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Abstract
Researchers of the Department of Cybernetics at the University of West Bo-

hemia in Pilsen in cooperation with SpeechTech s.r.o. have developed a system,
which automatically subtitles live broadcasts for Czech Television. The aim of
this thesis is to extend the system for the ”Události ČT” programme, with a
scene recognizer using image data, appropriate sound filter aware of the scene
type could be applied. Different neural network architectures were analyzed to
develop a system capable of recognizing television news scenes. For evaluation
of a network performance, a tool has been created, which generates an attention
map, a model prediction including the correct class name for each input image
and a confusion matrix.

By comparing an InceptionResNetV2 network to other backbone architectures,
the results have shown, that the InceptionResNetV2 has the best performance
during the learning phase. Thus, this network was further analyzed along with a
compact MobileNetV2 network. The analyses explore, in addition to the different
configurations of the models, the possibility of processing time-distributed image
data. However, the testing phase has shown that the MobileNetV2 networks
have more accurately classified the input images into correct classes, than the
InceptionResNetV2 networks and that models, which process time-sequences of
images, have lower recognition accuracy in most cases than networks, which per-
form classification based on a single input image. Besides these results, it can be
unambiguously stated that the MobileNetV2 network is opening the possibility
for practical usage, since it has considerably fewer parameters and the accuracy
for classifying 9 classes was around 94 %, which is a very promising result.

Source files created for the purposes of this thesis are available on the website:
https://github.com/vyskocj/TV-News-Scene-Recognition

Keywords: computer vision, digital image processing, artificial intelligence,
scene recognition, TV News, neural networks, LSTM

IV

https://github.com/vyskocj/TV-News-Scene-Recognition


Abstrakt
Výzkumnými pracovníky Katedry kybernetiky Západočeské univerzity v Plzni

byl ve spolupráci s firmou SpeechTech s.r.o. vyvinut pro Českou televizi systém,
který je schopen automaticky titulkovat přenosy z živého vysílání. S cílem rozvi-
nout systém na pořad Události ČT vznikla tato diplomová práce, která se zabývá
rozpoznáváním scén s použitím obrazových dat, aby následně dle typu scény mohl
být aplikován příslušný zvukový filtr, který má schopnosti potlačení šumu pozadí
a zvyšuje přesnost převodu řeči na text. Pro vývoj systému schopného rozpozná-
vat scény televizních událostí byly analyzovány různé architektury neuronových
sítí. Pro vyhodnocení výkonu sítě byl vytvořen nástroj, který je schopen vy-
generovat matici zmatení (confusion matrix) a pro každý vstupní obrázek mapu
pozornosti (attention map) a predikci modelu včetně názvu třídy správné klasi-
fikace.

Experiment porovnávající různé architektury neuronových sítí ukázal, že Incep-
tionResNetV2 dosahuje nejlepších výsledků během učení v porovnání s ostatními
sítěmi. Tudíž tahle síť byla následně analyzována společně s kompaktní architek-
turou MobileNetV2. Následné analýzy, kromě různých konfigurací sítí, prozk-
oumávaly i možnosti zpracování časově distribuovaných obrazových dat. Během
testování se však ukázalo, že MobileNetV2 sítě jsou schopny přesněji klasifiko-
vat než InceptionResNetV2 a že modely zpracovávající časové sekvence obrázků
dosahují ve většině případů nižších přesností, než sítě, které provádí klasifikaci
na základě jednoho vstupního obrazu. Z těchto výsledků lze jednoznačně konsta-
tovat, že pro praktické využití je síť MobileNetV2 vhodnější i vzhledem k značně
nižšímu celkovému počtu parametrů a s přesností klasifikace přibližně 94 %, což
je příznivý výsledek.

Zdrojové soubory pro účely této práce jsou dostupné na stránkách: https:
//github.com/vyskocj/TV-News-Scene-Recognition

Klíčová slova: počítačové vidění, zpracování digitalizovaného obrazu, umělá
inteligence, rozpoznávání scén, televizní zprávy, neuronové sítě, LSTM
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Chapter 1

Introduction

In 2011, the SpeechTech s.r.o. in cooperation with the Department of the
Cybernetics created an automatic subtitling system for Czech Television [41]. The
system is designed for live sport and government session recordings. One of the
possible research for the future is to extend speech recognition to a more complex
task - such as television news broadcasts. There is a frequent environmental
change in television news, which leads to different types of background noise. In
extreme situations, such as live broadcasts with strong winds, it may be difficult
to automatically recognize speech. A suitable filter must be used for these cases,
but the same filter should not be used for low noise signals, e.g. where the
anchorman is speaking from the studio. For this purpose, there is an idea to
create a system that would be able to recognize different types of scenes using
a computer vision technique. Consequently, multiple speech recognition filters
could be used depending on the scene type to maximize the accuracy of automatic
subtitling.

First, it is necessary to appropriately define the types of scenes in television
news for recognition. One of the related goals is to find out whether it is possible
to solve such a complex task using modern technologies, because it is not possible
to define unambiguously all objects that each scene will always contain. There-
fore, the use of standard computer vision methods might not lead to a correct
result, so the basis of the model is the neural network. The first artificial neural
network was introduced by Warren McCulloch and Walter Pitts in 1943 [37] and
popular perceptron algorithm was introduced in 1957 by Frank Rosenblatt [45]
as a simplified model of a biological network. One of the first greatest successes
in computer vision was in the ImageNet Challenge 2012 using the Convolutional
Neural Network (CNN) [48]. Since then, research has focused on developing arti-
ficial neural network architectures that are becoming state of the art in computer
vision.

1



CHAPTER 1. INTRODUCTION

1.1 Motivation and objectives
The main goal of this thesis is to create a recognizer of television news scenes.

Evaluation of the quality of the created models is based on the classification accu-
racy of the training and validation sets. But in addition to numerical evaluation,
visual evaluation is also performed. For this purpose, a tool was created which
automatically generates a file that can be opened by a web browser. This file
contains outputs of the network for each input image and a heatmap showing
the sections of the image the network is paying attention to. The best backbone
architecture is eventually used to create a time distributed model. This model
can make a full visual utility of the information from the video and suppress un-
wanted frames such as the transition between cuts. Finally, all relevant networks
are tested on data from another television channel and an analysis, whether the
time-series data processing brings benefits for recognition, is also performed.

In case of successful results of this thesis, research at the Department of Cy-
bernetics can extend to several new directions. One practical example is the
recognition of scenes on a television channel - such as parliament or sports broad-
casting. This system could ensure automatic control of the speech recognition
system, i.e. turning off the automatic subtitling if, for example, ads have started.
This idea leads to the hypothesis of creating a network with a low number of
parameters with satisfactory classification precision, i.e. worse accuracy than a
large network, to be used online.

1.2 Thesis summary
This thesis has a following structure. Chapter 2 serves as a general introduction

to neural networks, including activation functions, loss functions, and optimiza-
tion. The relevant types of networks for purposes of this thesis are described
in Chapter 3. In the following Chapter 4, scenes of TV News are defined and
used datasets are characterized. A recognition system for practical application is
designed in Chapter 5. In this chapter, the used neural network architectures for
analyses are also described and a tool for evaluation of the network performance
is explained. Finally, the experiments are presented and evaluated in Chapter 6.

2



Chapter 2

Artificial Neural Network

Neural networks are known for several decades and the popularity of this tech-
nology has grown in recent years into application in many research areas. Al-
though it is a very powerful tool, its biggest drawback is the fact that it may
require a large amount of computing power and vast collection of data to train
complex systems.

The basic idea was to create a model of a biological neural network which
consists of neurons that are connected by so-called synapses. To explain simply,
this network can be recognized as a combination of neurons. Each neuron has an
activation function and several inputs that are weighted. A neuron becomes active
if the sum of the weighted inputs is higher than the threshold of the neuron. One
of the basic networks is a perceptron [45, 46] one, which is defined as a single-layer
neural network with a simple activation:

yl =

{
1 :

∑N
n=1wl,n · xn + bl > 0

0 : otherwise
(2.1)

where wl,n are weights, xn are inputs, bl is bias and yl is output of l-th neuron.
Convergence is assured, if the learning set is linearly separable. In general, linear
separability cannot always be ensured and this is also the reason for increasing
the depth of the network. If we now consider a two-layer network (Figure 2.1),
the output can be obtained according to the following formula:

yl = g(
M∑

m=1

[vl,m · f(
N∑

n=1

wm,n · xn + bm)] + dl) (2.2)

where f and g are activation functions for first layer and second layer, vl,m are
weights of second layer, dl are biases of second layer. Generally, these layers are
called dense layers. Such part of the network is also described as fully-connected
layers in models with a more complex structure, consisting of different layer types.

3



CHAPTER 2. ARTIFICIAL NEURAL NETWORK

Figure 2.1: Example of a two-layer neural network.

2.1 Activation functions
One important aspect of neural network design is topology. To get a network

with a good performance, it is also important to choose the activation functions
that affect the selection of information in each layer in the multidimensional
space. From a cybernetics point of view, each neuron controls the output of
previous neurons to obtain the desired output from the system. By using the
non-linear activation functions, a neural network can approximate any function
with sufficient accuracy [25].

2.1.1 Logistic function
The logistic function is also known as the sigmoid function, mainly due to its

S-shape characteristic. This function was introduced by Pierre François Verhulst
between 1838 and 1847 in three papers [8]. It is a standard function used in
neural networks that maps values from the real values to the probability space.
The function is defined according to the following formula [8]:

f(ξ) =
eξ

1 + eξ
=

1

1 + e−ξ
(2.3)

The function is differentiable and monotonic - but the derivative is not mono-
tonic. The negative aspect of this function is that learning process may come to

4



CHAPTER 2. ARTIFICIAL NEURAL NETWORK

a halt during the training time [14]. It was one of the motivations for exploring
new functions.

2.1.2 Rectified linear unit
In 2000, Hahnloser first introduced the most popular activation function for

state of the art networks that is known as ReLU [20, 16, 42, 30]. One of the main
advantages of this function is that the network can learn several times faster than
a network using sigmoid functions [30], because gradients are able to flow when
the input to the function is positive [42]. This simple and effective function is
defined as [42, 20]:

f(ξ) = max(0, ξ) (2.4)

According to the formula, a problem might occur, because the function is not
differentiable at zero. This is solved by modifications of this function - such as
Softplus [15], ELU [7], or Swish [43]. Other well known modifications include
Leaky ReLU, Parametric ReLU [21], or maxout [17].

2.1.3 Softmax function
With neural networks designed for classification, there is often a need to re-

turn a probability vector. The individual elements of the vector represent the
probability with which the input signal belongs to the output class. Ideally, the
output should be a one-hot vector, i.e. the input signal is classified with the
probability of 1 into one class and the same signal belongs to the other classes
with the probability of 0. Since the output values from the previous layers can
be distributed in the range of real numbers, the last layer - also known as the
classification layer - uses the softmax function defined as [16]:

σ(ξ)j =
eξj∑K
k=1 e

ξk
(2.5)

where σ(ξ)j is the probability of the input belonging to j-th class.

2.2 Loss function
It is necessary to define an optimization target before learning starts. In our

case, it is a minimization of the criteria function, which is represented by a clas-
sification error [16]. A very popular loss function is the mean square error that is
not suitable for classification. This criterion is mainly used for regression prob-
lems, such as segmentation or key-points detection. Since probabilities given by
softmax function can be expected at the output, it is simple to utilize the principle

5



CHAPTER 2. ARTIFICIAL NEURAL NETWORK

of maximum likelihood [16] - it means that categorical cross-entropy shall be used
between the training data and the model’s predictions as the loss function [16]:

L(p, q) = −
∑
x

p(x) · log q(x) (2.6)

where p is information provided by supervisor - i.e. expected output - and q is
model output. The sum is calculated for all inputs x. Ideally, the predictions shall
be equal to the expected output. In this case, the network output is represented
by a one-hot vector and the loss is equal to zero [4].

2.3 Optimization
When a neural network model is created, an optimization has to be performed.

Like a human, the machine is unable to understand the problem immediately.
Optimization is a method to change the parameters of the network to reduce
losses. The parameters can be pre-trained or initialized randomly. Choosing a
pre-trained network for a similar task can bring many benefits [53]. This network
can learn faster than a network with randomly initialized parameters. The reason
is that such a network can extract significant pieces of information from the input.
Training a model that has already been optimized is called transfer learning.

The machine learning can be divided into several categories: supervised learn-
ing, unsupervised learning, and reinforcement learning. For supervised learning,
a pair of inputs and required outputs are used during fitting of the model. After
successful training, the network can produce outputs corresponding to the train-
ing data. In unsupervised learning, the model looks for continuity in data. This
learning is also called clustering. In reinforcement learning, the model performs
actions, that are rewarded by the environment. The main idea of this learning is
to find a balance between exploration (uncharted area) and exploitation (current
knowledge) [60]. In case of this thesis, a pair of inputs and required outputs are
available, therefore, a feedforward neural network can be used for the given topic
with the backpropagation algorithm to train it.

The backpropagation was introduced in 1986 [47] to train a neural network
with one or two layers [16]. The main idea is to compare the prediction with
the desired output. The prediction error is propagated back to the input as the
gradient of the loss function E(X, θ) is calculated [2]. This value is used to update
the neuron parameters θ, i.e. weights and bias [2]:

θt+1 = θt − α
∂E(X, θt)

∂θ
(2.7)

6



CHAPTER 2. ARTIFICIAL NEURAL NETWORK

where X is set of input-output pairs, α is the learning rate, and t is the iteration.
This technique is also called gradient descent. Non-trainable parameters which
are defined before the learning are called hyperparameters. Backpropagation has
become so popular that it had a vital role in discovering deep neural networks
for image and speech recognition [2].

2.3.1 Stochastic Gradient Descent
The main problem of gradient descent is that the partial derivative needs to be

computed for a single parameter. With a deep neural network and with a large
dataset, there is a huge number of derivations to compute. In fact, a large dataset
is necessary for good generalization but at the cost of more computationally
expensive learning [16]. This can be solved by introducing stochastics in learning.

The idea of stochastic gradient descent is a calculation of estimated gradients.
The estimation is calculated in each step by using minibatch - i.e. small set of
samples [16]. The minibatch samples Xb are chosen uniformly from the training
set X. The size of a minibatch B can be defined before fitting the network in
range of tens to a few hundred [16]. While maintaining the definitions of the
gradient descent formula 2.7, it is possible to iteratively calculate the parameters
for the stochastic variant [16]:

θt+1 = θt −
α

B
· ∇θ

∑
b

E(Xb, θt) (2.8)

With this modification, deep neural networks can be trained in shorter time,
compared to the deterministic variant. In general, the use of gradient descent does
not guarantee that the global minimum of the loss function is achieved during
the learning. The learning rate α is the only parameter that can ensure a local
minimum. Learning can be a slow process for some tasks with this optimizer.
Therefore, adjustments have been introduced to allow the use of a momentum.

The momentum is a powerful method that is designed to speed up learning. The
idea is to accumulate the average of past gradients and move in their direction [16].
The average of past gradients represents a path that has already been traveled.
This allows getting over local extremes while the network is learning. There is
an analogy from physics, the Newton’s laws of motion: the algorithm includes a
velocity variable v and a hyperparameter γ ∈ [0, 1) indicating how quickly the
contributions of the previous gradients exponentially decay [16]:

vt+1 = γ · vt −
α

B
· ∇θ

∑
b

E(Xb, θt)

θt+1 = θt + vt+1

(2.9)

7



CHAPTER 2. ARTIFICIAL NEURAL NETWORK

Another variant of momentum is a Nesterov momentum, which is evaluated
after the current velocity is applied [16]. But there is one more problem with the
gradient. The gradient is defined as a direction and rate of the fastest increase.
The main goal of learning is to minimize the loss function, i.e. ideally to find a
global minimum. The network is learning slowly when the gradient is small. In
learning, the optimizer can skip the local minimum or the optimizer can get stuck
when the gradient is large. For this purpose, algorithms with adaptive learning
rates were introduced, such as AdaGrad [10], RMSprop [59], Adam [28].

2.3.2 RMSprop optimizer
One modification of stochastic gradient descent is AdaGrad that adapts the

learning rate individually for each parameter. Parameters with a large gradient
of the loss function have a relatively large decrease in their learning rate and
parameters with a small gradient have a corresponding increase in their learn-
ing rate [16]. RMSprop follows the AdaGrad principle by solving the problem
with accumulated gradients. This accumulation is changed into an exponentially
weighted moving average - the length scale of the moving average controls the
hyperparameter ρ [16]:

gt+1 =
1

B
· ∇θ

∑
b

E(Xb, θt)

rt+1 = ρ · rt + (1− ρ) · g2t+1

θt+1 = θt −
α

√
rt+1 + δ

· gt+1

(2.10)

where δ is a constant for numerical stability (this constant is chosen to be as
small as numerically viable). With this modification, further history information
is suppressed, which increases the efficiency of deep neural network learning [16].
By removing all occurrences of the constant ρ, the equations corresponding to
the AdaGrad algorithm are obtained.

2.3.3 Adam optimizer
Adam is an effective adaptive optimization algorithm that realizes the benefits

of RMSprop and momentum. Similarly to RMSprop, Adam uses an estimate of
the first-order moment of the gradient [16]. Besides, the second-order moment of
the gradient is also estimated. Corresponding to Keras API [6], Adam introduces
hyperparameters β1 and β2, which have the same function as ρ in RMSprop: to
control the decay rates of the estimations. Adam also includes bias corrections,
i.e. ŝ and r̂, to the estimates of both moments [16, 28]:

8



CHAPTER 2. ARTIFICIAL NEURAL NETWORK

gt+1 =
1

B
· ∇θ

∑
b

E(Xb, θt)

st+1 = β1 · st + (1− β1) · gt+1

rt+1 = β2 · rt + (1− β2) · g2t+1

ŝt+1 =
st+1

1− β1

r̂t+1 =
rt+1

1− β2

θt+1 = θt −
α · ŝt+1√
r̂t+1 + δ

(2.11)

Adam is robust to the choice of hyperparameters [16] and due to its efficiency,
there are some variants, e.g. Adamax [28], Nadam [9] or AMSGrad [44]. Accord-
ing to the article [44], AMSGrad uses a maximum of all rt, i.e. biased second-order
moment estimate:

ŝt+1 = st+1

r̂t+1 = max(r̂t, rt+1)
(2.12)

This simple modification provides the algorithm with long-term memory of
past gradients. In some cases, it actually shows improvements [44].

9



Chapter 3

Types of Neural Networks

To use the neural networks in certain research or complex tasks, new types
of this technology had to be evolved. Many innovations around neural networks
are based on biological counterparts - such as long-short term memory or con-
volutional networks. This is one of the reasons why the neural networks can be
considered as a suitable model for computer vision or speech recognition.

The neural network model described in the Chapter 2 could be used to some
extent for computer vision, but such model would not be ideal for image classi-
fication. There is some correlation between nearby image elements that would
not be adequately reflected by using fully-connected layers. Creating such model
would lead to many inconveniences. This model would contain a large number of
parameters even for a relatively small picture. Therefore, learning would also be
very difficult. After optimizing, this model will tend to classify objects according
to the positions that were most often encountered during training. These facts
have led to the development of a convolutional neural network that suppresses
these disadvantages.

3.1 Convolutional Neural Network
Convolution is a fundamental mathematical operation for control theory. It is

used in cases where an expected or investigated signal is a combination of two
different functions. One of those functions is usually input signal and the other is
a model, for example, a filter or a regulator. This operation is defined as integral
of the two functions f and g, where one of them is reserved and shifted [16]:

f(t) ∗ g(t) =
∫
R
f(τ) · g(t− τ)dτ (3.1)

The equation can only be used for one-dimensional signals. For image process-
ing this formula (in discrete form) can be applied in the histogram smoothing,
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where t represents brightness value. Generally, an image can be considered a
two-dimensional matrix that has its width, length, and individual elements of the
matrix indicate brightness. From a practical point of view, the image can also
be considered as three-dimensional matrix, where the third dimension is a color
model, most often RGB. Convolution for image processing can be defined as [16]:

(I ∗K)[i, j] =
∑
m

∑
n

I[m,n] ·K[i−m, j − n] (3.2)

where I is image and K is kernel, which can also be called a filter depending
on the application. Before utilizing neural networks in computer vision, the
convolution had its application that it became a standard operation for digitized
image processing. Basic applications include image blurring and edge detectors.
As mentioned earlier, the surrounding points of each pixel are related. With
the right filter, it is possible to extract various information from the images -
either edges or color composition. Those filters can be subsequently combined,
which leads to object recognition in the images. Therefore, convolutional neural
networks were introduced.

The inspiration came from biological processes [36] - the neurons’ connectiv-
ity of the convolution layer is similar to the visual cortex organization [36, 11].
According to the Deep Learning book Chapter 9.2 [16], in the following lines,
the convolution brings three important ideas to neural networks: sparse interac-
tions, parameter sharing, and equivariant representations. Although the kernel is
smaller than the input image, the model can detect small, meaningful features. It
results in storing a few parameters, thereby sparse interactions are accomplished.
Whereas in a traditional neural network, each parameter of the neuron is used
once while computing an output, in the convolutional network, parameters are
shared to using them for more than one function in a model. Convolution produces
a two-dimensional map of features that each depends on the input. Equivariant
representations means that with moving objects in the input its representation
will move the same amount in the output.

On the contrary, the convolutional network is not naturally equivariant to some
transformations, such as rotation [16]. It may be demanded for some reason,
e.g. recognition of buildings from the street perspective. If any transformation,
that is missing in training data, would be useful, image augmentation should be
performed.

This type of network consists of several kinds of layers, each of which has
its own importance. Individual layers are stacked where convolutional layers
and pooling layers represent the function of image processing, i.e. extracting
important information from the image. Behind the last layer of the convolutional
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part are so-called top layers that regularly represent a traditional neural network.
Such a basic architecture can be used for classification or regression.

3.1.1 Convolutional layer
As the name suggests, the base of this layer is the convolution described in

Chapter 3.1, equation 3.2. Except for the activation function described in the
Chapter 2.1, this layer defines parameters such as: size and number of kernels,
strides, and padding. These parameters depend on the size of the field of view,
which is also called the receptive field. With deeper neural network, the receptive
field grows larger. The output of each layer is called a feature map. The receptive
field refers to the part of the image that is affected by one point of the feature
map. Figure 3.1 shows three consecutive convolutional layers where the dark blue
area indicates the field affected by one kernel of the second layer and the light
blue area marks the receptive field of one point in layer 3 [31].

Figure 3.1: The receptive field of each convolution layer with a 3 × 3 kernel.
Obtained from [31], modified.

Kernel size is defined as width × height × channel. The channel depends on
the color model that represents the number of color scales of the input image.
For grey-scale images, the channel is equal to 1 and kernels can be set to extract
intensity of sections in the image. The channel of RGB images is equal to 3 and
the network can extract different color combinations from the image. The width
and height of the kernel are in pixels, a 3 × 3 kernel size is often chosen. One of
the reasons is a lower number of parameters even in the case of the same receptive
field but a deeper network. For example, when extraction of information from
a 5 × 5 sectors of an image is required, the number of weights is 25. By using
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3 × 3 kernels in two consecutive convolutional layers - see Figure 3.1 - there is 9
+ 9 number of weights.

As in the case of the Haar-like feature [40], in convolutional networks multiple
various filters are necessary to describe an object. Although the network learns to
set the filters itself, determining the number of kernels affects the the networks’
performance. As a rule, the number of kernels in a layer increases with the depth
of the network. The feature map, i.e. the output of the convolution layer, is
obtained by moving the kernel by the specified number of steps that the strides
parameter specifies. With larger steps, the feature map gets smaller in width
and height. The last basic parameter is padding, which is used for situations,
where the same output dimensions of each layer are required. This is especially
demanded for residual networks.

3.1.2 Pooling layer
The sequential stacking of convolution layers produces a large number of fea-

tures describing individual parts of the input image. To keep the most important
features, it is advisable to use a layer that expresses the most worthy information.
For this purpose, pooling layers, that summarize data at the end of a certain block
of convolutional layers, were introduced. Moreover, the use of pooling layers re-
sults in a representation of approximately invariant to small translations [16]. As
a reminder, the convolutional neural network adjusts the weight parameters to
detect edges, corners, or color composition. The response to the input of such
kernels is highest when, for example, the corner detector has found a correspond-
ing corner in the image. This is the main reason why the most viable data can be
found by extracting the highest values of the feature map within a rectangular
neighborhood - this is performed by using the max-pooling layer. This layer has
two basic parameters: the size of the pooling window and strides representing
steps of moving the window.

Figure 3.2: A maximum pooling layer with a 2 × 2 window shape. The image
was obtained from [64].
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Another variant is average pooling, that computes the average of the pooling
window. Behind all convolutional and pooling layers, there can be inserted a
Flatten layer, which reshapes the feature map to a vector, or a global pooling
layer. Using the Global Average Pooling, the network takes the average of each
feature map, and the resulting vector is fed directly into the top layer [32]. This
can bring improvements to network classification accuracy over the use of the
Flatten layer.

3.2 Residual Network
Convolutional neural networks adjust the filters during training at different

depths [63]. However, as the depth of the network increases, learning becomes
more difficult [21, 22]. With stacking layers, the susceptibility to vanishing or
exploding gradients used to update parameters increases [22, 14]. The network is
unable to set the parameters correctly, and this prevents convergence [22]. This
problem can be largely avoided by adding normalization layers [22, 16]. To make
the neural networks deeper, there is a solution by using skip connections to jump
over some layers. This is illustrated in Figure 3.3 in which the left part of the
image shows a regular block and the right half of the image displays a residual
block. Using a residual layer, the network learns residual mapping instead of
underlying mapping, as in the case of a regular convolution network [22].

Figure 3.3: Comparison of a regular block (on the left) and a residual block (on
the right). The image was obtained from [64].

While standard convolutional networks reach depths of up to 20 layers, the
residual neural networks can reach several times more. In article [22] there were
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introduced ResNet networks with 152 layers that are 8 times deeper than VGG
networks and still having lower complexity. They have won the first place on the
ILSVRC 2015 classification task [49] and they also presented analysis with 1000
layers. Neural networks of this depth were not trainable before the introduction
of the skip connection inside the model [22].

3.3 Recurrent Neural Network
Although neural networks are a powerful tool, the feedforward variant lacks

state information which, if available, can provide benefits in some situations.
The decision is affected by the previous state, whose history can be represented
by neurons with recurrent connections [38]. This enables dynamic behavior that
is able to respond to a sequence of inputs. The state is time-dependent in many
applications, and since the neural network is a model of the biological brain, the
state is called memory.

Theoretically, recurrent neural networks should be able to model long-term
dependencies. From a practical point of view, there is a deep network structure
due to the length of the input sequence. This involves the problem of vanishing
gradients which has a strong impact on learning convergence. Therefore, new
variants have been explored to help improve the stability of gradients. The first
recurrent network was the Hopfield network [24] but the greatest advancement
was the introduction of an LSTM network [23], that is able to vanquish with the
problems of vanishing gradients.

3.3.1 Long short-term memory
The challenge to learn the long-term dependencies effectively was reached by

introducing the LSTM network [23]. The core of this network is a memory cell
consisting of several gates - i.e. input gate, output gate, and forget gate. The
gates represent the function of a regulator that controls the information flow in the
memory at each step. The state of memory cell changes according to the recent
input events through time. The memory cell structure is shown in Figure 3.4
which is taken from [64].

According to [64] and [23] in the following lines, the input information is con-
catenated with a hidden state. The hidden state is used to pass information,
which is affected by the output gate, to the next state. The output gate deter-
mines when the memory information of the cell is used for other processing. This
gate can pass through all memory information, although it can retain all memory
information only within the memory cell. The forget gate decides what memory
information it keeps and discards. The input gate controls how much cell takes
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Figure 3.4: Memory cell of an LSTM network. The image was obtained from [64].

new information via candidate memory which is modified based on a sigmoidal
function.

Compared to its predecessors, the LSTM network has been proven to be so
robust that it has found applications in many specializations. This technology is
the most utilized in applications with speech recognition [18, 50], grammar learn-
ing [13] or semantic parsing [27]. However, it also turned out that the network is
able to predict the time-series of data points [12]. In computer vision, the network
has applications in object co-segmentation [62], handwritting recognition [19] and
sign language recognition [33].
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Chapter 4

Data

For supervised learning, an input-output pair is required that contains input
data and desired outputs. The provided dataset highly influences the quality of
the model. Individual classes should be well distributed and contain as much
data as possible. The dataset is often balanced because a network is then more
motivated to learn the characteristics of each class. However, if there is no bal-
anced data, augmentation can be performed. Besides, in some cases, different
class sizes may be desired. Such a network is provided with information about
the class, which it can expect more often on the input.

4.1 Scenes definition
The main idea of this thesis is to recognize several television news scenes of the

Czech TV with a possible extension for additional TV channels. These scenes
are divided into nine following classes:

• Graphics: a scene with graphics adjustments, e.g. photo including text
message. Or scene without a real environment and characters, such as
opening titles, TV News transitions, animations, statistics, etc.

• Historic: a scene containing old videos and pictures that are typically
black and white.

• Indoor: a scene inside a building or a hall that are not inside the studio

• Studio: a scene inside a TV news studio with a anchorman

• Mix: a split-screen scene containing two or more different views. For ex-
ample, conversations between speakers at two remote locations.

• Outdoor country: a scene containing a natural environment. There are
no roads and/or buildings in the main field of view.
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• Outdoor human-made: a scene containing human-made structures, such
as buildings, roads, or highways.

• Speech: a scene of a press conference speakers.

• Other: a scene that is not specified. It may include situations in which it
is not possible to classify as another class. For example, a close-up shot of
stocked materials.

Compared to object classification, there are no trivial features that accurately
represent each type of scene. The scene classification classes are very extensive,
for example, in the outdoor country, a lot of greenery is expected, such as forest
nature or hills. Something similar can be found in a city, though, e.g. in parks.
In object classification, the scenes should not be too complex to train an high-
quality network. A complex scene is an image containing too many objects that
can be overlapped, or the image containing visual distortion. This makes the
learning process more difficult when it is harder for the neural network to find
the right characteristics of objects in the scene.

4.2 Created datasets
The model is optimized for a training dataset and evaluated on a validation

dataset after each epoch. One epoch, i.e. training cycle, occurs when all data
from the training set were used exactly once for updating parameters. These
sets usually contain data of similar density. The validation set is used to avoid
overfitting, because such a model is no longer able to generalize. The validation
dataset is also used for tuning the hyperparameters. The last dataset is a testing
set that is independent of the previous datasets. It is used for the final evaluation
of the model performance.

Datasets for neural network optimization are obtained from the Czech television
broadcasts. These data were divided into sequential and isolated images. In the
same way, a test dataset was created from the broadcast of TV Prima. Size of
the isolated images is 180 × 320 × 3 (height × width × channel). The sequential
set for time-distributed neural networks is extended by 25 frames. The frames
of the sequential set were taken every 0.2 seconds apart. The amount of images
(or sequences of images in case of time-distributed models) is summarized in
Table 4.1 for each dataset. In the Figure 4.1, examples of the Czech television
broadcasts dataset are displayed.
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Dataset
Used for: Training Validation Test
CNN 27183 3028 8300
CNN-LSTM 5392 1040 332

Table 4.1: The number of inputs in created datasets.

Figure 4.1: Examples of classes from Czech TV data: Graphics, History, Indoor,
Studio, Mix, Outdoor country, Outdoor human-made, Speech. An extended form
of examples is available in the Appendix A
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Chapter 5

Implementation

Python 3 was chosen as the main programming language for elaboration of this
thesis. The advantage of using this language is high readability of scripts and
the ability to easily download missing libraries via the command line. Outcome
application includes the following basic functionality:

• Obtaining image data from a video track.

• Creating dataset from image data.

• Designing and optimizing the required models.

• Generating the model evaluation:

– A confusion matrix.
– An HTML file with input data and model’s predictions.
– An HTML file that compares attention maps of various models.

A system capable of recognizing scenes from isolated images was created at an
early stage of development. These models were acceptable, but the system was
extended to the processing of time-distributed data to reduce the classification
error. The design of the time-distributed recognition system is shown in Fig-
ure 5.1 that consists of sequential input data, cut detector, neural network, and
classification to the defined scenes.

5.1 Cut Detector
First, it is necessary to extract relevant data from the video track. In the case

of a time-independent model, the data are isolated images. Consecution of these
images was not taken into consideration. Thus, a sequence of images can be used
for scene recognition instead. One of the tasks of this thesis is to figure out how
to divide input data in a way, that it does not contain more than one scene.
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Figure 5.1: Architectural design of a recognition system.

The selected solution is introducing Cut Detector into the system located be-
tween the broadcast video and the neural network. Cut Detector provides input
data from a single scene to the network. According to the paper [35] in the fol-
lowing lines, this algorithm utilizes two phases of cut detection: a scoring phase,
and a decision phase. In the scoring phase, a similarity score is given to each
pair of two consecutive video frames. The score can be calculated by the sum
of absolute differences, or by the difference between the two histograms. In the
decision phase, all previously calculated scores are evaluated, then a video cut is
detected if the score is higher than given threshold.

The reimplementation was realized by Ing. Pavel Campr, Ph.D. and provided
by the supervisor of this thesis, Ing. Marek Hrúz, Ph.D. The script and the
configuration file can be found in a separate folder from the source scripts created
by the author of this thesis.

5.2 Used Neural Network architectures
The Keras library [6] was used for neural network implementation. It is a high-

level API that utilizes TensorFlow [1], CNTK [51], and Theano [58] backends. For
purposes of this thesis, the TensorFlow backend was chosen. The main feature
of this framework is an easy model building and portability of the model be-
tween different platforms [1]. NVIDIA CUDA® Deep Neural Network library [5]
was also used to provide optimization of standard routines such as convolution,
pooling, normalization, and activation layers.

In addition to creating the neural network model fast and easy, the Keras
library also provides optimization algorithms (see Chapter 2.3) and pre-trained
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networks. These networks are stored at the Application module that includes
architectures for image classification with weights trained on ImageNet. The
ImageNet [49] is an image database contains millions of images according to the
WordNet [39] hierarchy. This database aims to illustrate each synonym set [49],
i.e. word phrases or multiple word descriptions. The used pre-trained models for
the elaboration of this thesis are described in the following subsections.

5.2.1 Visual Geometry Group
Simonyan and Zisserman from the University of Oxford have presented one of

the most famous neural network models in the paper [54]. VGG networks have a
very simple structure that consists of 3 × 3 convolutional layers and 2 × 2 max-
pooling layers. Behind all of the convolution layers there are three fully connected
layers - the first two have 4096 neurons and the last layer performs classification
by softmax function to the 1000 classes. The network configurations are shown
in figure 5.2. These configurations differ only in their depth. The most known
are the D and E configurations having 16 and 19 weight layers. The difference in
C and D configuration is only in the size of the receptive field at the end of the
last three convolutional blocks.

Figure 5.2: Configuration of VGG models, convolutional layers are denoted as
conv<receptive field size>-<number of channels>. Captured from [54].
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This network is still capable of impressive performance. It is also utilized in
several applications, such as object detection and segmentation. For example,
the VGG16 becomes the backbone architecture of the Single Shot Detector [34]
and SegNet [3].

5.2.2 Inception networks
In the article [56] an efficient neural network architecture for computer vision,

that enhances the strength of Network in Network [32], was proposed. The archi-
tecture contains inception blocks that are visualized in figure 5.3. These blocks
consist of parallel paths in which the convolution layers and the pooling layers are
sequentially stacked. In each path various sizes of convolutional filters are used
to extract worthy information from the input. 1 × 1 filters are puts in front of the
5 × 5 and 3 × 3 convolutions to reduce complexity of the network. Finally, the
outputs of each path are concatenated to provide the output from the inception
block.

Figure 5.3: Structure of an inception block. Obtained from [64]

There are several variants of inception networks. For example, InceptionV3 [57]
replaces 5 × 5 and 3 × 3 filters by mini-networks. The n × n windows are
factorized to the combination of 1 × n and n × 1 filters. Another variant is
InceptionResNet [55], which introduces residual connection into the network -
see Chapter 3.2. It allows making the network deeper for better recognition
performance.

5.2.3 Mobile networks
The presented architectures above may achieve excellent results, but such mod-

els may also be computationally demanding. The motivation of MobileNets [26]
was to reduce the trainable parameters to maintain the recognition efficiency.
The presented networks are primarily intended for mobile devices and embedded
vision applications.
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The article [26] will be elaborated upon in the following lines. The main idea
behind these networks is the usage of the Depthwise Separable Convolution.
Standard convolution is factorized into a depthwise convolution and a pointwise
convolution. First, the depthwise convolution applies a single filter to each input
channel. Then, the pointwise convolution applies a 1 × 1 convolution to com-
bine the depthwise convolution outputs. This divides the standard convolution
into two layers, the depthwise convolution for filtering and the pointwise convo-
lution for combining. This factorization drastically reduces the model size and
complexity.

5.3 Network performance evaluation
When the training ends, the Keras framework [6] provides a history of loss

function and accuracy in each epoch. These values give information about the
training progress, e.g. whether overfitting has occurred. However, these functions
do not evaluate which classes of the network are classified incorrectly. A confusion
matrix is usually used for this description of the network performance. It is a
chart, which contains the number of correct and incorrect predictions that are
broken down by each class. Each value of this matrix provides information about
how many times the input belonging to the i-th class has been classified into the
j-th class. For each fitting of the model, the confusion matrix is automatically
generated in the output directory.

Since there is a possibility of visualizing the input data for purposes of this
thesis, a tool that generates an HTML file has also been created. The tool expects
a template, that contains user-defined tags. These tags are in <? tag_name ?>
format and the tool replaces the tags with an array, a chart, an image, or a plain
text. The following user-defined tag names are used and subsequently replaced
as described in the list bellow:

• classArray: is replaced by an array with the class names in the corre-
sponding order to the output vector of the model.

• nav_bar: is replaced by a navigation bar that filters the model’s predic-
tions according to the required class.

• summary: is replaced by a summary of predictions according to the used
dataset, i.e. the timeline of predictions or the confusion matrix.

• evaluation_classesOrModels: is replaced by a header of the evaluation
table that contains the class names or the model names.

• evaluation_trueLabel: is replaced by a section of the evaluation table
that is used only if the vector of desired outputs is provided.
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• evaluation_predict: is replaced by a body of the evaluation table, which
contains: the predictions of the model, a class name that the model recog-
nized the input as, and a class name that the input belongs to (only if the
vector of desired outputs is provided).

In the tool, two basic functions for creating the evaluation file are implemented.
The main difference is in how the dataset is passed. The first function expects a
pair of inputs and desired outputs. The evaluation file generated by this function
contains the confusion matrix and the correct classifications for each wrong pre-
diction. The other function is used for the determination of model predictions and
the function expects a directory of images. If the name of each image contains
time in milliseconds, a timeline of predictions is also created and visualized.

The design of the template was inspired by examples from W3Schools [61]. CSS
and JavaScript is used to control the modern appearance of charts and navigation
bar. The evaluation table also contains the input image along with the model
prediction and classification. In the case of a time-distributed model, a gif image
is created. The tool can optionally create an attention map image but only if the
time-distributed model is not provided. The attention map (also called the class
activation map) highlights regions of the image that are important for prediction
of the model. For this visualization, a Grad-CAM [52] technique from the Keras-
vis library [29], that is similar to the backpropagation algorithm, is used. In the
Figure 5.4, an example of the evaluation file containing the confusion matrix for
the validation dataset is shown.

Figure 5.4: Example of an evaluation file.
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Experiments and results

At the beginning of this thesis, architectures capable of recognizing the scenes
were designed. It was required to keep the output from the last convolutional
layer as little as possible. The reason for this decision is to maintain a minimal
number of training parameters. The structure of the created architectures was
in the usage of 3 × 3 convolutional layers and 2 × 2 max-pooling layers, i.e. the
same way as in the VGG networks. Then the experiments were performed by
adding/removing the dropout and changing the following features:

• Parameters of convolutional layers, such as strides, padding and num-
ber of kernels

• Strides, a parameter of pooling layers.

• Number of convolutional layers in the blocks terminated by the pooling
layer.

• Number of dense layers and their neurons behind all of the convolu-
tional blocks.

• Activation functions of the convolutional and dense layers.

• Optimizer type and its parameters.

The initial models were unable to achieve accuracy of correct classification bet-
ter than 0.34 for given training and validation sets. The datasets are unbalanced
to maintain the distribution of individual classes as they appear in a real-world
scenario. The resulting models often miss-classified all of the inputs into one
class. The problem was solved by removing some of the convolutional blocks.

The first improvement was made by keeping only the first two convolutional
blocks followed by fully-connected layers. In the first block a total of four convo-
lutional layers were used (two with 16 kernels and two with 32 kernels). In the

26



CHAPTER 6. EXPERIMENTS AND RESULTS

second block three convolutional layers with 64 kernels were used. Each convo-
lutional block was terminated by the max-pooling layer with strides and dropout
set to 2 and 0.2 respectively. A dense layer with 32 neurons and a dropout of
0.4 were used ahead of the classification layer. This network was able to reach
an accuracy of 0.66 for given validation data. This architecture is summarized in
the Table 6.1 and denoted as configuration A.

Configuration A has been further improved by changing the features mentioned
above. The experiments have shown that classification accuracy can be increased
by stacking convolution blocks which are terminated by the max-pooling layer.
The amounts of convolutional layers were reduced in each block to make the model
capable of learning. The final architecture has been created with a focus on the
small amount of parameters. Each convolutional layer was immediately followed
by a max-pooling layer, forming a convolutional block. A group of four of those
blocks were followed by a fully-connected layer and a classification layer. This
configuration is denoted as configuration B in Table 6.1 and results in accuracy
of 0.72 for given validation data. After finishing this configuration, an analysis
described in the following sections was conducted. This analysis was exploring
the possibility of performance improvements by using an already-trained network.

Configuration
A B
input(180, 320, 3)

conv(16, relu) conv(32, relu)
conv(16, relu) max-pool
conv(32, relu) conv(32, relu)
conv(32, relu) max-pool
max-pool dropout(0.2)
dropout(0.2) conv(64, relu)
conv(64, relu) max-pool
conv(64, relu) conv(64, relu)
conv(64, relu) max-pool
max-pool dropout(0.2)
dropout(0.2)

flatten
dense(32, relu) dense(512, relu)
dropout(0.4) dropout(0.5)

dense(9, softmax)

Table 6.1: Configuration of created architectures, convolutional and dense layers
are denoted as <layer type>(<number of channels>, <activation function>).
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6.1 Analysis of transfer learning
The analysis of before mentioned architectures shows that the neural net-

works are trainable for scene type recognition. The next step led to the usage of
more complex architectures. The following analysis was performed by using the
VGG16 [54] with pre-trained parameters on the ImageNet dataset [49]. As the
input shape of the pre-trained network is not corresponding with the shape of
used dataset, the top layers were replaced by new fully-connected layers. Then
new experiments were performed with changes of parameters of top layers and
optimizers.

Four types of top layers were designed for the experiment. Two types contained
one fully-connected layer with 700 or 1,400 neurons respectively. The other two
types consist of sequence of two fully-connected layers (each with 700 or 1,400
neurons). At the end of the network, a classification layer was placed. The model
with one fully-connected layer of 1,400 neurons brought the best result, with
classification accuracy of 0.81 for given validation data.

Lastly, an analysis was performed before selecting the appropriate architecture
for scene recognition. In this analysis, all parameters of the VGG network were
randomly initialized, instead of using the pre-trained ones. The accuracy of
created models was up to 0.47 for the training and validation set. These results
led to the transfer learning by using pre-trained architectures from the Keras
Applications [6] module.

6.2 Selecting a backbone architecture
Until now analyses, that explored the possibility of creating a scene type recog-

nition network, were performed. It was concluded that using pre-trained networks
brings more benefits in learning. In the following experiments, an appropriate
optimizer was selected along with the network architectures for the classification
task. The classification accuracy was used as a metric for comparison of the
models and optimizers. Finally, the attention maps and classification accuracy
on the test dataset are compared only for relevant models.

6.2.1 Preparing the experiments
Before comparing the different architectures, the optimizer and the top layers

were selected. For purposes of these procedures, the pre-trained VGG16 net-
work with the classification layer stacked behind all convolutional blocks, was
chosen. The hyperparameters were tuned depending on the progress of learning.
This preparation aims to determine a kind of baseline from which the following
experiments will be based. The idea is that if there would be several relevant
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candidates in the selection of the backbone architecture, the parameters from
this section will be fine-tuned.

First, four optimizers were nominated to train the network. During an earlier
analysis, the Stochastic Gradient Descent with momentum proved very potent.
From adaptive learning rate methods, RMSprop, Adam, and AMSGrad were
chosen. The hyperparameters were tuned with respect to the network accuracy in
each epoch. In the Figure 6.1, individual optimizers with the best-found settings
are compared.
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Figure 6.1: Training and validation accuracy during the learning progress for
different optimizers.

According to the Figure 6.1, using RMSprop resulted in the slowest training,
while the fastest training was achieved by using SGD. By comparing all optimizers
on the validation dataset, RMSprop has proven to be the most unstable one.
Another adjustment of optimizer parameters usually causes that learning comes
to a halt and for this reason, RMSprop is inappropriate. Unlike the RMSprop,
the SDG, Adam, and AMSGrad are stable. This stability is useful when selecting
the optimal number of epochs for network training. The model trained by SGD
had the best overall performance. For this reason, SGD was selected for the
following experiments.

Initial analyses have shown that the network had better performance using
one fully-connected layer than with two fully-connected layers before the clas-
sification layer. It also has been confirmed that a model with 1,400 neurons in
this layer reached higher accuracy than a model with 700 neurons. Therefore a
fully-connected layer with a range from 1,024 neurons to 2,816 neurons was used
for analysis of top layers. The analysis of using various amount of neurons in
the fully-connected layer is summarized in the Table 6.2. The evaluation took
into account the final accuracy and a selective average accuracy of the validation
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dataset. This selective average was calculated from epochs for which the accuracy
of the training set was higher than 0.999 of all used models.

Epoch Number of neurons in fully-connected layer
1,024 1,280 1,536 1,792 2,048 2,304 2,560 2,816

20 0.807 0.815 0.811 0.830 0.816 0.818 0.822 0.821
x̄[13,20] 0.818 0.808 0.803 0.822 0.816 0.821 0.819 0.814

Table 6.2: Final accuracy and average accuracy (denoted as x̄) of the last eight
epochs on the validation dataset using a various number of neurons in the fully-
connected layer. The subscript of the average accuracy indicates the boundary
index of epochs from which the average was calculated. The full form of the table
is given in the Appendix B.1.

All of the top layer settings reached higher accuracy than 0.999 on the training
dataset before the 13th epoch. On the validation dataset, the first epoch accuracy
was at least 0.77 for all models. This accuracy was gradually increased until
the final 20th epoch. The whole learning process is shown in Appendix B.1.
According to the Table 6.2, the highest accuracy was reached using the 1,792
neurons in the fully-connected layer. This configuration also reached the highest
average in the last 8 epochs. Therefore, for further experiments, this top layer
with one fully-connected layer in front of the classification layer was selected.
Since a network with only the classification layer behind all convolution blocks
proved to be effective, this top layer configuration was also used for backbone
architecture selection.

6.2.2 Comparing the architectures
Although the VGG16 network has been successfully trained, the architecture

does not contain skip or parallel connections, which could improve the recognition
performance. Therefore, the InceptionV3 and the InceptionResNetV2 architec-
tures were compared to the VGG16. For comparison, the MobileNetV2, which
represents a low-demands network, has also been selected. The Table 6.3 sum-
marizes the performance of all trained networks after the last epoch. The visual-
ization of learning progress is shown in the Figure 6.2 for VGG16, InceptionV3,
and InceptionResNetV2.

The Table 6.3 shows that MobileNetV2 network had the lowest number of
parameters in the configuration without a fully-connected layer (denoted as F:S).
By using this layer, the number of parameters grows from 3 million to 140 million.
The reason is the usage of the Flatten layer, which reshapes a matrix into a vector.
The output from the Flatten layer consist of 76,800 elements that are fully-
connected with the 1,792 neurons. For this reason, the MobileNetV2 network is
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selected for the following analysis to explore the impact of using global pooling
layers.

Validation accuracy Total parameters
top layer top layer

architecture F:S F:FC:S F:S F:FC:S
VGG16 0.815 0.830 14,945,097 60,607,817
InceptionV3 0.824 0.826 22,392,617 139,261,225
InceptionResNetV2 0.848 0.834 54,779,113 142,435,049
MobileNetV2 0.691 0.647 2,949,193 139,901,513

Table 6.3: The final accuracy of compared architectures on the validation dataset
(on the left) and a total number of parameters (on the right). The top layers are
denoted as: F - Flatten layer, FC - fully-connected layer, S - classification layer
(dense layer with softmax function).
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Figure 6.2: Training and validation accuracy during the learning progress for
different architectures. The top layers are denoted as: F - flatten layer, FC -
fully-connected layer, S - classification layer (dense layer with softmax function).

In the Figure 6.2, it can be seen that the InceptionResNetV2 has reached the
highest overall accuracy for both configurations. The F:S configuration (Flatten
layer followed by the classification layer) has shown better performance than the
model including a fully-connected layer in front of the classification one. The
final validation accuracy of InceptionResNetV2 network is 0.848 for the F:S con-
figuration and this architecture is further analyzed along with the MobileNetV2
network.
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6.2.3 Analysis of using Global Pooling layer
The Flatten layer transmits all available information to the top layers, resulting

in a higher number of parameters. The target of the network design is to reduce
the model complexity while maintaining or improving its performance, therefore
global pooling layers can be used instead of the Flatten layer. These layers
compute the average values (Global Average Pooling) or select the max values
(Global Max Pooling) for each feature map of the previous layer. For the analysis
of these layers, InceptionResNetV2 and MobileNetV2 architectures have been
selected.

InceptionResNetV2

The InceptionResNetV2 has shown the best performance in the architectures
comparison. The following Table 6.4 contains the final accuracy for given valida-
tion dataset and the total number of parameters of analyzed networks with top
layers. The learning progress is shown in the Figure 6.3.

Validation accuracy Total parameters
S FC:S S FC:S

Flatten 0.848 0.834 54,779,113 142,435,049
GAP 0.826 0.839 54,350,569 57,107,177
GMP 0.853 0.824 54,350,569 57,107,177

Table 6.4: The final accuracy of used top layers on validation dataset (on the left)
and a total number of parameters (on the right). The comparison is performed
for InceptionResNetV2 network and layers are denoted as: GAP - Global Average
Pooling layer, GMP - Global Max Pooling layer, FC - fully-connected layer, S -
classification layer (dense layer with softmax function).

According to the Figure 6.3, the InceptionResNetV2 including the fully-con-
nected layer before the classification one (the FC:S configuration) has reached the
best performance by using the Global Average Pooling. However, using the Global
Max Pooling layer has lowered the recognition accuracy. From the Table 6.4,
one can observe, that the network with the Flatten layer has 2.5 times more
parameters, than a network using the global pooling layer, in this configuration.
In the case of the network without the fully-connected layer, usage of a Global
Max Pooling layer has shown sightly better than the usage of a Flatten layer,
whereas the worst performance was gained by using a Global Average Pooling
layer. The configurations without a fully-connected layer are further analyzed,
because using this layer before the classification one has always proven to be
defective in analyses of this network.
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Figure 6.3: Training and validation accuracy during the learning progress for
various settings of the top layers of the InceptionResNetV2. The top layers are
denoted as: F - flatten layer, GAP - Global Average Pooling layer, GMP - Global
Max Pooling layer, FC - fully-connected layer, S - classification layer (dense layer
with softmax function).

MobileNetV2

The low demand network (MobileNetV2) did not produce satisfactory results
using the Flatten layer. This leads to the analysis of using a global pooling
layer. In the Figure 6.4, there are shown learning progresses and the Table 6.5
summarizes the final accuracy and the total number of parameters of the analyzed
top layers.

Validation accuracy Total parameters
S FC:S S FC:S

Flatten 0.691 0.645 2,949,193 139,901,513
GAP 0.843 0.838 2,269,513 4,569,673
GMP 0.693 0.315 2,269,513 4,569,673

Table 6.5: The final accuracy of used top layers on validation dataset (on the left)
and a total number of parameters (on the right). The comparison is performed
for MobileNetV2 network and layers are denoted as: GAP - Global Average
Pooling layer, GMP - Global Max Pooling layer, FC - fully-connected layer, S -
classification layer (dense layer with softmax function).

From Table 6.5 and Figure 6.4, one can see, that using a Global Max Pooling
layer does not bring improvement to the recognition performance. While using
the configuration with the fully-connected layer, the learning progress gets stuck
and the model is unable to train further. By using the Global Average Pooling
layer, the recognition accuracy has increased up to 0.843 on the validation data
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Figure 6.4: Training and validation accuracy during the learning progress for
various configurations of the top layers of MobileNetV2. The top layers are
denoted as: F - flatten layer, GAP - Global Average Pooling layer, GMP - Global
Max Pooling layer, FC - fully-connected layer, S - classification layer (dense layer
with softmax function).

and the network was able to fit on the training set. In comparison with other
architectures (see Chapter 6.2.2), the MobileNetV2 (with GAP) final accuracy is
higher compare to the VGG and InceptionV3 networks, and the network perfor-
mance is comparable with the InceptionResNetV2. The MobileNetV2 contains
far-fewer parameters than the InceptionResNetV2 (see Table 6.5 and 6.4). For
these results, the MobileNetV2 with a Global Average Pooling layer is further
analyzed along with the InceptionResNetV2 networks.

6.2.4 Evaluation of selected networks
In this analysis, practical usage of selected networks is simulated. The aim is to

examine the influence of different architectures on the recognition performance.
For purposes of this evaluation, a test dataset, which has a different density than
the training and validation data, is used. The comparison has been first executed
for the InceptionResNetV2 with the global pooling and Flatten layers. Then, the
MobileNetV2 is compared to the most relevant InceptionResNetV2 model.

InceptionResNetV2

The classification accuracy is compared in the Table 6.6 and confusion matrices
are visualized in Tables 6.7, 6.8, and 6.9 for the analyzed models. Attention maps
are shown in Figures 6.5 and 6.6 for correct and incorrect classifications.

From Table 6.6, one can see that a network with a Global Average Pooling layer
has weakest performance compared to the other models. The model’s accuracy of
validation and test data (see Table 6.4 and 6.6) is about 2 % lower than the one of
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GAP GMP Flatten
Accuracy 0.617 0.645 0.665

Table 6.6: Classification accuracy of the InceptionResNetV2 network using a
Global Average Pooling (GAP), a Global Max Pooling (GMP), and a Flatten
layer for given test data.

Predicted label

G
ra

ph
ic

s

H
ist

or
ic

In
do

or

St
ud

io

M
ix

O
ut

do
or

co
un

tr
y

O
.h

um
an

-m
ad

e

O
th

er

Sp
ee

ch

Graphics 0.466 0.003 0.029 0.001 0.023 0.013 0.274 0.191 0.000
Historic 0.347 0.600 0.000 0.000 0.000 0.000 0.053 0.000 0.000
Indoor 0.006 0.012 0.803 0.062 0.000 0.001 0.048 0.060 0.006
Studio 0.000 0.000 0.298 0.290 0.000 0.000 0.382 0.000 0.030
Mix 0.012 0.000 0.367 0.094 0.304 0.000 0.224 0.000 0.000
Outdoor country 0.000 0.000 0.000 0.001 0.000 0.553 0.411 0.033 0.001
Outdoor human-made 0.001 0.001 0.099 0.003 0.003 0.056 0.828 0.010 0.000
Other 0.105 0.076 0.412 0.015 0.000 0.026 0.191 0.161 0.013
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Speech 0.030 0.000 0.685 0.190 0.035 0.000 0.005 0.000 0.055

Table 6.7: Normalized confusion matrix over the test dataset of the Inception-
ResNetV2 network using a Global Average Pooling layer.
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Graphics 0.391 0.003 0.057 0.043 0.030 0.009 0.339 0.129 0.000
Historic 0.000 0.920 0.000 0.000 0.000 0.000 0.080 0.000 0.000
Indoor 0.001 0.004 0.938 0.014 0.007 0.000 0.022 0.000 0.012
Studio 0.003 0.000 0.592 0.265 0.000 0.040 0.100 0.000 0.000
Mix 0.000 0.000 0.433 0.033 0.202 0.000 0.332 0.000 0.000
Outdoor country 0.000 0.000 0.019 0.000 0.000 0.537 0.434 0.000 0.010
Outdoor human-made 0.001 0.001 0.072 0.000 0.003 0.039 0.882 0.003 0.000
Other 0.065 0.094 0.585 0.001 0.000 0.000 0.207 0.040 0.007

Tr
ue

la
be

l

Speech 0.000 0.000 0.765 0.000 0.125 0.000 0.035 0.000 0.075

Table 6.8: Normalized confusion matrix over the test dataset of the Inception-
ResNetV2 network using a Global Max Pooling layer.
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Graphics 0.439 0.001 0.119 0.000 0.004 0.030 0.261 0.146 0.000
Historic 0.280 0.720 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Indoor 0.000 0.000 0.939 0.011 0.000 0.000 0.045 0.000 0.003
Studio 0.000 0.000 0.432 0.327 0.000 0.000 0.237 0.005 0.000
Mix 0.000 0.000 0.504 0.054 0.249 0.000 0.193 0.000 0.000
Outdoor country 0.001 0.000 0.001 0.000 0.000 0.662 0.335 0.000 0.000
Outdoor human-made 0.001 0.003 0.084 0.002 0.000 0.050 0.859 0.001 0.000
Other 0.051 0.026 0.579 0.003 0.000 0.030 0.188 0.124 0.000

Tr
ue

la
be

l

Speech 0.060 0.000 0.905 0.000 0.000 0.000 0.000 0.000 0.035

Table 6.9: Normalized confusion matrix over the test dataset of the Inception-
ResNetV2 network using a Flatten layer.

a network using a Flatten or a Global Max Pooling layer. As mentioned earlier,
datasets are not balanced in order to maintain the distribution of recognized
scenes in the broadcasts. In TV News, the Indoor and both of the Outdoor
scenes appear most often, for which the network (with a Global Average Pooling
layer) more often misclassified than the other models. Contrarily, the model with
a Global Max Pooling layer was less successful in classifying Studio and Mix
scenes.

By comparing the attention maps of correct classifications (Figure 6.5), we can
observe in the case of Mix class that the models with a Global Average Pooling
and a Flatten layer are more focused on recognizing two different scenes than the
model with a Global Max Pooling layer. In an Outdoor human-made scenes, the
model with a Flatten layer is better focused on more informative elements, than
models with a global pooling layer, on both examples. The model with a Global
Max Polling layer is watching boundary parts of the image in the example with a
building, whereas other models are focused on the whole building in the middle
of the image. In the second example, the model with a Global Average Pooling
is watching only for the sidewalk, while the other models are also focusing on the
cars. In Figure 6.6, one can observe that although the models classified wrongly,
their attentions are focused on sensible sections of the input image. For example,
the model with a Global Max Pooling layer is watching for a microphone when
it is predicting to the Speech scene (see Indoor scene). For the Speech scene
example, the model with a Flatten layer is not looking at the character when it
is classifying the input image to the Graphics class.
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(a) Graphics

(b) Indoor

(c) Mix

(d) Outdoor country

(e) Outdoor human-made

(f) Outdoor human-made

Figure 6.5: Visualization of correct classifications of examples from the test
dataset. Input images are in the leftmost column, followed by GradCAM visual-
izations of used models. The comparison is performed for the InceptionResNetV2
network with a Global Average Pooling layer (center-left column), a Global Max
Pooling layer (center-right column), and a Flatten layer (rightmost column).
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(a) True: Graphics; Predicted: Outdoor human-made (all models)

(b) True: Graphics; Predicted: Outdoor human-made (all models)

(c) True: Indoor; Predicted: Studio, Speech, Studio

(d) True: Studio; Predicted: Indoor (all models)

(e) True: Mix; Predicted: Outdoor human-made (all models)

(f) True: Speech; Predicted: Indoor, Mix, Graphics

Figure 6.6: Visualization of incorrect classifications of examples from the test
dataset. Input images are in the leftmost column, followed by GradCAM visual-
izations of used models. The comparison is performed for the InceptionResNetV2
network with a Global Average Pooling layer (center-left column), a Global Max
Pooling layer (center-right column), and a Flatten layer (rightmost column).
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MobileNetV2

The classification accuracy of MobileNetV2 models using various top layers are
shown in Table 6.10 for given test dataset. The confusion matrices are visualized
in Tables 6.11 and 6.12. In the Figures 6.7 and 6.8 attention maps of correct and
incorrect classifications are compared.

Top layers
GAP:S GAP:FC:S

Accuracy 0.667 0.675

Table 6.10: Classification accuracy for given test data of the MobileNetV2 net-
work using different top layers. The top layers are denoted as: GAP - Global
Average Pooling layer, FC - fully-connected layer, S - classification layer (dense
layer with softmax function).

Predicted label

G
ra

ph
ic

s

H
ist

or
ic

In
do

or

St
ud

io

M
ix

O
ut

do
or

co
un

tr
y

O
.h

um
an

-m
ad

e

O
th

er

Sp
ee

ch

Graphics 0.576 0.074 0.094 0.000 0.067 0.023 0.066 0.100 0.000
Historic 0.373 0.627 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Indoor 0.026 0.026 0.893 0.003 0.001 0.001 0.040 0.000 0.009
Studio 0.000 0.007 0.553 0.225 0.000 0.000 0.215 0.000 0.000
Mix 0.012 0.000 0.494 0.000 0.259 0.000 0.235 0.000 0.000
Outdoor country 0.007 0.000 0.000 0.000 0.000 0.774 0.219 0.000 0.000
Outdoor human-made 0.014 0.012 0.074 0.007 0.000 0.049 0.842 0.001 0.000
Other 0.214 0.021 0.300 0.006 0.000 0.033 0.242 0.150 0.034
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Speech 0.000 0.000 0.805 0.000 0.000 0.000 0.000 0.000 0.195

Table 6.11: Normalized confusion matrix over the test dataset of the MobileNetV2
network using a Global Average Pooling layer followed by a classification layer.

By comparing Table 6.10 and 6.6, one can observe, the classification accuracies
of MobileNetV2 models are a little bit higher than in the case of the analyzed
InceptionResNetV2 networks. From confusion matrices (see Table 6.11 and 6.12),
one can see, that the GAP:FC:S configuration (a Global Average Pooling layer
followed by a fully connected and classification layer) of the MobileNetV2 network
classifies to the Mix, Other, and Speech classes better than the model with the
GAP:S configuration. However, the model with GAP:FC:S configuration was
rarely classifying to the Studio class in comparison with the second model (i.e.
GAP:S configuration).
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Graphics 0.531 0.059 0.244 0.000 0.024 0.029 0.109 0.004 0.000
Historic 0.013 0.987 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Indoor 0.025 0.013 0.892 0.000 0.000 0.003 0.027 0.003 0.036
Studio 0.000 0.042 0.863 0.032 0.000 0.000 0.063 0.000 0.000
Mix 0.000 0.000 0.280 0.000 0.628 0.000 0.092 0.000 0.000
Outdoor country 0.001 0.000 0.000 0.000 0.000 0.714 0.269 0.015 0.000
Outdoor human-made 0.004 0.008 0.076 0.000 0.000 0.069 0.830 0.012 0.001
Other 0.211 0.074 0.318 0.000 0.000 0.001 0.120 0.258 0.019
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Speech 0.000 0.000 0.705 0.000 0.000 0.000 0.000 0.000 0.295

Table 6.12: Normalized confusion matrix over the test dataset of the MobileNetV2
network using a Global Average Pooling layer followed by fully-connected and
classification layers.

From attention maps of correct classifications (Figure 6.7), one can observe that
in case of the Graphics class, the model with the GAP:S configuration of top layers
is focused on a photo on the left in the image, while the second model (GAP:FC:S)
is more looking for the boundary parts of the input. In the Indoor example, both
models are correctly more focused on the background parts that provides the main
information about being inside the building. In the example of the Outdoor
human-made scene, the model with GAP:FC:S configuration is observing the
whole left-side building, while the model with GAP:S configuration is looking
for the bottom of the input image. In the case of the incorrect classifications
(Figure 6.8), both models incorrectly classified the example of the Mix scene, in
which the moderator is on the other side of the image than the models saw in
the training data. Both models also misclassified the Outdoor country example
which does not contain any building or vehicle, or the Other scene example that
consists of lights and cables coming from a computer.
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(a) Graphics

(b) Indoor

(c) Mix

(d) Outdoor country

(e) Outdoor human-made

Figure 6.7: Visualization of correct classifications of examples from the test
dataset. Input images are in the left column, followed by a GradCAM visu-
alizations of used models. The comparison is performed for the MobileNetV2
network with different top layers configuration. The top layers are denoted as:
GAP - Global Average Pooling layer, FC - fully-connected layer, S - classification
layer (dense layer with a softmax function).
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(a) True: Studio; Predicted: Indoor (both models)

(b) True: Mix; Predicted: Outdoor human-made, Indoor

(c) True: Outdoor country; Predicted: Outdoor human-made (both models)

(d) True: Outdoor human-made; Predicted: Indoor (both models)

(e) True: Other; Predicted: Outdoor human-made, Indoor

Figure 6.8: Visualization of incorrect classifications of examples from the test
dataset. Input images are in the left column, followed by a GradCAM visualiza-
tions of used models. The comparison is performed for the MobileNetV2 network
with different top layers configuration. The top layers are denoted as: GAP -
Global Average Pooling layer, FC - fully-connected layer, S - classification layer
(dense layer with a softmax function).
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6.3 Time Distributed models
In this section, the possibility of using selected models for processing time-

series data is analyzed. The backbone architecture of the models is a Inception-
ResNetV2 or MobileNetV2 network. The classification layer was removed from
the trained models and replaced by an LSTM layer along with a new classifi-
cation layer. The optimizer is selected individually for InceptionResNetV2 and
MobileNetV2 models. Then an analysis, which explores a possibility of using dif-
ferent numbers of units in the LSTM layer, is performed. Finally, the remaining
models are trained and all models are evaluated for given data.

6.3.1 Optimizer selection and adjustment of an LSTM
layer

First, the optimizers for networks, which are processing time distributed data,
are selected. As mentioned earlier, this selection is performed individually for
InceptionResNetV2 and MobileNetV2 models. The last layer from the model is
replaced by an LSTM layer with 32 units, which is followed by the classification
layer. In Figures 6.9 and 6.10, optimizers for the InceptionResNetV2 and Mo-
bileNetV2 networks are compared. Then the analysis, which explores the usage
of the various number of LSTM units, is made. The learning progress of this
analysis is shown in Figure 6.11 for the MobileNetV2 network.
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Figure 6.9: Training and validation accuracy during the learning progress of the
InceptionResNetV2 network for different optimizers.

According to Figure 6.9, the performance of the InceptionResNetV2 network
using Adam has shown to be inadequate in comparison with other optimizers.
Overall, the best results were obtained using AMSGrad and RMSprop optimizers.
AMSGrad is selected for the InceptionResNetV2 models due to the smoother
learning process for given validation data. In Figure 6.10, one can observe that
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Figure 6.10: Training and validation accuracy during the learning progress of the
MobileNetV2 network for different optimizers.

the learning of MobileNetV2 is the slowest for given validation data by using
RMSprop optimizer. A network using SGD, whose validation accuracy is higher
in early stages of learning, tends to overfit a bit faster in comparison with other
optimizers. The MobileNetV2 network using Adam reached the overall highest
accuracy and for this reason, Adam optimizer is selected for the MobileNetV2
models.
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Figure 6.11: Training and validation accuracy during the learning progress for
various amount of LSTM units.

The various numbers of LSTM units (see Figure 6.11) have proved that with
increasing numbers of units, the model is fitting faster for given training data.
In the case of validation accuracy, a model with 16 units is learning slowly until
the 13th epoch, when its performance becomes similar to the other models. The
model with 64 units, since the 3rd epoch, is maintaining accuracy in the range
between 0.90 and 0.92. A network using 32 units is able to reach higher accuracy
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than the other configurations. Therefore, a configuration with 32 units in an
LSTM layer have been selected.

6.3.2 Comparing the relevant models
A total of five best performing models, in terms of recognition of isolated

images, were modified to process time-distributed data. The last layer from the
model was replaced by an LSTM and a new classification layer. According to
the analysis from the previous section, 32 units of the LSTM layer are used
in all models. In Figure 6.12, learning progress of used networks is compared.
Validation accuracy at the end of the learning of each model is summarized in
Table 6.13.

InceptionResNetV2
Top layers GAP:LSTM:S GMP:LSTM:S F:LSTM:S
Accuracy 0.891 0.924 0.926
Total parameters 54,537,865 54,537,865 60,632,713

MobileNetV2
Top layers GAP:LSTM:S GAP:FC:LSTM:S
Accuracy 0.918 0.947
Total parameters 2,426,345 4,787,433

Table 6.13: The final accuracy of used models on the validation dataset (on the
left) and a total number of parameters (on the right). The top layers are denoted
as: GAP - Global Average Pooling layer, GMP - Global Max Pooling layer, F -
Flatten layer, FC - fully-connected layer, LSTM - Long short-term memory layer,
S - classification layer (dense layer with softmax function).
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Figure 6.12: Training and validation accuracy during the learning progress for
different time-distributed networks.
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According to Figure 6.12, the InceptionResNetV2 network with a Global Av-
erage Pooling layer has the worst performance during the learning process for
given validation data. The other configurations of the inception network have a
similar performance as the MobileNetV2 network with a Global Average Pool-
ing followed by an LSTM and the classification layer, which contains a total of
2,426,345 parameters. The MobileNetV2 network using a fully-connected layer
in front of the LSTM layer reached the highest overall accuracy in comparison
with other models. The final accuracy of this model is 0.947 for given validation
data.

6.3.3 Evaluation of the trained models
Similarly to the selection of the backbone architecture, the time-distributed

models are evaluated for given test data. The total number of images is the same
for both datasets and the sets differ only in the size of the sequence of the input
images. The evaluated time-distributed networks expect a series of 25 images
on the input. In Table 6.19, models have been compared for given test data.
Confusion matrix is available in Tables 6.14, 6.15, 6.16 for the InceptionResNetV2
networks, and in Tables 6.17 and 6.18 for the MobileNetV2 networks.
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Graphics 0.536 0.000 0.000 0.071 0.179 0.000 0.143 0.071 0.000
Historic 0.333 0.667 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Indoor 0.024 0.012 0.659 0.098 0.037 0.000 0.049 0.012 0.110
Studio 0.000 0.000 0.083 0.417 0.083 0.042 0.292 0.000 0.083
Mix 0.000 0.000 0.000 0.118 0.882 0.000 0.000 0.000 0.000
Outdoor country 0.069 0.000 0.000 0.069 0.034 0.655 0.103 0.000 0.069
Outdoor human-made 0.037 0.009 0.028 0.092 0.064 0.055 0.697 0.018 0.000
Other 0.219 0.062 0.281 0.156 0.031 0.031 0.062 0.125 0.031
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Speech 0.125 0.000 0.125 0.250 0.125 0.000 0.000 0.000 0.375

Table 6.14: Normalized confusion matrix over the test dataset of the Inception-
ResNetV2 network using a Global Average Pooling layer.
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Historic 0.333 0.333 0.000 0.000 0.000 0.000 0.333 0.000 0.000
Indoor 0.012 0.000 0.890 0.012 0.037 0.000 0.024 0.000 0.024
Studio 0.000 0.000 0.375 0.458 0.000 0.042 0.125 0.000 0.000
Mix 0.000 0.000 0.118 0.059 0.765 0.000 0.059 0.000 0.000
Outdoor country 0.000 0.000 0.034 0.000 0.000 0.517 0.448 0.000 0.000
Outdoor human-made 0.018 0.009 0.037 0.000 0.046 0.046 0.844 0.000 0.000
Other 0.250 0.062 0.312 0.031 0.000 0.000 0.219 0.031 0.094
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Speech 0.000 0.000 0.375 0.000 0.250 0.000 0.000 0.000 0.375

Table 6.15: Normalized confusion matrix over the test dataset of the Inception-
ResNetV2 network using a Global Max Pooling layer.
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Indoor 0.000 0.012 0.902 0.024 0.012 0.012 0.012 0.024 0.000
Studio 0.000 0.000 0.208 0.625 0.000 0.042 0.125 0.000 0.000
Mix 0.000 0.000 0.471 0.059 0.471 0.000 0.000 0.000 0.000
Outdoor country 0.000 0.000 0.000 0.000 0.000 0.586 0.379 0.034 0.000
Outdoor human-made 0.018 0.000 0.046 0.000 0.009 0.046 0.862 0.018 0.000
Other 0.125 0.000 0.406 0.000 0.000 0.031 0.156 0.281 0.000
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Speech 0.000 0.000 0.875 0.000 0.000 0.000 0.125 0.000 0.000

Table 6.16: Normalized confusion matrix over the test dataset of the Inception-
ResNetV2 network using a Flatten layer.
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Graphics 0.750 0.071 0.000 0.107 0.071 0.000 0.000 0.000 0.000
Historic 0.333 0.667 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Indoor 0.061 0.012 0.646 0.037 0.085 0.012 0.049 0.000 0.098
Studio 0.000 0.042 0.208 0.542 0.000 0.000 0.208 0.000 0.000
Mix 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000
Outdoor country 0.069 0.000 0.000 0.034 0.000 0.724 0.172 0.000 0.000
Outdoor human-made 0.055 0.018 0.009 0.064 0.073 0.028 0.743 0.000 0.009
Other 0.375 0.062 0.156 0.125 0.000 0.000 0.156 0.062 0.062
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Speech 0.000 0.000 0.125 0.750 0.125 0.000 0.000 0.000 0.000

Table 6.17: Normalized confusion matrix over the test dataset of the MobileNetV2
network using a Global Average Pooling layer followed by LSTM and classification
layers.
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Graphics 0.714 0.071 0.071 0.000 0.000 0.000 0.036 0.107 0.000
Historic 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Indoor 0.012 0.037 0.817 0.012 0.000 0.000 0.037 0.012 0.073
Studio 0.000 0.083 0.750 0.042 0.083 0.000 0.042 0.000 0.000
Mix 0.000 0.000 0.294 0.000 0.588 0.000 0.118 0.000 0.000
Outdoor country 0.034 0.000 0.000 0.000 0.000 0.448 0.483 0.034 0.000
Outdoor human-made 0.000 0.009 0.046 0.000 0.000 0.028 0.890 0.028 0.000
Other 0.219 0.094 0.188 0.000 0.000 0.000 0.125 0.375 0.000
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Speech 0.000 0.000 0.750 0.000 0.000 0.000 0.000 0.000 0.250

Table 6.18: Normalized confusion matrix over the test dataset of the MobileNetV2
network using a Global Average Pooling layer followed by fully-connected, LSTM,
and classification layers.
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InceptionResNetV2
Top layers GAP:LSTM:S GMP:LSTM:S F:LSTM:S
Accuracy 0.596 0.675 0.687

MobileNetV2
Top layers GAP:LSTM:S GAP:FC:LSTM:S
Accuracy 0.635 0.667

Table 6.19: Classification accuracy for given test data of the InceptionResNetV2
and MobileNetV2 networks using different top layers. The top layers are denoted
as: GAP - Global Average Pooling layer, GMP - Global Max Pooling layer, F -
Flatten layer, FC - fully-connected layer, LSTM - Long short-term memory layer,
S - classification layer (dense layer with softmax function).

According to Table 6.19, the InceptionResNetV2 networks using either a Flat-
ten or a Global Max Pooling layer reached the highest accuracy in comparison
with other models. The MobileNetV2 and InceptionResNetV2 networks using
Global Average Pooling layers decreased their performance by processing sequence
data (see Tables 6.6, 6.10), while an LSTM layer has shown improvements for the
InceptionResNetV2 networks using both a Global Max Pooling or Flatten layer.
The InceptionResNetV2 network using a Global Average Pooling layer strives to
classify the input into all classes (see Table 6.14) but its classification accuracy
is the lowest in comparison with other models. Both of the MobileNetV2 net-
works, which are processing time-series data, decreased theirs performance for
frequent scenes (i.e. Indoor and both of the Outdoor classes) in comparison with
their equivalent models, which are processing isolated images. The MobileNetV2
network without the fully-connected layer in front of the LSTM layer and the In-
ceptionResNetV2 networks using a Global Max Pooling and Flatten layer sightly
improved their successful classification rate for Graphics, Studio, and Mix classes
(see Tables 6.17, 6.15, 6.16, and Tables 6.11, 6.8, 6.9).

6.4 Final evaluation and discussion
The application of the LSTM layer has shown improvements in the recogni-

tion of less frequent classes for given test data. However, the time-distributed
models deteriorated the performance in recognition of more frequent classes and
overall accuracy decreased for all models using the Global Average Pooling layer.
Therefore, all of the selected single-image processing models are compared with
their counterpart sequence-processing models, on the validation dataset, which
was used in the training of the time-distributed networks. This comparison is
shown in the following Table 6.20.
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InceptionResNetV2
Top layers GAP:S GMP:S F:S
Accuracy 0.926 0.930 0.934
Total parameters 54,350,569 54,350,569 54,779,113
Top layers GAP:LSTM:S GMP:LSTM:S F:LSTM:S
Accuracy 0.891 0.924 0.926
Total parameters 54,537,865 54,537,865 60,632,713

MobileNetV2
Top layers GAP:S GAP:FC:S
Accuracy 0.943 0.942
Total parameters 2,269,513 4,569,673
Top layers GAP:LSTM:S GAP:FC:LSTM:S
Accuracy 0.918 0.947
Total parameters 2,426,345 4,787,433

Table 6.20: The accuracy of used models for given validation dataset and a total
number of parameters. The top layers are denoted as: GAP - Global Average
Pooling layer, GMP - Global Max Pooling layer, F - Flatten layer, FC - fully-
connected layer, LSTM - Long short-term memory layer, S - classification layer
(dense layer with softmax function).

From the obtained results (see Table 6.20), one can conclude, that a network,
which is processing input data per image, brings higher overall recognition ac-
curacy than the models, which are using an LSTM layer to process sequences
of images. An LSTM layer improved the performance only in the case of the
MobileNetV2 network including a fully-connected layer. One can also deduce,
that the MobileNetV2 networks proved to be better (except in one case) than the
complex InceptionResNetV2 networks. Due to the computational demands, the
MobileNetV2 network is also more appropriate than the InceptionResNetV2 net-
work for practical use, e.g. online processing. Therefore, the MobileNetV2 with
a Global Average Pooling layer followed by the classification layer is the best
configuration for processing of the isolated images. Eventually, the MobileNetV2
with a Global Average Pooling layer followed by a fully-connected layer, an LSTM
layer and classification layer is the best configuration for processing sequences of
images.
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Chapter 7

Conclusion

This thesis deals with the analysis and creation of a neural network, which is
capable of recognizing scenes of television news of Czech TV. The scene types
are divided into nine categories, e.g. Graphics, Indoor, Studio. A tool, which
generates an HTML file for visualizing attention maps and model’s predictions for
each input image, has also been created for evaluation of the network performance.
The system utilizing Cut Detector was designed for practical application. The Cut
Detector provides data of one continuous scene to a recognizer, which classifies a
sequence of images into one class.

The obtained results reveal an impressive performance of a complex Inception-
ResNetV2 architecture, compared to the other models, during the learning phase
for given training and validation data. In the testing phase, models using this
architecture misclassified more often than models using a MobileNetV2 network
as a backbone architecture, which is less computationally demanding. This sug-
gests that models using the InceptionResNetV2 architecture have been overfitted
on given training data. Analyses also show that networks, which are not pro-
cessing sequences of images, have better recognition accuracy in most cases than
time-distributed networks using an LSTM layer. Therefore, a network, which is
not processing time-series data, should be applied along with a filter suppressing
misclassifications of the network. For example, the sequence of images provided
by the Cut Detector could be classified into the class, for which the neural net-
work classified most of the individual input images. Since the accuracy classifying
into 9 classes was around 94 %, which is a very promising result that allows the
possibility for practical usage.

In some cases, the correct classification of the input image cannot be determined
into defined classes. This happens when it is not clear whether, for example, a
scene is recorded inside or outside the building. Even though the sports news is
separated from television news on the channel of Czech TV, sports broadcasts
sometimes appear in this show. Therefore, the Sport class could be included for
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purposes of TV News scenes recognition along with other classes motivated by
real-world applications, e.g. government session recordings. In the future works,
the recognized scenes could be further analyzed and processed, e.g. the sports
broadcasts can be divided into various sport categories, or the speech could be
automatically subtitled for Speech and Studio scenes.
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Appendix A

Image examples

A.1 Examples from the Czech Television News

Figure A.1: Examples for a Graphics class
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Figure A.2: Examples for Historic class

Figure A.3: Examples for Indoor class
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Figure A.4: Examples for Studio class

Figure A.5: Examples for Mix class
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Figure A.6: Examples for Outdoor country class

Figure A.7: Examples for Outdoor human-made class
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Figure A.8: Examples for Other class

Figure A.9: Examples for Speech class
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A.2 Examples from television Prima

Figure A.10: Examples for Graphics class

Figure A.11: Examples for Historic class
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Figure A.12: Examples for Indoor class

Figure A.13: Examples for Studio class
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Figure A.14: Examples for Mix class

Figure A.15: Examples for Outdoor country class
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Figure A.16: Examples for Outdoor human-made class

Figure A.17: Examples for Other class
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Figure A.18: Examples for Speech class
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Appendix B

Trained models

B.1 Various number of neurons in the fully-con-
nected layer

Epochs Number of neurons in the fully-connected layer
1,024 1,280 1,536 1,792 2,048 2,304 2,560 2,816

1 0.787 0.778 0.793 0.802 0.789 0.809 0.776 0.816
2 0.798 0.816 0.796 0.802 0.817 0.805 0.787 0.803
3 0.801 0.793 0.811 0.826 0.813 0.811 0.815 0.793
4 0.790 0.804 0.808 0.836 0.798 0.812 0.803 0.782
5 0.801 0.802 0.789 0.816 0.804 0.809 0.792 0.809
6 0.809 0.791 0.791 0.800 0.793 0.817 0.800 0.817
7 0.814 0.807 0.784 0.814 0.802 0.819 0.801 0.767
8 0.796 0.799 0.787 0.790 0.763 0.817 0.795 0.782
9 0.830 0.796 0.804 0.822 0.814 0.801 0.805 0.804
10 0.818 0.792 0.803 0.791 0.800 0.800 0.799 0.779
11 0.821 0.808 0.810 0.799 0.813 0.824 0.800 0.803
12 0.827 0.817 0.809 0.819 0.813 0.813 0.817 0.794
13 0.809 0.809 0.807 0.820 0.798 0.821 0.818 0.809
14 0.818 0.805 0.807 0.821 0.820 0.820 0.817 0.809
15 0.821 0.807 0.804 0.824 0.822 0.820 0.816 0.813
16 0.820 0.812 0.804 0.824 0.822 0.833 0.819 0.807
17 0.820 0.801 0.782 0.816 0.817 0.821 0.818 0.818
18 0.826 0.812 0.808 0.815 0.821 0.827 0.823 0.819
19 0.819 0.805 0.805 0.829 0.814 0.810 0.821 0.816
20 0.807 0.815 0.811 0.830 0.816 0.818 0.822 0.821
x̄[13,20] 0.818 0.808 0.803 0.822 0.816 0.821 0.819 0.814

Table B.1: Accuracies of individual epochs and average accuracy (denoted as x̄)
of the last eight epochs for given validation dataset using various amounts of
neurons in the fully-connected layer. The subscript indicates the boundary index
of epochs from which the average was calculated.
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B.2 Backbone architectures

Predicted label
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Graphics 0.802 0.010 0.073 0.000 0.000 0.021 0.073 0.021 0.000
Historic 0.075 0.509 0.000 0.000 0.000 0.321 0.075 0.019 0.000
Indoor 0.003 0.003 0.917 0.000 0.001 0.002 0.058 0.012 0.004
Studio 0.000 0.000 0.009 0.982 0.000 0.000 0.009 0.000 0.000
Mix 0.212 0.000 0.019 0.000 0.769 0.000 0.000 0.000 0.000
Outdoor country 0.000 0.007 0.060 0.000 0.000 0.497 0.423 0.013 0.000
Outdoor human-made 0.008 0.016 0.172 0.000 0.000 0.046 0.753 0.004 0.000
Other 0.032 0.016 0.397 0.000 0.000 0.095 0.365 0.095 0.000

Tr
ue

la
be

l

Speech 0.000 0.000 0.591 0.000 0.000 0.000 0.000 0.000 0.409

Table B.2: Normalized confusion matrix over the validation dataset of the VGG16
network using a Flatten layer followed by a classification one.
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Graphics 0.771 0.010 0.062 0.000 0.000 0.042 0.104 0.010 0.000
Historic 0.340 0.245 0.019 0.000 0.000 0.132 0.264 0.000 0.000
Indoor 0.003 0.004 0.934 0.001 0.001 0.002 0.046 0.007 0.003
Studio 0.000 0.000 0.005 0.991 0.005 0.000 0.000 0.000 0.000
Mix 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000
Outdoor country 0.000 0.000 0.040 0.000 0.000 0.517 0.443 0.000 0.000
Outdoor human-made 0.006 0.002 0.165 0.000 0.000 0.042 0.780 0.002 0.003
Other 0.032 0.000 0.556 0.000 0.000 0.063 0.317 0.016 0.016

Tr
ue

la
be

l

Speech 0.045 0.000 0.591 0.000 0.000 0.000 0.000 0.000 0.364

Table B.3: Normalized confusion matrix over the validation dataset of the VGG16
network using a Flatten layer followed by fully-connected and classification layers.

71



APPENDIX B. TRAINED MODELS

Predicted label
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Graphics 0.740 0.010 0.062 0.000 0.000 0.073 0.104 0.010 0.000
Historic 0.264 0.189 0.019 0.000 0.000 0.151 0.302 0.075 0.000
Indoor 0.004 0.004 0.932 0.000 0.000 0.005 0.047 0.008 0.001
Studio 0.000 0.000 0.005 0.991 0.000 0.000 0.005 0.000 0.000
Mix 0.000 0.000 0.019 0.019 0.962 0.000 0.000 0.000 0.000
Outdoor country 0.000 0.000 0.027 0.000 0.000 0.409 0.550 0.013 0.000
Outdoor human-made 0.001 0.000 0.172 0.000 0.000 0.037 0.788 0.000 0.002
Other 0.016 0.016 0.460 0.000 0.000 0.048 0.444 0.016 0.000

Tr
ue

la
be

l

Speech 0.000 0.045 0.545 0.000 0.000 0.000 0.000 0.000 0.409

Table B.4: Normalized confusion matrix over the validation dataset of the Incep-
tionV3 network using a Flatten layer followed by a classification one.
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Graphics 0.729 0.010 0.052 0.000 0.000 0.052 0.125 0.031 0.000
Historic 0.340 0.377 0.000 0.000 0.000 0.151 0.094 0.038 0.000
Indoor 0.003 0.003 0.898 0.000 0.001 0.011 0.073 0.006 0.006
Studio 0.000 0.000 0.009 0.991 0.000 0.000 0.000 0.000 0.000
Mix 0.000 0.000 0.019 0.000 0.981 0.000 0.000 0.000 0.000
Outdoor country 0.000 0.007 0.067 0.000 0.000 0.510 0.416 0.000 0.000
Outdoor human-made 0.006 0.001 0.130 0.000 0.000 0.039 0.814 0.007 0.002
Other 0.016 0.016 0.397 0.000 0.000 0.079 0.413 0.079 0.000

Tr
ue

la
be

l

Speech 0.000 0.045 0.545 0.000 0.000 0.000 0.000 0.000 0.409

Table B.5: Normalized confusion matrix over the validation dataset of the Incep-
tionV3 network using a Flatten layer followed by fully-connected and classification
layers.
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Predicted label
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Graphics 0.760 0.010 0.062 0.000 0.010 0.073 0.073 0.010 0.000
Historic 0.094 0.415 0.019 0.000 0.000 0.132 0.075 0.264 0.000
Indoor 0.001 0.002 0.910 0.000 0.000 0.006 0.071 0.007 0.003
Studio 0.000 0.000 0.000 0.995 0.005 0.000 0.000 0.000 0.000
Mix 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000
Outdoor country 0.000 0.000 0.034 0.000 0.000 0.691 0.275 0.000 0.000
Outdoor human-made 0.000 0.004 0.092 0.000 0.000 0.055 0.835 0.012 0.002
Other 0.032 0.000 0.381 0.000 0.000 0.048 0.460 0.063 0.016

Tr
ue

la
be

l

Speech 0.000 0.045 0.591 0.000 0.000 0.000 0.000 0.000 0.364

Table B.6: Normalized confusion matrix over the validation dataset of the Incep-
tionResNetV2 network using a Flatten layer followed by a classification one.
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Graphics 0.656 0.010 0.042 0.000 0.000 0.083 0.188 0.021 0.000
Historic 0.208 0.377 0.000 0.000 0.000 0.151 0.113 0.151 0.000
Indoor 0.002 0.003 0.908 0.000 0.001 0.011 0.069 0.001 0.006
Studio 0.000 0.000 0.000 0.991 0.005 0.000 0.005 0.000 0.000
Mix 0.000 0.000 0.019 0.000 0.981 0.000 0.000 0.000 0.000
Outdoor country 0.000 0.000 0.020 0.000 0.000 0.678 0.302 0.000 0.000
Outdoor human-made 0.000 0.001 0.113 0.000 0.000 0.059 0.808 0.016 0.003
Other 0.032 0.000 0.317 0.000 0.000 0.079 0.492 0.079 0.000

Tr
ue

la
be

l

Speech 0.045 0.045 0.545 0.000 0.000 0.000 0.045 0.000 0.318

Table B.7: Normalized confusion matrix over the validation dataset of the In-
ceptionResNetV2 network using a Flatten layer followed by fully-connected and
classification layers.
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Predicted label
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Graphics 0.781 0.010 0.021 0.010 0.031 0.052 0.083 0.010 0.000
Historic 0.038 0.623 0.000 0.019 0.000 0.132 0.038 0.151 0.000
Indoor 0.004 0.003 0.850 0.007 0.000 0.011 0.085 0.023 0.018
Studio 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000
Mix 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000
Outdoor country 0.000 0.000 0.020 0.000 0.000 0.685 0.282 0.013 0.000
Outdoor human-made 0.000 0.000 0.088 0.002 0.000 0.058 0.834 0.014 0.004
Other 0.000 0.016 0.254 0.016 0.000 0.111 0.413 0.143 0.048

Tr
ue

la
be

l

Speech 0.000 0.045 0.455 0.045 0.000 0.000 0.045 0.000 0.409

Table B.8: Normalized confusion matrix over the validation dataset of the Incep-
tionResNetV2 network using a Global Average Pooling layer followed by a the
classification one.
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Graphics 0.781 0.010 0.021 0.000 0.021 0.073 0.073 0.021 0.000
Historic 0.075 0.642 0.000 0.000 0.000 0.151 0.019 0.113 0.000
Indoor 0.001 0.003 0.884 0.001 0.000 0.001 0.075 0.018 0.018
Studio 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000
Mix 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000
Outdoor country 0.000 0.000 0.027 0.000 0.000 0.658 0.295 0.020 0.000
Outdoor human-made 0.000 0.002 0.099 0.000 0.000 0.051 0.824 0.021 0.003
Other 0.000 0.016 0.270 0.000 0.000 0.032 0.429 0.175 0.079

Tr
ue

la
be

l

Speech 0.000 0.045 0.545 0.000 0.000 0.000 0.000 0.000 0.409

Table B.9: Normalized confusion matrix over the validation dataset of the Incep-
tionResNetV2 network using a Global Average Pooling layer followed by fully-
connected and classification layers.
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Predicted label
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Graphics 0.719 0.000 0.031 0.000 0.031 0.094 0.104 0.021 0.000
Historic 0.151 0.585 0.000 0.000 0.000 0.075 0.075 0.113 0.000
Indoor 0.001 0.002 0.910 0.000 0.000 0.000 0.075 0.008 0.004
Studio 0.000 0.000 0.005 0.991 0.000 0.000 0.005 0.000 0.000
Mix 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000
Outdoor country 0.000 0.000 0.020 0.000 0.000 0.664 0.302 0.013 0.000
Outdoor human-made 0.000 0.001 0.100 0.000 0.000 0.030 0.853 0.012 0.004
Other 0.032 0.016 0.365 0.000 0.000 0.079 0.381 0.079 0.048

Tr
ue

la
be

l

Speech 0.045 0.045 0.682 0.000 0.000 0.000 0.000 0.000 0.227

Table B.10: Normalized confusion matrix over the validation dataset of the In-
ceptionResNetV2 network using a Global Max Pooling layer followed by a clas-
sification one.
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Graphics 0.740 0.010 0.052 0.000 0.000 0.094 0.062 0.042 0.000
Historic 0.075 0.491 0.000 0.000 0.000 0.038 0.189 0.208 0.000
Indoor 0.004 0.003 0.872 0.001 0.000 0.004 0.084 0.017 0.016
Studio 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000
Mix 0.000 0.000 0.000 0.019 0.981 0.000 0.000 0.000 0.000
Outdoor country 0.000 0.000 0.013 0.000 0.000 0.671 0.315 0.000 0.000
Outdoor human-made 0.000 0.001 0.102 0.000 0.000 0.064 0.817 0.014 0.002
Other 0.032 0.016 0.286 0.000 0.000 0.063 0.556 0.048 0.000

Tr
ue

la
be

l

Speech 0.000 0.045 0.591 0.000 0.000 0.000 0.000 0.000 0.364

Table B.11: Normalized confusion matrix over the validation dataset of the In-
ceptionResNetV2 network using a Global Max Pooling layer followed by fully-
connected and classification layers.
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Predicted label
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Graphics 0.625 0.000 0.083 0.000 0.010 0.125 0.156 0.000 0.000
Historic 0.000 0.057 0.075 0.000 0.000 0.132 0.736 0.000 0.000
Indoor 0.006 0.001 0.776 0.001 0.001 0.016 0.190 0.004 0.004
Studio 0.000 0.000 0.005 0.995 0.000 0.000 0.000 0.000 0.000
Mix 0.000 0.000 0.019 0.000 0.981 0.000 0.000 0.000 0.000
Outdoor country 0.047 0.007 0.195 0.000 0.000 0.342 0.403 0.007 0.000
Outdoor human-made 0.003 0.001 0.265 0.000 0.000 0.098 0.630 0.002 0.001
Other 0.000 0.000 0.524 0.000 0.000 0.063 0.413 0.000 0.000

Tr
ue

la
be

l

Speech 0.000 0.000 0.727 0.000 0.000 0.000 0.000 0.000 0.273

Table B.12: Normalized confusion matrix over the validation dataset of the Mo-
bileNetV2 network using a Flatten layer followed by a classification one.
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Graphics 0.594 0.000 0.156 0.000 0.000 0.042 0.167 0.042 0.000
Historic 0.000 0.000 0.302 0.000 0.000 0.019 0.679 0.000 0.000
Indoor 0.004 0.002 0.775 0.000 0.000 0.011 0.198 0.002 0.007
Studio 0.000 0.000 0.023 0.964 0.000 0.000 0.009 0.000 0.005
Mix 0.000 0.000 0.000 0.000 0.981 0.000 0.000 0.000 0.019
Outdoor country 0.060 0.000 0.228 0.000 0.000 0.275 0.396 0.034 0.007
Outdoor human-made 0.009 0.006 0.392 0.001 0.001 0.068 0.512 0.007 0.002
Other 0.000 0.000 0.603 0.016 0.000 0.016 0.317 0.000 0.048
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Speech 0.000 0.000 0.500 0.000 0.000 0.000 0.136 0.000 0.364

Table B.13: Normalized confusion matrix over the validation dataset of the Mo-
bileNetV2 network using a Flatten layer followed by fully-connected and classifi-
cation layers.
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Graphics 0.833 0.010 0.031 0.000 0.000 0.031 0.042 0.052 0.000
Historic 0.302 0.547 0.000 0.000 0.000 0.019 0.075 0.057 0.000
Indoor 0.001 0.006 0.903 0.001 0.000 0.006 0.056 0.020 0.006
Studio 0.000 0.000 0.005 0.995 0.000 0.000 0.000 0.000 0.000
Mix 0.038 0.000 0.000 0.000 0.962 0.000 0.000 0.000 0.000
Outdoor country 0.000 0.000 0.020 0.000 0.000 0.718 0.262 0.000 0.000
Outdoor human-made 0.001 0.002 0.128 0.000 0.000 0.055 0.806 0.007 0.001
Other 0.048 0.000 0.317 0.000 0.000 0.063 0.460 0.111 0.000
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Speech 0.000 0.000 0.500 0.000 0.000 0.000 0.000 0.000 0.500

Table B.14: Normalized confusion matrix over the validation dataset of the Mo-
bileNetV2 network using a Global Average Pooling layer followed by a classifica-
tion one.
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Graphics 0.865 0.000 0.000 0.000 0.000 0.042 0.052 0.042 0.000
Historic 0.000 0.679 0.000 0.000 0.000 0.189 0.038 0.094 0.000
Indoor 0.001 0.007 0.907 0.000 0.000 0.006 0.045 0.020 0.013
Studio 0.000 0.000 0.005 0.995 0.000 0.000 0.000 0.000 0.000
Mix 0.000 0.000 0.000 0.000 0.981 0.000 0.000 0.000 0.019
Outdoor country 0.000 0.000 0.034 0.000 0.000 0.678 0.282 0.007 0.000
Outdoor human-made 0.002 0.004 0.115 0.000 0.000 0.069 0.772 0.034 0.003
Other 0.000 0.048 0.254 0.000 0.000 0.063 0.429 0.206 0.000

Tr
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Speech 0.045 0.045 0.364 0.000 0.000 0.000 0.045 0.045 0.455

Table B.15: Normalized confusion matrix over the validation dataset of the
MobileNetV2 network using a Global Average Pooling layer followed by fully-
connected and classification layers.
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Graphics 0.625 0.021 0.219 0.000 0.010 0.083 0.021 0.021 0.000
Historic 0.340 0.075 0.151 0.000 0.000 0.038 0.340 0.057 0.000
Indoor 0.011 0.023 0.910 0.001 0.000 0.008 0.037 0.009 0.001
Studio 0.000 0.000 0.009 0.991 0.000 0.000 0.000 0.000 0.000
Mix 0.019 0.000 0.019 0.000 0.962 0.000 0.000 0.000 0.000
Outdoor country 0.007 0.000 0.396 0.000 0.000 0.342 0.228 0.027 0.000
Outdoor human-made 0.010 0.014 0.367 0.000 0.000 0.152 0.431 0.023 0.002
Other 0.032 0.000 0.762 0.000 0.000 0.079 0.032 0.063 0.032
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Speech 0.000 0.000 0.682 0.000 0.000 0.000 0.000 0.000 0.318

Table B.16: Normalized confusion matrix over the validation dataset of the Mo-
bileNetV2 network using a Global Max Pooling layer followed by a classification
one.
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Graphics 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000
Historic 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000
Indoor 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000
Studio 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000
Mix 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000
Outdoor country 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000
Outdoor human-made 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000
Other 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000

Tr
ue
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Speech 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000

Table B.17: Normalized confusion matrix over the validation dataset of the Mo-
bileNetV2 network using a Global Max Pooling layer followed by fully-connected
and classification layers.

B.3 Time-distributed networks
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Graphics 0.891 0.008 0.050 0.008 0.008 0.008 0.017 0.008 0.000
Historic 0.000 0.714 0.000 0.000 0.286 0.000 0.000 0.000 0.000
Indoor 0.013 0.017 0.870 0.021 0.013 0.000 0.034 0.017 0.017
Studio 0.000 0.000 0.000 0.993 0.007 0.000 0.000 0.000 0.000
Mix 0.028 0.000 0.000 0.000 0.972 0.000 0.000 0.000 0.000
Outdoor country 0.000 0.000 0.045 0.000 0.000 0.773 0.182 0.000 0.000
Outdoor human-made 0.016 0.000 0.036 0.000 0.000 0.056 0.880 0.004 0.008
Other 0.111 0.111 0.222 0.000 0.000 0.000 0.111 0.222 0.222
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Speech 0.000 0.000 0.111 0.000 0.000 0.000 0.000 0.000 0.889

Table B.18: Normalized confusion matrix over the validation dataset of the Incep-
tionResNetV2 network using a Flatten layer followed by LSTM and classification
layers.
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Graphics 0.884 0.017 0.017 0.017 0.050 0.000 0.008 0.000 0.008
Historic 0.286 0.714 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Indoor 0.031 0.000 0.774 0.071 0.022 0.000 0.058 0.004 0.040
Studio 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000
Mix 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000
Outdoor country 0.000 0.000 0.000 0.000 0.000 0.909 0.000 0.000 0.091
Outdoor human-made 0.012 0.000 0.004 0.024 0.020 0.053 0.878 0.004 0.004
Other 0.158 0.211 0.158 0.000 0.000 0.000 0.158 0.263 0.053
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Speech 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

Table B.19: Normalized confusion matrix over the validation dataset of the Incep-
tionResNetV2 network using a Global Average Pooling layer followed by LSTM
and classification layers.
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Graphics 0.909 0.008 0.017 0.017 0.041 0.000 0.008 0.000 0.000
Historic 0.000 0.714 0.000 0.143 0.143 0.000 0.000 0.000 0.000
Indoor 0.000 0.000 0.898 0.044 0.004 0.000 0.013 0.009 0.031
Studio 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000
Mix 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000
Outdoor country 0.000 0.000 0.000 0.000 0.000 0.909 0.091 0.000 0.000
Outdoor human-made 0.008 0.000 0.008 0.016 0.004 0.045 0.894 0.000 0.024
Other 0.158 0.158 0.263 0.000 0.000 0.105 0.105 0.211 0.000
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Speech 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

Table B.20: Normalized confusion matrix over the validation dataset of the In-
ceptionResNetV2 network using a Global Max Pooling layer followed by LSTM
and classification layers.
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Graphics 0.959 0.017 0.008 0.000 0.017 0.000 0.000 0.000 0.000
Historic 0.286 0.714 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Indoor 0.027 0.009 0.814 0.053 0.018 0.000 0.022 0.013 0.044
Studio 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000
Mix 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000
Outdoor country 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000
Outdoor human-made 0.016 0.000 0.024 0.057 0.004 0.029 0.865 0.004 0.000
Other 0.053 0.158 0.158 0.000 0.000 0.000 0.211 0.421 0.000
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Speech 0.000 0.000 0.000 0.000 0.000 0.000 0.091 0.000 0.909

Table B.21: Normalized confusion matrix over the validation dataset of the Mo-
bileNetV2 network using a Global Average Pooling layer followed by LSTM and
classification layers.

80



APPENDIX B. TRAINED MODELS

Predicted label

G
ra

ph
ic

s

H
ist

or
ic

In
do

or

St
ud

io

M
ix

O
ut

do
or

co
un

tr
y

O
ut

do
or

hu
m

an
-m

ad
e

O
th

er

Sp
ee

ch

Graphics 0.917 0.017 0.033 0.000 0.017 0.000 0.008 0.008 0.000
Historic 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Indoor 0.000 0.013 0.934 0.000 0.004 0.000 0.013 0.009 0.027
Studio 0.000 0.000 0.004 0.996 0.000 0.000 0.000 0.000 0.000
Mix 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000
Outdoor country 0.000 0.000 0.000 0.000 0.000 0.955 0.000 0.045 0.000
Outdoor human-made 0.004 0.004 0.024 0.000 0.000 0.008 0.943 0.012 0.004
Other 0.000 0.211 0.263 0.000 0.000 0.105 0.105 0.316 0.000
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Speech 0.000 0.000 0.091 0.000 0.000 0.000 0.000 0.000 0.909

Table B.22: Normalized confusion matrix over the validation dataset of the
MobileNetV2 network using a Global Average Pooling layer followed by fully-
connected, LSTM, and classification layers.

81


	Introduction
	Motivation and objectives
	Thesis summary

	Artificial Neural Network
	Activation functions
	Logistic function
	Rectified linear unit
	Softmax function

	Loss function
	Optimization
	Stochastic Gradient Descent
	RMSprop optimizer
	Adam optimizer


	Types of Neural Networks
	Convolutional Neural Network
	Convolutional layer
	Pooling layer

	Residual Network
	Recurrent Neural Network
	Long short-term memory


	Data
	Scenes definition
	Created datasets

	Implementation
	Cut Detector
	Used Neural Network architectures
	Visual Geometry Group
	Inception networks
	Mobile networks

	Network performance evaluation

	Experiments and results
	Analysis of transfer learning
	Selecting a backbone architecture
	Preparing the experiments
	Comparing the architectures
	Analysis of using Global Pooling layer
	Evaluation of selected networks

	Time Distributed models
	Optimizer selection and adjustment of an LSTM layer
	Comparing the relevant models
	Evaluation of the trained models

	Final evaluation and discussion

	Conclusion
	References
	Appendices
	Image examples
	Examples from the Czech Television News
	Examples from television Prima

	Trained models
	Various number of neurons in the fully-connected layer
	Backbone architectures
	Time-distributed networks


