weights 59.26% 64.77%

Table 4.3: IoU results on validation set of KPIT dataset.

The Tabs. 4.4,4.5 shows the results of the experiments for each class and for
each category of the dataset. According to the IoU performance, the second
approach with fine-tuning the whole model without freezing any layer was
proven to achieve a better performance, in concrete 59.26% IoU.

FW NFW
freespace 55.26% 56.38%
vegetation 58.15% 56.55%
vehicles 72.14% 73.26%
other 42.47% 48.44%

pedestrian 65.56% 61.67%

Table 4.4: KPIT validation set results for each class.

FW NFW
Freespace 81.12% 82.96%
Obstacle 45.26% 46.58%

Table 4.5: KPIT validation set results for each group.
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4.6 Future Work
Due to the amount of work and limited time, it was not possible to realize more
experiments. Executing another experiments will be part of a future work with
the goal to improve performance of the model on the task of semantic segment-
ation of fish eye camera images. This topic is very perspective in automotive.
The semantic segmentation has proven to help the autonomous vehicles to un-
derstand the context of the environment around the vehicle. And using fish eye
lens to increase the angle of view of the camera, instead of using more cameras,
seems to be the new trend in automotive.
During the previous work, a tool calculating the calibration parameters of the
camera was developed. The plan is to try two approaches using these calib-
ration parameters: (1) to un-distort the fish eye camera images and perform
the segmentation using a standard DeepLabV3+ model, and (2) to distort the
Cityscapes dataset images to create more training data. Both approaches could
possibly significantly improve the segmentation results. From the automotive
point of view, especially the second approach resulting in a good performance
could create a very promising model that might significantly support a series
development.
During the time of writing this thesis a subcontractor of Volkswagen works
on creating a new dataset. According to the assignment, the dataset should
be covering a lot of different scenarios under many different conditions. The
dataset should include enough images covering all reasonable obstacles behind
the car, all possible weather conditions etc. Very interesting is that it should
also cover issues like broken glass on the top of the lens or the camera having
limited angle of view caused by some dirt and many more.
Both datasets (KPIT and the one in progress) consists of a real world data. The
images are noisy which makes the segmentation even more difficult. Having a
model that gives a reasonable segmentation results on this real world images
would significantly help to the progress of self-driving vehicles.
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5 Conclusion

The goal of this thesis was to implement a deep learning model performing a se-
mantic segmentation. First, it was necessary to find a suitable deep neural net-
work architecture capable of semantic segmentation. Next step was to choose
a suitable dataset with automotive images eligible for the training of convo-
lutional neural networks and train the chosen model on this dataset. After
achieving a satisfying performance the model was fine-tuned with a new data-
set to perform the semantic segmentation of the automotive images taken by
the fish eye camera.
After a research of available network architectures, it was chosen to implement a
state-of-the-art semantic segmentation model on Cityscapes benchmark - Dee-
pLabV3+. The model employs the encoder-decoder structure where a backbone
is used to encode the rich contextual information and a simple yet effective de-
coder module is adopted to recover the object boundaries. In addition to a
standard convolutional neural networks algorithms, DeepLabV3+ uses atrous
convolution to reduce the resolution of feature maps in encoder without loosing
the contextual information and atrous spatial pyramid pooling to detect the
objects at different scales.
As the most suitable dataset for the given problem was chosen the Cityscapes
dataset. The dataset consists of automotive images taken from the in-car cam-
era capturing the space in front of the car while driving. The dataset provides
5000 fine annotated images divided into 19 classes.
The DeepLabV3+ architecture was re-implemented using Keras and Tensor-
Flow frameworks. The model was evaluated using Cityscapes validation set
achieving a performance 73.55% IoU. The performance is lower than the ori-
ginal implementation due to not pre-training the model on JFT-300M dataset
and not using a coarsely annotated images from Cityscapes dataset.
Finally, the implemented DeepLabV3+ model was fine-tuned using a KPIT
dataset to perform a semantic segmentation of automotive images taken by
the car rear camera with fish eye lens. In the evaluation the model achieved a
performance of 59.26% IoU.
The semantic segmentation is the key ingredient for the car to obtain the
contextual information of its environment. Having a model which performs a
semantic segmentation with a reasonable results might help the car to analyze
the situation around and react to it in the right way. This model would help
to progress a development of a self-driving vehicles.
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