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Abstract
This master’s thesis describes the current solution of storing the neuroin-
formatics laboratory experiments of the University of West Bohemia. An
analysis of available data standards for storing neurophysiological experi-
ments is done where each data standard is evaluated on the following of the
FAIR principles of storing open science data. The most appropriate stand-
ard is selected based on the FAIR principles assessment and the complexity
of potential conversion. A conversion tool is implemented to convert the
current experiments to the new data standard. Based on the selected data
standard, a suitable repository is chosen to store the converted experiment
datasets and replace the current solution. A FAIR principles assessment is
done on the resulted dataset uploaded in the repository.

Abstrakt
Tato práce popisuje současné řešení ukládání elektrofyziologických experi-
mentů neuroinformatické laboratoře na Západočeské univerzitě. Jsou zkou-
mány dostupné datové standardy vhodné k ukládání podobných experi-
mentů. Každý z těchto standardů je ohodnocen na základě splňování tzv.
FAIR principů pro ukládání otevřených vědeckých dat. Z tohoto ohodnocení
a posouzení náročnosti případné konverze stávajících dat je vybrán nejvhod-
nější standard. Následně je implementován nástroj na konverzi stávajících
dat do vybraného standardu. V návaznosti ke zvolenému standardu je vy-
bráno a zprovozněno i vhodné datové úložiště, do kterého budou nová data
uložena. Na výsledném řešení je provedeno vyhodnocení splnění jednotlivých
FAIR principů.
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1 Introduction

The variety of open scientific data and their formats is continually expand-
ing. For maintaining the ability to manipulate, analyze, and share these ex-
panding data, a multitude of different recommendations and principles are
being introduced. These principles offer guidelines to define these data and
their metadata, to make them more findable, user-readable, and machine-
operable.

The neuroinformatics laboratory at the Faculty of Applied Sciences, Uni-
versity of West Bohemia, performs different types of electrophysiological
experiments. The locally maintained EEGbase portal is currently used to
store the resulting datasets of these experiments. However, the portal is too
complicated and becoming outdated in terms of technology and in terms of
compliance with the open data principles as well.

This master’s thesis focuses on the FAIR principles and describes their
proposed guidelines to achieve the dataset’s findability, accessibility, inter-
operability, and readability. The current data model to store the datasets
combines different technologies that do not comply well with the principles.
Multiple data standards suitable for storing neurophysiological experiments
are described. The most suitable data standard is selected upon the as-
sessment of the FAIR principles. However, the difficulty of the follow-up
conversion must be taken into consideration as well. Based on the selection
of the new data model, an appropriate data repository is chosen. This re-
pository is used as the storage for the newly converted datasets and should
act as a supporting role in the satisfaction of the FAIR principles.

A Python tool for converting the original EEGbase data to the selec-
ted data standard is implemented. Although the primary focus is put into
converting the EEGbase data and its structure, the design has been made
more general to allow for broader use of the tool and conversion of differently
structured metadata. The goal of the conversion is to lead to a FAIR dataset
without the loss of any crucial information from the original dataset.

The implemented tool is tested on a set of selected datasets from the
EEGbase portal, and the converted datasets are shared into the new repos-
itory. The final result is evaluated for compliance with the FAIR principles.
The ideal outcome of this thesis is the proposed and implemented solution
replacing the current EEGbase portal and its data model completely.
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2 FAIR principles

There are several guidelines and principles available to follow while storing,
maintaining and disclosing open scientific data. One of these guidelines are
so-called FAIR principles. This chapter describes these principles, including
examples of correct ways of fulfilling them.

The main goal of FAIR principles is to make data more machine-friendly.
That is, to make computational systems more capable of finding, accessing,
interoperating and reusing data, without the need of any or minimal human
intervention. These attributes are becoming more significant as the reliance
on computational support for humans dealing with data grows with the
increasing volume, creation speed and complexity of given data [1].

FAIR principles include four main categories described below, each cat-
egory is separated into multiple steps that the data have to meet. They
are brief, domain-independent, high-level principles that can be applied to
a wide range of outputs. Some of the principles may include underlying
points that further specify the main cause (i.e. the A1 principle contains
the further specifying points A1.1 and A1.2). The principles refer to three
types of entities: data (or any digital object), metadata (information about
that digital object), and resource (the infrastructure component, e.g., a re-
pository). Throughout the principles, a phrase ‘(meta)data’ is used in cases
where the principle should be applied to both metadata and data [1, 2].

Findable

The first step in using data is being able to find them. This includes assigning
a persistent identifier which ensures that metadata and data are easy to find
for both humans and computers. Machine-readable metadata are essential
for automatic discovery of datasets and services [1, 3].

F1. (meta)data are assigned a globally unique and persistent identifier

F2. data are described with rich metadata (defined by R1 below)

F3. metadata clearly and explicitly include the identifier of the data it de-
scribes

F4. (meta)data are registered or indexed in a searchable resource
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Accessible

Once the required data are found, the next step is to know how they can
be accessed. As the data do not necessarily have to be open, this step may
also include authentication and authorization [1, 3].

A1. (meta)data are retrievable by their identifier using a standardized com-
munications protocol

A1.1 the protocol is open, free, and universally implementable
A1.2 the protocol allows for an authentication and authorization pro-

cedure, where necessary

A2. metadata are accessible, even when the data are no longer available

Interoperable

The data usually need to be integrated with other data. In addition, the data
need to interoperate with applications or workflows for analysis, storage, and
processing. For that, the data should use community agreed formats, lan-
guages and vocabularies. The metadata should also use community agreed
standards and vocabularies, and contain links to related information using
identifiers [1, 3].

I1. (meta)data use a formal, accessible, shared, and broadly applicable lan-
guage for knowledge representation.

I2. (meta)data use vocabularies that follow FAIR principles

I3. (meta)data include qualified references to other (meta)data

Reusable

Optimizing the reusability of data is the preeminent goal of the FAIR prin-
ciples. To achieve reusability data and its metadata should be well-described
so that they can later be replicated and combined in different settings [1, 3].

R1. meta(data) are richly described with a plurality of accurate and relevant
attributes

R1.1. (meta)data are released with a clear and accessible data usage
license

R1.2. (meta)data are associated with detailed provenance
R1.3. (meta)data meet domain-relevant community standards
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2.1 Applying the principles
The FAIR principles in themselves do not determine the exact form and
shape of the data. They are more of a set of recommendations to follow
when maintaining open data, independent of the domain of the data. The
GO FAIR is an initiative whose goal is the promotion of these principles
in open science, e.g., the Internet of FAIR Data & Services (IFDS)[4] or
European Open Science Cloud (EOSC)[5]. It achieves this by offering an
open ecosystem for individuals, institutions, and organizations to work to-
gether through different Implementation Networks. Each network deals with
different levels of FAIR (technological, skill development, or policies and in-
centives) [6].

The GO FAIR initiative also suggests a process of applying FAIR prin-
ciples to an already existing, non-FAIR data. The steps of this process are
interpreted in Figure 2.1. Upon retrieving the non-FAIR data (1), we need
to analyze (2) its structure, relations between elements and so on. Then,
a semantic model needs to be defined (3), describing the meaning of entit-
ies and relations in the dataset, i.e., ontologies or vocabularies, followed by
transformation of the data onto the model (4). The transformation of the
data may not suit some non-structured data like image pixels, audio, etc.
After defining the metadata (6) and including the license information (5),
the dataset is ready to be deployed to the data resource (7) where it can be
indexed and accessed along with other FAIR data [7].

1. Retrieve 
non-FAIR data

2. Analyze 
the retrieved data

3. Define 
the semantic model

4. Make data
linkable 5. Assign license 6. Define metadata

for the dataset

7. Deploy FAIR 
data resource 

Combine with 
other FAIR data

Questions across
multiple sources

Figure 2.1: The FAIRification process suggested by GO FAIR [7].
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3 EEGbase

The EEGbase portal is a web-based system developed and maintained by the
Department of Computer Science and Engineering, University of West Bo-
hemia, with the initial concepts dating back to the early 2010s. The system
allows researchers to upload, download and manage EEG/ERP experiments
consisted of data, metadata and experimental scenarios. The features of the
system, among others, include sharing of knowledge, working in research
groups, managing scientific discussions or running methods for signal pro-
cessing [8].

3.1 Architecture
The EEGbase portal represents a central point of the complete infrastruc-
ture which provides a web-based interface for use by human users. Services
provided by this portal include long-term, sustainable storing of data and
metadata collected from experiments, various workflows for data processing
and its sharing.

Besides this classical interface, intended for human users, a collection of
web services is implemented to access the data and metadata by external
software tools. These tools can be split into two separate groups. The
first group includes tools, which are implemented as standalone libraries
directly integrated within the EEGbase portal. One of these tools is the Se-
mantic Framework, which aims to provide the experimental metadata in the
semantic web languages and technologies, such as RDF or OWL. Data ex-
pressed in these languages and technologies are readable by semantic reason-
ers. The second group consists of standalone tools that can run and manage
the EEGbase data locally on a user’s computer. An example of these tools
is JERPA, a desktop system for running signal processing methods and sig-
nal visualization, mobile version of the portal, tools for signal visualization
or different analytical and statistical tools. The interfaces are implemented
using RESTfull and SOAP web services [8, 9].

A considerable part of the infrastructure is created by several third-party
hardware devices and software tools. These devices and tools are controlled
by the experimenter who interacts with the EEG/ERP Portal [8]. The
overall architecture of the EEGbase portal can be seen in Figure 3.1.
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Figure 3.1: Overall architecture of the EEGbase portal [9].

The core of the EEGbase portal is implemented using Java SE 6 and
the Spring framework in version 3.1.4. The persistent layer uses the object-
relational mapping tool Hibernate to access data and metadata from the
database. The current implementation separates the storage of relational
and non-relational data. The relational data, containing mainly data used
by the EEGbase web interface, i.e. user information, basic experiments
information or scenarios, are stored using the PostgreSQL[10] database in
version v9.2. The experiment data and metadata are stored as non-relational
using the Elasticsearch[11] NoSQL database [8, 9].

3.2 Data formats
The data of an experiment are recorded from an EEG cap using the BrainVi-
sion Recorder software, collecting the data of an experiment and the devices
metadata into the BrainVision format. This format consists of three files:

• A binary data file (.eeg) containing the voltage values of the EEG.

• A text header file (.vhdr) containing metadata describing the raw EEG
data stored in the corresponding .eeg file.
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[Common Infos]
DataFile=P3Numbers_20150414_m_13_003.eeg
MarkerFile=P3Numbers_20150414_m_13_003.vmrk
DataFormat=BINARY
NumberOfChannels=4
; Sampling interval in microseconds
SamplingInterval=1000

Listing 3.1: Exemplary header file [13].

• A text marker file (.vmrk) containing stimuli markers used in the ex-
periment.

The header and marker files store information in the key-value form, with
the possibility of separating them into sections represented by section name
inside square brackets [12, 13]. An example of what a header file can look like
is in listing 3.1. In this file, the DataFile and MarkerFile keys specify the
corresponding .eeg and .vmrk files of the experiment and other key-value
pairs like DataFormat or SamplingInterval provide additional metadata
about the recording [13].

Listing 3.2 is an exemplary marker file. The key DataFile references the
binary data file with recorded data. Each key in the "Marker infos" section
represents a position in data points where the marker occurred, with some
additional info, i.e. marker "Mk2" is of type "Stimulus", which occurred at
position 7501 in recorded data.

[Common Infos]
DataFile=P3Numbers_20150414_m_13_003.eeg

[Marker Infos]
Mk2=Stimulus,S 6,7501,0,0
Mk3=Stimulus,S 6,9021,0,0
Mk4=Stimulus,S 4,10538,0,0

Listing 3.2: Exemplary marker file [13].

The additional experiment metadata are represented in a format called
Open Metadata Markup Language (odML), a flexible and unified metadata
format for data annotation used in neurophysiology [14]. These metadata
are linked to the related data of the experiment. An example describing the
start time of an experiment is shown in listing 3.3.

In addition to these data and metadata formats, different ontologies are
used to help data sharing. One of these ontologies is the NEMO ontology.
This ontology provides formal semantic definitions of concepts in ERP re-
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<odML xmlns:gui="http://www.g-node.org/guiml" version="1">
<version>1</version>
<date>2015-07-16</date>
<section>

<type>new</type>
<name>Experiment</name>
<property>

<name>start time</name>
<definition>Format: yyyy/mm/dd hh:mm</definition>
<gui:required>true</gui:required>
<gui:editable>true</gui:editable>
<gui:order>0</gui:order>
<value>

2015/04/14 10:01
<type>string</type>

</value>
</property>

</section>
</odML>

Listing 3.3: Exemplary experiment metadata in odML format [13].

search, including ERP patterns, spatial, temporal, functional (cognitive/be-
havioural) attributes of these patterns, data acquisition and analysis meth-
ods. Another used ontology is the OBI ontology for biological and clinical in-
vestigation description. Its terminology contains domain-specific terms and
universal terms for general biological and technical usage. This ontology
represents the design of an investigation, the protocols and instrumentation
used, the material used, the data generated and the type analysis performed
on it [8].

Figure 3.2: Knowledge model of the OEN device branch [15].
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These ontologies alone are not able to fully describe the information
stored in the EEGbase portal, namely the set of the domain terms. That
is why an additional Ontology for describing Experimental Neurophysiology
(OEN) is being used. This ontology is separated into two branches for
experimental data and metadata, each dealing with structured terminology
to annotate them. It is used as an extension of OBI for devices and related
information. The model of this annotation is shown in Figure 3.2 for a
’device branch’ from the experiments [8].

Figure 3.3 shows the shortened description of an exemplary experimental
set-up using terms (labels/names in bold) from OBI, NEMO, and OEN (all
distinguished by a prefix of the id) and their relations (dashed arrow, label,
and id). The full description is in Appendix C.

All of these technologies combined make up the complete structure of
an experiment that the EEGbase portal can store. Figure 3.4 shows an
overview of the structure. Full schema is in Appendix D. A results text file

Figure 3.3: Description of experimental set-up in EEGbase [8].
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Figure 3.4: The structure of an EEGbase experiment dataset [16].

can accompany data in some cases. This file is used with some of the event-
related potential experiments and contains event summaries and averages.
Scenario information is stored separately from the data and metadata. These
may include camera records and its metadata or other multimedia used
during the experiment [16].

3.2.1 Feasible experiments
A total of seven different types of experiments from the EEGBase portal
were provided for the conversion to a new data standard. The names and
the dataset structure of the experiments are as follows:

• Developmental coordination disorder in children - experimental work
and data annotation: Datasets from the [17] case study. A total of 32
datasets are present in the experiment. Besides the BrainVision and
odML files, these also include the scenario files (.sce, .exp, and audio
files) and other metadata in the form of text files.

• Driver’s attention case studies containing multiple different experi-
ments as part of the [18] project often being solved within student
work tasks.
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– Car simulator - driver attention: 18 datasets consisting of the
BrainVision and odML files only.

– Driver’s attention and sleep deprivation: Datasets consisting of
the BrainVision and odML files with camera recordings from the
experiment as .avi files. It is made up of a total of 11 datasets.

– Driver’s attention with visual stimulation and audio disturbance:
16 datasets containing scenario files besides the BrainVision and
odML files.

– Driver’s attention with auditory stimulation: Includes 15 datasets
of BrainVision, odML and scenario files. Scenario files include
multimedia files and logging text files.

• Event-related potential datasets based on three-stimulus-paradigm:
Experiment consisting of 21 datasets formed by the BrainVision and
odML files, accompanied by a pdf license file and a readme text file.

• PROJECT DAYS P3 NUMBERS - This experiment contains 250 data-
sets. Apart from the BrainVision and odML files, scenario files are in-
cluded as well in the form of a zip compressed file and a text file in the
BrainVision data folder with some additional metadata and results.

3.2.2 FAIR principles assessment
The following is an assessment of the EEGbase portal and the data formats
it uses on the individual points of the FAIR principles.

Findable

F1 Neither the data nor the metadata are identified by any unique global
identifier.

F2 Data are described with enough metadata about the EEG data and the
experiment itself.

F3 Metadata do not include any unique identifiers to the data it describes
as there are no identifiers for the data. There is a filename in the Brain-
Vision metadata, where the data are stored, no identifier is present in
the experiment metadata. The dataset is identified by an experiment
number, which is only local.

F4 The EEGbase web portal serves as a searchable resource for the data
and its metadata.
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Accessible

A1 Data are retrievable from the EEGbase portal using the HTTP protocol,
which is an open, standardized protocol (A1.1) that supports basic
authentication and authorization procedures, if necessary (A1.2).

A2 As the data and metadata are stored separately, it is possible for the
metadata to exist even without the data.

Interoperable

I1 EEGbase combines odML and BrainVision formats, which can be con-
sidered as community agreed formats. For odML though, the version
used for the experiment metadata is an older version 1.0, which might
require conversions upon further processing.

I2 Vocabularies are used only for the experiment metadata stored in odML
in the form of ontologies. No terminologies are used for the BrainVision
metadata.

I3 It is not possible to create a full-fledged link from one (meta)data to
others, as these should be referenced by a unique identifier.

Reusable

R1 The data contain enough metadata about the recorded EEG data and
the experiment itself. The data license is included in the experiment’s
metadata (R1.1). The provenance of (meta)data is detailed, e.g., de-
scribing the experiment’s authors or the recording devices (R1.2).

Using this assessment, Table 3.1 overviews how the EEGbase portal and
the data formats satisfy the FAIR principles. It fails to fully satisfy the
interoperable principles, due to the older versions of some of the technologies
and the lack of vocabularies for the data. Some of the findable principles
are not met as there are no unique identifiers for the datasets.

Findable Accessible Interoperable Reusable
F1 F2 F3 F4 A1 A2 I1 I2 I3 R1

No Yes No Yes
Yes

(A1.1 - Yes
A1.2 - Yes)

Yes Partially Partially No

Yes
(R1.1 - Yes
R1.2 - Yes
R1.3 - Yes)

Table 3.1: FAIR principles assessment for EEGbase data and metadata.
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4 Electrophysiological data
standards

This chapter lists some of the existing data standards and repositories suit-
able for storing electrophysiological data. These repositories could be accom-
panied by additional tools, i.e. visualization or analytical tools, to expand
the data workflow. Each of the standards selected in this chapter is eval-
uated on how well it meets the FAIR principles. Following the evaluation
is a selection of a standard that suits the principles best, together with an
appropriate repository to store the data in the new data standard.

4.1 NIX
NIX is a project developed by the German Neuroinformatics Node (G-Node).
Its idea is to achieve standardized methods and a generalized data model
that defines as few data entities as possible while still being able to represent
a multitude of different data structures. The generality of designed data
means that the naming of entities follows a more general way than the
domain-specific terms, which allows for wider use of this standard than just
for electrophysiology or neuroscience data [19].

4.1.1 Data model
The NIX data model stores annotated scientific datasets, i.e. data and their
metadata as a single container [20]. The entity-relationship schema in figure
4.1 shows all the entities of the model used to store a single dataset. The
relation between entities denoted with a circle means that an entity can
contain zero to many entities (i.e. a Section entity can contain zero to many
Property entities). Relation denoted with a line means there has to be at
least one entity in relation (i.e. Property entity has to have at least one
Value entity).

The model for data is composed of six main entities:

Block is an entity that acts as a top-level element connecting relevant data
objects. A Block can be considered as something like a representation
of a dataset or a combined result of an experiment. Every data object
has to be associated with one Block object [21].
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DataArray is the core entity that stores the raw data in a multidimen-
sional array as well as some additional information about the data,
i.e. type, unit or dimension. Dimensions are described separately by
the Dimension entity. The DataArray in itself should contain enough
sufficient information to interpret its content (e.g., generate a plot)
[21, 22].

Tag and MultiTag entities are used to annotate points and regions of in-
terest in one or more DataArrays, for example, an event, a spike train
or the presentation of a certain stimulus. They are defined by starting
point and duration. More detailed definitions of these Tags than just
pointers into the raw data can be described by Feature objects [21].

Source entity describes the origin of a DataArray or Tag. Although con-
sidered more of a metadata information, it is included for compatibility
with other data formats [21].

Group provides a simple grouping of entities below the Block entity level.
A Group can contain DataArrays, Tags, MultiTags, and can be linked
to Sources and have metadata attached [22].

All data entities have the id, name, type and definition fields in common.
The only exception is the Dimension entity that has only the id and definition
fields, as others are not necessary. The id field is a unique string identifier of
the entity, which can be used to refer to this entity. A domain name and a
randomly generated 64 digit hexadecimal number ensure the uniqueness of
the id across potentially large collections of data. The type field is a string
providing the context to understand the stored data. The definition field
is an optional textual definition of the entity. The name field can store a
human-readable form of the entity name [21].

The metadata model is mostly identical to the open metadata Markup
Language (odML) model. The model consists of properties that contain
the descriptive fields id, name, type, definition, and the property’s values.
These properties can be grouped into sections, differentiating between relev-
ant properties. A section can be nested into another section to form tree-like
structures, while the root section can only contain document information like
the author’s name and version and can not contain any own properties [22].
Metadata entities follow the same principles of creating their identifiers as
the data entities [21].

The main data entities can be linked to the metadata by a reference on
the corresponding section id. The data entity may refer to only one metadata
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Figure 4.1: NIX entity-relation schema [20].

section. There are two kinds of relations between data and metadata. If
both of the related data and metadata types are identical, it is considered
an extension of one another. That is, the information from the data and
metadata are complementary. In case the types are not identical, the entities
are related, but the data object is not a further specification of the metadata
object [22].

Neither the model for data nor the model for metadata (odML) in itself
is domain-specific to electrophysiology, but both models can be linked to
custom or predefined, deeply described terminologies [23]. Terminologies
are collections of names and definitions of sections and properties, which
enable the user to give elements of the models a domain-specific, semantic
context [22, 24].

4.1.2 Tools
The data and metadata containers, described by the models, are imple-
mented by NIX using a file format called HDF5 [19]. The Hierarchical
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data format (HDF5) is designed for flexible and efficient storage of complex,
high-volume data. The file is a container that holds datasets and groups.
Datasets are objects storing the various types of data. Groups are used to
organize these data objects into a tree-like structure. Every file has a top-
level group called the root group [25]. It is a mature data format standard
that is widely supported across programming languages (e.g., C, C++, Py-
thon, MATLAB) and tools (e.g. HDFView, ParaView, Jupyter) [26]. There
are several tools providing basic operations with NIX files. These include
C++ and Python low-level API libraries for reading and writing or a viewer
for the NIX data files called NixView [27].

4.1.3 GIN repository
Alongside NIX, G-Node offers a repository service called GIN [28], that
allows management of the NIX data, although the system is capable of
handling any kind of directory structures and file types. It is based on a
combination of the Git version control system and Git-annex that handles
the storing of large binary files. The git-like behaviour allows tracking the
changes in the data. The repository files are synchronized to a dedicated
GIN server, providing secure remote access to the data. The data can be
managed through the GIN client (web or desktop) or using a command-line
interface that allows management over HTTPS or SSH protocols using git
and git-annex directly [29, 30]. The GIN repository offers basic indexing
and searching of the contents of individual dataset repositories. A planned
extension of this service is to index the contents of the stored NIX files,
which would further improve searching of the desired data and metadata in
the resource [31].

As GIN is open-source, it is possible to set up the repository to run
locally. It furthermore offers several extending services. The GIN-PROC
microservice implements the pipeline processing server using Drone. With
the use of pipelines, users can design efficient workflows for the data [32]. At
this point, this microservice is not available in the GIN’s hosted repository
yet and can only be integrated into a locally run repository [33]. Another
of those services is the service to generate a DOI for a dataset stored in
the repository. The DOI (Digital Object Identifier) permanently identifies a
digital resource, allowing datasets or files to be citable and accessible through
this identifier [34]. Licensing the data uploaded to the repository is possible
by putting a LICENSE file into the root of the repository, which contains
the licensing agreements [35].
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4.1.4 FAIR principles assessment
An assessment of the NIX data standard on the individual points of the FAIR
principles follows, taking all the findings from this section into consideration.

Findable

F1 Both the data and metadata entities use unique alpha-numerical strings
as identifiers. The whole dataset can be identified by DOI if using the
GIN repository.

F2 The NIX metadata model allows for a broad description of the data,
especially when supported by the use of the predefined odML termin-
ologies.

F3 The reference between data and metadata is one-way only. The data
includes the metadata identifier. The only way to trace what data
the metadata entity describes is by matching type, which does not
necessarily refer to a specific data entity in a dataset.

F4 The usage of a proper repository like the GIN repository may serve as
a searchable resource.

Accessible

A1 This principle depends on the selected resource. The GIN reposit-
ory, offered by G-Node, can serve as a searchable resource. GIN is
a free, open-source service that uses HTTPS or SSH protocols (A1.1)
which allow for authentication and authorization using GIN credentials
(A1.2).

A2 As the data and metadata objects are separated, NIX allows for
metadata to exist outside the scope of the data entities, even if they
were previously referred to from a data entity that no longer exists.

Interoperable

I1 The standard has a well-defined, formal data and metadata model and
uses widely-supported, accessible, open formats (odML, HDF5) that
allow for easy data representation.

I2 NIX offers and encourages the use of predefined odML terminologies that
are well-described to support the FAIR principles.
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I3 References between data and metadata are available using unique iden-
tifiers as reference.

Reusable

R1 Using NIX, we are able to attach large amounts of descriptive
(meta)data that help the user to decide if given data are useful. Usage
of terminologies ensures the relevancy of the description and meeting
the domain-relevant community standards (R1.3). Metadata include
fields, among others, that serve as detailed data provenance, e.g., in-
stitution name or author of the experiment (R1.2). (Meta)data can be
licensed by the license included alongside the dataset in the reposit-
ory where they are stored or have it included directly in the metadata
(R1.1).

Table 4.1 summarizes the FAIR principles assessment for the NIX stand-
ard. The NIX standard meets most of the principles. The only principle
that is not met according to the definition is the findable principle F3. How-
ever, an explicit association between the metadata file and the dataset is
still present, only the other way as the principle states. That way, we can
say this principle is at least partially met.

Findable Accessible Interoperable Reusable
F1 F2 F3 F4 A1 A2 I1 I2 I3 R1

Yes Yes Partially Yes
Yes

(A1.1 - Yes
A1.2 - Yes)

Yes Yes Yes Yes

Yes
(R1.1 - Yes
R1.2 - Yes
R1.3 - Yes)

Table 4.1: FAIR principles assessment for the NIX standard.

4.2 BIDS
The Brain Imaging Data Structure (BIDS) is a standard initially developed
for organizing and sharing neuroimage experiments. The standard specifies
the description of the experiment data and the related metadata in a filesys-
tem hierarchy [36]. For the purposes of this thesis though, we need a way
to store EEG data instead of neuroimaging data. That is possible with the
usage of the EEG-BIDS extension [37]. This section describes BIDS with
the usage of this extension.
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4.2.1 Data structure
The extension of BIDS to EEG data closely follows the general BIDS spe-
cification (the hierarchical structure of a dataset is shown in Figure 4.2). The
filenames for both the data and metadata are formed with a series of entities
or key-value pairs, a suffix, and end with a file type, where keys, entities and
file types are predefined in BIDS specification [38] and values are chosen by
the user [37]. For a data file that was collected in a given session from a given
subject, the file name will begin with the string sub-<label>_ses-<label>
[36].

BIDS is designed to standardize and describe raw data, meaning data
unprocessed or minimally processed due to file format conversion. During
analysis, such data will be processed and both the intermediate as well as
final results will be saved. The EEG data have to be stored in one of the
following formats for BIDS to be able to process the data [37]:

• European data format (.edf )

• BrainVision Core Data Format (.vhdr, .vmrk, .eeg) by Brain Products
GmbH

• The format used by the MATLAB toolbox EEGLAB (.set and .fdt
files)

• Biosemi data format (.bdf )

It is recommended to use either the EDF or BrainVision format. Any other
format, that is not supported for standardization, can be placed into the
sourcedata folder [37]. The data file is represented as (1) in figure 4.2.

The metadata consist of files with extensions .json, .bvec, and .tsv. JSON
file metadata store key-value pairs. Tabular data are stored as tab-delimited
values (TSV) and are meant to store additional experiment description data
(than can further be annotated with JSON metadata), e.g., the occurrence
of events in an experiment or electrode properties. The values from the top
level are inherited by all lower levels unless they are overridden by a file at
the lower level. Metadata that are not associated with any subject may only
be stored in the root directory, as metadata stored in the root directory serve
as a general description of the dataset [36, 37]. To allow for more flexibility
of the standard, only a small subset of metadata fields and files, needed to
perform standard basic analyses on each type of data is required [36].

The TaskName field is inherited from the base BIDS standard. Other
required fields, specific for the EEG extension, are EEGReference (general
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Figure 4.2: Exemplary EEG-BIDS dataset [36].

description of the reference schema), SamplingFrequency, PowerLineFre-
quency, and SoftwareFilters. To perform some additional types of analyses,
there are other crucial metadata that are recommended to be included (in-
formation like EEGChannelCount or RecordingDuration for the EEG data).
When a recommended piece of metadata is missing, the BIDS Validator will
report a warning. [36, 37]. The full overview of required and recommended
metadata fields for each metadata type is in the BIDS specification [38].
The specification also defines a large amount of optional metadata. These
metadata fields contain information that is not necessarily suitable for any
of the data analysis methods, but can be useful when trying to understand
the nature of the data [36]. Exemplary metadata shown in figure 4.2 contain
JSON metadata for the EEG data (2) and the EEG coordinate system (6),
and tabular metadata for events (3), channels (4), and electrodes (5).

4.2.2 Tools, the OpenNeuro repository
For working with the datasets, BIDS offers tools for Python and MATLAB.
Both tools allow for queries over the BIDS entities and basic manipulation
and reading of the data within the files. The querying provides searching files
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by keywords and/or metadata, or retrieving file-associated metadata across
the BIDS hierarchy [39, 40]. A python library MNE-BIDS implements the
reading and writing of the BIDS structure [37].

The BIDS specification mentions the possibility to use OpenNeuro as
a repository for BIDS standardized data. The OpenNeuro is a web-based
repository platform for managing and sharing neurophysiology data. Only
BIDS compatible datasets are accepted, each dataset is validated prior to the
upload. The datasets can be uploaded as private for up to 36 months until
they become public under the Creative Commons CCO license. The plat-
form provides access to computationally expensive, state of the art pipelines
for data analysis. Pipelines are run on immutable snapshots of data (ver-
sions) so the results are fully reproducible. Apart from the available set of
pipelines, users can deploy their own pipelines to the platform [41].

4.2.3 FAIR principles assessment
The following is an assessment of the BIDS data standard on the individual
points of the FAIR principles, considering the findings from this section.

Findable

F1 Neither the data nor the metadata are assigned a unique identifier. Only
the dataset can be identified by the DOI, but that is dependant on the
repository used.

F2 Data are described with sufficient metadata.

F3 As the data are not identified by any unique identifier, metadata do not
include any explicit identifier of the data it describes.

F4 The OpenNeuro repository may serve as a searchable resource for the
BIDS datasets.

Accessible

A1 The OpenNeuro repository, designed to store the BIDS datasets, allows
retrieving the datasets using HTTP(s) as a standardized communica-
tion protocol (A1.1), with support for authentication and authoriza-
tion by using user credentials if necessary (A1.2).

A2 As the data and metadata are stored in separate files, metadata will
still be accessible when the data are not anymore.
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Interoperable

I1 The standard utilizes formal, broadly applicable languages for represent-
ation in the form of the BrainVision or European data format for the
data and JSON for the metadata.

I2 The (meta)data are described using the BIDS specification.

I3 The BIDS standard does not support referencing as there are no identi-
fiers to (meta)data.

Reusable

R1 The data and metadata are described with rich domain-specific attrib-
utes, thanks to the BIDS specification. The standard does not contain
licensing attributes. However, any datasets published onto the Open-
Neuro repository are licensed under the Creative Commons license
(R1.1). The BIDS specification includes required and recommended
(meta)data to help with its provenance (R1.2) and with meeting the
domain-relevant standards for similar datasets (R1.3).

An overview of the FAIR principles assessment on the BIDS standard is
in table 4.2. Most of the principles are satisfied, but the lack of a unique
identifier for both the data and metadata means it fails to satisfy principles
F1, F3, and I3. The F1 principle could be at least partially satisfied by
identifying the whole dataset by a unique identifier like DOI, although, that
depends on the used repository to store the data.

Findable Accessible Interoperable Reusable
F1 F2 F3 F4 A1 A2 I1 I2 I3 R1

No Yes No Yes
Yes

(A1.1 - Yes
A1.2 - Yes)

Yes Yes Yes No

Yes
(R1.1 - Yes
R1.2 - Yes
R1.3 - Yes)

Table 4.2: FAIR principles assessment for the BIDS standard.

4.3 NWB
Neurodata Without Borders: Neurophysiology (NWB:N) is a project that
defines tools, methods, and data standard providing a common solution to
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Specification
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Data standard
schema
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complex collections
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data.

Storage of large collections
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Figure 4.3: The NWB:N project structure [43].

share, archive, use, and build common analysis tools for neurophysiology
data. It aims to store general optical and electrical physiology data in a way
that is interpretable by both human users and software tools and analysis
scripts, and to impose a priori assumptions about data representation and
analysis [26, 42]. Overview of all the parts of the NWB:N project and their
purpose are in Figure 4.3.

4.3.1 Data standard schema
The format defines and uses the NWB:N specification language [44]. The
specification language defines formal structures for describing the organiza-
tion of the data, as well as enabling the definition of extensions to support
the integration of currently unsupported data [26]. The basic concepts of
the NWB format that hierarchically organize the data are the following [42]:

Dataset is an n-dimensional array that is the primary means for storing
the data.

Attribute is a small dataset that is attached to a specific group or dataset.
Attributes are typically used to store metadata specific to the object
they are associated with.

Group is similar to a folder in a file system. It may contain an arbitrary
number of other groups and datasets.
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Link is used to refer to another group or dataset.

All datasets and groups in the format can be uniquely identified by either
their name and/or type (the neurodata_type of the data component) [26].

Every main semantic component of the format has a unique
neurodata_type, similar to a class in object-oriented design. That means
a possibility for reuse and extension of types through inclusion and inher-
itance. The two important base types are NWBContainer and TimeSeries.
NWBContainer defines a generic container for storing collections of data. It
is used to define common features and functionality across data containers.
The TimeSeries type is the central component for storing complex temporal
series, as neural data typically involve measurements taken over time. This
type is extended via sub-classing to account for different storage require-
ments and data modalities (e.g., ElectricalSeries for electrophysiology or
ImageSeries for optical imaging) [26, 42].

The data organization at a high level in an NWB file uses the following
main groups [26]:

Acquisition for storage of data streams recorded from the system, e.g.,
recordings from electrophysiology tracking systems.

Processing for the standardized processing modules, often as part of inter-
mediate analyses required before scientific analysis, e.g., results from
spike sorting, signal filtering, or image processing.

Intervals for the experimental intervals, e.g., experimental epochs or trials.

Stimulus for storage of stimulus data.

General for storage of experimental metadata, e.g., description of the hard-
ware devices, author of the experiment or other notes.

Analysis for storage of lab-specific and custom scientific analysis of the
data.

All Datasets and Groups in the NWB with an assigned neurodata_type
have three required attributes. The name of the primitive that it maps
onto as a neurodata_type string, the namespace where the neurodata type
is defined, e.g. “core” or the namespace of an extension, and an object_id.
The object_id attribute is a universally unique identifier of the object within
its hierarchy. It should be set upon creation as a string representation of a
random UUID that has been generated according to the RFC 4122 standard
[42, 45].
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4.3.2 Tools and data storage
The NWB format uses the HDF5 file format as the primary mechanism of
the data storing (same as the NIX data standard). The NWB primitives
described by the specification language largely match the HDF5 primitives,
so the mapping is mostly a 1-to-1 mapping [26].

The NWB:N project offers data APIs facilitating an efficient interac-
tion with the neuroscience data stored in the NWB file format. The in-
teraction comprises of reading, writing, querying, and analyzing the neuro-
physiology data. The currently developed APIs are PyNWB (Python) and
MatNWB (Matlab) [46, 47]. Both provide easy-to-use representations of
NWB neurodata types for programmatic use and enable the mapping of
these representations to/from data storage based on the format specifica-
tion. The use of interfaces allows for object extension as a way to create any
missing objects or properties [26].

The NWB:N does not determine any repository that is designed to store
the NWB format specifically. However, other repositories, that do not re-
strict the stored data format could be used. Repositories suitable for any of
the standards described so far are discussed in the following section.

4.3.3 FAIR principles assessment
The following is an assessment of the NWB data standard on the individual
points of the FAIR principles, considering the findings from this section.

Findable

F1 All datasets have a required attribute of a unique identifier that is set
upon their creation.

F2 Datasets include metadata description of the raw data in the form of
attributes, as well as the metadata about the experiment itself in the
"General" group.

F3 The attributes of the metadata include the object_id as the explicit
identifier of the data.

F4 This principle depends on the selected resource. The NWB:N project
does not recommend any repository that could be used as a searchable
resource. However, any repository that supports the NWB file format
fits this purpose (e.g. the GIN repository with the support of the
HDF5 file format).
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Accessible

A1 Again dependant on the used repository, but it is possible to access
the NWB datasets using repositories with a standardized communic-
ations protocol like the GIN repository, which is covered in the FAIR
principles assessment for the NIX standard.

A2 Only the general metadata and other custom metadata are accessible
when the data are no longer available. The metadata about the raw
data are attached directly to the data as attributes.

Interoperable

I1 The datasets are stored using the accessible, open format HDF5. The
data and metadata models are well described by the NWB:N specific-
ation language.

I2 Vocabulary for the data is part of the NWB:N specification language.
However, no such standardized vocabularies are available for the
metadata. That is the object of further improvements with the in-
tegration of controlled vocabularies, and ontologies for the metadata
[26].

I3 It is possible to use the unique object identifiers for the metadata attrib-
utes to refer to other (meta)data.

Reusable

R1 The attributes to store metadata allow us to include enough information
to describe the context under which the data were generated. That
includes the information about the experiment or the device used to
prove the origin of the data (R1.2). The NWB:N does not handle the
data usage licensing. Although, licensing the data (R1.1) is possible
with the use of a suitable repository (e.g. the GIN repository). The re-
usability for similar datasets is supported by the NWB:N specification
language (R1.3).

An evaluation of the FAIR principles assessment is in Table 4.3. Most of
the principles are fully satisfied. The principle A2 is met only partially, as
the accessibility of the metadata about the raw data depends on the access-
ibility of the data. However, the general metadata will still be accessible.
The principle I2 could be fully met in the future as the metadata ontologies
are planned to be implemented to the metadata model.
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Findable Accessible Interoperable Reusable
F1 F2 F3 F4 A1 A2 I1 I2 I3 R1

Yes Yes Yes Yes
Yes

(A1.1 - Yes
A1.2 - Yes)

Partially Yes Partially Yes

Yes
(R1.1 - Yes
R1.2 - Yes
R1.3 - Yes)

Table 4.3: FAIR principles assessment for the NWB:N standard.

4.4 Repositories
As the EEGbase portal is not designed to store any of the electrophysiolo-
gical data standards mentioned above, it is necessary to use different service
as a repository for the data. Repositories for scientific data should allow for
proper metadata management alongside the data. Besides the GIN repos-
itory suggested for the NIX standard and the OpenNeuro repository that
is meant for storing the BIDS data standard, other repositories, capable of
storing any of the data standards are available.

4.4.1 LORIS
LORIS is an open-source web-based platform for storage, sharing and visu-
alization of research data. As it actively supports integration with the BIDS
neuroimaging standard, the platform is fit for storing neuroimaging, be-
havioural, or electrophysiological data. However, its modular architecture
allows customizability for any data type and any activity workflow [48].
LORIS can be integrated with the CBRAIN service, which offers collabor-
ative high-performance computing platform for processing, combining visu-
alization tools and fully automated software pipelines [49]. The integration
to CBRAIN, shown in figure 4.4, or any other service is done via RESTful
API, which can be customized to restrict access to data or activities.

Data acquisition
Database &
repositories
(LORIS)

Processing
(CBRAIN)

External
repositories

High performance
computing centers

Figure 4.4: The LORIS and CBRAIN integration [49].
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4.4.2 Eudat
Eudat is a collaborative data infrastructure offering a multitude of data
management and sharing services. Amongst them is the B2SHARE data
store service, consisting of four main modules: Data Storage, APls, Access
Control, and a web-based User Interface. The data storage is separated into
the management of scientific data, the associated metadata and identity
data. The scientific data are the produced research data and can be of any
type. Metadata are the explanatory data and they are being filled upon the
object data upload. The identity data serve as information for the access
control module and for integration with other services [50].

B2SHARE provides a REST API as an interface for creating new depos-
its, upload data to it and share these data. Another API called OAI - PMH
can retrieve complete metadata collections from the repository. To make
data reusable and citable, B2SHARE is using persistent identification PID
as digital object identifiers, compatible with the DOI system [51]. The iden-
tifier is assigned to the dataset during the deposit process. The complete
architecture overview of the B2SHARE service is in figure 4.5. The integ-
ration of B2SHARE with the other EUDAT services for data management,
sharing, and discovery like B2STAGE or B2FIND is what distinguishes it
from other data sharing services [50].

User Web
Interface

Digital Object (DO)
Registration

Persistent Identifier
(PID) B2SHARE

PID Handle Service REST API
Standard Interface

API

Digital
Object

Repository

Metadata
Database

Open Archives Initiative
Protocol for Metadata
Harvesting (OAI-PMH)

Joint Metadata
Service

Figure 4.5: The B2share service architecture [50].
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4.4.3 EBRAINS
EBRAINS is a platform developed by the Human Brain Project offering a
collection of services for data and knowledge management or the brain model
simulations [52]. However, the platform is not open-source, so it can not be
run locally and can only be used as the remote service. The sharing of the
research data works on the basis of curators. The raw or processed data are
submitted via a request form to the EBRAINS Data Curation team, which
reviews the potential of the data/model collection. In case of acceptance,
the data collection is integrated (file upload to the long-term storage and
metadata registration) and published to the platform. EBRAINS assigns a
citable DOI to any published collection [53]. Data collections published to
EBRAINS can be accessed through a web-based user interface Knowledge
Graph [54].

4.5 Overview

4.5.1 Data standard
All the researched electrophysiology data standards were expected to follow
most, if not all, of the FAIR principles. When selecting the most appro-
priate standard, the difficulty of data conversion from the currently used
BrainVision/odML formats was taken into consideration as well. Table 4.4
compares the FAIR principle evaluation for the EEGbase portal and the
proposed data standards. The EEGbase and its infrastructure for storing
the research data fully satisfy only 5 out of the 10 main FAIR principles.
Moreover, the unnecessary complexity and the older technology used for
the portal implementation would only lead to more difficulties in the future
maintenance of the project. This supports the proposed conversion of the
current state to a newer, more maintainable solution.

The BIDS standard is falling short on the FAIR principle assessment
in comparison with the other data standards. The folder-like structure of
the standard could be seen as a drawback, as it could create an extra step
when manipulating the data, e.g., compressing the folder before being able
to upload it into a repository. At the data standard comparison stage, the
BIDS python tools were tested by writing a simple python script that created
a basic structure with the skeleton of some EEGbase data. The technical
documentation for the offered BIDS Python API came out as not thorough
enough as the specifications for the Python APIs for the NIX or NWB data
standards. Due to these findings, the BIDS standard was determined as the
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Standard Findable Accessible Interoperable Reusable
F1 F2 F3 F4 A1 A2 I1 I2 I3 R1

EEGbase No Yes No Yes
Yes

(A1.1 - Yes
A1.2 - Yes)

Yes Partially Partially No

Yes
(R1.1 - Yes
R1.2 - Yes
R1.3 - Yes)

NIX Yes Yes Partially Yes
Yes

(A1.1 - Yes
A1.2 - Yes)

Yes Yes Yes Yes

Yes
(R1.1 - Yes
R1.2 - Yes
R1.3 - Yes)

BIDS No Yes No Yes
Yes

(A1.1 - Yes
A1.2 - Yes)

Yes Yes Yes No

Yes
(R1.1 - Yes
R1.2 - Yes
R1.3 - Yes)

NWB Yes Yes Yes Yes
Yes

(A1.1 - Yes
A1.2 - Yes)

Partially Yes Partially Yes

Yes
(R1.1 - Yes
R1.2 - Yes
R1.3 - Yes)

Table 4.4: FAIR principles assessment overview.

least favorable replacement of the current infrastructure.
The remaining NIX and NWB data standards satisfy all of the FAIR

principles, partially at least. Unlike the BIDS standard, both standards use
the HDF5 file format, which would join the BrainVision data and odML
metadata into a single file. With HDF5 being a generic format, accessibility
should not be affected. Both NIX and NWB have easy to use, deeply de-
scribed Python APIs that would be used to create a conversion script from
EEGbase to the selected format. However, as for the PyNWB tool, some
of the EEGbase metadata properties are not present in the NWB object
interfaces. That means custom objects extending the current NWB objects
would have to be implemented. Creating these could be very time consuming
if there was to cover any possible metadata properties.

The NIX data standard uses odML to store metadata, same as the EE-
Gbase datasets. Apart from the libraries for manipulation with the NIX
files, G-Node offers additional python tool "nix-odML-converter", that can
convert an existing odML file into a NIX container. The tool will also auto-
matically convert the odML file into the newest odML version [55]. This is
a significant advantage, as the current EEGbase odML metadata are stored
in an older version. Using this tool and adapting it to our needs (specifically
adding terminologies for the metadata) is an easy way to convert the ses-
sion metadata from EEGbase. Accompanied by the MNE tool to parse the
current BranVision data and metadata, it makes the conversion from cur-
rent EEGbase portal into NIX the least difficult, while satisfying the FAIR
principles and preserving all current experiment metadata. The NIX data
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standard is selected as the most appropriate to convert the EEGbase data
into.

4.5.2 Repository
With the NIX data standard selected, we need a service that is able to store
the converted data, replacing the current EEGbase portal. When selecting
a repository suitable to store the new data standard, the following criteria
were taken into consideration:

• The repository should offer some means of persistent identification of
stored datasets to support the findability principle.

• The repository implements some form of pipelines to allow for future
extensions of the data workflow.

• Being open-source is not a strictly required feature of the repository,
as long as the service assures longevity and persistence of stored data.
On the contrary, having an externally maintained service with all the
desired features would be only beneficial.

Table 4.5 shows an overview of the evaluation of all the researched repos-
itories based upon these criteria. This does not include the OpenNeuro
repository, as it is currently supporting only BIDS standardized datasets
and cannot be used to store the NIX standard.

Despite the EBRAINS platform only being available as a closed-source
hosted service, it does not restrict the uploaded data types, making it suit-
able for the NIX data standard. In addition, it identifies datasets with a
DOI. However, there is no possibility to create pipelines, and the process of
the data review through a curation team might limit which of our datasets
can actually be uploaded. This makes the EBRAINS platform not suitable
to store the data.

The LORIS storage platform is originally developed to store the BIDS
format, which means modules and possibly other extensions of the source

Repository NIX support Persistent identification Pipelines Open-source
GIN yes yes yes yes
LORIS not in default no yes yes
Eudat yes yes no no
EBRAINS yes yes no no

Table 4.5: Repository evaluation.
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code would have to be implemented to allow for the NIX data standard
to be stored. Even though there are pipelines present to extend the data
workflow, they are designed for use on the BIDS standard. The datasets are
not identified with any persistent ID like DOI or PID. In addition to the
necessity of module implementations to support NIX, this does not make
the LORIS platform suitable.

The Eudat infrastructure and its services are capable of storing the NIX
data standard, and, unlike the EBRAINS platform, it does not limit the data
manipulation by any uploaded dataset curation. The PID handle service
can assign datasets with a persistent identifier. Although offering some ad-
ditional services, no service that would allow for pipeline creation is present,
being the reason why Eudat was not selected as the most favourable repos-
itory.

The GIN repository is open-source. That makes it possible to run the
repository locally, while G-Node hosts a publicly accessible repository as
well. It allows for persistent identification of the datasets using the service
for generating DOIs. However, it is worth noting that the service is free
of charge only on the G-Node hosted repository. Although the service can
also be implemented locally, a paid membership would be required in that
case. The repository being built on git is a big advantage, as any pipeline
extensions for git should be possible to implement to GIN as well. Pipeline
support is offered by G-Node directly with the GIN-proc microservice. As
the GIN repository meets all the desired criteria, it was selected as the best
repository to use.
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5 The dataset conversion

Now that the NIX data standard is selected as the appropriate replacement
for the current EEGbase dataset structure, we need ways of converting the
data and metadata from the old format to the new one. The goal is to
design and implement a tool that converts the data and metadata without
any loss of original information while making sure the dataset in the NIX
format satisfies all the possible FAIR principles.

5.1 Architecture
When converting the dataset, first, we need to take into consideration the
structure of the current data. As the EEG data from the BrainVision format
and the odML experiment metadata are stored separately, the conversion has
to be split up into two segments. The proposed data flow diagram of the
conversion to the NIX data standard is in Figure 5.1. The logical structure
of the NIX container will follow the findings from the standard analysis.
Designing the conversion tool was made with the guidance of the existing
datasets from different experiments from the EEGbase portal. However,
the final design was made more general to allow for a conversion of future
datasets that might have a slightly different property structure.

BrainVision	data
Process	1.1

Parse header files

odML	metadata

Process	1.2

Convert EEG data
and annotations 

the converted 
NIX file

Process	3

Push dataset to
experiment repository

Metadata
terminologies

 D

GIN Repository

Process	1.3

Convert BrainVision
info as metadata

Process	2.2

Convert the sections
and properties

Process	2.1

Parse odML file

Figure 5.1: The data-flow diagram of the conversion.

33



5.1.1 BrainVision data conversion
The data conversion segment processes the BrainVision EEG data. These
data consist of a triplet of the raw data, marker data of the stimuli (also
called annotations), and a header file containing the metadata of the record-
ing devices. As the header file links to the related raw and marker data, it
is the only BrainVision file we need for the conversion as the input.

Multiple of these triplets can exist in a single dataset, which has to be
taken into account for the parsing of the input. A dataset is a single ex-
periment performed on a subject according to the given scenario. A single
experiment can have multiple recordings. Figure 5.2 shows an overall view
of the structure of a NIX dataset created from the conversion of the Brain-
Vision data. The schema depicts a conversion of a dataset that has multiple
BrainVision recordings and their separation into groups.

All of the recording data triplets of a dataset will be stored in a single
NIX container, where the NIX group entities will be used to create a logical
structure and differentiate between the recordings. Every single recording

NIX

Groups

Group: BrainVision data 1

Data array entity
Raw EEG data

Multi tag entities
stimuli data

Metadata sections
and properties
Recording data

Group: BrainVision data 2

Data array entity
Raw EEG data

Multi tag entities
stimuli data

Metadata sections
and properties
Recording data

EEGbase experiment dataset

BrainVision data 1

Header file
Recording metadata

Data file
Raw EEG data

Marker file 
stimuli data

BrainVision data 2

Header file
Recording metadata

Data file
Raw EEG data

Marker file 
stimuli data

Figure 5.2: The converted NIX logical structure schema.
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will be put into its own group. The group names in NIX have to be unique.
As the BrainVision does not have any recording name property that would
ensure its uniqueness, the raw data file name of the recording, together with
its file extension, will make up the group name. The group creation is part
of Process 1.1 of the diagram in Figure 5.1. The group can be created as
soon as the data file name is parsed from the header file.

The process continues with the conversion of the recording data, i.e., the
raw EEG data and the markers which highlight specific stimuli points or
ranges in the recording. This part of the process corresponds to Process 1.2
of the diagram in Figure 5.2. Any n-dimensional data from the recording
will be stored in the NIX container as a Data array entity. For the raw
EEG data, the array will be converted directly, as it is already stored as
2-dimensional arrays in the BrainVision format, where one dimension rep-
resents the channels, labeled by their names, and the second dimension is
the time series data of the channel.

A stimulus in the marker data is stored in the BrainVision header as a
single line, described by the stimulus name, position in data points, and size
in data points. The Multi tag entity that is designed to highlight points or
areas in the data will be used as the target entity. However, the original
stimuli data have to be adjusted to fit the Multi tag raw EEG data stored
as the NIX Data array entity. The Multi tag’s stimuli positions and their
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Figure 5.3: Depiction of a Multi tag in Data array.
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extents are stored as a Data array entity, and they have to share the same
dimensions as the referencing Data array. A Multi tag region highlighting
the raw EEG data is depicted in Figure 5.3. The known data From the
original BrainVision marker are the first element of the starting position
(the value 0.02 in the figure) and the x-extent of the marker. These need
to be modified, so they match the dimensions of the data and are applied
to all the channels. This means adding the first channel to the positions of
the stimuli and the last channel to the extents as a second dimension. This
creates a Multi tag highlighting the data from all the channels, as shown in
Figure 5.3. The descriptions that name the individual stimuli are added as
labels of the position and extent Data array entities. Once the Multi tag
contains all the stimuli, a reference is added to the raw EEG Data array
entity.

The recording metadata information is processed from the BrainVision
header file after all the data are converted and added into the NIX con-
tainer, depicted in Figure 5.1 as Process 1.3. Every recording will have its
own section in the NIX container. This will allow us to distinguish the
metadata between different recordings and reference the correct metadata
section to the appropriate data array. The header file can contain multiple
representations of information:

• The key-value pairs will be represented as properties in the section. If
the info value is multidimensional, a data array entity will be created
to hold the values, and the metadata property will refer to this array.

• If the values are a list of multiple values (e.g., the channel info, which
contains multiple values separated by a comma), an additional section
will be created with the key name, and the list will be put as properties
into this section.

• Any other metadata like comments or other settings, where these rules
can not be applied, will be treated separately and processed to keep
the original meaning.

The current BrainVision metadata does not use any terminologies that
could be used for the converted metadata. The odML terminologies will be
used to define the recording metadata structure, as will be the case for the
odML session metadata, and applied where possible. This means that the
BrainVision metadata will not be converted as initially parsed. Instead, the
parsed data will be remapped to fit the odML terminologies before insert-
ing it into the NIX container. The BrainVision metadata will undoubtedly
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contain parameters that do not have any matching interpretation in the ter-
minologies. These metadata will be converted either way, with the naming
conventions and structure following the odML terminologies structure, to
keep as much original information as possible.

The metadata have to be processed after the data conversion so that
the reference to the newly created NIX sections can be added to every data
array in the group. The processes 1.1 through 1.3 of the BrainVision dataset
conversion are repeated for every single recording in the dataset.

5.1.2 Session metadata conversion
The odML metadata in the BrainVision dataset have a very similar struc-
ture to the structure of the NIX metadata model. Both use sections that
group properties together, and the properties hold the metadata values. This
means that the sections from the original odML metadata will be represen-
ted as the Section entities of the NIX metadata and the odML properties as
the NIX Property entities. The odML metadata will be parsed and stored
into the script’s internal structures. These structures will be used for the
modification of the metadata to fit the NIX metadata model. The parsing
is represented as process 2.1 in Figure 5.1.

The original metadata stored in the odML format register the odML
terminologies as the repository to represent the metadata structure. How-
ever, the version that was used to create the metadata is deprecated and no
longer officially available from the G-Node’s odML repository. This means
that the odML metadata needs to be modified to use the current version of
the terminologies. The modification of the metadata with an implemented
mapping class will be a part of the conversion into the NIX sections and
properties. The mapping class will take the original odML document as an
input. The mapper will create a new odML document matching the current
terminologies using a user-defined mapping file. A default mapping file for
the odML terminologies to fit the EEGbase datasets will be provided.

This document will be used to insert the metadata into the NIX con-
tainer instead of the original one, as shown in Figure 5.4. Each section and
property type is represented with a mapping entity in the mapping file. The
entity consists of the original type of the section or property and a cor-
responding term structure defining the section or property in the NIX file.
The corresponding term includes the new name and type of the NIX entity
plus a parent section in the NIX container to allow for an association of a
section or property to a different one. Using the original type and the new
remapped type, necessary property data type conversions can be made. If a
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Figure 5.4: The mapping of the odML document to NIX entities.

section or property does not have a mapping entity equivalent, it will not be
included in the converted metadata. Empty or missing metadata properties
will be omitted during the conversion, and no section or property will be
created in the NIX metadata. This also applies to properties from the ori-
ginal odML metadata with the "GUI" prefix, as these properties were used
for the EEGBase portal web interface and are no longer necessary.

Aggregation of all the sections and properties across all the datasets that
will be converted into NIX revealed that most of the current odML metadata
is applicable to the newest odML terminologies, with only a small portion
needing for remapping to a different section and/or property. Only the
following odML metadata do not have a clear interpretation in the odML
terminologies:

• The Private-experiment property in the Experiment section - This
property will not be needed as the public/private attribute of a dataset
will be determined by the repository setting.

• The Subject’s Comorbidities, Myopia properties, and the Diseases sec-
tion - These properties will be joined together to form the array of
values for the HealthStatus property of a Subject of the odML termin-
ologies.

• The Person user role - This property specifies the role (user or ad-
min). This property is not necessary. Furthermore, it collides with the
person’s role from the odML terminologies with a different meaning.
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• The Artifact section - This section will be ignored as no dataset stores
any actual information apart from the "NotKnown" value in the prop-
erties of this section. Additionally, artifact rejection is part of the
BrainVision metadata as well, and these are parsed into NIX.

The tool will also offer an option where no terminologies mapping will
be made, and the metadata will be converted as they are. The conversion
tool will include a method that allows the user to generate a new mapping
file. The generator will aggregate any passed odML metadata files to create
the mapping for any found sections and properties. The parent section for
each section and property will be filled according to the original file, so when
using such a generated file, the converted metadata should have the exact
same structure as the original.

5.2 Python tool
Tools for handling the BrainVision files and creating the NIX files, that can
be utilized to help with the conversion between these formats, are both de-
veloped as python libraries. That is why the conversion tool is written as a
python script. The class diagram in Figure 5.5 can express the overall struc-
ture of the implemented tool. The tool is implemented as the nixconverter
package, containing the main class of the tool called EEGBaseNixConverter.
The package is further split into submodules by the types of files it converts,
i.e., the BrainVision converter and the odML converter.

The EEGBaseNixConverter class acts as an entry point of the tool that
parses the user input and creates the base structure of the converted data-
sets. The user input is provided by the python Docopt library as the script’s
arguments, and their values are stored as the class attributes that are passed
further on. Any paths from the Docopt parser are modified to absolute paths
so that the user can pass either a relative or absolute path to a dataset, for
example. The creation of the base structure of the converted dataset consists
of creating a new empty NIX file with the root block where the converted
contents of the dataset will be put into. The second part is copying any
files that cannot be processed in the conversion into the converted dataset.
This may include the original scenario information, result data, or license
pdf files.

Helper functions and classes are implemented into the "utils" submodule.
This submodule also includes a configuration file with constants used for
the conversion. The HeaderProperties class is a utilities class that stores
basic information about the currently handled BrainVision header file. These
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Figure 5.5: A class diagram of the python conversion tool.

properties are further used during the parsing and conversion. Other utilities
include custom exceptions, debugging output, and path parsing functions.

5.2.1 BrainVision converter
The open-source MNE library [56] handles the parsing of a single BrainVision
data triplet (the header, marker, and data file). The BrainVision parsing
function takes a path to the header file as an argument and returns an
internal structure containing the data, metadata, and marker information
from all three files. The open-source python tool nix-mne [57] does convert
the MNE structure to NIX files. However, it does not create the dataset to
fit the FAIR principles. The basic practices of the parsing functions from
this tool are taken and modified to satisfy the FAIR principles.

The first step of this conversion is registering the data group in the NIX
file and appending the raw EEG data. The group is named after the name
of the header file. The parser scales the recording to a basic unit of V .
Even though the original data are stored in µV , the unit conversion is not
a problem, as it also updates any necessary metadata information with the
data scaling. The raw data are placed into a new NIX data_array, a type
of the entity depends on the extension of the raw data file to distinguish
between the raw EEG data and the averaged data. The dimension labels
are set as the channel names, and the time range and unit of the data array
is set to V . This data array is appended to its group.

Once the raw EEG data data_array is created in the NIX file, the
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converter administers the stimuli parsed from the marker file, if there is
any. It takes the list of onsets and durations from the MNE annotations
and places them in new data_arrays. The remaining descriptions from the
annotations are used as labels for these data arrays. These data entities are
used to create a Multi_tag entity to represent the stimuli information. This
entity is placed into the appropriate group, and a reference is made to the
raw data entity.

The metadata from the header file is stored in the bv_info diction-
ary parsed by the MNE library. However, this function does not parse all
the metadata that we need to retrieve and move into the NIX file. Before
converting this dictionary to the NIX section and property entities, the re-
maining necessary information is parsed. This is done using the protected
function of the MNE BrainVision parser _aux_vhdr_info which returns the
raw contents of the header file and a ConfigParser to parse INI properties.

The first of the metadata missing in the MNE parsed structure is the
channel impedances section. This section is not always present in the header
metadata, so the first check is if the impedance section exists. If so, the
impedance unit and measure time are parsed from the section heading. The
heading is followed by a list of channels with their impedances. The lines
are parsed for the channel name until an empty line is found, as shown in
Listing 5.1, where the parsed information is stored to the already existing

impedance = next(
(item for item in settings if item.startswith(’Impedance’)), None)

if impedance:
idx = settings.index(impedance)
...
for setting in settings[idx + 1:]:

if re.match(r’\w+:’, setting):
ch_impedance = setting.split()
ch_name = channel_impedance[0].rstrip(’:’)
channel = next(

(item for item in bv_info[’chs’] if item[’ch_name’] == ch_name),
None)

imp_as_number = re.findall(r"[-+]?\d*\.\d+|\d+", ch_impedance[1])
channel.update({

’imp’: float(imp_as_number[0] if imp_as_number else 0),
’imp_unit’: impedance_unit,
’imp_meas_time’: datetime.strptime(impedance_time, "%H:%M:%S")

})

Listing 5.1: Parsing the channel impedances.
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channel info in the raw BrainVision parsed data. The impedance ranges for
different types of channels are parsed and appended to this data structure
as well.

A second metadata section that is missing in the BrainVision info parsed
from the MNE library is the segmentation section. This section is present
for the averaged recordings. When this section is present, some additional
key-value pairs are also added in the "Common infos" section. These are
parsed using the python ConfigParser, as are the other key-value in this
section. The rest of the segmentation metadata in the separate section
have to be parsed manually. Some of these metadata are simple key-value
pairs, only with different delimiters. This type of metadata is parsed and
processed using a key-value parsing method with a specifiable delimiter,
shown in Listing 5.2. Values are stored as arrays, where a comma can
separate individual elements. In some cases, the value for a single key can
be represented across multiple lines. This is solved by checking for a double
tabulator instead of a single one. For that case, the line is stored in the last
saved key.

The enhancements of the MNE library in the form of the segmentation
and impedance sections parsing were considered as changes with a wider use
case than just for this work. A pull request to the MNE Github repository1

was made that integrates these changes to the library. If these changes get
accepted, they could replace the current methods from the conversion tool.

The MNE library uses "FIFF constants" to represent some static inform-
ation like the channel units. These constants are converted to a human-
readable value. In the case of the unit constant, the FIFF_UNIT_V constant
is converted to a "V " string. The rest of the BrainVision metadata is used
as the MNE library parsed them.

Once all the metadata are prepared, they are converted into the NIX con-
tainer using the section and property entities. The MNE internal structure
is mapped onto these entities to fit the odML terminologies where possible.
The mapping is stored in a JSON file consisting of the attribute names,
combined with a parent attribute if there is any. These two are delimited
by a double underscore to avoid collisions with the attribute names. The
mapping entity tells the converter how to store the value and in which NIX
property or section. Most of the BrainVision metadata are adjustable para-
meters of the hardware that may change with each recording or dataset. The
odML terminology offers the "HardwareSettings" section for this type of
metadata. This section will contain hardware sections describing the Brain-

1Available at https://github.com/mne-tools/mne-python, Pull Request #7771
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for setting in segmentation_settings[idx + 2:]:
if re.match(r’(\t)?\w’, setting):

setting = setting.split(delimiter)
key_name = setting[0].strip()
key_values = setting[1].strip().split(’,’)
values[key_name] = key_values if key_values[0] != ’’ else []

elif re.match(r’\t\t\w’, setting) and key_name is not None:
key_values = setting.strip().split(’,’)
for val in key_values:

if val != ’’:
values[key_name].append(val)

else:
break

Listing 5.2: Parsing the segmentation section.

Vision recording settings. However, any metadata that are already stored
in the odML metadata will be stored in the "HardwareProperties" section
from the odML terminologies that is meant to store the fixed properties of
used hardware like description, manufacturer, and other.

5.2.2 odML converter
The conversion of the recording session metadata stored in the odML format
is implemented into the odmlconverter module. The odML core library [58]
is used to read the old metadata. This library has a class for converting the
older document version into the most recent version. This step is necessary
as the reader from the library only accepts documents in the newest version.
Before saving the document to NIX, it is mapped to the odML terminologies
using the OdmlMapper class.

The mapping of an odML document is stored in the form of a JSON
file. This file contains a dictionary of individual mapping entities for the
original odML sections and their properties. Each entity is represented by
the type and name of the original odML section or property, delimited by a
double underscore. The mapping of an entity is in the corresponding_term
attribute. This attribute consists of the name and type for the converted
metadata, and the parent section where the mapped section or property will
be placed.

Apart from the corresponding_term attribute, some other options for
the mapping are available as well:

• use_as_reference - this is an attribute for a special use case for a
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property mapping, where the property value will be mapped to a spe-
cified section’s reference attribute, instead of creating a new property.

• add_prop - an optional attribute for a section or property mapping
entity, which will put additional properties to the mapped section.
This is an array of properties composed of name, type, and value.

• section_reference - attribute for a section mapping entity, which
places an id reference of the created section to a specified property.

The entity also contains additional attributes solely for an informative pur-
pose, e.g., the original type or an example of the values of a property. A
typical use case of a mapping entity is in Listing 5.3. In this Listing, a
Person section from the original odML document will be mapped into a
section "Experimenter" of type "person". This section will be placed in the
"Experimenters" section. The original odML section has a property named
"givenname", which will be mapped onto a new property "FirstName" of the
"Experimenter" section.

The implemented package provides a default mapping file that was gen-
erated from all the available EEGBase datasets. The mapping entities were
manually modified to map the sections and properties to the odML termino-
logies. A new mapping file can be generated using the mapping_generator
script from the odmlconverter module. This script takes an input path as

"person__person": {
"corresponding_term": {

"type": "person",
"name": "Experimenter",
"parent_sections": "collection__Experimenters"

},
"props": {

"givenname": {
"type": "string",
"example_value": "[’Jan’]",
"corresponding_term": {

"name": "FirstName",
"type": "string",
"parent_sections":"collection__Experimenters___person__Experimenter"

}
}

}

Listing 5.3: A mapping entity for a odML section and its property.
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an argument. This path and all its subfolders are searched for XML files.
The contents are parsed, and the sections and their properties are aggreg-
ated to create the mapping file for these documents. A custom mapping can
be passed as an optional argument to be used instead of the default one.

The OdmlMapper class takes the provided mapping file and starts it-
erating through the original odML document. The mapped sections and
properties are saved into a new odML document. The script is working
with this new document in memory; no new file with the remapped odML
document is written to the file system. The mapper supports data type
conversion for the property mapping to basic types of Integer, Float, String,
and DateTime. For the DateTime data type, a format attribute is required
in the corresponding_term of the mapping entity. This format attribute is
used for the parsing of the date from a string value. Once all the sections
and properties are mapped, this newly created odML document replaces the
original one to be used in the conversion.

A tool for writing the contents of an odML document into a new NIX
file and vice versa already exists in the form of the nixodmlconverter python
package [59]. The recursive function that converts a passed odML section
and its properties to NIX is taken from this tool. The root section of the
session metadata in the NIX file is created separately, where a proper section
name and a link to the odML terminologies repository is set. The odML
metadata are placed into this section using the recursive function.

During the implementation, a bug was found in the core Nixpy library
which the nixodmlconverter package uses, unable to convert any float prop-
erties due to a bad comparison of data types. This was reported to the
package’s repository2 with a described cause of this problem and a proposed
solution. The solution to this problem suggested by the developers was suc-
cessfully tested on the implemented conversion tool and is waiting to be
included in the next official release.

5.3 Implementation summary
The MNE library is used to parse the BrainVision data and metadata. Some
of the metadata were not initially parsed with the library. Custom func-
tions were implemented to parse the segmentation and impedance metadata.
These changes were proposed as pull requests into the library GitHub re-
pository. All these data joined together are then converted into NIX with
NIX-MNE conversion tool. The functions from this library were modified

2Available at https://github.com/G-Node/nixpy, Issue #463
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as well to use mapping of the metadata to the odML terminologies. These
modifications were specific to this use-case, so they were not implemented
directly into the tool.

With the BrainVision data covered, the odML metadata document was
transformed to use the terminologies using an implemented mapper. The
user can use a separate python script to generate the mapping entities and
use them to transform the odML metadata instead of the default mapping
to the odML terminologies. This transformed document is then converted
to the NIX file to join the converted BrainVision data and metadata. The
nixodmlconverter tool is used for this conversion. The conversion would fail
for any float values in the document due to a bug in the core NIXIO library.
A fix was proposed as a pull request in the NIXIO GitHub repository, with
the request resolved and the changes merged into master for the next release.
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6 GIN repository

The main idea of storing the converted dataset is to use the G-Node’s hosted
GIN repository. In this repository, we can utilize the otherwise paid DOI
dataset identification, which is a crucial part of satisfying the FAIR prin-
ciples. However, as the hosted repository does not yet include the gin-proc
and drone microservice for extending the data workflows, a docker image
with implemented pipelines is included as part of the final solution as well.
The docker image will serve as a sandbox environment in the meantime.

A new user account was created on the hosted GIN repository using the
provided registration form. Using this account, a new repository is created
for each type of the converted experiments. The license of the repository is
set upon the creation. If the licensing information is present in the converted
datasets, the same license is used for the GIN repository. Otherwise, the
Creative Commons Attribution 4.0 license is selected.

The uploading of the dataset is done using the GIN client. After logging
in to the client, the repository is initialized in the local directory using the
gin get command. After it is initialized, the converted datasets can be
added into this directory, and a local gin commit is created, adding all the
files and giving a descriptive message. The local commit with the files is
then uploaded to the remote GIN repository with gin upload, which does
the actual upload of the files into the remote repository. The process of
uploading the datasets to the remote GIN repository is shown in Listing 6.1.

gin login
gin get jsedivy/Event-related_potential_datasets
gin commit --message "Initial dataset upload" .
gin upload

Listing 6.1: The process of uploading a dataset.

The process of obtaining a DOI starts with adding the datacite.yml
file into the root of the GIN repository. This file contains information for
publication of the data. The datacite file should hold information about the
authors of the datasets, title and a description of the experiment, keywords
and licensing, as seen in Listing 6.2. Other optional attributes are available
as well. If these pieces of information are known from the experiment’s
datasets, they are copied to the datacite file. Alternatively, if an experiment
has some additional information published in the EEGbase portal, or in the
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articles at the neuroinformatics research group website [60], these are added
to the datacite file as well. The full description of the datacite.yml file is
at [34]. Once the datacite.yml file is created for the repository, and the
repository is set to public, a request for assigning a DOI to the repository is
made using the DOIfy button in the GIN web interface.

authors:
- firstname: "John"

lastname: "Doe"
affiliation: "Faculty of Applied Sciences, University of West Bohemia"

title: "Event-related potential datasets based on three-stimulus-paradigm"

description: |
Event-related potential datasets based on three-stimulus-paradigm
The datasets have been converted into NIX from the original experiment
shared in the EEGBase portal

keywords:
- Neuroscience
- Electrophysiology
- ERP

Listing 6.2: An example of a datacite file.

6.1 Docker image
For a local instance of the GIN repository, a docker image with all the
necessary services is provided. It is implemented using docker-compose
that includes all the necessary settings and offers a ready-to-use repository.
The variable settings of all the services are placed in the .env file. Each
service runs in its own docker container. This will allow for easier upgrading
or replacement of the individual services. The complete image consists of
these services:

• gin-service - The main container that runs the gnode/gin-web docker
image1. By default, the web interface is made accessible at the address
http://172.19.0.2:3000.

• db-postgres - The container for the GIN relational database. A Post-
greSQL database is used from the official Docker images2.

1Available from https://hub.docker.com/r/gnode/gin-web
2Available from https://hub.docker.com/_/postgres
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• gin-index - The gnode/gin-dex docker image3 for indexing the stored
datasets.

• db-elasticsearch-node - The ElasticSearch database image4 for the
indexing service.

• drone - The Drone docker image5 for the pipeline job management.
Accessible at the address http://172.19.0.3 by default.

• drone-runner - A runner image6 for the drone service. This service
runs the registered pipeline jobs.

The individual service containers are connected using a docker bridge
network. The network does have a configured subnet, and each container
is assigned a static IP address from this subnet. This is done so that each
container has the same IP address on each container start-up and address
links between containers can be specified, e.g., connecting the GIN web
service to the PostgreSQL database.

6.1.1 GIN web interface
The GIN repository web interface runs in the gin-service container. A
settings file app.ini is used to change the default repository settings. This
includes the main server settings like the server’s HTTP address and port,
database connection settings, repository upload limits, etc. The settings
file is in the root directory of the docker-compose, and it is mounted as a
docker volume into the GIN container’s configuration path. A second docker
volume is mounted to the directory where the GIN repository stores its data.
This is to preserve the data on the host machine on the container restart or
when the container is simply not running.

A PostgreSQL database is used for the GIN’s relational data, as it is
recommended in the GIN wiki [61]. The definition of the container for
the PostgreSQL container is shown in Listing 6.3. The database schema
for the GIN repository is specified in the container’s environment variable
POSTGRES_DB that automatically creates the schema on start-up. The val-
ues are taken from the .env variables. However, only one database can be
initialized this way. As the Drone service requires its own database schema,
the initialization of this schema needs to be handled separately. PostgreSQL

3Available from https://hub.docker.com/r/gnode/gin-dex
4Available from docker.elastic.co/elasticsearch/elasticsearch:6.8.8
5Available from https://hub.docker.com/r/drone/drone
6Available from https://hub.docker.com/r/drone/drone-runner-docker
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db-postgres:
container_name: db-postgres
image: postgres
restart: unless-stopped
environment:

- POSTGRES_PASSWORD=${POSTGRES_PASSWORD}
- POSTGRES_DB=${POSTGRES_GIN_DB}
- POSTGRES_DRONE_DB=${POSTGRES_DRONE_DB}

volumes:
- ./docker/pg-init-scripts:/docker-entrypoint-initdb.d
- ./db/postgresql/data:/var/lib/postgresql/data

networks:
gin:

ipv4_address: 172.19.0.5

Listing 6.3: The definition of the PostgreSQL container.

has a init directory docker-entrypoint-initdb.d which it uses on service
start-up and runs any SQL scripts in this folder. The docker image mounts
the pg-init-scripts as a volume to this directory containing a SQL script
that creates the database schema for Drone as well. The PostgreSQL data
folder is mounted as a volume to the host machine to create persistent stor-
age.

The gin-index service takes care of indexing the data from GIN’s re-
positories into the ElasticSearch database. The indexed data are used for
the dataset searching functions in the GIN web interface. The gin-index
and gin-service share an encryption key that is used for verification. The
gin-service defines its key in the app.ini settings file, the indexing service
has the key passed as an environment variable from the docker container.
These keys must be matching for the indexing to work. The indexing ser-
vice reads data from the shared docker volume of the GIN web service. The
ElasticSearch service is split into two containers, where each container con-
tains one ElasticSearch node. The nodes will share the same cluster and use
the same docker volume to store its data. The ElasticSearch image itself
will take care of connecting the nodes and communication between them.

The GIN web service provides a first-time setup where the user can define
the database connection, some basic repository settings and create a first
user. This option is disabled and the setup is rather done automatically
using the properties set in the app.ini settings file. Although the image is
created using docker-compose so the image could be started using the docker-
compose command, a start-up bash script is created that should be used
instead. This script takes care of creating the required directories for the
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docker volumes if they are not present, as the image start-up fails otherwise.
The script also creates a default admin user for the GIN web service. The
ElasticSearch database uses a virtual memory mmapfs directory to store its
indices and the service checks for the limit, which is set too low in most
operating systems [62]. The script checks the map count limit beforehand
and increases it to a minimum required amount for the ElasticSearch service
to start if it is too low.

6.1.2 Pipelines
The pipelines in the GIN’s repositories are implemented using the Drone
service. It is connected to the GIN container and the PostgreSQL database
container using the DRONE environment variables. A Drone user is created
for the default admin GIN account. The access is limited to this account
only using the DRONE_USER_FILTER environment variable. The Drone service
is the web-based management of the pipelines and registering the pipeline
jobs. The actual pipeline jobs are executed in the Drone runner service.
A network is specified for these two services so they can communicate with
each other. In addition, both services have the matching DRONE_RPC_SECRET
environment variable defined for authentication.

steps:
- name: init-clone

image: falconshock/gin-proc
volumes:

- name: repo
path: /repo

environment:
SSH_KEY:

from_secret: DRONE_PRIVATE_SSH_KEY
commands:

- eval $(ssh-agent -s)
- mkdir -p /root/.ssh
- echo "$SSH_KEY" > /root/.ssh/id_rsa
- chmod 0600 /root/.ssh/id_rsa
- ssh-add /root/.ssh/id_rsa
- ssh-keyscan -t rsa "$DRONE_GOGS_SERVER" > /root/.ssh/authorized_keys
- if [ -d "$DRONE_REPO_NAME" ]; then

cd "$DRONE_REPO_NAME"/; git fetch --all;
git checkout -f "$DRONE_COMMIT";

else git clone "$DRONE_GIT_SSH_URL"; cd "$DRONE_REPO_NAME"/; fi

Listing 6.4: A shortened clone step of a pipeline.
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The jobs are specified with the .drone.yml file in the root of a repository.
An example of this file is provided together with the docker image. The first
step of the pipeline job is cloning of the GIN repository. As GIN is built
on Gogs [63], a git service, the cloning is done using normal git commands.
The authentication for the cloning is done via ssh. The Drone private key
is set in the Drone web interface as the repository secret value. This value
is then accessed during the job execution and a new ssh key is created and
added to the ssh-agent. The GIN repository owner has to have a public
key to this ssh key set in the GIN account settings. The following steps of
the job can execute any user-specified commands. The repository is cloned
into a volume, so any following step that mounts this volume can access the
cloned repository and its contents.
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7 Evaluation

This chapter evaluates the implemented python conversion tool and the
datasets that are the result of the conversion from the EEGBase into the
NIX standard. Static code analysis is performed on the source code of the
python tool, and a set of unit tests is written to cover the core functionality.
The created NIX structure is validated, and a FAIR principles assessment
is made on the converted datasets combined with their upload to the GIN
repository.

7.1 Conversion tool
For the static code analysis of the conversion tool, a couple of analysis tools
are used. First, a check with the Flake8 [64], a tool for style guide enforce-
ment, is run. No additional plugins are used and the only setting changed
from the default is the maximum line length, set to 120 characters. The tool
is run on any python file in the nixconverter package and reports a total
of 0 violations found, checking 12 files overall.

The second analysis tool used is the Pylint tool [65]. The calling of the
protected function from the MNE library for parsing the header tool is set
to be ignored for this check. For the BrainVisionConverter’s recursive
method create_bv_metadata_tree multiple checks are disabled, including
too many nested blocks and branches, as altering this method to fit the
Pylint requirements seems counterproductive. The tool is further run with
a disabled check for a maximum line length of 80 characters, as this would
collide with the Flake8 check. The check for a maximum of 7 local variables
of a class instance is also disabled. The analysis with these settings results
in no errors or warnings with the code rated at a full 10 out of 10.

Unit Tests for the conversion tool are implemented with the unittest
framework from the standard Python library. The tests are placed in the
tests package in the root directory and split into multiple files by the module
they are testing:

• test_brainvision_converter.py - Test cases for the methods pars-
ing the additional BrainVision header metadata.

• test_converter_utils.py - Test cases covering the utilities module
functions and classes, i.e., functions for the path parsing or the correct
initialization of the HeaderProperties and its methods.
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• test_eegbase_nix_converter.py - These tests cover the parsing and
correct initialization of the passed arguments. In addition, a test case
for the creation of a NIX file from input dataset is included in these
tests. The testing data from tests/data/eegbase are used as input,
and the actual contents of the generated NIX file are checked.

• test_odml_mapper.py - Tests covering the mapping of an odML file
from a mapping file. Included are tests for retrieving and creating
sections and properties, correct data type conversions, or the result
from a complete odML mapping. The optional map entity fields are
tested as well, e.g., creating additional properties, using references or
linking sections.

• test_odml_mapping_generator.py - Test cases for the mapping gen-
erator. These cover the correct format of the parent section strings.

Using the coverage tool [66] and its reporting option, the total code coverage
of the whole nixconverter package is computed at 94%. The tool monitors
the program during tests and notes which parts of code have been executed.

7.2 Converted datasets
The conversion tool was executed on the datasets from all the seven experi-
ments provided from the EEGbase portal. The NIX Python library includes
a python script for the validation of a NIX file. A bash script validate.sh
(see Listing 7.1) is bundled with the implemented conversion tool that finds
any files with the NIX file extension in a given path, executes the python
script from the NIX Python library on them, and outputs the validation
results to a file. The validator returns only one type of warning in a large
quantity for every single NIX file about missing a unit attribute in some
section properties. However, these are properties that store values with no

echo "Running the nixio validation"
find "$dataset_path" -type f -name "*.nix" | while read line; do

echo "Validating file $line"
python -m nixio.cmd.validate "$line" >> "$result_path"

done
echo "Validation complete. The results are stored in $result_path"

Listing 7.1: The bash validation script.
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units that could be used for this attribute, e.g., a subject’s age, an exper-
imenter’s name etc. As the unit attribute for a property is not required,
so these warnings are ignored. More importantly, the validator does not
return any error for any of the converted dataset, so the conversion can be
considered valid.

The dataset conversion results in an increase in the total file size. For
example, the average size of a dataset from the "Car simulator - Driver
attention" that consists of BrainVision and odML metadata files only, is
102,9 megabytes. The average size of a NIX file from this experiment is
187 megabytes. That is an increase of 83,3%, even though the NIX block
has the compressing set to DeflateNormal, which is the only compressing
algorithm available. However, the increase in size for the NIX files is not
as severe when considering all the remaining files as well. The total size of
the original experiments combined is 19,8 gigabytes, whereas the converted
experiments are 26,1 gigabytes in size combined, which is an increase of
31,8%.

A repository in GIN was created for each experiment, and the converted
datasets were uploaded there. The repositories can be found in the G-Node’s
GIN website, under the newly created user1. A datacite file was filled out for
each experiment, and a new DOI for these repositories was requested. The
DOI for each experiment can be found inside the individual repositories.

7.2.1 Conversion use-case
A representative dataset in the form of Experiment 208 of the Driver’s atten-
tion with visual stimulation and audio disturbance experiment was selected
as the use-case of the conversion. This dataset was selected as it contains
multiple recordings, as well as additional scenario data to show the full con-
version.

The original dataset consists of a raw data recording and two averaged
recordings (target and non-target), odML metadata and scenario files. See
the full structure of this dataset in Listing 7.2. The conversion tool was
executed on the folder of the experiment, using the default options and
the default mapping to the odML terminologies. The conversion results in
a folder that contains the NIX file with data from all the BrainVision files
from the original data folder and the odML metadata.xml file. The scenario
files are copied unchanged, as these cannot be stored in the NIX file. The
structure of the dataset after the conversion is in Listing 7.3.

1Repositories are available at https://gin.g-node.org/jsedivy
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/Experiment_208
|- /data
| |- LED_26_3_2014_0004.eeg
| |- LED_26_3_2014_0004.vhdr
| |- LED_26_3_2014_0004.vmrk
| |- LED_26_3_2014_0004-non_target.avg
| |- LED_26_3_2014_0004-non_target.vhdr
| |- LED_26_3_2014_0004-non_target.vmrk
| |- LED_26_3_2014_0004-target.avg
| |- LED_26_3_2014_0004-target.vhdr
| |- LED_26_3_2014_0004-target.vmrk
|- /Scenario
| |- 12 words.txt
| |- LED_workspace.rwksp
|- metadata.xml

Listing 7.2: The structure of a dataset before the conversion.

The NIX file contains three groups, each storing all the data from the
original files:

• LED_26_3_2014_0004 with entity type of nix.data.eeg,

• LED_26_3_2014_0004-non_target with entity type of nix.data.avg,

• LED_26_3_2014_0004-target with entity type of nix.data.avg.

The shape and form of the raw data from the .eeg and .avg files stays
the same, stored as data_arrays in the respective groups. The marker
data from the .vmrk files are stored as Multi_tag entity in the groups. The
representation of the markers differs from the original to span the highlighted
area across all the channels in the raw data data_array. For example,
a marker record "Mk2=Stimulus,S 1,21,0,0" in the original marker file
translates to the following attributes in the Multi_tag entity:

• Extents[1] = [16, 0], where 16 is the last channel and 0 is the
extent of the marker from the original record.

• Positions[1] = [0, 0.021], where 0 is the first channel and 0.021
is the original position.

• References contains the id reference to the data_array with the raw
data in the group.

The label for the index of 1 in the dimensions in both extents and positions
has the value of "Mk2=Stimulus,S 1".
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/Experiment_208
|- /Scenario
| |- 12 words.txt
| |- LED_workspace.rwksp
|- Experiment_208.nix

Listing 7.3: The structure of a dataset after the conversion.

For the BrainVision metadata, each group has a separate section refer-
enced to in the group’s data_array. All three have the sections Recording
with starting date and time of the recording, and HardwareProperties
with amplifier setup and the channel information from the original "Amp-
lifier setup" header metadata. For example, the amplifier section contains
the SampleRate property, parsed from the original metadata line "Sampling
Rate [Hz]: 1000". The property has a value of 1000.0 (as the odML termino-
logy specifies this attribute as float) and the unit is stored in the properties
unit attribute as "Hz".

The averaged metadata sections include the segmentation section as well,
as they contain these metadata in the header files. The values from the
original "Common infos" section are stored directly in the segmentation sec-
tion, so for example the SegmentDataPoints=1100 line is translated to a
SegmentDataPoints property in the segmentation section. All the subcat-
egories from the original header, e.g., Interval, Artifact Rejection, or Aver-
aging and their values are represented as subsections with the same name in
the segmentation section.

For the odML metadata, a section named "Session metadata" is created,
where all the metadata mapped to the odML terminologies are stored. An
example would be the section Experiment with the property start-time in
the original odML file that translates to the NIX section Recording and the
property Start as a result of the terminology mapping.

7.2.2 FAIR assessment
An evaluation of the satisfaction of the FAIR principles is done. This is
to check if the resulted conversion into the NIX standard combined with
the GIN repository satisfies the same FAIR principles that were evaluated
during the analysis and selection of this solution and how these principles
are met.
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Findable

F1 Every entity of the NIX file has the entity_id set. The default id gen-
erator from NIX is used. The experiment datasets are also identified
by a unique DOI in the GIN repository using their DOIfy service.

F2 Combining the metadata from the BrainVision header files and the ses-
sion’s odML metadata into the NIX sections, the datasets are richly
described. The experiment’s repository README file, the repository li-
cense and the datacite file used for generating the DOI in GIN can
also be considered as additional metadata.

F3 The references between data and metadata are available and used to link
together the raw data data_array and its metadata section parsed
from a single BrainVision file.

F4 The GIN service serves as a searchable resource of the datasets. Using
the gin indexing service, the contents of the dataset are searchable.
Plus, the whole experiment can be accessed through the registered
dataset and the assigned DOI.

Accessible

A1 The datasets are retrievable from the GIN repository either by their
generated unique identifier in the form of the DOI which is done over
the HTTPS protocol, where no authentication is required. Another
option is to clone the datasets directly from the repository using the
GIN client or git.

A2 At least the metadata of the GIN repository are always available even
when no NIX files are available in the repository anymore. If the data
from the NIX dataset would have been deleted, the metadata sections
to these data would still be accessible, as they are stored in separate
objects and only connected with a reference.

Interoperable

I1 The data are stored in the NIX format and can be viewed by any HDF5
file browser. G-Node offers the NixView tool designed to view the NIX
files specifically. Furthermore, the data and metadata structures can
be accessed and modified with the Python or C++ libraries that NIX
offers.
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I2 The metadata from the original session odML metadata and the Brain-
Vision metadata are both described by the well-described odML ter-
minologies where possible, thanks to the implemented mapping. As
the conversion tool includes the option to use custom mapping, other
terminologies describing the metadata are available. The data struc-
tures, e.g., the raw data arrays or the stimuli data, are described by
the NIX data model itself.

I3 The metadata properties can contain references to other metadata sec-
tions or properties. Every NIX section and property entity can also
have a reference attribute specified, which can be used to reference to
metadata outside the scope of the NIX dataset. This is used for ex-
ample in the hardware sections that have the original reference prop-
erties mapped with the use_as_reference option into this attribute.

Reusable

R1 Mapping the original metadata to the odML terminologies ensures that
the converted dataset is richly described with a plurality of accurate
and relevant attributes. The metadata are further extended by the
information stored in the experiment’s repository in the form of the
datacite file.

• R1.1. - Some of the original datasets included a license in the form
of a pdf file. These are copied to the converted NIX datasets as
well. Every datasets license is further specified in the root of the
GIN repository using the LICENSE file, that is generated when
creating the repository.

• R1.2. - The datasets include metadata that serve as detailed data
provenance, e.g., institution name or author of the experiment.
These are stored in the datacite file for the whole repository as
well.

• R1.3. - The usage of NIX and the odML terminologies should as-
sure that the (meta)data meet domain-relevant community stand-
ards.

The overview of this assessment is in Table 7.1. The results show that
every principle was met as originally expected from the NIX data standard
analysis. The converted datasets uploaded to the hosted GIN repository
comply well to the FAIR principles.
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Findable Accessible Interoperable Reusable
F1 F2 F3 F4 A1 A2 I1 I2 I3 R1

Yes Yes Partially Yes
Yes

(A1.1 - Yes
A1.2 - Yes)

Yes Yes Yes Yes

Yes
(R1.1 - Yes
R1.2 - Yes
R1.3 - Yes)

Table 7.1: FAIR principles assessment for the implemented solution.

7.3 Tool deployment
Both the implemented conversion tool and the docker image for the GIN
repository are publicly shared with the community through GitLab repos-
itories2,3. Tags are used to highlight specific versions of the tool and the
docker image. The repository for the conversion tool has continuous integ-
ration (CI) configured. This CI contains steps for the static code analysis
tools and the unit tests, as seen in Listing 7.4. The pipeline status and
the unit test coverage percentage are shown as badges on the repositories
homepage. When cloning the tool from this repository, a requirements.txt
is provided with a list of dependencies for the tool. This file is used when
installing the dependencies in the pipeline job as well.

Furthermore, the conversion tool is distributed through the Python Pack-
age Index (PyPI)4 repository. Using PyPI and the pip installer5 included
in the modern versions of python by default, users can install the conver-
sion tool with all of its dependencies automatically. The released versions
in PyPI match the version tags in the GitLab repository.

flake8:
stage: Code Analysis
script:

- flake8 --max-line-length=120 nixconverter/*.py
unittest:

stage: Tests
script:

- coverage run -m unittest discover -b

Listing 7.4: A segment of the CI pipeline steps.

2EEGbase NIX converter: available at https://gitlab.com/honza.seda/eegbase-nix-
converter

3GIN Docker image: available at https://gitlab.com/honza.seda/gin-docker-image
4https://pypi.org/
5https://pip.pypa.io/en/stable/
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8 Conclusion

The analysis of the current solution for storing the electrophysiological ex-
periments in the EEGbase portal confirmed that it does not comply well to
the FAIR principles. New means for storing the original data in the form of
available data standards were examined, where each standard was evaluated
on the satisfaction of the individual FAIR principles. Based on this evalu-
ation with consideration of the difficulty of a possible conversion into each
standard, the NIX data standard was selected as the most viable option of
the conversion.

A python conversion tool was implemented using some of the existing
open-source libraries that convert individual parts of the dataset and modi-
fying them to fit the purpose of this thesis, namely the FAIR principles
requirements. This includes mapping of the metadata to the odML termin-
ologies. The mapper is designed to allow its use on other, user’s specified
terminologies, and metadata different to those stored in EEGbase as well.
Fixes for found bugs and some of the enhancements made to the open-source
libraries that were considered useful for general use have been proposed dir-
ectly into the library repositories. The result is a production of valid NIX
files converting the original data and metadata. A downside of the converted
datasets is an almost double increase in file size compared to the original
combination of BrainVision and odML formats, despite using the data block
compressing algorithm provided by NIX.

The G-Node’s GIN repository was selected as the most convenient way to
store the newly selected NIX data standard, replacing the EEGbase portal.
The version of the repository hosted at G-Node’s servers was chosen as
the primary storage of the data, as the offered DOI service, which is paid
otherwise, greatly supports the findability principle. However, the pipeline
service is not included yet. This was the reason for the implementation of a
docker image that runs the GIN repository with the pipeline service as well,
which can be used as a sandbox environment for the pipelines.

Overall, the implemented solution meets all of the FAIR principles. All
of the provided experiment’s datasets are successfully converted, stored in
the G-Node’s hosted repository, and identified by DOI. The implemented
solution could be used to replace the current EEGbase portal. Some of
the changes proposed to the hosted GIN, like the pipeline implementation
or indexing of NIX file contents would further improve the repository and
could be implemented to the local docker image as well.
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List of abbreviations

API Application programming interface

BIDS Brain Imaging Data Structure

CI Continuous Integration

DOI Digital Object Identifier

EEG Electroencephalography / Electroencephalogram

ERP Event-related potential

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IP Internet Protocol

JSON JavaScript Object Notation

NWB:N Neurodata Without Borders: Neurophysiolog

odML Open Metadata Markup Language

OWL Web Ontology Language

PID persistent identifier

RDF Resource Description Framework

REST Representational state transfer

SOAP Simple Object Access Protocol

SQL Structured Query Language

SSH Secure Shell
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Appendices

A Converter user guide

EEGbase NIX converter
EEGbase NIX converter is a python script that converts BranVision/odML
dataset to a NIX container file. Its design and the primary use is to con-
vert data from neurophysiology experiments taken at the Faculty of applied
sciences, University of West Bohemia, stored in the EEGbase portal.

Requirements

The tool was developed and tested with Python 3.8. The required third party
libraries are in the requirements.txt file. You can install the dependencies
using the command:

pip install -r requirements.txt

Install using pip

When installing the converter using pip, any dependencies are automatically
installed as well. The package is available from pip at:

pip install eegbase-nix-converter

ATTENTION: As the suggested fix for converting odML float values in
the nixio library is not yet in the official released version, the pip package
with its dependencies can not convert odML float values to NIX.
To support conversion of float values, you can use the tool from sources (or
the GitLab repository1) and install the nixio library from the master branch
in its repository2 instead of the nixio library in the requirements, where the
fix is already implemented. (Clone the repository and run pip install on
the cloned nixio folder. If older nixio version is already included in python,

1EEGbase NIX converter: available at https://gitlab.com/honza.seda/
eegbase-nix-converter

2Nixio: available at https://github.com/G-Node/nixpy
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it has to be uninstalled first with pip uninstall nixio)
For the pip package, this applies to versions 1.0.4 or lower as well. Use pip
show eegbase-nix-converter to show the installed version.

Usage

Run the script with the following command:

python -m nixconverter DATASET [--output=<path>]
[-m] [-t|--mapping=<path>] [-v] [-y]

The help can be printed out using the following command:

python -m nixconverter -h | --help

Alternatively, the script can be run with the proper requirements from the
nixconverter module directory:

python eegbase_nix_converter.py DATASET [--output=<path>]
[-m] [-t|--mapping=<path>] [-v] [-y]

Arguments:

DATASET - Path to the directory with the dataset. The path is expected
to be relative from the script execution directory.
By default, the script expects the directory to contain a single dataset
and will create a single NIX file. If you want to change this behaviour
and convert multiple datasets at a time, you can do so by passing the
–multiple (-m) option, which will interpret the DATASET as parent
directory and expect every immediate subfolder to be a dataset folder
(will run the conversion on every subfolder in the passed directory).
The tool will attempt by default to convert the odML (.xml) metadata
to use the odML terminology. The mapping to the odML terminologies
uses a predefined mapping JSON file. To use custom mapping, pass
the path to a JSON file with the –mapping=<path> option. To create
your own mapping file, see the Mapping generator section.
To prevent this and use the original terminologies or not add any
terminologies at all, pass the –keep-terminologies (-t) option with
the script
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Options:

-v –verbose - Output detailed logging information to console

-m –multiple - Will handle the passed path as a folder containing multiple
datasets in separate directories

–output=<path> - Specify the output directory for the converted files.
If the path does not exist, it will be created

-t –keep-terminologies - Keep the terminologies from the original odML
metadata

-mapping=<path> - Path to a JSON mapping file

-y - Always replaces already existing files

-h –help - Show help in console.

odML Mapping generator
Part of this package is the script odml_mapping_generator.py for gener-
ating the mapping file from the odML .xml metadata. Mapping is used for
the conversion of the odML files to the NIX sections and properties.

Usage:

If the package is installed using pip, the generator can be run using the
following command:

python -m nixconverter.odmlconverter.mapping_generator ODML OUTPUT

Otherwise, the script can be run directly from the package folder:

python nixconverter/odmlconverter/mapping_generator.py ODML OUTPUT

Arguments:

ODML - Folder (and all the nested subfolders) that will be searched for
.xml files. If multiple .xml files are found, the mapping will merge all
the sections and properties together into a single mapping file.

OUTPUT - Name of the file to output the mapping into.
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Options:

-h –help - Shows help.

Mapping file
The mapping is a .JSON file containing all the sections and its properties
of the odML .xml files in a folder. Sections are represented with a key in a
format of type__name. The properties of the section are stored in the props
field of the section.

NOTE: Every section must be in the root level of the JSON.

Section/Property mapping options

The mapping of a section or a property is defined in the corresponding_term
field. By default, the generator fills the corresponding term values by the
original odML. The "corresponding_term" field must consist of the "name"
(Section/property name), "type" and "parent_sections" fields.

NOTE: If the "name" or "type" field is empty, the section/property will be
skipped during the conversion to the NIX file.

Parent sections is a string sequence of sections.

Each section is represented by a type_Name combination (separated by a
double underscore __ character). Nested sections are separated by a triple
underscore ___. Empty "parent_sections" means the root section of the
odML document.

For parent_sections of a property, the last section is the section where
the property will be appended. If the mapped property type is of type
date/datetime, a format field is required that specifies the format used to
parse the values, e.g.:

"format": "%d.%m.%Y, %H:%M:%S"

The corresponding_term can also contain the definition element that
sets the definition of a section/property in the NIX file.
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Example of the odML section and property with the "corresponding_term":

"person__person": {
"corresponding_term": {

"type": "person",
"name": "Experimenter",
"parent_sections": "collection__Experimenters"

},
"props": {

"surname": {
"type": "string",
"example_value": "[’Doe’]",
"corresponding_term": {

"name": "LastName",
"type": "string",
"parent_sections":

"collection__Experimenters___person__Experimenter"
}

}
}

}

The example shows the Person section being remapped to a section "Exper-
imenters" of type "collection".

The prop surname of the original Person section will be remapped as "Last-
Name" to a section "Experimenter" that is a child section of the previously
mapped "Experimenters" section.

Apart from the "corresponding_term", Props in the mapping contain the
fields "type" (type in the original odML) and "example_value" (an example
of a value stored in the property). These fields are present solely for an
informational purpose.

Additional options

The JSON mapping file allows for some optional options:

add_props - Can be set for either for a section or a corresponding term
of a property. It can contain an array of properties (defined by name,
type and value) that will be added at the place of the remapped sec-
tion/property.
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"add_props": [
{

"name": "Role",
"value": "Experimenter",
"type": "string"

}
]

section_reference - This field can be specified for a section. It will put
an id reference of the newly remapped section to the specified array of
properties.

"person__person": {
"corresponding_term": {

"type": "person",
"name": "Experimenter",
"parent_sections": "collection__Experimenters"

},
"section_reference": [

{
"section": "recording__Recording",
"prop": "Experimenter",
"ref_type": "string",
"definition": "Definition string"

}
]

}

use_as_reference - An option for a property in the mapping file. If spe-
cified, the property value will be set as a reference in the specified NIX
section instead of a new property. This will be used instead of the
corresponding_term field.

"props": {
"source-link": {

"type": "string",
"use_as_reference":

"collection/hardware_properties__HardwareProps___hardware__EEG cap"
}

}
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B GIN docker image user guide

GIN docker image
This is a docker-compose image that runs the GIN repository together with
additional services, including:

GIN-WEB (gnode/gin-web): the web ui for the repository

PostgreSQL (postgres): persistent data storage for the GIN repository

Drone (drone/drone): microservice adding pipelines into GIN repository

GIN-INDEX (gnode/gin-dex): microservice that indexes the data and
commits for searching

ElasticSearch (docker.elastic.co/elasticsearch/elasticsearch:6.8.8): used to
store the indexed data for GIN-INDEX

Setup

The default settings provide a ready-to-run state where no settings have to
be changed.

To start the GIN image, run the start.sh script. Use the stop.sh script
to stop the image. Alternatively, you can run the image with command
docker-compose up -d in the directory containing the docker-compose.yml
file.

The GIN web interface can be reached at an IP address 172.19.0.2:3000,
the Drone service runs at 172.19.0.3. The default admin user and password
for both is "ginadmin".

NOTE: Elasticsearch requires the kernel setting vm.max_map_count to be
at least 262144. Make sure you have set that on the docker host before
running docker-compose (the start.sh script checks this for You).

if You want to change some settings, You can set the appropriate parameters:
• the app.ini contains settings for the GIN-web service

• the .env file contains environment variables for the docker compose
services

NOTE: Make sure that the GIN_INDEX_KEY in .env and search.SEARCH_KEY
in app.ini match for the indexing service to work properly

75



Pipelines

The pipelines are maintained by the Drone service at 172.19.0.3. Only the
default admin user is allowed to login. A repository is set up for pipelines if it
is activated in Drone and it’s Project settings is set to Trusted. A secret
key named DRONE_PRIVATE_SSH_KEY must be set in the Drone repository
settings. The value of this key is a private ssh key. The public key for this
ssh key must be set for the user in the GIN repository. This can be any
generated ssh key, e.g., a RSA ssh key pair.

The repository in GIN has to contain a valid .drone.yml file in the root of
the repository. An example of this file is in the examples/.drone.yml file.

The init-clone step is not to be changed, this clones the repository for the
Drone runner into a shared volume, using the ssh key in the Drone’s secrets.
User specified commands can be put into any following steps, that the user
can create. The repository data are accesible at the $DRONE_REPO_NAME
directory by mounting the shared volume for that step:

steps:
- name: init-clone

... DO NOT CHANGE THIS STEP

- name: user-step
image: alpine
volumes:

- name: repo
path: /repo

commands:
- cd "$DRONE_REPO_NAME"
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C EEGbase experimental set-up

Figure C.1: Description of the experimental set-up in EEGbase [8].
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D EEGbase experiment dataset

Figure D.2: The structure of an EEGbase experiment dataset [16].
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E Contents of the enclosed DVD
The root directory of the enclosed DVD contains the thesis text in thesis.pdf,
and the following subdirectories:

• data directory that contains example datasets that can be used for the
conversion tool

• poster directory with the poster in the .pdf and .pub formats

• sources directory that contains all the source codes

– eegbase-nix-converter - The python conversion tool
– gin - The docker image with the local GIN web interface imple-

mentation
– latex - The LATEXsource for this text
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