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Abstract
This master’s thesis describes current software and workflows at the neuroin-
formatics lab KIV/NTIS at the University of West Bohemia utilized for
electrophysiological data processing. As the lab’s members would like to
migrate to an utterly open-source solution, an analysis of existing work-
flows management systems is done. Each is assessed on several factors to fit
the neuroinformatics lab’s requirements. For the most appropriate system,
a custom library for electrophysiological data processing is implemented.
The library’s functionality is verified on three existing experiments that are
reproduced in the chosen system. In the last part, the results and the im-
plemented library’s limitations are discussed.

Abstrakt
Tato diplomová práce popisuje aktuálně používaný software a pracovní po-
stupy neuroinformatické laboratoře KIV/NTIS na Západočeské univerzitě v
Plzni používané pro zpracování elektrofyziologických dat. Protože by členové
laboratoře chtěli přejít na kompletně open-source řešení, byla provedena ana-
lýza existujících systémů pro správu workflow. Každý systém je hodnocen dle
několika kritérií a pro nejvhodnější systém je vytvořena knihovna pro zpra-
cování elektrofyziologických dat. Funkčnost knihovny je následně ověřena
na třech existujích experimentech, které byly reprodukovány ve vybraném
systému za pomoci vytvořené knihovny. V poslední části jsou hodnoceny
výsledky a limitace implementované knihovny.
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1 Introduction

Electrophysiological data are extensive data, which means that it is not
easy to process them manually. For example, monitoring patient’s EEG1

signals from 30–100 channels may result in large data files. Depending on
the duration of the recording, the file size may reach up to 5–10 GB (for 24
hours long recording) [1].

The manual processing of such large data files could be a time-consuming
process because there are multiple steps involved (for example, data clean-
ing, filtration, feature extraction, or visualization). Every step of the pro-
cessing may require different software solutions. Nowadays, there are various
formats of input data, and some of them are standardized (e.g., NIX, BIDS,
or NWB). Because of this, the user has to verify if the data are in the correct
format for each step of the processing, and eventually convert the data to
the required format or adapt some of the steps.

We are currently in a state where there are many different methods on
various platforms (e.g., libraries for multiple programming languages or data
mining tools) used to process scientific data. The problem with the current
state is not a lack of methods but the lack of integration between them.

As a solution to this problem and making the processing more straight-
forward, scientific workflow tools are being developed. Such tools promise to
make scientists more productive by automating data-driven and compute-
intensive analyses [2].

1.1 Workflows
Before we take a look at the scientific workflows, we will look at what generic
workflows are, how they could be useful, and how they may be visualized.

In the Cambridge Dictionary, the term workflow is defined as ‘the way
that a particular type of work is organized, or the order of the stages in
a particular work process’. Generally speaking, a workflow describes how
to proceed in a specific step of a process. Workflows are usually visualized
as a flowchart diagram. For example, in Figure 1.1, we can see a flowchart
diagram of the stages of an EEG signal preprocessing.

1EEG – Electroencephalography, it is a monitoring of the electrical activity of
the brain.
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Figure 1.1: An example flowchart diagram of the steps of EEG prepro-
cessing [3]
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1.2 Scientific workflow systems
New scientific knowledge is increasingly obtained through complex compu-
tations and data analysis. As stated before, these computations may contain
thousands of steps. Each step may utilize a variety of models, data sources,
and even demand a different software or execution environment.

Over recent years, the major issue with these computations is the re-
producibility. Even when specific tools were used, a textual description
of the methodology was insufficient to reproduce experiments [4]. Some
computations could be beneficial for other scientists, but maintaining and
distributing them with other scientists is quite challenging [5, 6].

In recent years there has been an increase in research and development of
scientific workflow systems. These systems are designed to control the data-
flow and execution of computation across the individual steps. Workflows in
scientific workflow systems are represented as directed graphs, where node
indicates computational step and connections among nodes describes data-
flow. One advantage of workflow systems based upon a dataflow approach
is the possibility to route produced data by one step to multiple follow-
ing steps. While it is often difficult to describe and understand the flow
of the data in plain text for such workflows, the dataflow approach makes
it straightforward. The downside of this approach is that it can become
a confusing tangle of nodes and connections for complex workflows [2].

While these systems are a viable alternative to the traditional approach
based on scripting languages, there is still considerable room for improve-
ment. Nevertheless, in the next ten years, workflows will continue to play
a central role in knowledge discovery in the major research projects [7].

1.2.1 Usability with electrophysiological data
The scientific workflow system in the processing of electrophysiological data
has its value. Analytical methods often have several input parameters used
to control and manage the processing. The wrong configuration of these
parameters may result in distorted or degraded results. If there is more
than one method applied during the steps of processing, the risk of obtain-
ing the wrong result increases. The experience with measurements is as
important as the perfect knowledge of analytical methods to ensure the cor-
rect result. It is possible to choose the individual steps of processing and
create a workflow from them. As it is required for the scientist to have
a considerably broad knowledge of the problem to process measured data
correctly, the scientists may share the workflow with the team’s less experi-
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enced colleagues. This workflow may run repeatedly, and even with different
data models, and therefore simplify the work for them [8].
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2 Workflows at
neuroinformatics lab
KIV/NTIS

In this chapter, I will focus on workflows currently in use at the neuroinform-
atics lab KIV/NTIS of the University of West Bohemia. First, I will describe
the analytical methods for loading, preprocessing, processing, and visualiz-
ation of electrophysiological data. Then, I will introduce tools that are in
use to make the analysis of electrophysiological data possible. In the next
part, I will give some use-case examples from completed experiments. In
the last part of the chapter, I will describe the future vision and plans for
the workflows at the neuroinformatics lab.

2.1 Workflows and used analytical methods
There are five categories of methods that are in use in the neuroinformatics
lab. There are methods for loading/saving, preprocessing methods, feature
extraction methods, classification methods, and visualization methods. I will
briefly introduce them in this section.

Methods for loading/saving of data

These methods are used to load/save data in various formats. Some of those
formats are:

• BrainVision files

• LabStreamingLayer files

• LabStreamingLayer streams

Preprocessing methods

Preprocessing methods are used to prepare raw data for processing (e.g.,
data cleaning). Selected methods are entirely dependant on the analysis
type. Some of those methods are listed below:

• Epoch extraction

• Segmentation

• ICA

• Averaging

• Artifact rejection
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Feature extraction methods

Large datasets contain a large number of variables that require a lot of
computation resources. The goal of feature extraction methods is to reduce
the number of variables, thus reducing computation resources requirements
while accurately describing the original data set.

• Subsampling

• Common spatial patterns

• Windowed Means

Classification methods

The purpose of the classification methods is to find a structure based on
mutual relations in data. These methods are usually based on clustering or
machine learning.

• Linear Discriminant Analysis

• Support Vector Machines

• Multi-layer perceptron

• Convolutional neural network

Visualization methods

These methods are useful to understand the results of the analysis better, as
pictures or graphs are more easily understandable for humans than a table
of numbers, for example.

• Time series

• Scalp map

• Time-frequency color-coded maps

2.2 Tools in use
The most used tools at the neuroinformatics lab are EEGLAB and ERPLAB,
followed by BrainVision Analyzer 2 and Brain Vision Recorder. The first
two tools are open-source software, while the BrainVision products are pro-
prietary software.

In this section, I will briefly introduce these tools.

6



Figure 2.1: Graphical user interface of EEGLAB [10]

2.2.1 EEGLAB
EEGLAB is an open-source Matlab toolbox for the analysis of electro-
physiological data. Using EEGLAB, users can import various data formats,
preprocess data, visualize data, perform independent component analysis,
or use multiple time/frequency analysis methods. Third parties can con-
tribute with additional functionality as EEGLAB has an extensible plugin
architecture [9].

We can see the graphical user interface of EEGLAB in Figure 2.1.

2.2.2 ERPLAB
ERPLAB is an open-source toolbox for processing and analyzing event-
related potential (ERP) data in the Matlab. ERPLAB is tightly integrated
with EEGLAB and provides additional tools (e.g., filtering, artifact detec-
tion, or sorting of events) to EEGLAB. Users can use ERPLAB’s tools from
a graphical user interface or Matlab scripts.
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Figure 2.2: Graphical user interface of ERPLAB [11]

In Figure 2.2, we can see the GUI of the ERPLAB.

2.2.3 Brain Products tools
Brain Products GmbH is a company that provides a variety of propriet-
ary software tools for electrophysiological data recording, analysis, and pro-
cessing. The tools used at the neuroinformatics lab are described below.

BrainVision Recorder

BrainVision Recorder is a software developed for recording and visualization
of electrophysiological signals. Furthermore, it is also possible to analyze
evoked potentials in real-time.

BrainVision Analyzer 2

BrainVision Analyzer 2 is a software tool used to process a variety of electro-
physiological signals (e.g., EEG, EOG, ECG, EMG, etc.). The Analyzer has
a modular structure, so it is possible to expand the Analyzer’s functionality
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Figure 2.3: Graphical user interface of BrainVision Analyzer 2 [13]

dynamically. It also has a Matlab interface, which ensures efficient data
interchange between the Analyzer and Matlab/EEGLAB [12].

We can see the graphical user interface of the Analyzer in Figure 2.3.

2.3 Experiment examples
In this section, I will show some examples of completed experiments and
describe how the data are processed in each experiment.

2.3.1 Effects of various music genre on brain activity
This experiment examined the impact of different music genres on human
brain activity during a psychological burden. The main point of the research
was a Concentration game (also known as Pexeso, or Pick a pair). During
the experiment, the subjects played four games of Concentration with dif-
ferent music playing in the background, and their EEG activity and pulse
rate were monitored [14].

The EEG activity was recorded using a BrainVision Recorder (see sec-
tion 2.2.3). The data were later processed and analyzed using EEGLAB and
ERPLAB (see sections 2.2.1 and 2.2.2). We can see the approach to EEG
data processing in the list below:

1. Data filtration – Low-pass and high-pass filter applied.
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2. Automated artifact detection and removal – Sliding window method
to detect voltage outside of a limit was used.

3. Manual artifact detection and removal applied.

4. Computation and visualization of a frequency spectrum of an EEG
signal – Fast Fourier transform used.

2.3.2 Attention of driver during simulated drive
This experiment deals with methods of electroencephalography (EEG) and
event-related potentials (ERP) under various conditions to investigate the driver’s
attention. Eleven students were stimulated with audio signals during a 20
minutes drive in four experimental sessions on a car simulator. For each
participant, there were two drives in a day, one in the morning (between 9
and 12 AM) and one in the afternoon (between 1 and 4 PM). On the first
day, they completed the drives after a usual night’s sleep. The next day they
completed the rides after a sleep restricted to a maximum of four hours [15].

The BrainVision Recorder (described in section 2.2.3) was used to record
and store an EEG/ERP data. For data processing, the BrainVision Analyzer
was used (see section 2.2.3). The recorded EEG/ERP data were further
processed using the following workflow:

1. Data filtering – IIR filter was applied.

2. Data segmentation – The epochs were extracted from datasets in the area
of each target stimulus.

3. Manual rejection of corrupted data was performed.

4. Baseline correction – The baseline correction was applied to mitigate
uneven amplitude shifts.

5. Data averaging – The selected epochs were averaged.

6. Peak latency – Maximum amplitude in the time interval of possible
occurrence of the P3 component was found.

7. Fractional 50% Peak latency – This technique marks the time point,
when 50% of the maximum amplitude is reached.

8. Fractional 50% Area latency – This technique was used to compute
the area under the component, and then to find the time point that
divided the area into halves.

9. Visualization – Several plots with grand averages were created.
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2.4 Future vision
The researchers from the neuroinformatic lab would like to switch to the soft-
ware ecosystem that will be utterly open-source. Even though the EEGLAB
and ERPLAB are open-source solutions, they depend on the Matlab, a pro-
prietary software.

Besides, that BrainVision software is not open-source, the researchers
would also like to work with standardized data and metadata, but the Brain-
Vision metadata format does not comply with standardization.
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3 Existing workflow
management systems

In this chapter, I will introduce standards for electrophysiological data and
their association with workflow management systems. Next, I will focus on
the existing approaches and software tools used to design data workflows.
I will describe them and their capabilities, the possibility of electrophysiolo-
gical data processing, and describe the graphical user interface, if possible.
As the last step, I will analyze the simplicity of extendability (i.e., writing
additional addons or usage of existing libraries for data processing) of de-
scribed solutions based on official documentation and my experience from
experimenting with these systems.

As a part of this thesis, the assignment was to analyze workflow man-
agement systems for electrophysiological data processing, especially those
integrated with community-respected data repositories. However, no sys-
tem that would be integrated with such repositories was found.

3.1 Electrophysiological data standards
In the past years, several electrophysiological data standards have emerged.
As the complexity of scientific data increases, the lack of standards for
the neurophysiological data and metadata is the barrier to return-on-investment
from neurophysiology experiments. The leading cause is a complicated in-
terchange and reuse of data, and the reproduction of the experiments [16].
Some of the standards are, for example, Neurodata Without Borders: Neuro-
physiology (NWB:N), Brain Imaging Data Structure (BIDS), or Neuros-
cience information exchange format (NIX).

Even though the standards are present, the researchers are still util-
izing various scripts and non-standard data formats for data processing.
The workflow management systems could play a role in a transition from
the non-standard to standard data formats. For example, if the system is
straightforward to use, offers necessary analytical methods, and the possib-
ility to convert data to standard formats, the researchers might start using
it. Therefore the neurophysiological experiments will become more reprodu-
cible, and the data will comply with FAIR principles1.

1FAIR principles introduction – https://www.go-fair.org/fair-principles/
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3.2 Orange
Orange is an open-source machine learning and data visualization tool. It is
a desktop application written in Python and is available as a Python library
as well [17, 18].

Users can design data workflows by visual programming or writing scripts
in Python. In Figure 3.2, we can see an example of a workflow using visual
programming.

Every visual block in the workflow is called a widget. In Orange, it is
possible to connect compatible widgets only, making it more straightforward
for the user to design functioning workflows without the necessity to verify
the compatibility among widgets manually. The compatibility is secured
on a syntactic level only, where each input and output slot of a widget has
a defined data type, and users can connect only the slots with the same data
type.

For some workflows, it is crucial to have the steps in the right order;
thus, semantic checks would be beneficial; however, the semantic level of
compatibility is not implemented in Orange.

Orange works in real-time, which means every adjustment made in an in-
dividual widget is directly reflected in the linked widgets. It is possible to
pause the real-time propagation, but it is not possible to start the workflow
only once and manually from the beginning.

Electrophysiological data compatibility
Orange, as a standalone solution, does not provide functionality for electro-
physiological data processing. Orange provides an Orange Bioinformatics
addon, which can be accessed as a Python library or through a visual pro-
gramming interface. This addon is focused on the analysis of genes as it
provides several widgets, for example, Genes (information about genes from
NCBI Gene database), GEO Data Sets (database stores curated gene ex-
pression DataSets), or Marker Genes (access to a public database of marker
genes) [19]. At the moment, this addon does not support the analysis of
electrophysiological data.

At the time of writing this thesis, there is currently no addon that would
provide support for the electrophysiological data workflows. However, it is
possible to create new addons, which is described in section Extendability.
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Figure 3.1: An example of a textual description of a workflow in Orange

Graphical User Interface
The graphical user interface of Orange is relatively straightforward to use,
even for an inexperienced user, as there are only a few functional buttons
present. The respective buttons have an icon and a tooltip, which describes
their purpose.

The researchers may provide a textual description of the workflows, which
can help others quickly get an idea of how the particular workflow works.
The textual description of a workflow can be seen in Figure 3.1. On top
of that, it is also possible to append the workflow with annotations. An-
notations can be textual or in the form of an annotation arrow, as can be
seen in Figure 3.2. Such annotations can help to describe intricate parts of
a workflow.

New widgets can be added to a workflow using two approaches. The first
approach is to drag and drop the specific widget from the gallery into a work-
space. The second approach is to right-click in a workspace and either write
the name of a widget or find it in a contextual menu. In the workflow de-
signer part of the application, it is possible to automatically align widgets
to a grid, making the workflow more eye-pleasing and clear.

14



Figure 3.2: Graphical user interface of Orange with annotation text and
arrow in a workspace

Extendability
In Orange, it is possible to extend the functionality with custom widgets as
Orange provides official documentation for widget development. The docu-
mentation is extensive, and apart from a technical description, it contains
code examples, making it more obvious to understand how the widget de-
velopment works [20].

Each widget contains information such as name, description in plain text,
or icon. This information is used to distinguish among different widgets.
Widgets include information about its inputs and outputs; therefore, the user
immediately knows which other widgets they may combine with a particular
widget.

In Figure 3.3, we can see a sample widget that demonstrates this func-
tionality. In the picture there is our created library called „Sample EEG
Widgets“ (1), and the library may include multiple widgets. The library in-
cludes a sample widget (2), and below that is its plain text description (3).
On the right side in the picture, we can see a box that shows the widget’s
inputs and outputs (4). We can notice additional information about a link
among widgets that displays to which input slot is widget connected (5).
We can see the source code for the sample widget in section B.1.

The current workflows at the neuroinformatics lab take advantage of
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Figure 3.3: Example of a sample widget and its properties in Orange

some methods from the MNE-Python library2 (more in Section 5.1.1). As
widgets in Orange are Python scripts as well, it is possible to write widgets
that are utilizing the MNE library. The possibility of using the MNE library
was presented in a term project that adds some EEG workflow widgets to
Orange [21].

3.3 Snakemake
The Snakemake workflow management system is a tool to create repro-
ducible and scalable data analyses. Workflows are described via human-
readable, Python-based language.

Workflows are Python scripts extended by declarative code to define
rules. Rules are used to describe how to create output files from input files.
They can produce outputs in various ways, e.g., by running the inline Python
code defined in a rule, executing a shell command, or executing an external
script. Snakemake currently allows integration of external scripts utilizing
R, R Markdown, and Julia language. Snakemake does not have any syntactic
compatibility check, i.e., users have to manually verify that each input for
each rule is in a correct format.

Snakemake workflows can be executed on workstations, clusters, the grid,
or in a cloud, without a need for modification. Usage of resources can be
constrained, e.g., by available CPU cores, memory, or number of GPUs [22,
23].

Since Snakemake does not provide any graphical user interface, the user
must have at least some programming experience. The Snakemake workflows

2Magnetoencephalography (MEG) and Electroencephalography (EEG) in Python
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are defined in a file called Snakefile. We can see an example of a simple
workflow in Listing 3.1.

Electrophysiological data compatibility
As Snakemake works with command-line tools or Python scripts, it is pos-
sible to use Snakemake to process electrophysiological data. Snakemake
supports the utilization of reusable modules, or wrappers (see section Ex-
tendability). However, at the time of writing this thesis, there are currently
no modules with a focus on the electrophysiological data. The major part
of the modules focuses on the processing of genome sequencing data [24].

Graphical User Interface
As the Snakemake does not provide any graphical user interface, in this
section, the Snakefile will be described instead.
1 rule targets:

2 input:

3 "plots/dataset1.pdf",

4 "plots/dataset2.pdf"

5
6 rule plot:

7 input:

8 "raw/{dataset}.csv"

9 output:

10 "plots/{dataset}.pdf"

11 shell:

12 "somecommand {input} {output}"

Listing 3.1: Snakemake file example

In Listing 3.1, there are two rules, rule targets, and rule plot. In
the rules, there are defined some directives, input, output, and shell.
The input and output directives are followed by a list of files that are
expected to be used or created by the rule. The shell directive contains
the shell command to execute, which is used to create output files from input
files.

If the user wants to write Snakefile rules, they have to be sure that
each shell command receives the input data in a correct format, because
Snakemake does not have any semantic checks.

Snakemake does not provide any graphical user interface for workflows
creation.
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Extendability
As Snakemake does not have any graphical user interface and works with
tools available in the command-line shell at the run time, it is possible to
use various software tools to create a workflow. This means that it is not
necessary to extend the functionality of the tool as such.

Instead of addons, the Snakmake has reusable modules that make it
easier for the user to create complex workflows. Modularization in the Snake-
make comes at different levels listed below.

1. Wrappers

2. Split Snakefiles into smaller reusable parts

3. Subworkflows

The most fine-grained level are so-called wrappers. Wrappers are scripts
designed around command-line tools that make it more straightforward for
the user to use such tools. For example, the user does not have to remem-
ber the order of arguments for the specific tool, as the wrapper solves this
problem for them. To make Wrappers available to use, they must be pub-
lished at the Snakemake Wrapper Repository, as Snakemake automatically
downloads them from this repository only. Currently, there is no other way
to use the Wrappers locally without publishing into the repository.

The second level is to split reusable parts of a larger workflow into smaller
Snakefiles and include them into a master Snakefile via the include state-
ment.

The third and last level is sub-workflows. A sub-workflow is executed
independently before the primary workflow is executed. Thereby, Snake-
make ensures that all files needed for the main workflow are created or
updated [22].

Same as for the previous tools, I will show an example code on how
to concatenate two strings using the second level of modularity, i.e., split
the larger Snakefile into smaller reusable parts.
1 rule string_concatenation:

2 output:

3 "{concat_output}"

4 shell:

5 "echo {concat_strings} > {concat_output}"

Listing 3.2: String concatenation in Snakemake

In Listing 3.2, we can see a rule that concatenates strings together and
print the result in an output file. The rule is saved in a reusable standalone
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file. It uses two variables, concat_string, and concat_output, the variables
are defined in the main Snakefile.

In Listing 3.3, we can see the main Snakefile and how the rule for string
concatenation is included using the include directive on line 4. On line 1 in
Listing 3.3, we can see the definition of strings that we want to concatenate.
1 concat_strings=["hello", "world"]

2 concat_output="concat_output.txt"

3
4 include: "string_concat/Snakefile"

5
6 rule all:

7 input: expand("{file}", file=concat_output)

Listing 3.3: Demonstration of the include statement in the Snakemake

3.4 GIN
GIN (G-Node Infrastructure) services are a free data management system de-
signed for comprehensive and reproducible scientific data management [25].

GIN is a web-accessible repository store for scientific data based on git
and git-annex accessible securely from anywhere while keeping data in sync,
backed up, and easily accessible [26].

Git is a free and open-source distributed version control system [27]. Git-
annex allows managing files with git, without checking the file contents into
git, which is useful when working with larger files than git can currently
easily handle [28].

The user could use a combination of the git and git-annex directly; how-
ever, GIN provides a tool called Gin client [29] that takes care of a lot of
details in the background and thus is easier to use.

For the creation of workflows, GIN offers a tool/micro-service called gin-
proc.

gin-proc
The micro-service named gin-proc lets users design efficient workflows by
automating Snakemake (described in section 3.3) and building the work-
flows with the open-source version of Continuous Integration (CI) service
Drone [30].

Gin-proc is a middle-man connecting GIN repository and Drone server.
It is divided into two components. The first component is a backend applic-
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ation running on Python, and the second component is a web frontend for
the application running on Nuxt.js.

In Figure 3.4, we can see a web graphical user interface for gin-proc
where users can design workflows. It is possible to choose from two work-
flow styles – custom and Snakemake. The custom workflow style is used to
manually define commands which will be executed to produce output files.
The Snakemake workflow style will use the Snakemake tool to create output
files.

When a configured workflow is submitted, gin-proc will clone the user’s
repository from GIN, generate a drone.yml file in the repository and com-
mit it. The drone.yml is the configuration file for the Drone service, where
workflows are built and executed. It will also automatically configure web-
hooks in the given repository, which are utilized to notify the Drone service
to run workflows.

Electrophysiological data compatibility
As gin-proc uses the Snakemake to run workflows, the same data compatib-
ility, as described in section 3.3, applies.

Figure 3.4: Web GUI for gin-proc
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3.5 VisTrails
VisTrails is an open-source scientific workflow and provenance management
system that supports data exploration and visualization. It is written in
Python and is available for Mac, Unix, and Windows.

VisTrails enables reproducibility and makes the process of creation, and
maintainability of visualizations simpler. Additionally, it allows researchers
to explore data effectively. Researchers can examine visualizations from
previous versions of dataflow, use different data for dataflow, or compare
different results. VisTrails offers a syntactical compatibility check amongst
blocks only [31].

Since 2016, the VisTrails is not maintained, and thus no support is avail-
able.

Electrophysiological data compatibility
Although VisTrails provides plugin infrastructure, there are no plugins ex-
plicitly designed to process the electrophysiological data. However, VisTrails
can interact with various libraries and programming languages through Py-
thon [32].

Many Python libraries include methods for signal processing (for ex-
ample, the NumPy, SciPy, or MNE for Python), which can be applied to
electrophysiological data. From such libraries, standalone plugins might be
created, or the library might be called directly from a Python source module
in a workflow.

Graphical User Interface
The graphical user interface of the VisTrails is quite extensive; however,
the basic use is straightforward, even for an inexperienced user.

The VisTrails stores history of a particular workflow. It is possible to
tag every version of a workflow; therefore, it is possible to go back in his-
tory. The history feature is available even without the tagging, and every
change is stored. The researchers may also include notes to every version of
a workspace. We can see the history feature in Figure 3.5.

Modules are ordered in categories and can be added to the workspace
using the drag and drop approach. Individual modules do not have any
icons, which would quickly distinguish them from others; however, a textual
description of the widget is available. The workspace allows for an automatic
module alignment.

The graphical user interface of the VisTrails can be seen in Figure 3.6.
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Figure 3.5: The history feature of the VisTrails

Extendability
Similarly, like the Orange tool, VisTrails provides a plugin infrastructure to
integrate user-defined functions and libraries, as well as a developer’s docu-
mentation on how to write such packages for VisTrails. A VisTrails package
is a collection of Python classes, where each represents a new module [33].

In Figure 3.6, we can see a sample workflow that demonstrates the possib-
ility of utilizing self-created modules. On the left side, there is the created
package with one module (1). The module has the same functionality as
a widget that was previously created for the Orange tool. We can see two
string input modules (2), our module called „SampleEEGModule“ (3), and
the output module. In the console (4), we can see the text „Hello World“,
which results from our workflow. On the right side (5), there is information
about our module. We can see the source code in Section B.2.

3.6 Workflow Designer
Workflow Designer is a prototype web-based application written in Java
and developed at the University of West Bohemia. It allows drag-and-drop
creation, edit, and processing workflows from a predefined library (packages)
of methods (blocks). Workflows can be exported or imported in the JSON
format to ensure reusability. The Workflow Designer can be used to process

22



Figure 3.6: Example of a sample workflow in VisTrails

any general computation if the custom method library is available.
The workflows are put together in the web application, and the individual

steps of a workflow are called blocks. Each block can have input and output
ports, and properties for the block configuration. It is necessary to define
a data type for each port and property, as the compatibility amongst blocks
is secured on the syntactic level only. Workflow Designer currently offers no
inspection on the semantic level [34].

Electrophysiological data compatibility
The Workflow Designer has been successfully tested on workflows from
the ERP domain that utilized signal processing and machine learning. The De-
signer was integrated with the cloud environment where the datasets for
the EEG/ERP data were stored; thus, making it easier to run workflows on
the data in the cloud [34].

The custom Java library used for electroencephalographic signal pro-
cessing is called EEGWorkflow, and it is available as open-source software.

Graphical User Interface
Workflow Designer has a graphical user interface that is relatively simple
featurewise, and from the inexperienced user’s point of view, it is under-
standable at first glance.

New blocks are added to a workspace using a drag and drop method.
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Figure 3.7: Graphical user interface of the Workflow Designer

The blocks on the workspace contain information about the connection port
datatype; therefore, it is easy to distinguish compatible blocks. There is no
way how to annotate created workflows. This feature could be useful for
more extensive, complex workflows.

The graphical user interface of the web application can be seen in Fig-
ure 3.7.

Extendability
The Workflow Designer does not provide any developer’s guide; however,
it provides a Git repository, which contains examples and short document-
ation on how to use the Workflow Designer’s annotation library. These
examples consist of different design patterns and project architectures, in
which the library can be used.

The annotation library is used to create packages of blocks that are util-
ized to extend the functionality of the Workflow Designer. Documentation
for the annotation library is quite short, but on the other hand, it is easy
to follow [35]. Moreover, if something is ambiguous, it is possible to look at
the provided examples and learn how to use various annotation types.

In Figure 3.8, we can see the sample workflow that utilizes a custom
package. The workflow is used for the concatenation of an array of strings.
A result of the workflow is saved in a file that can be downloaded. On
the left side in the picture (1), we can see our package with created blocks.
In the middle, there is our workflow with two string input blocks (2), block
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Figure 3.8: Sample workflow for string concatenation in the Workflow De-
signer

for concatenation (3), and a block that converts a string into a downloadable
file (4). At the bottom of the picture, we can see the contents of the result file
(5). The source code for the concatenation block (3) is listed in a Section B.3.

3.7 Apache Taverna
Taverna is an open-source domain-independent Workflow Management Sys-
tem – a suite of tools used to design and execute scientific workflows. Tav-
erna is written in Java and includes Taverna Engine, Taverna Workbench
(the desktop client application), and Taverna Server (used to execute remote
workflows). As a part of the Taverna suite, there is also a command-line tool
that is available for faster execution of workflows from a terminal [36].

Similarly, like the other described workflow management systems, Tav-
erna provides a syntactical level of compatibility check amongst modules
based on data types. Additionally, Taverna deals with the semantical level
of the check as well; however, it is a formal semantics; thus, restrictions for
input/output parameters only are defined. The semantics of connections
between modules (if the link makes sense) is not solved [37].

During the writing of this thesis, the community voted to retire Taverna
as a project from Apache Software Foundation on 2020/02/19, which means
that the codebase is no longer maintained [38].

Electrophysiological data compatibility
Taverna Workbench appears in various editions, such as astronomy, enter-
prise, digital preservation, or bioinformatics. The difference among editions
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is at module bundles, which differs with each edition. The bioinformatics re-
lease could be interesting for the processing of the electrophysiological data,
but on the closer inspection, it is an edition focused mainly on the genomic
data processing. For example, one of the modules the bioinformatics edition
includes is the BioMart plugin, which is a data warehouse aimed at complex
genomic data sets [39].

Taverna Workbench was used to process a high-resolution Stereotactic
Electroencephalogram (SEEG) and to compute various measurements for
the study of epilepsy seizure networks. However, the processing, as such,
took place utilizing a Java-based RESTful API. The Workbench was used
only to support the large scale signal processing task and to track the pro-
cessing pipeline visually [40].

Currently, there are no specialized modules focused on the processing of
electrophysiological data.

Graphical User Interface
The graphical user interface of Taverna Workbench may be overwhelming
for inexperienced users, as it is quite extensive and complex.

Similarly, like in the other workflow management systems, new blocks can
be added to a workspace by dragging and dropping from the blocks library.
The particular input/output ports of a block can not be distinguished at
first glance, as they are not displayed in a workspace. However, it is possible
to click on a respective block and show its details or add annotations.

The graphical user interface of Taverna Workbench can be seen in Fig-
ure 3.9.

Extendability
The Taverna Workbench is available in version 2.5 and has not been updated
since the transition under Apache Software Foundation. It is composed of
modules. It is possible to extend the Taverna functionality by creating new
modules; however, the developer’s guide is incomplete and hard to follow
in comparison with VisTrails or Orange guides. The developer’s guide is
available for the Taverna in version 2.5 only. For the more current 3.0
release, there is no guide.

To make plugin creation for Taverna more straightforward, it provides
a Maven archetype; however, this archetype was not updated since May
2014. Even though I was able to generate this archetype using Eclipse IDE,
I could not make the plugin work. Apache Taverna is the only system in
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Figure 3.9: Graphical user interface of the Taverna Workbench

which I was not able to extend its functionality [41].

3.8 NeuroPype Suite
NeuroPype suite is an application suite that includes a computational en-
gine for biosignal processing (NeuroPype), an open-source visual workflow
designer (Pipeline Designer), and tools for interfacing hardware.

NeuroPype is a python-based signal processing and dataflow program-
ming application that is available locally or on the cloud over a REST API. It
is released under various proprietary licenses, such as Enterprise, Academic,
or Developer.

Pipeline Designer is a Python application that provides a graphical user
interface for workflow design. It is based on Orange 3, and the interface is
identical as in the Orange. Therefore there are many similarities amongst
those applications as far as functionality goes. For example, the Pipeline
Designer provides a syntactical level of compatibility check only, same as
the Orange. Currently, there is no compatibility check amongst widgets on
the semantical level [42, 43].

The graphical user interface can be seen in Figure 3.10. As we can see,
the interface is identical to the Orange interface.
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Figure 3.10: Graphical user interface of the Pipeline Designer from
the NeuroPype suite

Electrophysiological data compatibility
NeuroPype suite is designed with a focus on the processing of biological
data. Pipeline Designer contains various categories of widgets for biosig-
nal processing. Some of those categories are, for example, cardiac signals,
eye tracking analysis, feature extraction, machine learning, or neural sig-
nals. NeuroPype suite is thus compatible with electrophysiological data
processing, as it provides most of the widgets and analytical methods needed
for workflows at the Neuroinformatics lab.

Graphical User Interface
The NeuroPype’s Pipeline Designer is based on the Orange; therefore, the func-
tionality is the same as described in Section 3.2.

Extendability
Similarly, like the Orange, NeuroPype’s functionality can be extended with
custom nodes written in Python. NeuroPype offers quite a broad developer’s
guide that describes the development of custom nodes, and the NeuroPype
REST API. Apart from the NeuroPype engine class references, the de-
veloper’s guide contains examples of source code. This approach makes
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Figure 3.11: Example of a sample node in the Pipeline Designer

it easier for potential developers. However, some parts are undocumented,
e.g., how to assign an icon to the custom node. Even though the Pipeline
Designer is based on the Orange, the development process of building custom
nodes is different [44].

In Figure 3.11, we can see a sample custom node that concatenates two
strings. On the left side in the picture (1), we can see a custom node that
was automatically imported at the start of the Pipeline Designer. Below
the node, there is a textual description (2) of the node. In the middle of
the screen (3), we can observe the workflow used to concatenate two strings.
Below the workflow, there is a console output. In the console output, we
can inspect the result of the workflow marked in a red rectangle (4).

3.9 Other large infrastructures
This section will briefly describe infrastructures related to electrophysiolo-
gical data processing and workflow management that do not fit the needs of
the Neuroinformatics lab. Nevertheless, the following infrastructures deserve
mention as they are quite large.
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DataJoint
DataJoint is a free, open-source framework for programming scientific data-
bases and computational data pipelines. It is a simplified and conceptu-
ally refined relational data model that allows data structure definition, data
querying, and visualization of entities and relationships among them. It has
been adopted in neuroscience labs for fluent interaction with scientific data
pipelines [45].

Every pipeline is composed of one or more tables. Each table repres-
ents a specific set of data, and the data can be entered, either manually or
automatically. DataJoint allows for computation in scientific data pipelines.
The computation, as well as a pipeline definition, can be done using a Python
or MATLAB language, and there is no graphical user interface available.

Human Brain Project
The Human Brain Project (HBP) is a research infrastructure to advance
neuroscience, medicine, and computing. There are six ICT research Plat-
forms in the HBP infrastructure – Neuroinformatics, Brain Simulation, High-
Performance Analytics and Computing, Medical Informatics, Neuromorphic
Computing, Neurorobotics. An HBP Collaboratory is a part of the HBP,
and it collects tools from the HBP Platforms in one place [46].

The HBP Collaboratory can be used to collect and organize tools, share
data, or use Jupyter3 notebooks to share ideas, code, and workflows. The work-
flows shared utilizing the Jupyter notebooks are created by the scripting
approach, i.e., users have to write the source code manually. There is no
graphical user interface present for workflow creation other than the Jupyter
itself.

3Jupyter – https://jupyter.org/
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4 Workflow management
systems requirements

There are several requirements for scientific workflow systems to fit the needs
of the neurophysiological lab. In this chapter, I will introduce them and
briefly describe them. These requirements will be used in the following
chapter to assess the analyzed workflow management systems.

4.1 Availability of analytical methods
The primary and essential requirement is the availability of analytical meth-
ods for electrophysiological data processing. The workflow management sys-
tem should include analytical methods for treating such data or provide
a way to utilize third-party libraries (see Section 5.1) containing analyt-
ical methods either by extending the functionality by custom addons or by
the possibility of calling external libraries.

The systems will be evaluated based on the possibility of utilizing suitable
libraries and extendability.

4.2 Graphical user interface
Workflow systems should offer a graphical user interface that is reasonably
straightforward and understandable even for large workflows. It should be
clear, which output port is connected to which input port or what are their
data types, at first glance to make the analysis and processing more effective.

The graphical user interfaces will be assessed based on the subjective
opinion of an inexperienced user who used the workflow management systems
for the first time.

4.3 Syntactical and semantical compatibility
As workflows’ creation process can be quite extensive, the system needs to
have some form of a syntactic compatibility check amongst blocks. Syn-
tactical check guarantees that the user can immediately distinguish between
compatible blocks (or input/output ports on a block) and cannot use mutu-
ally incompatible blocks in a workflow.
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It would be helpful if the system dealt with a semantical compatibility
check as well. Even though the blocks can be compatible on the syntactic
level, they do not necessarily indicate that the order in which they are con-
nected makes sense or is correct.

4.4 Community size
Another requirement is the size of the community that is actively using and
maintaining a particular system.

The scientific workflow systems solve problems specific to scientific do-
mains that are not present in general workflow management systems. The de-
velopment of such systems (or additional libraries) is time-consuming and
larger communities have a better chance of getting the problem fixed, or
adding new functionality in a shorter amount of time.

As it is almost impossible to find out how many researchers are utiliz-
ing a particular system, the evaluation of this factor is primarily based on
the developer community’s activity on respective repositories. The activity
anticipates the number of commits, the number of stars, the number of con-
tributors in the repository, and the ratio of open/closed issues in the issue
tracking system.

4.5 User’s manual
Scientific workflows can be particular for each domain, and the same applies
to the workflow management systems. Such complex systems should have
a comprehensive user’s documentation or manual. Besides documentation,
the tutorials or workflow examples may provide an additional advantage to
the user’s learning curve.

The systems will be assessed based on the extent and availability of
the before-mentioned materials, as well as ease of finding such materials.

4.6 Ease of development
Sometimes, it is necessary to extend the functionality of the workflow man-
agement system to fit the specific scientific domain requirements. Besides
the possibility of creating custom modules, creating custom modules should
be quick and easily understandable. That is guaranteed by a quality de-
veloper’s guide, type of a development language, the extent of a user’s doc-
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umentation, code quality, and the scope of source code needed for such
modules to work.

In the following sections, other than on before-mentioned factors, the work-
flow management systems will be assessed based on the experience with
the development of an uncomplicated concatenation module for every sys-
tem. Similarly, like with the graphical user interface, the evaluation is based
on an inexperienced user’s opinion.
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5 Comparison of existing
workflow management
systems

This chapter will introduce suitable third-party libraries that could extend
the functionality of analyzed systems. This will allow for better assessment
based on the availability of analytical methods. Then I will compare the sys-
tems from various points of view based on the requirements presented in
Chapter 4. In the last section, I will choose the best workflow management
system for the neurophysiological lab’s needs.

5.1 Suitable third-party libraries
As it is achievable to extend functionality in the analyzed systems to allow
for electrophysiological data processing utilizing various third-party libraries,
in this section, I will describe available libraries that are suitable for such
data processing.

5.1.1 MNE-Python
MNE software suite is an open-source Python software for exploring, visu-
alizing, and analyzing human neurophysiological data (MEG, EEG, sEEG,
and more).

The MNE software suite includes an open-source software package called
MNE-Python. This package provides algorithms in Python that cover mul-
tiple data preprocessing methods, source localization, statistical analysis,
and estimation of functional connectivity between distributed brain regions.
It is tightly integrated with NumPy, SciPy, matplotlib, and Mayavi, core
Python libraries for scientific computation and visualization. Moreover,
the MNE-Python package has extensive documentation that contains tu-
torials and examples for new users, user manual, and API reference [47].

The community around the MNE software suite and the MNE-Python
package is highly active. It has one or more commits per day in a GitHub
repository (total over 15 000 commits), 1 300 stars, and 204 contributors [48].
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5.1.2 MNE-BIDS
The MNE-Python ecosystem is a significant software package for electro-
physiological data analysis and processing. As the user base grew, the sup-
port for the BIDS standard was implemented as a dedicated Python software
package called MNE-BIDS, to provide an interface for BIDS datasets with
MNE-Python.

MNE-BIDS allows researchers to re-organize data into BIDS format,
store associated metadata, extract information for preprocessing and read
the data into MNE-Python objects for further analysis [49].

The community is relatively active, and the project is under continuous
development. In GitHub repository, it has over 850 commits, 28 stars, and
19 contributors [50].

5.1.3 NIX-MNE conversion tool
The NIX-MNE conversion tool is a package of Python scripts, that allows
conversion of an EDF and BrainVision data formats into the NIX standard,
utilizing the MNE-Python library. It also allows reading NIX data files into
MNE-Python objects for further analysis and processing.

The package’s codebase is quite small; its GitHub repository has 72
commits, zero stars, and one contributor [51].

5.1.4 Elephant
Electrophysiology Analysis Toolkit (Elephant) is an open-source library for
the analysis of electrophysiological data in the Python programming lan-
guage.

Elephant focuses on generic analysis functions for spike train data and
time-series recordings from electrodes (e.g., local field potentials, or intracel-
lular voltages). Besides, the Elephant project aims to provide a consistent
and homogeneous modular analysis framework.

The Elephant’s community is active, and the project is updated con-
tinuously. The GitHub repository has over 370 commits, 72 stars, and 32
contributors [52, 53].

5.1.5 Conclusion
As we can see from the before-mentioned third-party libraries, it is relatively
easy to find libraries for the electrophysiological processing that are focused
mainly on the Python programming language, as the Python is widespread
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amongst the scientific community. In the next sections – summary and
comparison, the workflow management system’s programming language will
be taken into account, as well as other factors.

5.2 Summary of analyzed systems
In this section, I will summarize the analyzed workflow management systems
from Chapter 3, each will be assessed based on the requirements described
above.

5.2.1 Orange
Orange, as is, does not provide any analytical methods for electrophysiolo-
gical data processing. However, Orange is written in Python and allows for
functionality extendability utilizing packages with custom widgets.

The graphical user interface of the Orange is straightforward to use and
is understandable even for larger workflows. In the Orange, it is clear, what
is port’s data type or where the port is connected, at first glance.

Orange provides a syntactical compatibility check amongst widgets, which
does not allow the user to use mutably incompatible blocks. However, the se-
mantical compatibility check is not solved in the Orange.

The community around the Orange is quite active. On GitHub, it has
more than 12 000 commits, 2 200 stars, 80 contributors, and it has at least
one commit nearly every day. The ratio of open/closed issues is 28/1391.

Orange offers quite an extent user’s manual that includes YouTube video
tutorials, workflow examples, a description of individual widgets, and textual
tutorials. The hypertext links to respective materials are gathered on a single
web page; therefore, it is easy to find relevant pieces of information.

The development of packages with custom widgets is well documented
and is easy to follow. Most of the source code files are commented in great
detail. However, there are some exceptions, where the file does not con-
tain any comment at all. The size of a source code needed for a simple
concatenation module is appropriate, as can be seen in Listing B.1.

5.2.2 Snakemake
Snakemake does not provide any modules for electrophysiological data pro-
cessing. However, Snakemake works with command-line tools or Python
scripts; thus, it is possible to utilize third-party libraries (e.g., MNE-Python)
and use Snakemake to process such data.
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Snakemake does not come with any graphical user interface; therefore,
it is not as easy to use as other systems are. Workflows are written in
the Snakefiles that are Python-like script files.

The Snakefiles scripts do not have any compatibility check whatsoever,
whether it is a syntactic or semantical check.

Snakemake is actively in development, and on its GitHub repository, it
has over 3 500 commits, 500 stars, and over 120 contributors. The ratio of
open/closed issues is 138/78, which may suggest that developers are focused
more on their vision than what the users want, or the development process
of fixing issues is sluggish. It is a popular tool as its article was cited 70
times in the first third of the year 2020 already, which suggests it is receiving
interest in the Bioinformatics field1.

The user’s documentation for Snakemake is adequate for the system func-
tionality. It is available online, and it contains tutorials with examples and
descriptions of various rules usages. Additionally, it offers links to external
resources and talks.

Snakemake has quite broad and up to date documentation. The docu-
mentation includes tutorials and API reference. The tutorials are easy to
follow, even though they are focused on the genomic domain. The devel-
opment itself is not as easy as in the systems that provide a graphical user
interface and requires some programming knowledge.

5.2.3 GIN and gin-proc
Gin-proc is not a workflow management system, as it might seem from
the project description. Gin-proc is a middle-man between a GIN repos-
itory and a Drone Continuous Integration service. It automates the process
of running the Snakemake workflows after the changes are committed into
a repository. Therefore, the compatibility with electrophysiological data
processing is the same as for the Snakemake (see Section 5.2.2).

Gin-proc has a web graphical user interface used to choose a repository,
edit some parameters for Snakemake workflow, and generate a drone.yml

file for the selected repository.
The syntactical or semantical compatibility check is not present, as it is

based on Snakemake.
Gin-proc’s community is not active. The project has 70 commits, 0 stars,

and four contributors. The last commit is from September 2019, since then,
the only change was an update of dependencies to a newer version. The ratio
of open/closed issues is 11/29.

1https://badge.dimensions.ai/details/id/pub.1018944052
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The user’s documentation or manual is non-existent, as the only informa-
tion about this project is on its GitHub repository that contains only the de-
veloper’s guide.

The documentation for the project is insufficient. Even getting the pro-
ject to work is a nuisance, as many required steps are not documented, e.g.,
various environment variables and required tools.

5.2.4 VisTrails
VisTrails, similarly, like the other analyzed systems does not include any
plugins specifically for the processing of electrophysiological data. It is,
however, possible to create custom plugins and utilize some of the exist-
ing libraries for signal processing or call third-party libraries directly from
the Python source module.

VisTrails comes with a graphical user interface that is reasonably easy
to use and to understand even for new users. In VisTrails, nevertheless, it is
not clear at first glance what is the port’s data type, which can be a slight
inconvenience when managing more extensive workflows.

The compatibility check amongst blocks is solved in VisTrails in a similar
way as in the other systems, i.e., VisTrails offers the syntactical check only.

The VisTrail’s community is not active anymore, as the project was dis-
continued in 2016. On its GitHub repository, it has over 6 500 commits, 92
stars, and 24 contributors. However, the repository was not updated in three
years, since the last commit date is three years old. The ratio of open/closed
issues is 151/934 and the last opened issue is from March of 2018.

The user’s guide is available online, and it contains the description of
the installation process and multiple examples on how to use VisTrails.
The examples are well documented and include a sufficient amount of im-
ages. The documentation is missing the description of individual modules.

The development process of custom plugins is straightforward, and the de-
veloper’s guide is easy to comprehend. The documentation is quite broad,
and it comprises examples and API reference. The size of the source code for
the simple concatenation block is appropriate, as can be seen in Listing B.2.

5.2.5 Workflow Designer
Workflow Designer was tested on workflows from the ERP domain that
utilized signal processing and machine learning. There is a custom open-
source Java library for electroencephalographic signal processing available.
Workflow Designer allows for functionality extendability by custom Java
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libraries.
Workflow Designer comes with a simple web graphical user interface that

is understandable and obvious to use. The users can see the data type of
every port at first glance, and together with the fit to screen feature, it allows
for straightforward work even for comprehensive workflows.

The compatibility within individual blocks is guaranteed on the syn-
tactical level, and the Workflow Designer does not provide any additional
check, for example, on the semantical level.

Workflow Designer is a local project that is developed at the University
of West Bohemia. The community is, therefore, not large, as we can see on
the GitHub repository statistics. The project has 200 commits, two stars,
four contributors, and the last commit is from August 2019.

Workflow designer has a user’s manual on its GitHub repository, al-
though it is more of a developer’s guide. It contains a textual description
accompanied by images on basic usage followed by pieces of information for
developers. Nevertheless, more extensive documentation is not present.

The Workflow Designer does not provide the developer’s guide; however,
it provides a Git repository, which contains examples and short document-
ation to custom plugin development. The documentation is clear to follow,
and the Workflow Designer’s annotation library is simple to use. The size
of the source code for the simple concatenation plugin is appropriate (see
Listing B.3).

5.2.6 Apache Taverna
Taverna Workbench, which is a part of a Taverna suite, appears in various
editions, and one of them is the bioinformatics edition. Nevertheless, like in
other systems, the bioinformatics add-on mainly focuses on the processing of
genomic data sets. The Taverna was used to process SEEG data; however,
processing took place utilizing Java-based RESTful API; thus, no specialized
module is available. There are no modules for the electrophysiological data
processing available neither.

Taverna suite comes with a graphical user interface, which is quite chal-
lenging to use for inexperienced users. The data types of individual ports
are not apparent at first glance.

Taverna offers a syntactical compatibility check and partial semantical
compatibility check as well. Semantical check is provided for the input/out-
put parameters only. The semantics of connection amongst modules is not
solved.

The Apache Taverna’s community decided to retire the Taverna project
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from the Apache Software Foundation; therefore, the codebase is no longer
maintained. Apache Taverna has 2267 commits, 11 stars, and six contribut-
ors. The issue tracker is not available in the GitHub repository; however, it
is available on Apache servers. The open/closed issue ratio is 874/189.

The user manual for the Apache Taverna is available online, although,
it is fragmented over several web pages. It offers examples, video tutorials,
and textual descriptions. However, most of the documentation is not up to
date as it was written for the older version of Taverna.

The development process of custom modules is quite challenging. The de-
veloper’s guide is incomplete and does not provide a sufficient amount of
examples. I could not create a custom module for the Taverna Workbench
by following the developer’s guide, as it was not updated since 2014.

5.2.7 NeuroPype Suite
NeuroPype suite is designed with a focus specifically on the processing of
biological data. It offers widgets for various biosignal processing categories,
e.g., cardiac signals, neural signals, feature extraction, or machine learn-
ing. NeuroPype suite provides most of the analytical methods needed for
workflows at the Neuroinformatics lab; however, it has a proprietary license.

The Pipeline Designer, which is the graphical user interface of the Neuro-
Pype Suite, is based on Orange’s GUI, the functionality is identical and was
described above in Section 5.2.1.

Similarly, like the Orange system, the Pipeline Designer offers the syn-
tactical compatibility check only.

The license for the NeuroPype suite is proprietary; however, NeuroPype
offers a free Academic license. Although it is uncertain whether the condi-
tions for a free Academic license will change in the future, and the license
might become paid. The project is actively developed and maintained. As
the project is closed-source, it is impossible to find out repository statistics.

The documentation for the users is quite extensive and is available on-
line. It contains example workflows, installation process, and description of
every widget in respective categories. Pictures accompany the description
of examples in a vast amount; thus, it is more straightforward for the user
to understand it properly. All the information is gathered in one place.
Therefore, it is easy to find the required information quickly.

Custom nodes can extend NeruoPype’s functionality, and an extensive
developer’s guide is available; however, some unimportant features are un-
documented, e.g., how to assign an icon to the custom node. The develop-
ment process is relatively straightforward, as the developer’s guide contains
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Workflow
System Language Availability of

methods GUI Syn. / Sem.
check

Community
size

User
Experience

Existing
methods Addons Ease of

development
User
manual

Orange Python no yes yes yes / no large easy excellent
Snakemake Python-like no partial no no / no large medium adequate
gin-proc Python / JS no no partial no / no small medium insufficient
VisTrails Python no yes yes yes / no medium easy adequate
Workflow
Designer Java partial yes yes yes / no small easy insufficient

Apache
Taverna Java no yes yes yes / partial large hard insufficient

NeuroPype
Suite Python yes yes yes yes / no data unvailable easy excellent

Table 5.1: Comparison of analyzed scientific workflow systems

examples of source code. The size of the source code for the custom node is
appropriate, similarly to other systems (see Listing B.4).

5.3 Conclusion
The best workflow management system will be chosen by the exclusion
method, i.e., I will gradually exclude systems that fit the requirements
the least, until only one is left.

In Table 5.1, we can see a comparison of analyzed systems assessed by
requirements.

At first, we can exclude software that is not a workflow management sys-
tem, but a utility that helps to connect repository and continuous integration
service – the gin-proc.

The next software we can exclude does not offer a graphical user inter-
face, which might be a problem for scientists that do not have scripting or
programming skills. Moreover, it does not provide any compatibility check
whatsoever – Snakemake.

During the analysis of existing systems and scientific workflows, in gen-
eral, I get to the conclusion that most of the scientists like to use scripting
languages, such as Python, R, or Matlab. Only two of the analyzed systems
do not utilize Python – Workflow Designer and Apache Taverna. Further-
more, the Workflow Designer’s community is small, as it is a local project.
In terms of the Taverna, it is not maintained anymore, and on top of that,
the development process is considerably complicated.

Even though the NeuroPype suite offers most of the methods needed for
the Neuroinformatics lab and it has an understandable graphical user inter-
face, it is proprietary software. The researchers from the Neuroinformatics
lab would like to switch to an utterly open-source system. Therefore we can
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exclude the NeuroPype Suite.
This leaves us with a pair of systems – VisTrails and Orange 3. Neither

of those systems has a module for electrophysiological data processing.
If we compare the graphical user interface of the workspace between these

two tools (see Figures 1 and 2), we can see one significant difference. On
the VisTrails workspace, there is no indicator above the connections among
modules. So at first glance, it is not immediately clear which output connects
into which input port. If the user wants to find this information out, he has
to mouse over each port of the module, which may be inconvenient when
working with larger workflows. On top of that, the VisTrail was discontinued
in 2016, meaning that the community is not as active as Orange’s community.

Therefore, the tool that fits the requirements of the Neuroinformatics lab
the most is the Orange 3.
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6 Implementation

In this chapter, I will describe the required changes and their implementation
in a selected scientific workflow management system to meet the workflows’
needs at the neuroinformatics lab.

6.1 Changes to Orange 3
In this section, I will describe the changes to Orange 3 needed to respect
the workflows at the neuroinformatics lab.

There will be no changes required to the Orange 3 itself. Nevertheless, it
is necessary to implement additional widgets to extend the tool’s function-
ality to assure the possibility of processing electrophysiological data.

Some of the analytical methods required were described in Chapter 2,
the Python libraries for electrophysiological data processing were described
in Section 5.1. The most commonly used library (based on the reposit-
ory’s activity) is the MNE for Python (see Section 5.1.1). On top of that,
the library includes most of the analytical methods required. Therefore, this
library will be used to implement new widgets.

Additionally, it is necessary to use some libraries that include machine
learning methods. One of the experiments utilized for the verification of
the implemented library’s functionality uses convolutional neural networks
and linear discriminant analysis (see Section 7.3). As the experiment uses
Keras, Tensorflow, Scikit, and NumPy libraries in its workflow, the same
libraries will be used in new widgets to make the implementation more
straightforward.

6.2 Implemented Widgets
In this section, I will introduce the created widgets for respective categories
of data processing described in Chapter 2. The library’s repository can be
found on a GitLab1, together with an installation guide.

1MNE Widgets for Orange 3 – https://gitlab.com/fifal/orange-mne-library
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6.2.1 Data IO
The recorded electrophysiological data may come in various data formats.
Widgets in this category are used to load or save such data files.

BrainVision EEG reader

This widget allows researchers to load data files produced by the proprietary
BrainVision Recorder software.

We can see the graphical user interface of the widget in Figure 6.1.
The widget has one clickable button, read-only text input, and a combo box.
After the researcher selects the data .vhdr file using the button, the file path
is displayed in a text input, so it is evident at first glance, which file is being
processed. The combo box is utilized to select the montage type. Montages
are useful for various visualizations that require location parameters for each
electrode.

Figure 6.1: The graphical user interface of the BrainVision EEG reader
widget

EEGLAB reader

EEGLAB reader is a widget that allows loading of .set data files.
We can see the graphical user interface of the widget in Figure 6.2.

The interface is identical to the widget for BrainVision data file loading.
It contains one button for the file selection, read-only text input to show
the loaded file’s path, and a combo box for the montage type selection.

Matlab File Reader

This widget is utilized to load data files in a Matlab format (.mat).
The graphical user interface is pictured in Figure 6.3. We can see that

the GUI is almost identical to previous file readers, except it does not have
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Figure 6.2: The graphical user interface of the EEGLAB reader widget

a combo box for the montage selection. The functionality is otherwise
the same as in the previous readers.

Figure 6.3: The graphical user interface of the Matlab Reader widget

Fif File Save

If the processing takes a long time, or when we need to load the data in
another workflow, it may be useful to save the processed data into a file.
The Fif File Save widget has this functionality. It is possible to save three
different types of processed data – raw, epochs, or evokeds. Each type has
its suffix after the file is saved. The suffix is essential because when loading
the data using the MNE library, each type requires a different method.

The graphical user interface can be seen in Figure 6.4. It contains one
button which opens a file save dialog to choose the output file path and
name.

Fif Reader

The Fif Reader widget is used to load data files saved by the Fif File Save
widget.
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Figure 6.4: The graphical user interface of the Fif File Save widget

The graphical user interface is in Figure 6.5. We can see it is identical
to previously described readers (BrainVision reader, or EEGLAB reader).
The functionality is the same as well.

Figure 6.5: The graphical user interface of the Fif Reader widget

6.2.2 Preprocessing
Widgets in this category are utilized to prepare the raw data for processing.
Such widgets include epoch extraction, channel selection, filtering, and more.

Channel Select

The raw recorded electrophysiological data may contain several channels,
but researchers may need only a few of them for their processing. For this
purpose, a Channel Select widget is present in the library. The Channel
Select allows researchers to select specific channels from the raw data.

The graphical user interface of the Channel Select widget is pictured in
Figure 6.6. If data are loaded and sent to this widget, the users can see what
channels are present in the data, and select required channels, by writing
channel names, comma-separated, into the text input.
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Figure 6.6: The graphical user interface of the Channel Select widget

Epoch Extraction

The electrophysiological signal recordings can be very long. However, in
some cases, the researchers are interested only in part of the data, where
particular stimuli have occurred. For such cases, epoch extraction methods
are available.

In Figure 6.7, we can see a graphical user interface of the Epoch Ex-
traction widget. In the widget, there are two text inputs and a section
with checkboxes. Text inputs are utilized to select the interval of epochs to
extract. The checkboxes show stimuli that are available for extraction.

Figure 6.7: The graphical user interface of the Epoch Extraction widget
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Filter

Filtering is an essential step of preprocessing, as recorded signals can contain
a lot of signal noise. For example, electrophysiological recordings can be
noisy because of power line interference.

The filter widget supports two methods of filtering – IIR or FIR. The graph-
ical user interface is dynamically changing based on the selected method.

In Figure 6.8, we can see the graphical user interface of the Filter wid-
get for the IIR method. The essential parameters of the IIR method are
lower and upper cutoff frequency. Additionally, there are several advanced
parameters, such as type and order of the filter and their specifying para-
meters. The types of the filter can be Chebyshev, Butterworth, Elliptic, or
Bessel/Thompson.

Figure 6.8: The graphical user interface of the Filter widget for the IIR
settings

The graphical user interface for the FIR method can be seen in Fig-
ure 6.9. Similarly, like the IIR method, the FIR method offers the setting
of essential parameters – lower and upper pass-band edge. The specific para-
meter settings for the FIR method are filter length, FIR window type, and
phase.

Baseline Correction

Baseline correction is a significant part of preprocessing. An uneven amp-
litude shifts may occur in the recorded signal. For further processing and
analysis, it is necessary to compensate for such amplitude shifts.
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Figure 6.9: The graphical user interface of the Filter widget for the FIR
settings

Figure 6.10: The graphical user interface of the Baseline Correction widget

In Figure 6.10, we can see a graphical user interface of the Baseline
Correction widget. The widget has two text inputs that are utilized to define
an interval from the whole epoch length, which will be used for the baseline
correction.

Artifact Rejection

Individual epochs extracted from the recorded signal may contain artifacts,
which may bias the results. Such artifacts may be caused by, for example,
eye movement (eyewink), or head movement. The simplest method to detect
such artifacts is by the amplitude of the signal.

The implemented library offers a widget called EEG Artifact Rejection,
which is utilized to remove corrupted epochs. The widget is pictured in
Figure 6.11. The widget has one input, which is used to set the amplitude
threshold in microvolts. After the limit is set, the widget iterates over epochs
and finds an amplitude peak for each. If the absolute value of the peak is
higher than the threshold, the epoch is rejected.
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Figure 6.11: The graphical user interface of the Artifact Rejection widget

Averaging

Evoked potentials in electrophysiological signals are composed of several
components. The signal averaging methods can be used to highlight those
components, to get a better picture of the signal’s final form. For this
purpose, there is an EEG Averaging widget available in the created library.

In Figure 6.12, we can see a graphical user interface of the EEG Averaging
widget. When the widget receives the data, it shows a group of checkboxes,
where each checkbox represents a stimulus category. Apart from the name
of the stimulus, a count of stimuli is displayed. Users can select specific
stimulus over which will be the signal from epochs averaged. Although it
is usually useful to average signals that belong to one particular stimulus,
users can average signals over more than one stimulus.

Figure 6.12: The graphical user interface of the Averaging widget

Concatenation

Orange allows for multiple data inputs through one signal line into a widget;
however, it does not allow the output of several data utilizing one signal
line out of a widget. This functionality may be a limitation for researchers
that have multiple input files. The Concatenation widget is included in
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the library to get around this limitation. All inputs must have the same
number of channels to concatenate multiple data inputs correctly.

We can see the graphical user interface in Figure 6.13. The GUI is
simple as it contains one button. After the button is clicked, all input files
are concatenated and sent to the widget’s output.

Figure 6.13: The graphical user interface of the Concatenation widget

Resample

The sampling frequency rate of electrophysiological data can be quite high
(up to 1000 Hz). For some types of experiments and processing meth-
ods, such high resolution of the signal is not required and may slow down
the processing of the data without any advantages. The Resample widget
may resample the sampling frequency of the extracted epochs to a range of
1–1000 Hz.

The graphical user interface is pictured in Figure 6.14. The widget con-
tains input for the sampling frequency in Hz and a confirmation button.

Figure 6.14: The graphical user interface of the Resample widget

Grand Average

The grand average is an average calculated from multiple averages. This
can be beneficial, for example, when examining the data from several testing
subjects, as this approach can mitigate some abnormalities or artifacts.

We can see the graphical user interface in Figure 6.15. The widget con-
tains only a label with information about its functionality.
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Figure 6.15: The graphical user interface of the Grand Average widget

6.2.3 Feature Extraction
Large data sets contain a large number of variables that require a lot of
computation resources. The goal of feature extraction widgets is to reduce
the number of variables, thus reducing computation resources requirements
while accurately describing the original data set.

Peak Latency

For some experiments, it is beneficial to find signal peak latency after a par-
ticular stimulus has occurred (time delay between stimulus and maximal
signal amplitude). To extract this information simply, the library includes
a Peak latency widget.

In Figure 6.16, we can see the graphical user interface of the Peak Latency
widget. The widget has three inputs for the parameter settings. There
are two text inputs for the time interval and a combo box for the mode
selection. The time interval is useful if we want to find a peak in a specific
range of an epoch. There are three modes of peak finding available – Positive,
Negative, and Absolute. The Positive mode will find the peak in the positive
values, the Negative mode is the exact opposite, and it will find the peak in
the negative values. The Absolute mode will find the most significant peak
across positive and negative values. Apart from the peak latency, the widget
also shows the peak amplitude.

Epochs to Vector

Classification methods require only essential data for them to work correctly.
For example, the convolutional neural networks usually work with feature
vectors. An Epochs to Vector widget was implemented, to convert processed
data to a vector.

In Figure 6.17, we can see that the widget’s graphical user interface is
quite minimalistic as it does not have any interactive inputs. The widget
contains one label with information about how many epochs were converted
to a vector in total.
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Figure 6.16: The graphical user interface of the Peak Latency widget

Figure 6.17: The graphical user interface of the Epochs to Vector widget

6.2.4 Classification
The purpose of the classification widgets is to find a structure based on
mutual relations in data.

Note that there are widgets for preprocessing and feature extraction in
this section, not only classification widgets. For example, there is a Reject
Amplitude widget with the same functionality as the Artifact Rejection wid-
get, but with one difference. The Reject Amplitude is used in classification
workflows to reject amplitude in vectors instead of MNE Python’s objects.
To prevent user’s confusion, the widgets associated with classification are in
one category together.

Prepare Vectors

This widget is specific to the Evaluation of the convolutional neural networks
experiment (see Section 7.3). Its source code was taken over from the original
source code [54] and modified to fit the widget requirements. Modified parts
are commented on in a source code of the widget. Widget expects two
input vectors – target and non-target and creates the Classification struct
from them, which is required for the classification process. Even though it
is specific to the one experiment, it is possible to use this widget in other
workflows.
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We can see the graphical user interface in Figure 6.18. Its GUI is quite
simplistic as it has a label with a description of the widget functionality and
one button.

Figure 6.18: The graphical user interface of the Prepare Vectors widget

Create Classification Struct

The Create Classification Struct widget, similarly, like the Prepare Vec-
tors widget creates a Classification struct from the input vector; however,
the classification classes of the vector are based on the stimulus selected in
the epoch extraction step. Additionally, it requires only one input vector
instead of two input vectors as opposed to the Prepare Vectors widget.

The graphical user interface of the widget is in Figure 6.19.

Figure 6.19: The graphical user interface of the Create Classification Struct
widget

Concatenate Classification Structs

The Concatenate Classification Structs widget, as the name suggests, is
useful to concatenate multiple Classification structs together. On top of
that, it crops all vectors size to match vector with the minimum size to
prevent overfitting. For example, when one stimulus has 400 events, and
the other has only 20, the classifier would be overfitted on the first stimulus.

The graphical user interface of the widget is in Figure 6.20. As we can
see, it is identical to the previous two widgets.
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Figure 6.20: The graphical user interface of the Concatenate Classification
Structs widget

Windowed Means

The Windowed Means widget extracts features in the following way. It splits
the extracted epochs into intervals based on the minimal latency, maximum
latency, and the number of steps. It then calculates the average value for
each EEG channel for each range. Those averages form a feature vector.
The functionality of this widget was taken from the original source code [54]
and modified to the widget’s needs. Modified parts are commented on in
the source code of the widget.

The graphical user interface of the widget is in Figure 6.21. The widget
has five inputs in total and one confirmation button. The first two inputs
(Min. latency, and Max. latency) are used to set the interval borders after
the stimuli occurrence. The next input (Number of steps) allows us to set
how many intervals will be averaged. The pre-epoch input is used to set
the time of the pre-stimulus. The last input is used to set the sampling
frequency rate of the signal in the extracted epochs.

Figure 6.21: The graphical user interface of the Windowed Means widget
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Reject Amplitude

Identically as the Artifact Rejection, the Reject Amplitude widget rejects
epochs whose amplitude exceeds the threshold limit. The difference is that
this widget works with vectors opposed to the Artifact Rejection, which
works with MNE’s library objects. Additionally, this widget has a switch
between units (V and µV ) because data from the original experiment are in
microvolts, and data processed in Orange are in volts.

We can see the graphical user interface of the widget in Figure 6.22.

Figure 6.22: The graphical user interface of the Reject Amplitude vector

CNN Reshape

The CNN Reshape is another widget that is explicitly implemented for
the Evaluation of the convolutional neural networks experiment (see Sec-
tion 7.3). This widget adds a singleton dimension to enable CNN classific-
ation using the Convolutional Neural Network widget. The code was taken
from the original source code, and the modified parts are commented on in
a source code of the widget.

The graphical user interface is in Figure 6.23.

Figure 6.23: The graphical user interface of the CNN Reshape widget.
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Train Test Split

It is necessary to provide training and testing dataset to use classification
methods that utilize supervised learning. It is possible to split one extensive
dataset into two parts – training and testing, to get such datasets. The Train
Test Split widget offers this functionality.

In Figure 6.24, we can see the graphical user interface of the Train Test
Split widget. It contains one input for numbers and one button. Using
the input for numbers, researchers can easily set the percentage representing
the proportion of the dataset to include in the test split.

Figure 6.24: The graphical user interface of the Train Test Split widget

Train Test Select

Similarly, like the Train Test Split, this widget is utilized to prepare the clas-
sification data. The only difference is that this widget requires two input
datasets instead of one – training and testing, widget then converts datasets
into a structure that necessary in classification widgets.

We can see the graphical user interface in Figure 6.25. It contains a label
with information about its functionality and a confirmation button.

Figure 6.25: The graphical user interface of the Train Test Select widget

Neighbor Average

The Neighbor Average widget is similar to the Windowed Means widget,
except instead of intervals, it averages N number of trials in epochs together.
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The source code was taken from the original experiment’s source code, and
modified parts are commented on in the widget’s source code.

We can see the graphical user interface in Figure 6.26. The widget con-
tains two checkboxes to select which datasets will be averaged, and two
inputs to set how many trials average together.

Figure 6.26: The graphical user interface of the Neighbor Average widget

Linear Discriminant Analysis

One of the classification methods utilized in electrophysiological experiments
is a Linear Discriminant Analysis (LDA). It is a classifier with a linear de-
cision boundary. The LDA classification from the scikit library2 is available
through the Linear Discriminant Analysis widget.

The graphical user interface is pictured in Figure 6.27. It has one input
for the number of iterations, one confirmation button, and a label with
the results. The results include four metrics for both validation and test
data – Accuracy, AUC (Area under the ROC Curve), Precision, and Recall.
The results include standard deviations for each metric as well.

Convolutional Neural Network

Convolutional neural networks can be used for the classification of electro-
physiological signals. A simple widget that uses Keras3 and Tensorflow4

libraries is called Convolutional Neural Network.
We can see the graphical user interface in Figure 6.28. The widget con-

tains two inputs – the number of epochs and the number of iterations, and
2scikit-learn – https://scikit-learn.org
3Keras – https://keras.io/
4Tensorflow – https://www.tensorflow.org/
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Figure 6.27: The graphical user interface of the Linear Discriminant Analysis
widget

one button to start the computation. The implemented model of CNN is
specific for the experiment described in Section 7.3. It would be possible to
let the researchers specify the model’s details; however, the graphical user
interface would be highly complex as the models have numerous different
settings. For this reason, only the model from the original experiment was
implemented as a proof of concept.

Figure 6.28: The graphical user interface of the Convolutional Neural Net-
work widget
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6.2.5 Visualization
These widgets are useful to understand the results of the analysis better, as
pictures or graphs are more easily understandable for humans than a table
of numbers, for example

EEG Plot

To better understand the raw data, it is necessary to have a way to visualize
them. This widget takes advantage of the plot function available on all
instances of mne.io.Raw, mne.Epochs, or mne.Evoked from the MNE-Python
library.

For each instance, the plot window has different features. For example,
the epochs’ plot allows setting how many epochs to show at once. The plot
of the averaged signal enables to create scalp map (see example map in
Figure 7.9) when a part of the averaged signal is selected using the mouse
cursor.

In Figure 6.29, we can see an example plot of the raw electrophysiological
data, as a result of this widget.

Figure 6.29: The visualization of the raw data using the EEG Plot widget

Compare Evokeds Plot

It can be useful to visualize multiple averages on a single plot to compare
respective signals against each other. The Compared Evokeds Plot widget
ensures this functionality.

We can see an example of the visualization in Figure 6.30.

60



Figure 6.30: The visualization of the multiple averages in a single plot using
the Compare Evokeds Plot
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7 Verification of proposed
solution

In this chapter, I will verify the proposed solution on selected electrophysiolo-
gical data. Verification of the created library will be assessed on three ex-
isting electrophysiological experiments from the Neuroinformatics lab. In
the last part of the chapter, I will discuss the results and describe the lim-
itations of the proposed solution.

7.1 Attention of driver during simulated drive
The first experiment on which the proposed solution will be assessed is
an experiment that was described in more detail earlier in Section 2.3.2.

The original research deals with EEG and ERP methods under various
conditions to investigate the driver’s attention. The subjects were stimulated
with audio signals during a drive on a car simulator after a usual night’s
sleep and after a sleep restricted to a maximum of four hours. The P300
components of the EEG signal for ordinary sleep and restricted sleep were
analyzed and discussed.

Experiment steps
The steps of the processing are the following:

1. Data Filtering – IIR Filter was applied to data from the Fz, Cz, and
Pz electrodes.

2. Epoch Extraction – The epochs were extracted in the time interval
(-100 ms, 900 ms) in the area of occurrence of the target stimulus.

3. Rejection of Corrupted Data – The epochs containing artifacts were
rejected.

4. Baseline Correction – The baseline was corrected using the interval
(-100 ms, 0 ms) before the occurrence of each target stimulus.

5. Data Averaging – The epochs of each participant were averaged and
stored. Then the grand averages for each experimental session were
computed.
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6. P3 Peak Latency – Maximum amplitude was found in the time interval
of a possible occurrence of the P3 component. Additionally, Fractional
50% Peak Latency and Fractional 50% Area Latency were found.

Workflow
We can see the whole workflow in Orange 3, pictured in Figure C.1. To
replicate the experiment in the Orange 3, the set of custom widgets listed
below, was utilized (parameters of individual widgets are in Table 7.1):

1. Data Filtering – For this part, an EEG Channel Select widget was used
to select the Fz, Cz, and Pz electrodes. Then an EEG Filter widget
was used to apply IIR Filter.

2. Epoch Extraction – An EEG Epoch Extraction widget was utilized to
select epochs for target stimulus.

3. Rejection of Corrupted Data – For the rejection of the corrupted data,
an automatic method was utilized instead of manual rejection. A wid-
get called EEG Artifact Rejection was used, which rejects such data,
that has a peak higher than the configured threshold.

4. Baseline Correction – The baseline was corrected using an EEG Baseline
Correction widget.

5. Data Averaging – For the data averaging, an EEG Averaging widget
was utilized.

6. P3 Peak Latency – An EEG Peak Latency widget was utilized to find
a P3 Peak latency. Additionally, an EEG Compare Evokeds widget
was used to visualize individual grand averages.

Results
A subset of the raw data from the experiment was selected to verify the cus-
tom widgets’ functionality. Data from three subjects – 165, 167, and 174,
were chosen to reproduce the experiment. The P3 Peak latency was found
in the grand average using the maximum amplitude technique only.

If we compare the results (see Table 7.2) with the results from the original
experiment article (Table 2 in [15]), we can see that our findings’ latency
is slightly higher. Higher latency can be caused by the IIR filter paramet-
ers that were applied, or by the rejection of the corrupted data technique.
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Widget Parameters
EEG Channel Select selected channels

FZ
EEG Filter method lower cutoff upper cutoff order type

IIR 0.1 38 4 butter
EEG Epoch
Extraction pre-stimulus time post-stimulus time annotations

-100 900 Stimulus/S 5
EEG Baseline
Correction lower interval upper interval

-100 0
EEG Artifact
Rejection threshold

38

Table 7.1: Values of parameters for individual widgets used in the workflow

Note that it was impossible to assign an exact data file to each result in
the original experiment. Furthermore, it was not possible to identify which
data files were recorded under sleep deprivation and vice versa.

The exact parameters for the IIR filter were not discussed in the before-
mentioned article; therefore, suitable parameters for electrophysiological
data were chosen in our workflow. Additionally, the rejection of corrup-
ted data in the original experiment was done manually. In our workflow,
a simple threshold method was utilized for the rejection, which could bias
the results even more.

Subject No. 1. recording
[ms]

2. recording
[ms]

3. recording
[ms]

4. recording
[ms]

165. 325 337 359 354
167. 343 346 283 357
174. 344 313 327 360

Grand Average 344 339 321 357
Grand Average

Combined
GA12
[ms]

GA34
[ms]

GA13
[ms]

GA24
[ms]

342 357 346 353

Table 7.2: Table of the results from the reproduced experiment showing
the latency of the P3 component on the Fz electrode, using the maximum
amplitude method

If we look at the plot in Figure 7.1 and compare it with the original
experiment article (Figure 7.2) , we can see that the voltage range is broader
in our plot. This may be caused by averaging only a subset of the whole
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recorded data. Nevertheless, we can see that the curves of the data are
similar.

Figure 7.1: Grand Averages computed from three subjects for the 1st, 2nd,
3rd and 4th recording

In Figure 7.3, we can see a grand average for a combination of recordings
from the three subjects’ averages. We can compare this plot with the original
experiment (see Figure 7.4) as well. In this case, similarly, like in the original
research, the latency is delayed for the sleep-deprived data (2nd and 4th
recording) compared to 1st and 3rd measurements (usual sleep).

7.2 Event-related potential datasets based on
a three-stimulus paradigm

The event-related potentials technique is widely used in cognitive neuros-
cience research. The P300 waveform has been explored in many research
articles, such as lie detection or brain-computer interfaces (BCI). However,
very few datasets are publicly available [55].

The original article [55] presents EEG/ERP data acquired using an odd-
ball hardware stimulator based on the three-stimulus paradigm. The data
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Figure 7.2: Grand Average on the electrode Fz - experimental sessions differ
in the daytime and duration of sleep [15]

Figure 7.3: Comparison of Grand Averages for the combination of 1st + 3rd
recording and 2nd + 4th recording

and metadata are shared in the EEG/ERP Portal1. Additionally, the article
describes the process and validation results of the presented data. The ori-

1EEG/ERP Portal – https://eegdatabase.kiv.zcu.cz
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Figure 7.4: Grand Average on the electrode Fz after usual sleep and sleep
deprivation [15]

ginal workflow from EEGLAB was recreated in Orange 3 utilizing the created
library and will be described in this section.

Experiment steps
The steps of the experiment’s data processing are the following:

1. Epoch extraction – The epochs were extracted in the time interval
(-500ms, 1000ms) in the area of occurrence of the target stimuli.

2. Baseline correction – The baseline was corrected using the (-500ms,
0ms) time interval before the occurrence of the target stimuli.

3. Filtering – The signal was band-pass-filtered with the cutoff frequen-
cies of 0.1 Hz and 8 Hz.

4. Resampling – Each epoch was down-sampled to 100 samples.

5. Feature Extraction – For each epoch, an average in six intervals fol-
lowing the occurrence of stimuli were calculated for each channel and
extracted into the final feature vector.
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6. Classification – A Linear Discriminant Analysis was trained on the train-
ing dataset and then evaluated using the test datasets.

7. Grand Averages – Additionally, grand averages and related scalp maps
were generated to show the ERP response.

Workflow
The whole workflow in Orange 3 to reproduce this experiment is pictured
in Figure C.2. For each step of the processing, the following widgets were
utilized (parameters of each widget are in Table 7.3):

1. Epoch extraction – An EEG Epoch Extraction widget was utilized to
extract epochs for target and non-target stimuli.

2. Baseline correction – An EEG Baseline Correction widget was used.

3. Filtering – The filtering was performed using an EEG Filter widget.
The method of filtering was set to IIR.

4. Resampling – An EEG Resample widget was utilized to down-sample
the signal to 100 Hz.

5. Feature Extraction – Extracted epochs were converted to a vector using
the EEG Epochs to Vector widget. Then classification struct was cre-
ated from the vector by Create Classification Struct widget. An EEG
Windowed Means widget was utilized to extract the features.

6. Classification – Structs with testing and training data were sent to
a Linear Discriminant Analysis widget.

7. Grand Averages – Multiple testing datasets were concatenated together
using an EEG Concatenation widget. Then required stimuli were ex-
tracted, and the average was calculated using an EEG Average widget.

Results
The results are split into two sections. In the first section, the results of
the classification part of the workflow will be discussed. In the second sec-
tion, the results of grand averages will be compared to the original article.
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Widget Parameters
Channel Select selected channels

Cz, Fz, Pz
Epoch Extraction pre-stimulus post-stimulus selected stimuli

-500 1000 2, 4
Baseline Correction lower interval upper interval

-500 0
Resample sampling rate

100
Filter method lower cutoff upper cutoff

IIR 0.1 8
Artifact Rejection amplitude threshold

100
Windowed
Means min. latency max. latency number

of steps pre-epoch sampling
frequency

200 500 6 -500 100
Linear Discriminant

Analysis number of iterations

30

Table 7.3: Values of parameters for individual widgets used in the workflow

Classification

The results of the LDA classification are visualized in a plot in Figure 7.5.
The plot has the same colors and visualization style as the original article’s
plot (see Figure 7.6) to allow for a more obvious comparison amongst them.

If we compare the plots, we can see that our workflow results have
a higher error rate (red bars) than in the original experiment. The higher
error rate may be caused by the classifier’s different training process, as
the original research uses EEGLAB, and our classifier uses Python’s library.
Additionally, the epochs with artifacts were rejected in the testing dataset.
The amplitude threshold was different for each experiment dataset so that
the percentage of rejected epochs would be as close as possible to the arti-
facts percentage in the original article. If we compare the artifact percentage
(blue bars) in both plots, we can see that they are almost identical. However,
even without the artifact rejection, the error rate was higher in comparison
to original results.

In Table C.1 in appendices, we can see the exact results of our workflow.
Even though the results are slightly worse than in the original experiment,
the accuracy’s median is close to 70 percent, which means that the classifier
is significantly better than random guessing.
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Figure 7.5: The results from the reproduced workflow of the LDA classific-
ation visualized in a plot

Figure 7.6: The results from the original article of the LDA classification
visualized in a plot [55]

Grand Averages

The last part of this experiment deals with grand averages and related scalp
maps that were generated to show how each stimulus type creates a different
ERP response.

If we compare our results (Figure 7.7) with the results from the original
experiment (Figure 7.8) we can see that the grand averages are identical;
thus, this part of the workflow is working correctly.

Even though there is no widget to create scalp maps, it is possible using
the EEG Plot widget. If the EEG Plot widget receives averaged epochs,
researchers can select a part of the signal in the plot, and the scalp map will
be generated. The resulting scalp maps produced utilizing this technique
can be seen in Figure 7.9.

If we compare the two scalp maps, we can see that they are similar,
but not identical. When particular stimuli were averaged to create scalp
maps, I noticed that signal from some channels was corrupted as it contained
artifacts. The problematic channels were excluded to create more accurate
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Figure 7.7: Grand averages (Pz electrode) for each stimulus type

Figure 7.8: Results of grand averages (Pz electrode) for each stimulus type
from the original article [55]

maps. However, the resulting scalp maps are slightly different opposed to
maps from the original article.

7.3 Evaluation of convolutional neural net-
works using a large multi-subject P300
dataset

Deep neural networks have been studied in various machine learning areas.
The signal classification of an event-related potential (ERP) is a highly com-
plex task potentially suitable for deep neural networks. In this experiment,
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Figure 7.9: The scalp maps for the target and distractor stimuli

convolutional neural networks (CNN) have been compared to linear dis-
criminant analysis (LDA) and support vector machines (SVM) using a large
multi-subject publicly available P300 dataset [56].

Experiment steps
The steps of the experiment’s data processing are the following:

1. Epoch extraction – Intervals between 200 ms prestimulus and 1000 ms
poststimulus were extracted.

2. Baseline correction – The prestimulus interval between -200 ms and
0 ms was used for the baseline correction.

3. Artifact rejection – Amplitude threshold was set to 100 µV to reject
severely damaged epochs caused by eye blinks.

4. Feature extraction – Feature extraction based on averaging time in-
tervals (Windowed Means) was used. The interval between 300 and
500 ms after stimuli was chosen.

5. Classification – Linear Discriminant Analysis, Support Vector Ma-
chine, and Convolutional Neural Networks were used for the classi-
fication.
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Workflow
The preprocessing of multiple file inputs using the Orange 3 is not as straight-
forward as when utilizing scripting languages. This is due to the graphical
user interface that needs to be quite complex to provide the required func-
tionality.

For this experiment, two workflows in Orange are prepared. The reason
for the two workflows is to verify the functionality of implemented widgets
using the same input dataset as in the original experiment. The second work-
flow contains the simplified creation of the input dataset (due to limitations
mentioned above), in addition to the classification part. Both workflows will
be described in the respective sections.

Workflow with the original dataset

We can see the whole workflow in Orange 3, pictured in Figure C.3. For
the replication of the experiment with original dataset, the following widgets
were utilized (the parameters of individual widgets are listed in Table 7.4):

1. Split Matlab into vectors – This is a specialized widget implemented
only for the requirements of this workflow. It is required to transform
the Matlab file into vectors that are further processed in the following
widgets.

2. Prepare Vectors – It is used to convert vectors into a structure required
for the next steps in the workflow.

3. Reject Amplitude in Vector – This widget was utilized to reject the cor-
rupted parts of the data.

4. CNN Reshape – Widget adds a singleton dimension to the data to
enable for CNN Keras classification.

5. Windowed Means – Averages selected time intervals that have been cal-
culated using the set parameters. It is used in the linear discriminant
analysis branch of the workflow.

6. Train/Test Split – Splits the dataset to training and testing parts.

7. Neighbour Average – Averages every N number of trials together in
the extracted epochs.

8. Convolutional Neural Network – Widget that runs CNN classification.

9. Linear Discriminant Analysis – Widget that runs LDA classification.
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Widget Parameters
Reject Amplitude amplitude threshold data in µV

100 selected
Train/Test Split validation %

25
Windowed
Means min. latency max. latency number

of steps pre-epoch sampling
frequency

300 1000 21 -200 1000
Neighbor
Average train data test data train averaging

factor
test averaging

factor
selected selected 1 1

Linear Discriminant
Analysis number of iterations

30
Convolutional NeuralNetwork number of iterations number of epochs

30 30

Table 7.4: Values of parameters for individual widgets used in the workflow

Workflow with the input dataset creation

Three recordings for each guessed number were selected (3x9) to create a tar-
get input dataset. Twelve recordings were chosen to create a non-target data-
set. Those two datasets were converted to vectors and utilizing the Prepare
Vectors widget then connected to the classification part of the workflow.

We can see the whole workflow in Orange 3, pictured in Figure C.4.
The widgets numbered 2-9 described in section before were utilized with
the same parameters. Additionally, the following widgets were used to re-
produce the experiment with input dataset creation:

1. Inputs Concatenation – Widget was used to concatenate multiple in-
put files with the same target stimulus (guessed number) before epoch
extraction. After the epoch extraction, multiple epochs were concat-
enated together.

2. Channel Select – To assure only channels Fz, Cz, and Pz was present.

3. Epoch Extraction – Used to extract target stimuli.

Results
Two workflows were created to verify the correct functionality of the custom
widgets. In this section, the results will be discussed for each respective
workflow.

74



Workflow with the original dataset

We can see the results from the original and reproduced experiment for LDA
and CNN classification in Table 7.5.

As we can see, the LDA classification results are almost identical for both
the original and the reproduced versions, which means that the implemented
widgets work correctly.

However, the results from the reproduced experiment for the CNN clas-
sification are different from the original results described in the article [56].
As the source code for CNN is taken from the original source code, I used
the debugger and found out that the fit method of the CNN model receives
the same input values and has the same parameters; however, the results
are different. I was not able to identify the cause. The only part that was
changed opposed to the original experiment is that the Tensorflow and Keras
libraries were updated to work with a newer version of Python and thus work
with Orange 3.

Experiment AUC Accuracy Precision Recall
LDA – original 61.77% (0.9) 61.76% (0.91) 61.45% (1.9) 64.64% (1.48)
LDA – reproduced 62.26% (1.04) 62.28% (1.05) 62.2% (1.62) 65.34% (1.78)
CNN – original 66.12% (0.68) 62.18% (0.88) 62.76% (1.96) 61.29% (2.49)
CNN – reproduced 84.29% (7.68) 77.26% (6.97) 78.17% (7.67) 75.79% (7.39)

Table 7.5: Comparison of the results from the original and reproduced ex-
periment for the LDA and CNN classification. The value inside parentheses
is standard deviation.

Workflow with the input dataset creation

The results from the original and reproduced experiment can be seen in
Table 7.6.

As we can see, similarly, like in the workflow with the original dataset,
the LDA classification results are comparable to the results of the original
experiment, even though there are small variations in standard deviation.

The CNN classification results are, however, very different. If we compare
the accuracy, we can see that the results differ in only four percent. Never-
theless, if we compare the standard deviation (value inside parentheses), we
can see that the deviation is several times bigger in the reproduced version.
I tried to debug the classification process but could not identify a glaring
error in the source code. Because of this, I think such results are caused by
the smaller training dataset, as only a subset of all recordings from the ori-
ginal experiment was used. Another thing that could bias the results can be
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the updated version of Keras and Tensorflow libraries, as was discussed in
the section before.

Experiment AUC Accuracy Precision Recall
LDA – original 61.77% (0.9) 61.76% (0.91) 61.45% (1.9) 64.64% (1.48)
LDA – reproduced 69.24% (2.91) 62.11% (3.53) 73.88% (3.43) 83.66% (3.65)
CNN – original 66.12% (0.68) 62.18% (0.88) 62.76% (1.96) 61.29% (2.49)
CNN – reproduced 58.34% (14.82) 58.55% (14.99) 48.7% (29.56) 73.33% (44.22)

Table 7.6: Comparison of the results from the original and reproduced ex-
periment for the LDA and CNN classification with custom created input
dataset. The value inside parentheses is standard deviation.

7.4 Conclusion
In this section, I will evaluate the results of the reproduced experiments and
describe the limitations of the proposed solution.

Three existing experiments were chosen for verification. It was shown
that it is possible to reproduce the experiments in Orange 3, utilizing the cus-
tom library. Most of the results (with one exception) are comparable to
the original experiments’ results, indicating the correct functionality of the im-
plemented widgets. The one exception is the Convolutional Neural Networks
widget, as the results were different in comparison to the original research
results. The possible reasons for different results based on my observation
might be smaller training dataset or the version of the used libraries, as
the source code was taken from the original research source code. Further
debugging and research would be necessary to ensure the widget’s function-
ality.

In terms of limitations of using the graphical user interface for the elec-
trophysiological data processing, there are some nuisances in comparison to
the scripting approach. For example, Orange 3 allows for multiple inputs
to a widget using one signal line but does not provide this functionality for
the widget’s output. This may cause lengthy workflow creation in the case of
multiple input files. It would be possible to solve this by wrapping the data
in custom classes; however, this approach would introduce unnecessary com-
plexity to the syntactical check amongst widgets’ connections, as it would
be necessary to have multiple different wrapper classes. This solution was
verified and is available in the original git repository in a branch called
„multiple-files“.
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Another limitation is that the implemented widgets do not utilize mul-
tiple computation threads, which means when the computation takes a long
time, the GUI freezes. It is possible to take advantage of multiple threads in
Orange 3; however, this was not implemented because of the time reasons.

One more limitation is that when each widget receives input data, it cop-
ies them. This may be a problem when working with multiple or large data-
sets as it increases RAM requirements with each connected widget. Widgets
were implemented in this way because Orange does not provide a way to
restart a whole workflow from the start. If users were to use a widget that
modifies the data, such as channel select, which drops unwanted channels
and later decided to have dropped channels present, it would be impossible
as the widget would not have a copy of original data. They would have
to manually set the widgets from the beginning of the workflow to recover
the dropped channels, which would be tedious.

The last limitation is the widgets’ complexity needed to ensure correct
functionality, which applies mainly to more complicated analytical methods
implemented in widgets. For example, the convolutional neural networks
have numerous different parameters and settings, making it challenging to
create a proper graphical user interface that allows only the compatible
settings to be selected. Moreover, the input data may be diverse, which is
another challenging factor. On top of that, syntactic compatibility has to
be solved, which adds to the complexity of widgets.

77



8 Conclusion

The analysis revealed that there are many existing workflow management
systems; however, just a few of them are usable for electrophysiological data
processing. On top of that, no system integrated with community-respected
repositories for electrophysiological data was found. Suitable systems were
further analyzed and assessed on several requirements to fit the needs of
the Neurophysiological laboratory KIV/NTIS of the University of West Bo-
hemia. The requirements were the following: availability of analytical meth-
ods, graphical user interface, syntactical and semantical compatibility check,
community’ size, user’s manual, and ease of development. Additionally,
suitable libraries with electrophysiological data processing methods were de-
scribed. As a result of the evaluation, an Orange tool was chosen as the most
appropriate tool to fit the laboratory’s needs.

For the selected workflow management system – Orange 3, a custom
library was implemented. The custom library provides 30 widgets for elec-
trophysiological data processing.

The implemented library’s functionality was verified on three existing
experiments from the Neurophysiological laboratory KIV/NTIS. The work-
flows of experiments were reproduced in Orange 3, utilizing the custom lib-
rary, and results were discussed. The experiments were successfully repro-
duced with comparable results to original experiments with one exception.
The one exception is the Convolutional Neural Networks widget, where res-
ults differentiated significantly from the original experiment’s findings, and
further debugging and research is advised.

There are some limitations to the implemented library that were dis-
cussed. The most significant is the complexity of the widgets needed to
ensure the required functionality. As the analytical methods have various
parameters and settings, it is challenging to create a usable graphical user
interface. On top of that, it is quite challenging to design the widget to work
in general experiments and not only in specific ones.

Overall, it was shown that it is possible to use Orange 3 as an open-source
alternative to currently used software at the laboratory. However, the lib-
rary requires further development to become an alternative to the scripting
approach of workflows creation, as such an approach is more flexible. In
the current state, the library can be easily used in workflows with a smaller
amount of input dataset files, and thus may be an alternative to a scripting
approach.
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List of abbreviations

API Application programming interface

BIDS Brain Imaging Data Structure

CNN Convolutional Neural Network

EEG Electroencephalography / Electroencephalogram

ERP Event-related potential

GIN G-Node Infrastructure

GUI Graphical user interface

LDA Linear Discriminant Analysis

MEG Magnetoencephalography

NIX Neuroscience information exchange format

NWB:N Neurodata Without Borders: Neurophysiology

REST Representational state transfer

SEEG Stereotactic Electroencephalogram
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A Contents of the attached
DVD

Repository

In addition to the enclosed DVD, it is possible to find the library’s source
codes in the repository on GitLab1. However, the repository does not include
thesis’ poster, experiment datasets, and latex source code.

DVD

The hierarchy of the DVD’s folders is the following:
/

poster............................poster in .pub and .pdf formats
sources

analysis-examples .............. source code for sample widgets
orange
snakemake
vistrails

latex ...........................LATEX source code of this thesis
orange-mne-library...................source code of the library

workflows.........................verification workflows in Orange
drivers-attention.................experiment from Section 7.1
three-stimulus....................experiment from Section 7.2
neural-networks...................experiment from Section 7.3

Installation and usage

First, it is essential to have a Python installed, at least in version 3.7, and
then install the Orange 3 tool. Then it is possible to install the library
using the pip tool. More information can be found in the README.md file in
the library’s source code directory.

The best way to run the created experiments is to copy the workflows

directory’s content into this path: c:\dev\orange, as the input dataset files
are loaded automatically when the workflow is opened, and they have an ab-
solute path set. And then open the workflow in Orange.

1MNE Widgets for Orange 3 – https://gitlab.com/fifal/orange-mne-library
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B Source code for sample
modules

B.1 Orange
In Listing B.1, we can see a Python source code for the VisTrails module,
which concatenates two strings together.
1 from Orange . widgets import widget , gu i
2 from Orange . widgets . u t i l s . s i g n a l s import Input , Output
3

4 class SampleWidget ( widget .OWWidget) :
5 name = " Sample EEG Widget "
6 d e s c r i p t i o n = " This widgets concatenate s two s t r i n g s

toge the r . "
7 i con = " i c on s / t e s t . png "
8 p r i o r i t y = 10
9

10 v_1 = " "
11 v_2 = " "
12

13 # De f i n i t i on o f Inputs
14 class Inputs :
15 v1 = Input ( "Raw Data " , str )
16 v2 = Input ( " F i l t e r e d Data " , str )
17 # De f i n i t i on o f Outputs
18 class Outputs :
19 output = Output ( "Output data " , str )
20

21 want_main_area = False
22

23 # Widget i n i t i a l i z a t i o n
24 def __init__( s e l f ) :
25 super ( ) . __init__ ( )
26

27 # GUI
28 s e l f . l a b e l = gui . widgetLabel ( s e l f . contro lArea , "The

r e s u l t i s : ?? " )
29

30 # Se t t e r f o r input 1
31 @Inputs . v1
32 def set_constant ( s e l f , data ) :
33 s e l f . v_1 = data
34 s e l f . commit ( )
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35

36 # Se t t e r f o r input 2
37 @Inputs . v2
38 def set_data ( s e l f , data ) :
39 s e l f . v_2 = data
40 s e l f . commit ( )
41

42 # Computation
43 def commit ( s e l f ) :
44 r e s u l t = s e l f . v_1 + " " + s e l f . v_2
45 s e l f . l a b e l . setText ( "The r e s u l t i s : " + r e s u l t )
46 s e l f . Outputs . output . send ( r e s u l t )

Listing B.1: Source code of the sample module for Orange

B.2 VisTrails
In Listing B.2, we can see a Python source code for the VisTrails module,
which concatenates two strings together.
1 from v i s t r a i l s . core . modules . c on f i g import IPort , OPort
2 from v i s t r a i l s . core . modules . v i s t ra i l s_modu l e import Module ,

ModuleError
3

4 class SampleEEGModule (Module ) :
5 # De f i n i t i on o f input por t s
6 _input_ports = [
7 IPort (name="RawData" , s i gna tu r e=" ba s i c : S t r ing " ) ,
8 IPort (name=" Fi l t e redData " , s i gna tu r e=" ba s i c : S t r ing " )
9 ]

10

11 # De f i n i t i on o f output por t s
12 _output_ports = [
13 OPort (name="OutputData " , s i gna tu r e=" ba s i c : S t r ing " )
14 ]
15

16 # Module i n i t i a l i z a t i o n
17 def __init__( s e l f ) :
18 Module . __init__( s e l f )
19

20 # De f i n i t i on o f module func t i on
21 def compute ( s e l f ) :
22 v1 = s e l f . get_input ( "RawData" )
23 v2 = s e l f . get_input ( " F i l t e redData " )
24

25 s e l f . set_output ( "OutputData " , v1 + " " + v2 )
26
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27 _modules = [ SampleEEGModule , ]

Listing B.2: Source code of the sample module for VisTrails

B.3 Workflow Designer
In listing B.3, we can see a Java source code for the concatenation module
written for the Workflow designer.
1 package cz . zcu . s tudents . f j a n i ;
2

3 import cz . zcu . k iv . WorkflowDesigner . Annotations . ∗ ;
4 import cz . zcu . k iv . WorkflowDesigner . Type ;
5

6 import java . u t i l . L i s t ;
7

8 @BlockType ( type = " Concatenate " , f ami ly = " General " )
9 public class Concatenate

10 {
11 // De f i n i t i on o f input por t
12 @BlockInput (name = " Values " , type = Type .STRING_ARRAY)
13 private List<Str ing> va lues ;
14

15 // De f in i ton o f output por t
16 @BlockOutput (name = "Output " , type = Type .STRING)
17 private St r ing output = " " ;
18

19 // Function which i s executed when the~workf low i s run
20 @BlockExecute
21 public void proce s s ( ) {
22 for ( S t r ing value : va lue s )
23 {
24 output += value ;
25 }
26 }
27 }

Listing B.3: Source code of the Concatenation module for the Workflow
Designer

B.4 NeuroPype Suite
In Listing B.4, we can see a Python source code for the node, which concat-
enates two strings.
1 from . . . eng ine import ∗
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2

3 class SampleEEGNode(Node ) :
4 # Input por t s
5 v1 = DataPort ( str , "Raw data " , IN)
6 v2 = DataPort ( str , " F i l t e r e d data " , IN)
7

8 # Output por t s
9 output = DataPort ( Packet , "Output data " , OUT)

10

11 v1_str = " "
12 v2_str = " "
13

14 def __init__( s e l f , ∗∗ kwargs ) :
15 s e l f . _has_emitted = False
16 super ( ) . __init__(∗∗ kwargs )
17

18 @classmethod
19 def d e s c r i p t i o n ( c l s ) :
20 " " " Dec lare d e s c r i p t i v e in fo rmat ion about the~node " " "
21 return Desc r ip t i on (name=’ St r ing Concatenation ’ ,
22 d e s c r i p t i o n=" " " \
23 Takes two s t r i n g s as an~ input and

concatenate s them .
24 " " " ,
25 u r l=’ https : // example . cz ’ ,
26 ve r s i on=’ 1 . 0 . 0 ’ , s t a tu s=DevStatus .

product ion )
27

28 @Node . update . s e t t e r
29 def update ( s e l f , v ) :
30 # Updates c l a s s p r o p e r t i e s i f not n u l l
31 i f not s e l f . v1 == None :
32 s e l f . v1_str = s e l f . v1
33 i f not s e l f . v2 == None :
34 s e l f . v2_str = s e l f . v2
35

36 @output . g e t t e r
37 def output ( s e l f ) :
38 # Returns output in a~Packet , t h a t can be d i s p l a y ed by

the~Print to Console node
39 block = Block ( data=[ s e l f . v1_str + " " + s e l f . v2_str ] )
40 chunk = Chunk( block=block )
41 return Packet ( [ chunk ] )

Listing B.4: Source code of the Concatenation module for the Pipeline
Designer
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C Verification

Experiment
ID

Accuracy
[%]

Error rate
[%]

Artifacts
[%]

76 77.76 21.87 18.60
85 71.69 28.78 28.30
86 66.89 33.55 9.94
87 70.37 29.65 9.85
91 66.52 34.65 5.33
92 68.73 31.33 8.71
93 76.17 23.64 18.84
94 57.37 40.58 6.12
95 62.79 37.69 28.87
96 74.57 24.19 29.13
97 61.97 39.43 20.34
98 62.7 35.70 10.06
99 68.56 34.67 20.76
100 53.3 45.60 1.62
101 59.71 40.00 23.32
102 67.63 35.21 23.15
103 62.69 36.42 19.90
104 75.6 25.00 10.20
105 71.42 30.86 19.50
106 66.09 36.66 24.00
Median 67.26 34.66 -
Standard
Deviation 6.5 6.32 -

Table C.1: The results of the LDA classification in reproduced experiment
using Orange 3 and custom library
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D User manual

The User manual is on the following pages. the manual was generated using
the MkPdfs for MkDocs1 and uses their sample template.

1MkPdfs for MkDocs – https://comwes.github.io/mkpdfs-mkdocs-plugin/index.

html
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User Documentation

Orange3-MNE is a python package, that provides methods from MNE for Python for Orange 3 in
a form of widgets, to allow for electrophysiological data processing.

Note: This library was created as a part of the master's thesis to show that it is
possible  to  use  Orange  3  as  a  workflow  management  system  for
electrophysiological  data  processing.  The  widgets'  functionality  was  verified  on
three existing experiments. Nevertheless, the library requires further development. 

Installation

The installation process is quite straightforward, first we need to install the Orange 3 tool:

Note: If you have Orange 3 already installed, you can skip this step.

    virtualenv orange          # Create a virtual environment

    ./orange/Scripts/activate  # Activate the environment 

    pip install Orange3 PyQt5  # Install Orange 3 and PyQt library

Then it is possible to install the library using one of the following methods.

Pip Method

   pip install Orange3-MNE

GUI Method

Run Orange: python -m Orange.canvas

In Orange navigate to Options -> Add-ons
Click on Add more... and enter the package name: Orange3-MNE

Confirm the settings and Orange will install the library
Restart Orange and the electrophysiological data processing library will be available

1. 

2. 
3. 

4. 
5. 

4 User Documentation



Widgets

In this chapter, available widgets will be briefly described.

Data IO

Widgets from this category are utilized to load input files, or save the results.

BrainVision EEG Reader

This widget is used to load .vhdr files recorded from the BrainVision.

The widget window contains a clickable button, which opens the file selection dialog and a
combo box, which allows to set the montage type to visualize various plots. After the file is
selected, or the montage is changed, the loaded data are automatically sent to the output port
of the widget.

Input - BrainVision's .vhdr file

Output - MNE-Python's object with type of mne.io.Raw

EEGLAB Reader

This widget is used to load .set files from EEGLAB.

5 Widgets



The widget window contains a clickable button, which opens the file selection dialog and a
combo box, which allows to set the montage type to visualize various plots. After the file is
selected, or the montage is changed, the loaded data are automatically sent to the output port
of the widget.

Input - EEGLAB's .set file

Output - MNE-Python's object with type of mne.io.Raw

Matlab File Reader

This widget is utilized to load data files in a Matlab format (.mat).

The widget window contains a clickable button, which opens the file selection dialog. After the
file is selected the loaded data are automatically sent to the output port of the widget.

Input - Matlab's .mat file

Output - dict

6 Widgets



Fif File Save

It is possible to save three different types of processed data – raw, epochs or evokeds.

If the processing takes a long time, or to load the data in another workflow, it may be useful to
save the processed data into a file first and load them later. The Fif File Save widget has this
functionality. 

Each type of processed data has its suffix after the file is saved. The suffix is important because
when loading the data using the MNE library, each type requires a different method:

Raw: -raw.fif

Epochs: -epo.fif

Evokeds: -ave.fif

Input - MNE-Python's object with type of mne.io.Raw, mne.Epochs, or mne.Evoked

Output - Fif File

Fif Reader

The Fif Reader widget is used to load data files that were saved by the Fif File Save widget.
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Input - Fif File 

Output - MNE-Python's object with type of mne.io.Raw, mne.Epochs, or mne.Evoked

Preprocessing

Widgets  in  this  category  are  utilized  to  prepare  the  raw  data  for  processing.Such  widgets
include epoch extraction, channel selection, filtering, and more.

Channel Select

The  raw  recorded  electrophysiological  data  may  contain  several  channels,  but  for  their
processing, researchers may need only a few of them. For this purpose, a Channel Select widget
is present in the library. The Channel Select allows researchers to select specific channels from
the raw data.
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If data were sent to the widget, the widget will display all found channels. The user then can
select desired channels only by writing their names comma separated in a line edit.

Input - MNE-Python's object with type of mne.io.Raw

Output - MNE-Python's object with type of mne.io.Raw

Epoch Extraction

The  electrophysiological  signal  recordings  can  be  very  long.  However,  in  some  cases,  the
researchers are interested only in part of the data, where particular stimuli have occurred. For
such cases, epoch extraction methods are available.

Parameter tMin corresponds to Pre-stimulus time to extract. Parameter tMax corresponds to

Post-stimulus time to extract.

If  data  were  already  loaded and annotations  were  found a  block  with  checkboxes  will  be
displayed. In this block, users can select particular stimuli for the extraction.

Input - MNE-Python's object with type of mne.io.Raw

Output - MNE-Python's object with type of mne.Epochs
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Filter

Filtering is an essential step of preprocessing, as recorded signals can contain a lot of signal
noise.  For  example,  electrophysiological  recordings  can  be  noisy  because  of  power  line
interference. 

The filter widget supports two methods of filtering – IIR or FIR. The graphical user interface is
dynamically changing based on the selected method. 

The essential parameters of the IIR method are lower and upper cutoff frequency. Additionally,
there are several advanced parameters, such as type and order of the filter and their specifying
parameters. The types of the filter can be Chebyshev, Butterworth, Elliptic, or Bessel/Thompson.
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Similarly, like the IIR method, the FIR method offers the setting of essential parameters – lower
and upper pass-band edge. The specific parameter settings for the FIR method are filter length,
FIR window type, and phase.

Input - MNE-Python's object with type of mne.io.Raw, mne.Epochs, or mne.Evoked

Output - MNE-Python's object with type of mne.io.Raw, mne.Epochs, or mne.Evoked

Baseline Correction

Baseline correction is a significant part of preprocessing. An uneven amplitude shifts may occur
in the recorded signal. For further processing and analysis, it is necessary to compensate for
such amplitude shifts.

The widget has two text inputs that are utilized to define an interval from the whole epoch
length, which will be used for the baseline correction.

Input - MNE-Python's object with type of mne.Epochs
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Output - MNE-Python's object with type of mne.Epochs

Artifact Rejection

Individual epochs extracted from the recorded signal may contain artifacts, which may bias the
results.  Such  artifacts  may  be  caused  by,  for  example,  eye  movement  (eyewink),  or  head
movement. The simplest method to detect such artifacts is by the amplitude of the signal.

After the threshold is set, the widget iterates over epochs and finds an amplitude peak for each.
If the absolute value of the peak is greater than the threshold, the epoch is rejected.

Input - MNE-Python's object with type of mne.Epochs

Output - MNE-Python's object with type of mne.Epochs

Averaging

Electrophysiological data may contain artifacts even after filtering, to get a better picture of the
final signal's final form, it is useful to take advantage of the signal averaging methods. For this
purpose, there is an EEG Averaging widget available in the created library.
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When the widget  receives the data,  it  shows a group of  checkboxes,  where each checkbox
represents a stimulus category.  Apart  from the name of the stimulus,  a count of  stimuli  is
displayed.  Users  can  select  specific  stimulus  over  which  will  be  the  signal  from  epochs
averaged. Although it is usually useful to average signals that belong to one particular stimulus,
users have the possibility to average signals over more than one stimulus.

Input - MNE-Python's object with type of mne.Epochs

Output - MNE-Python's object with type of mne.Evoked

Concatenation

Orange allows for multiple data inputs through one signal line into a widget; however, it does
not allow to output several data utilizing one signal line out of a widget. This functionality may
be a  limitation for  researchers  that  have multiple  input  files.  The  Concatenation widget  is
included in the library to get around this limitation. 

To  concatenate  multiple  data  inputs  correctly  all  inputs  must  have  the  same  number  of
channels.

Input - MNE-Python's object with type of mne.io.Raw, mne.Epochs

Output - MNE-Python's object with type of mne.io.Raw, mne.Epochs
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Re-sample

Resample widget can be used to resample extracted epochs to required sampling frequency.

The Resample widget may resample the sampling frequency of the extracted epochs to a range
of 1–1000 Hz.  This may be usefull  for  workflows where high resolution of  the signal  is  not
necessary and would slow down the processing of the data.

Input - MNE-Python's object with type of mne.Epochs 

Output - MNE-Python's object with type of mne.Epochs 

Grand Average

The grand average is an average calculated from multiple averages.

This can be beneficial, for example, when examining the data from several testing subjects, as
this approach can mitigate some abnormalities or artifacts.

Input - Multiple MNE-Python's objects with type of mne.Evoked

Output - MNE-Python's object with type of mne.Evoked
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Feature Extraction

Peak Latency

There are two text inputs for the time interval and a combo box for the mode selection. The
time interval is useful if we want to find a peak in a specific range of an epoch. There are three
modes of peak finding available – Positive, Negative, and Absolute. The Positive mode will find
the peak in the positive values, the Negative mode is the exact opposite, and it will find the
peak in  the negative values.  The Absolute mode will  find the most  significant  peak across
positive and negative values.  Apart  from the peak latency,  the widget also shows the peak
amplitude.

Input - MNE-Python's object with type of mne.Evoked

Output - None

Epochs to Vector
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Epochs to Vector is a widget that converts mne.Epochs into a vector which may be utilized in

classification workflows. The graphical user interface of the widget is quite minimalistic as it
does not have any interactive inputs. The widget contains one label with information about how
many epochs were converted to a vector in total.

Input - MNE-Python's object with type of mne.Epochs

Output - dict with the following format: - { data: <vector_with_the_data>, sfreq:

<sampling_frequency>,  stimuli:  <selected_stimuli>,  channels:

<channel_names> }

Classification

Prepare Vectors

Widget expects two input vectors – target and non-target and creates the Classification struct
from them, which is required for the classification process

Input - dict – Target vector - dict – Non-target vector 

Output - EegClassification.structs.ClassificationStruct

Create Classification Struct
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The  Create  Classification  Struct  widget,  similarly,  like  the  Prepare  Vectors  widget  creates  a
Classification struct from the input vector; however, the classification classes of the vector are
based on the stimulus selected in the epoch extraction step.

Input - dict – Input vector 

Output - EegClassification.structs.ClassificationStruct

Concatenate Classification Structs

The Concatenate Classification Structs widget, as the name suggests, is useful to concatenate
multiple Classification structs together. On top of that, it crops all vectors size to match vector
with the minimum size to prevent overfitting, for example, when one stimulus has 400 events,
and the other has only 20, the classifier would be overfitted on the first stimulus.

Input - multiple dict – Input vectors 

Output - EegClassification.structs.ClassificationStruct

Windowed Means

17 Widgets



The Windowed Means  widget  extracts  features  in  the  following  way.  It  splits  the  extracted
epochs into intervals based on the minimal latency, maximum latency, and the number of steps.
It then calculates the average value for each EEG channel for each range.

Parameters:  -  Min. latency:  Lower  border  for  the  intervals  (after  the  stimulus)  -  Max.

latency: Upper border for the intervals (after the stimulus) - Number of steps: Number of

intervals on selected range (lower, upper) - Pre-epoch:  Sets how much time was extracted

pre-stimulus in epochs - Sampling frequency: Sets the sampling frequency of the signal

Input - EegClassification.structs.ClassificationStruct

Output - EegClassification.structs.ClassificationStruct

Reject Amplitude

Identically  as  the  Artifact  Rejection,  the  Reject  Amplitude  widget  rejects  epochs  whose
amplitude exceeds the threshold limit.  The difference is that this widget works with vectors
opposed to the Artifact Rejection, which works with MNE’s library objects.
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Additionally, this widget has a switch between units (V and μV)

Input - EegClassification.structs.ClassificationStruct

Output - EegClassification.structs.ClassificationStruct

CNN Reshape

This widget adds a singleton dimension to enable CNN classification using the Convolutional
Neural Network widget.

Note:  This widget is specific to one experiment (Evaluation of the convolutional
neural  networks  experiment (https://www.sciencedirect.com/science/article/abs/
pii/S1746809419304185))

Input - EegClassification.structs.ClassificationStruct

Output - EegClassification.structs.ClassificationStruct

Train Test Split
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It is necessary to provide training and testing dataset to use classification methods that utilize
supervised learning. To get such datasets it is possible to split one extensive dataset into two
parts – training and testing. The Train Test Split widget offers this functionality.

The Train Test Split widget contains one input for numbers and one button. 

Using the input for numbers,  researchers can easily set the percentage that represents the
proportion of the dataset to include in the test split.

Input - EegClassification.structs.ClassificationStruct

Output - EegClassification.structs.TestTrainStruct

Train Test Select

Similarly, like the Train Test Split, this widget is utilized to prepare the data for the classification.
The only difference is that this widget requires two input datasets instead of one – training and
testing, widget then converts datasets into a structure that necessary in classification widgets.

Input - EegClassification.structs.ClassificationStruct

Output - EegClassification.structs.TestTrainStruct

Neighbor Average
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The  Neighbor  Average  widget  is  similar  to  the  Windowed Means widget,  except  instead  of
intervals, it averages N number of trials in epochs together.

The widget contains two checkboxes to select which datasets will be averaged.

Input - EegClassification.structs.TestTrainStruct

Output - EegClassification.structs.TestTrainStruct

Linear Discriminant Analysis

The  LDA  classification  from  the  scikit  library  is  available  through  the  Linear  Discriminant
Analysis widget.

The results include four metrics for both validation and test data – Accuracy, AUC (Area under
the ROC Curve), Precision, and Recall. Additionally, the results include a standard deviation as
well.
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Note: If only one result is displayed it correspons to Accuracy

Input - EegClassification.structs.TestTrainStruct

Output - None

Convolutional Neural Network

A simple widget that uses Keras and Tensorflow libraries

The implemented model  of  CNN is  specific for  the experiment described in original  article
(https://www.sciencedirect.com/science/article/abs/pii/S1746809419304185).  It  would  be
possible to let the researchers specify the model details; however, the graphical user interface
would be highly complex as the models have numerous different settings. For this reason, only
the model from the original experiment was implemented as a proof of concept.

Input - EegClassification.structs.TestTrainStruct

Output - None

Visualization

Widgets in this category are usefull for the visualization of the raw or processed data.
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EEG Plot

EEG plot widget utilizes the plot() function from the MNE library.

The widget contains a clickable button, which opens the generated plot for the data.

Input - MNE-Python's object types: mne.io.Raw, mne.Epochs, or mne.Evoked

Output - None

Compare Evokeds Plot

It can be useful to visualize multiple averages on a single plot to compare respective signals
against each other. The Compared Evokeds Plot widget ensures this functionality.

The graphical user interface is the same as for the EEG Plot widget.
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