University of West Bohemia
Faculty of Applied Sciences

Department of Computer Science and Engineering

Master’s Thesis

Explainable Artificial
Intelligence

Pilsen 2020 Be. Frantisek Kolenak

Misto této strany bude
zadani prace.

Misto této strany bude
druha strana
zadani prace.

Declaration

I hereby declare that this master’s thesis is completely my own work and
that I used only the cited sources.

Pilsen, 10th August 2020
Be. Frantisek Kolenak

Abstract

The thesis is focused on the Explainable Artificial Intelligence (XAI). Since
Artificial intelligence (Al) is tightly coupled with (XAI), we will provide an
overview of both. The overview consists of the history of both technologies
and the introduction.

In the thesis is explained what leads the need for XAI. The thesis also
contains some of the techniques used in XAI and libraries that implement
such techniques.

The thesis includes experiments with libraries and compares the results
to each other and other work.

Abstrakt

Diplomova prace je zamérena na vysvétlitelnou umélou inteligenci. Vysvétli-
telna umela inteligence je pevné sprazena s umeélou inteligenci, tedy v praci
jsou popsany obé odvétvi. Prace obsahuje popis historie a ivod do proble-
matiky.

V préaci je popsano proc¢ je nutné umét vysvetlit rozhodnuti umélé inte-
ligence. Prace také obsahuje techniky pouzivané pro vysvétlitelnou umélou
inteligenci a knihovny, které pouzivaji popisované techniky.

Byly provedeny experimenty s knihovnamy a porovnany vysledky technik,
jak mezi sebou, tak s ostatnimi pracemi.

Contents

1 Introduction 1
2 Artificial intelligence 3
2.1 Machine learning L 4
2.2 Artificial neural network 6
2.3 Deep learningo 12
2.4 Convolutional neural network (CNN) 13
2.5 Neural Network Frameworks 15
2.6 Trustworthiness of an AT 15
2.7 Explainability needo 16
2.8 Alethics 17
3 Explainable artificial intelligence 18
3.1 Explainability / Interpretability Definition 19
3.2 Explainability Approaches 19
4 Techniques 23
4.1 Interpretable models 23
4.2 Local model interpretability 27
4.3 Global model interpretability 33
5 Libraries 36
5.1 Model interpretability 36
5.2 Debugging / Visualizing libraries 39
5.3 Libraries Comparison 40
5.4 Library selection 41
6 Use of XAI libraries 42
6.1 Structure of the chapter 42
6.2 MNIST handwritten digits dataset 43
6.3 Generalcode L 44
6.4 Using SHAP 51
6.5 Using LIME with AIX360 53
6.6 ML model explanation with LIME 53
6.7 Explanation comparison 58
6.8 Comparison conclusion 61

vii

7

Conclusion
7.1 Future work

Bibliography

A

B
C
D

Acronyms
Additional Tables
User Manual

Experiments

D.1 Al Explainability 360 (AIX360) library Python compatibility

D.2 AIX360 and Local Interpretable Model-—Agnostic Explana-
tions (LIME) experiment versions

D.3 SHapley Additive exPlanations (SHAP) experiment versions

viil

62
62

65

77

78

79

81
81

81
81

1 Introduction

Although we have heard the term Explainable artificial intelligence (XAT)
only recently, it is quite an old topic. The earliest work on XAI can be found
several decades ago[98, 103]. At that time, the Artificial intelligence (Al) and
Machine learning (ML) were still in the development, and the resources were
very limited.

In the last decade, the AT and ML started to be used almost everywhere,
due to cheap resources like computational power and data. Because of that, Al
achieved (super) human performance (DeepBlue beating best chess player|6],
IBM Watson winning in Jeopardy![42] or AlphaGo beating best player in
Go[1]) and started to be used in many industries like healthcare, law, defense,
finance or self-driving cars [29].

AT has played key role in many sci-fi movies where such a system surpassed
its creators (e.g., Terminators Skynet! or A Space Odyssey?). This concern
brought fear from Al into many people, including Stephen Hawking or Elon
Musk [3], and started programs like DARPAs XAI [47], whose aim is to create
AT that would be able to explain its decision (Figure 1.2).

. i ?
“EET . E Why did you do Fhat.
EEEDE. * Why not something else?
é%ga‘fﬁ'& Learning This is a cat * When do you succeed?
=93 . i
SRR Process (p) When do you fail? ,
BE+s50 « When can | trust you?
[Sfurfediy rife] » How do | correct an error?
Training Learned Output User with
Data Function a Task
Tomorrow
+ | understand why
D~ Thisis a .caiz « | understand why not
New Fe g '"nh;sllur' whiskers, + I know when you'll succeed
Learning [0. | 2o cEns « | know when you'll fail
Slbl FlEE | it has this feature:
Process A P | + I know when to trust you
= LRI + | know why you erred
Training Explainable Explanation User with
Data Model Interface a Task

Figure 1.1: The future vision [47].

https://en.wikipedia.org/wiki/Skynet_(Terminator)
’https://www.imdb.com/title/tt0062622/

https://en.wikipedia.org/wiki/Skynet_(Terminator)
https://www.imdb.com/title/tt0062622/

XAls aim is to create trust between machines and humans and create
safer and more transparent Al that would explain its decisions to its users.
The explanation is most important in industries where people’s lives depend
on the outcome of these systems. This topic also brings the Al ethic to
life because we have to define the morality of the Als decision. Al ethic is
currently studied field where the researchers put people around the world
and study their decisions on some moral problems® [27, 82].

What should the self-driving car do?

Figure 1.2: Moral Machine —Judge interface. This particular choice is
between a family or old people [14].

In this thesis, we will introduce both Al and XAI, and point the im-
portance of explainability and why it is crucial and beneficial to be able to
understand the decisions of Al systems.

We will introduce some XAT algorithms that are used nowadays and search
libraries or other services that could help us with the task of explaining Als
decisions.

Finally, we will demonstrate the use of XAl algorithms with the help
of found libraries. We will discuss the output of the XAI and compare our
results to other work.

3https://www.moralmachine.net

2 Artificial intelligence

The first definition of AI could be in 1950, where Turing [105] introduced a
test, Turing test, to test a machine’s intelligence. However, according to a
book [34], the Al terminology was born at a workshop in 1956. Since then,
the field was studied, but we have discovered only a tip of the possibilities.
At first, there was a slow development, but in the 90’s and early 21st century
the computers started to have enough computing power and data for Al to
be used in health and pharmaceutics, data mining, logistics, and other areas.
AT classification can be grouped by how close the Al can emulate human
thinking. Thus we can differentiate how the system compares to humans in
terms of versatility and performance. Based on these criteria, we classify Al
systems on the similarity to the human mind and their ability to "think".
This ability could be classified into four basic categories: reactive machines,
limited memory machines, a theory of mind [101], and self aware [21] AL

Reactive Reactive machine has no memory, only corresponds to different
stimuli. It is the oldest type of Al system, and it is also the "simplest".
These systems do not have any kind of memory (no ability to learn) and
are very limited to what they can do. Often they are programmed to
do only one specific thing, thus reacting to a limited set or combination
of inputs. A popular example of reactive machine Al is DeepBlue|6], a
machine that beast a master at chess.

Limited Memory Machines Limited Memory Machines have the same
capabilities as reactive systems but uses memory to improve its re-
sponses. These systems learn from historical data, which are used to
improve decisions. Nearly all of today’s existing applications fall into
this category (e.g., chatbot or self-driving car).

Theory of Mind A theory of mind-level Al will understand the entities it
is interacting with by comprehending their needs, emotions, beliefs, and
thought processes. It is still a concept or work in progress. To create Al
of this level, researchers need to create a system that perceives humans
as individuals whose minds can be defined by multiple factors [101].

Self aware AI Self aware Al This is the final stage of AI development, which
currently exists only hypothetically. Self-aware Al has evolved to be so
similar to the human brain that it has developed self awareness [21].

The ability to learn and improve from data was so significant that it
formed another field within the AI called ML. ML shifted focus from achiev-
ing artificial intelligence to solving practical problems. It changed from the
symbolic approaches and looked towards methods and models used in stat-
istics and probability theory [67].

After a while, Le et al. [68] revisited the old concept (deep neural net-
work), and they made the first unsupervised network in 2011. This network
was trained to recognize higher-level concepts, such as cats, only from watch-
ing unlabeled images [68]. Deep neural network theory was first abandoned
because researchers did not have enough computing power and data to prove
it, hence why it was possible from the last decade. This research started the
"boom" of Deep learning.

Deep learning is part of a broader family of machine learning (the re-
lationship between AI, ML and Deep learning (DL) can be observed at
Figure 2.1) based on Artificial neural networks (ANN) with representation
learning. ANN are neural networks similar to biological neural networks, but
their connections are static instead of dynamic.

Figure 2.1: Relationship between AI, ML and DL

2.1 Machine learning

In 1959, defined Arthur Samuel the ML as the ability for computers to learn
without being explicitly programmed. In practice, the programmer does not
have to write every possible state. Instead, the task shifts to finding an
algorithm that can extract patterns from the dataset and using the patterns

to build a predictive model that approximates a function that generalizes
the data [96].

In this context, generalization means to perform accurately on new unseen
data, after processing the training data set. The training data set is usually
full of examples from some generally unknown probability distribution [31].

Because the training sets are not infinite, and the future is uncertain,
learning theory does not yield guaranteed algorithm performance. Instead,
the results are provided with bounds of certainty. The correctness can be
improved with better training data, which is a topic by itself because the
data can be under-fitted or over-fitted, so we need to provide balance to the
training data set [22].

2.1.1 Types of learning

The learning process can have different approaches. Typical for most of the
applications in ML is unsupervised and supervised learning. We will list only
some of the learning techniques:

Supervised learning Supervised learning algorithm creates a mathemat-
ical model that contains both inputs and desired outputs. The super-
vised learning algorithm learns a function that can be used to predict
the output associated with new inputs. The training data contains a set
of features that include one or more inputs and their assigned label [28].

Unsupervised learning Unsupervised learning is the ability to find pat-
terns in features without any human intervention. This means that the
algorithm receives only inputs, and from those inputs, it is supposed
to classify the data [28].

Semi-supervised learning This is the mix of both supervised and unsu-
pervised learning algorithms. Researchers found that having a small
amount of labeled data and unlabeled data can produce better results
(learning accuracy) [62].

Reinforcement learning Reinforcement learning is an area of machine
learning where software agents receive rewards for their actions. Agents
gradually learn what actions produce the best reward [44].

Self-learning Self-learning is a learning with no external rewards and no
external teacher advice [25].

Other learning techniques Other techniques include sparse dictionary
learning [104], transfer learning [92], adversarial learning [81], feature
learning [30] and so on.

2.2 Artificial neural network

Designed in 1943 by McCulloch and Pitts [73], ANNs were inspired by inform-
ation processing in biological systems, but ANNs differs from live organisms.
The biological brain of most living organisms is dynamic and analog, but
ANN is static and symbolic. The structure in ANNs consists of interconnected
nodes called neurons and set of edges that connect neurons [86].

Figure 2.2 shows one artificial neuron, that has three inputs to the neuron
(x;) and output y. Each input has weight assigned (w;) and is connected to
the neuron. Weight show significance of the input. Transfer (or threshold)
function f computes the weighted sum (3°)

Wi

artificial neuron

e DI e

w

y

Figure 2.2: Artificial neuron.

The primary function of ANN is to receive a set of inputs and perform
several procedures on input sets and use the resulted output to solve some
problems [86, 97].

ANN tries to optimize the weights of the neurons so that the network has
the best accuracy in interpreting the output based on a given input. Training
ANNs can be done with the addition of backpropagation.

Backpropagation is a method that relays the information backward so
that the algorithm can compute the gradient. This process (gradient descend)
is then done iteratively to achieve the best accuracy [56].

2.2.1 Types of Artificial neural networks (ANN)

In ANN, there are a lot of architectures, each designed for a different type
of tasks. Feedforward Neural Network (FNN) is one of the basic networks,
and many architectures are built with principles from this network. We will
provide just an overview of some of the architectures.

a) Recurrent Neural Network (RNN) b) Long / Short Term Memory (LSTM) ¢) Gated Recurrent Unit (GRU) d) Auto Encoder (AE)
[[[[[[

¢ 9.9 TN
AR AR aarTa

f) Generative Adversarial Network (GAN)

e) Deep Belief Network (DBN)

Input Cell

O Backfed Input Cell

Kernel

6.,1.,. SR
KL

@ Hidden Cell OOy O O
o YN e YN e Y%
. Probablistic Hidden Cell O 2‘.‘:‘.‘)‘.‘:‘.‘)‘.':‘
® capsulecell
. Output Cell O
@ Match input Output Cell h) Convolution Network (CN)
. Recurrent Cell >_<
. Memory Cell _ X \“”/ RN
X SNSB
@ Gated Memory Cell 306 v f‘\?."
XKK O
A X)

O Convolution or Pool

I T X

Figure 2.3: Types of neural network with their architecture[106].

Feedforward Neural Network (FNN)

FNN is a basic type of ANN that has a connection between neurons that do
not form a circle (examples of FNN can be seen in Figure 2.5). Connections
have a weight assigned to them, and they provide output to one neuron and
input to another. Weight represents relative importance [86, 97].

Auto Encoder

Auto Encoder is a type of unsupervised (§2.1) neural network (Example in
Figure 2.3d) that is typically used for reducing the dimensionality of data
by removing redundant information. The network consists of reduction and
reconstruction layers. The network includes an internal “bottleneck” layer of

a smaller dimension. Since the bottleneck layer has fewer neurons than the
input layer, it has to represent or encode the information in the subsequent
layers’ inputs to reconstruct the input. Everything on the left side of the
bottleneck layer is called the encoding part, and on the right is the decoding
part. The result of the network bottleneck may identify only significant
features of the data [64].

Deep Belief Network (DBN)

DBN (Example architecture Figure 2.3e) is a class of Deep neural networks
(DNNs)(§2.3). The network has multiple layers, where the first two layers
form an associative memory. Lower layers in the network receive input from
layers above. The learning process is done layer by layer, where the output of
one layer is training data for the layer below. DBN can be used for generating
and recognizing images, videos, and motion-capture data [53].

Long / Short Term Memory Network (LSTM)

LSTM (Example architecture Figure 2.3b) introduces gates and explicitly
defined memory neurons. Each neuron has a memory cell and three gates:
input, output, and forget. These gates are used for regulating the data flow
inside the network. The forget gates usage is to reset the information stored in-
side the memory. LSTM can be used for sequential data, like text or video [54].

Gated Recurrent Unit (GRU)

GRU (Example architecture Figure 2.3c) is slight variation of LSTM. Instead
of three gates, they have two: update gate and reset gate. Reset gate has the
same functionality as forget gate from LSTM. Update gate has two functions:
first, it determines how much information to let in and how much to keep
from the previous state. Since GRU does not have an output gate, they
always send out their full state. GRU is, on smaller datasets, faster and less
expensive to run than LSTM [32].

Generative Adversarial Network (GAN)

GAN (Example architecture in Figure 2.3f, red neurons in the middle are the
output of one network and input for the other) is made out of two networks
that work together. The first network is generating content for the discrimin-
ating (second) network. The discriminating network receives either training
data or content from the first network, which is then evaluated and serves
as input to the generating network. Both networks then compete with each

other, where the discriminating network is getting better at differentiating
the learning and generates data. The generating network is getting better at
generating data. This architecture can be difficult to train because if one of
the models is much better than the other, the GAN will not converge [45].

Capsule Network (CN)

CN (Example architecture in Figure 2.3i, green neurons with square in the
middle are capsule cells) is a special type of CNN(§2.2). CN adds struc-
tures called capsules (group of neurons) into the CNN which provides new
alternative to pooling layer(§2.4.1). Capsules are outputting a vector instead
of weight, allowing the transfer of more information, like position, color, or
orientation of a feature [93].

Recurrent Neural Network (RNN)

RNN (Example architecture in Figure 2.3a) are FNN that depend on con-
nections through time. Neurons are fed information from the previous layer
as well as information from themselves from the previous pass. This means
that the order of data the neuron is provided matters.

RNN suffers a problem where the information could get lost over time
because the weight of the previous information could become 0 or really big,
and such information has no meaning. Nevertheless, the occurrence of this
phenomenon is dependent on the activation function (§2.2.3) used [41].

RNN is often used for advancing or completing information (autocom-
plete).

Convolutional neural network (CNN)

In deep learning, a Convolutional neural network (CNN) (Figure 2.3h) is a
class of deep neural networks, primarily used for image analysis (can be also
used for text classification [60]). More detailed description is in Section §2.4.

2.2.2 Loss functions

Loss functions for classification are computationally feasible functions rep-
resenting the price paid for the inaccuracy of predictions in classification
problems [91]. In other words, the results of loss functions are telling how
accurate is the solution.

The commonly used functions are:

Mean Square Error/Quadratic Loss/L2 Loss Mean squared error loss
functions are used to measure the accuracy of a model. Mean squared
error is the average of the squared difference between predictions and
observation. The smaller the number, the better the prediction is [85,
91].

Mean Absolute Error/L1 Loss Similar to mean squared errors, but are
measured as a sum of absolute differences between predictions and
observations [85, 91].

Cross-entropy Loss Cross-entropy loss function is often used for classi-
fication, where the network is classifying into binary class. The loss
function has an output between 0-1. So we can classify value that is
smaller than 0.5 as a "0"[85].

2.2.3 Activation function

An activation function is a neuron’s property, a function of all the inputs
from previous layers. The output of activation functions is the input for the
next layer. Models’ ability to process non-linear problems is dependant on
the activation function [56].

Some of the types:

Softmax is usually at the output layer. Softmax will output probabilities for
the output classes. Each component in the output will be between 0-1
(representing probability), and the components add up to 1. The com-
ponent with the highest probability (number) is the predicted class [56].

Sigmoid is a squashing function. Squashing functions limit the output to a
range between 0 and 1 [35].

ReLu is a linear function that will output the input directly if it is positive.

Otherwise, it will output zero [79].

2.2.4 Optimizers

Gradient descent is one of the most popular algorithms for optimizing neural
networks. Gradient descend has three variants [55, 61, 89]:

Batch gradient descent Batch gradient descent, computes the gradient of
the cost function for the parameters for the entire training dataset. The
calculation needs to be over the whole dataset to perform one update.

10

Stochastic gradient descent Stochastic gradient descent performs a para-
meter update for each training example.

Mini-batch gradient descent Mini-batch gradient descent takes the best
of both worlds and performs an update for every mini-batch of n training
examples.

Most known stochastic gradient descent algorithms are Adam [61] and
Adadelta [55, 89].

2.2.5 Metrics

Metrics is a function that is used to judge the performance of a model. Since
they are mostly derived from confusion matrix (§2.2.5), we will introduce it
first, after that, we will look at the calculated metrics (§2.2.6).

Confusion Matrix

Confusion matrix [100] typically looks like in Table 2.1. Matrix can be used for
any classification model. Typically, rows represent actual class and columns
represent the predicted class.

Predicted class
P N
P | TP FN
Actual class N TP ™

Table 2.1: Confusion Matrix

In binary classification, the classes are Positive and Negative. This creates
a 2x2 matrix containing these basic values:

TP True-Positive is the number of Positive cases classified correctly.
TN True-Negative is the number of Negative cases classified correctly.

FP False-Positive is the number of cases where the model predicted Positive
class, but the actual class was Negative. Also known as Type 1 Error.

FN False-Negative is the number of cases where the model predicted Neg-
ative class, but the actual class was Positive. Also known as Type 2
Error.

11

2.2.6 Calculated Metrics

Using the basic values, different metrics can be computed:

Precision (2.1) Out of all predicted Positive cases, how many were correct.

TP
Precision = ———— 2.1
recision = oo p (2.1)
Recall (2.2) Out of all actual Positive cases, how many were correctly pre-
dicted, meaning how close were the measurements to each other.
TP

Recall = m (22)

Accuracy (2.3) is the most common performance metric for balanced data-
sets. It is a ratio of the correctly guessed predictions and the total
number of predictions. It does not work well for an unbalanced dataset
since it may give way to methods biased towards the majority class.
Often used when every class is equally important [74].

TP+ TN
TP+ FP+TN+ FN

(2.3)

Accuracy =

2.3 Deep learning

DL is part of ML (§2.1) methods that utilize ANN (§2.2). Although the
evolution of DL started between the 1940s and the 1960s, researchers did
not have enough computational power and data to truly test the limits of
the developed methods [23, 97].

The DL uses hierarchical level of the ANN to carry out the process
of ML (§2.1). This structure then enables to the process of data with a
nonlinear approach, as opposed to traditional programs that are built in a
linear way (Figure 2.4) [23, 97].

The deep in the name of these learning methods comes from the use of
multiple layers in the network. The layers consist of an input and output
layer and a hidden layers between these two layers. There are also shallow
neural networks that differentiate betweenDNN by the number of hidden
layers. To be considered a shallow network, the network has to have up to
two hidden layers (not a set standard, but most researchers agree). Example
ANN for the shallow and deep neural network can be seen in Figure 2.5 [23].

DL can achieve higher accuracy because of the number of hidden layers
that are added to the network, because of the high computational power,

12

Why deep learning

Performance

Amount of data

Figure 2.4: Differences in accuracy between DL and traditional programs[80].

and because of the large volume of data that is fed to it. The significant part
is also the type of learning (§2.1.1) used [56], because it can enable us to use
even more data (e.g., we do not have to label data). By having large datasets,
the chance that the model has not seen some cases gets significantly lower,
thus less chance of failing and higher accuracy.

In our experiments (§6) we will be using CNN, we will describe this type
of DL network (DNN) in more detail (§2.4).

Shallow ANN Deep ANN

input output
layer layer
hidden hidden hidden hidden hidden
layer layer 1 layer 2 layer3 layer4

Figure 2.5: Example ANN for shallow and deep neural network

2.4 Convolutional neural network (CNN)

CNN takes raw input image vector and outputs single perceptive score func-
tion (weight). The last layer (§2.4.1) contains loss function(§2.2.2) which is
affiliated to the classes. Since CNN is mostly used for images, we can encode
image-specific features into the architecture [84].

13

Architecture of CNN consist of three basic types of layers (convolutional,
pooling and fully-connected). When these layers are stacked, they form ar-
chitecture of CNN. Figure 2.6 shows simplified architecture of CNN. Archi-
tecture in example includes all layer types (7 layers in total) and outputs
probabilities for four classes.

— CAR
— TRUCK
= VAN

|:| |:| — BICYCLE

FULLY
INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN FOLY o SOFTMAX
FEATURE LEARNING CLASSIFICATION

Figure 2.6: Example CNN with simplified architecture with convolutional,
pooling and flatten layers. (Image courtesy of [4])

2.4.1 Layers

Although ANNs have many different layer types, we will list only some of
the layers specific for CNN.

Convolutional layer

The objective of the convolutional layer is to extract low-level features, such as
edges, color, or gradient orientation from the input image. With the addition
of more convolutional layers, we can extract more precise features (high level),
and the model can gain a better understanding of the image.

For the calculation, the rectified linear unit (ReLu) is used. ReLu aims
to apply element-wise activation function (§2.2.3), such as sigmoid, to the
output of the previous layer.

In practice, that means that we have a filter with three hyperparameters
(depth, stride, and padding), and the filter goes all over the image, triggering
kernels (when they see specific features). This triggering is commonly referred
to as activation [84].

Pooling layer

Pooling layers are used to reduce the complexity of the model by reducing
the number of parameters. This layer reduces the dimensionality of the

14

representation.

The pooling layer operates over each activation in the input and scales
the dimensionality using max, average, or sum function. For example, the
kernel of dimensionality 2x2 will reduce original activation down do 25% of
the original size [84].

Fully-connected layer
The fully-connected layer contains neurons that are directly connected to
the neurons in the two adjacent layers.

Flatten layer

Removes all of the dimensions of the input except for. E.g., from the shape
(64,10) to shape (640).

2.5 Neural Network Frameworks

ANN (§2.2) frameworks are often used to implement applications that are
used for ML. They implement models(§2.2.1), optimizers (§2.2.4) and met-
rics (§2.2.5) mentioned in §2.2 and many more features that are then used to
create applications that use ML models (including DL models). Frameworks
help developers speed up the process of creating models, by offering simplified
API. Some of the frameworks:

Tensorflow [18] Tensorflow is open source library to help with development
and training ML models.

Keras [11] Keras is open source interface used for running Tensorflow or
Microsoft Cognitive Toolkit (CNTK). Keras simplifies the usage of
libraries and includes helpful functions.

Pytorch [15] Pytorch is open source machine learning library developed
by Facebook.

In our experiments (§6) we will be using CNN using framework Keras
(with Tensorflow).

2.6 Trustworthiness of an Al

Even if we know the basic functionality of an AT and ANN (§2.2), we usually
do not know what leads to the final decision, which is why these systems are

15

often referred to as "black boxes", that produce values that are interpreted
to signify a certain meaning. While there may be no need for an explanation
when such a system is used for predicting what movie I would like to watch
next, there are certainly some fields where knowing why the system produced
some value is crucial. If we start to question the Als decision, especially if
there is a system that influences people’s lives, we raise questions like [48]:

o Why did you do that?

e Why not something else?
o When do you succeed?

e When do you fail?

e When can I trust you?

e How do I correct an error?

Suppose we are unable to answer these (or similar) questions. In that case, it
can lead to a disaster for the company, government, or whoever uses such a
system, since the system can be biased (or have different flaw) and we would
not even know about it.

2.7 Explainability need

Instead of long theoretical discussions, let us demonstrate why some systems
need to be explainable.

Self-driving car can potentially miss interpret some objects, and the car
could crash into them. Who will be responsible for the crash, the pas-
senger, software developer, or car manufacturer?

Cancer detection system’s goal is to detect cancer. It could be disastrous
if the system misinterprets the healthy tissue as cancer or misrecognize
the cancer type as malignant whenever it benign. In this case, the
patient could become depressed over nothing.

Mortgage system that is deciding if the person is eligible for a mortgage or
not. Knowing why they did not get the loan can lead them to a path
where they fix their problems.

Those problems are just a few examples where the human looks at the
Al problem as a black box, and there is a need to make it white box and, if
not entirely, then at least for Al explainability.

16

2.8 Al ethics

From the example of self-driving cars (§2.7), we can see that there could be
potentially a problem of defining the car’s behavior.

Researchers are now focusing on general human behavior, and they are
gathering data on human decisions from all around the world. These research
papers are guiding developers, how machines should make moral decisions.
One of the experiments can be found on Moral Machine® [27, 82].

Thttps:/ /www.moralmachine.net

17

3 Explainable artificial
intelligence

Explainable artificial intelligence (XAI) is an old topic. The earliest work
on XAT can be found several decades ago[98, 103]. ML hit high popularity
in the last decade. With the availability of large datasets and more com-
putational power, ML systems have achieved (super) human performance
(DeepBlue beating best chess player[6], IBM Watson winning in Jeopardy![42]
or AlphaGo beating best player in Go[l]) in a wide variety of tasks.

At first, there was no need to explain Als decisions made by these sys-
tems, because, in the past, the Al algorithms were easily interpretable (§4.1).
Nowadays, the algorithms used are complex, and even the most straightfor-
ward deep neural network cannot be easily understood. The need for an XAI
started to be more apparent when these systems appeared in our everyday
lives. Unfortunately, such systems were so complicated that no one could
understand or predict the outcome of the given input. The need was most
notable in industries where human lives depend on these systems’ outcomes,
like healthcare, law, defense, or finance [29].

XAlTs algorithms are used to explain Als (§2) predictions. At its core XAI
is a subset of Artificial intelligence (AI), but that does not mean that we
have to apply Al to Al, ultimately it is human-agent interaction problem. So
XAT needs to be able to explain its decision efficiently. It depends on whom
we explain such a decision (Examples on the difference is in Figure 3.1).

Tho? Domain experts/users of the model (e.g. medical doctors, insurance agents) |
Who? D rts/ f th lel lical doct u rents)
Why? Trust the model itself, gain scientific knowledge

Whao? Regulatory entities/agencies
Why? Certify model compliance with the |?
legislation in foree, andits, .. @

Target audience
in XAl

Who? Users affected by model decisions

Why? Understand their situation, verify | 7

fair decisions...

Who? Data scientists, developers, product owners...

Who? Managers and executive board members
Why? Assess regulatory compliance, understand
corporate Al applications...

Why? Ensure/improve product efficiency, research, |7

new functionalities...

Figure 3.1: Explaining to different target audience [29].

18

3.1 Explainability / Interpretability Defini-
tion

Explainability and interpretability are often, in the context of machine learn-
ing, interchanged.

Interpretability is the degree to which humans can understand the cause
of a decision. In other words, interpretability is about being able to
discern the mechanics without necessarily knowing why:.

Explainability is the extent to which the internal mechanics of a machine or
deep learning system can be explained in human terms. Explainability
is being able to quite literally explain what is happening.

Because of how close these terms are, in this thesis, the terms explainab-
ility and interpretability will be used interchangeably[33, 76].

For a system to be better, there should be a consideration for interpretab-
ility because it helps ensure unbiased decision-making, i.e., to detect, and
consequently, correct from bias in the training dataset. Interpretability can
act as insurance that only important variables infer the output, i.e., guaran-
teeing that an underlying truthful causality exists in the model reasoning[49].

3.2 Explainability Approaches

Explainability can be focused on different aspects of ML. We can focus on
data explanation, where we try to understand the features in the dataset.
We can focus on the model that uses the dataset and explain its decisions.
Such a model can be directly interpretable(§4.1), or we can explain it post
hoc.

Directly interpretable means the model itself is constructed so that
we can explain its decisions(also called white boxes).

Post hoc means that we are explaining the model after it is constructed.
After constructing the model, we probe into the model with a companion
model to create interpretations (Figure 3.2)[26, 95].

Post hoc approaches can be differentiated by the scope they are taking a
look at. Some approaches aim to explain the model as a whole. This approach
is called a global interpretation. The opposite of global interpretation is local
interpretation[95].

We can also differentiate if the explanation is static or interactive. The
static explanation is unchangeable, so such an explanation can not be

19

Black box model |—Decision

Y

Fy

[~

Figure 3.2: Example of post hoc architecture.

v

Interpretable model ——=E:xplanation—»

F

changed. Interactive, on the other hand, can be changed, allowing users to
ask for a different explanation or provide a more in-depth explanation until
the user is satisfied with the explanation[26].

Algorithms for explanations can be aimed at one specific model, or they
can be model-agnostic. Model-agnostic means that the algorithm does not
care which model it is explaining[29].

In this thesis, we will focus on model interpretability with static inter-
action. An overview of how we can explain can be seen in Figure 3.3. Ex-
planation based on samples means that we explain based on one data point.
Explanation based on feature is taking the whole feature into account.

Understands
data or model

‘L Data fodet ‘L

Explanation
based on Local or
samples or global
features

Local Global
v v
Explanation Directly
based on interpretable
samples, or post hoc
features explanation

Figure 3.3: Explainability approaches

If we look at the scope in more detail we can differentiate the methods
in following groups:

20

o Algorithm transparency (§3.2.1)

 Global model interpretability (§3.2.2)

 Global model interpretability on a modular level (§3.2.3)
 Local Interpretability for a Single Prediction (§3.2.4)

 Local Interpretability for a Group of Predictions (§3.2.5)

3.2.1 Algorithm transparency

Algorithm transparency is about how the algorithm creates the model, how
it trains a model from the data, and what kind of relationships it can learn,
which means that the inputs and the algorithm’s usage must be known. This
understanding is about knowing the algorithm but not about the learned
model created in the end and not about how the individual predictions are
made[39)].

In this thesis, we will focus on the interpretability of the trained models
and decisions made by these algorithms.

3.2.2 Global model interpretability

Global model interpretability tries to explain the behavior of the whole
model. We can describe the model as interpretable if we can comprehend the
entire model at once. Interpretation with this method starts by identifying
prototypical cases for the output quantity (3.1) and allowing in principle to
verify that the function has a high value only for the valid cases.

" = argmaz, f(z) (3.1)

This approach cannot explain which features are essential and what inter-
actions are happening between them. Achieving global model interpretability
is very difficult because humans cannot easily hold in memory large amounts
of data, so the model with many features will likely still be too complicated
to explain[77, 95].

3.2.3 Global model interpretability
on a modular level

Similar to global model interpretability, but divides the whole model into
smaller parts. By doing that, we can understand parts of the model and, in

21

doing so, understand the model. If we take the Naive Bayes model with many
features, we cannot efficiently work with so many variables. If we split this
model into a single weight, we can easily understand and work with such
information. While global model interpretation might be too complicated for
us, this approach will make models understandable, at least on a modular
basis. That said, not all models can be split into smaller parts. For example,
linear models have weights interconnected to each other, and we cannot
isolate one single weight[77].

3.2.4 Local Interpretability for a Single Prediction

Local interpretability for a single prediction is taking a look at the model’s
output for one specific instance(e.g., single data point or feature). In the
explanation, it should highlight features that are relevant to it. By focusing
on a single instance, the otherwise complex model might become easier to
understand. This method might reveal more straightforward linear or mono-
tonic dependence on some features, instead of having complex reliance on

them[77].

3.2.5 Local Interpretability for a Group Prediction

Local Interpretability for a Single Prediction is similar to local interpretability
for a group of predictions. However, instead of one investigation of why the
model made a specific decision for one instance, it examines it for a group of
instances. Model predictions for multiple instances can be explained by global
model interpretation (on modular level) or with explanations of individual
instances. By taking a group of instances and applying global methods, we
can treat the group as a complete dataset and explain this subset. Another
technique is to explain each instance and then list or aggregate results for
the group [77].

22

4 Techniques

In this chapter, we will take a look at the most notable methods.

The simpler the model the more interpretable it is, but also less accurate
(Figure 4.1). Most interpretable methods (models) will be located in section
with interpretable models (§4.1), in sections Local model interpretability(§4.2)
and Global model interpretability (§4.3) will be algorithms that are suitable
to explain DNNs.

Accuracy vs Interpretability

O Liner Regression
D Decision Trees

O K-Nearest Neighbors

Interpretability

O Random Forests

O Support Vector Machines

O Deep Neural Networks

Accuracy

Figure 4.1: Accuracy vs interpretability of a model [94].

4.1 Interpretable models

In this section, we will see that model itself could be self-explanatory. These
models are made by a subset of algorithms that create interpretable models.
These models are usually widely known, so we will not go into details. Models
that are interpretable by design are called Ante-hoc Explainability (AHE).
Interpretable models can be examined for: safety/reliability, fairness/lack of
bias, causality, or robustness [40].

23

4.1.1 Linear Regression

The term regression and its evolution primarily describe statistical relations
between variables. The simple regression is the method that explores the
relationship between one dependent variable and one independent variable.
The simple linear regression model can be stated as: y = 5y + 512 + €, where
y is the dependent variable, 3y is the y intercept, 5, is the slope of the simple
linear regression line (represents the learned feature weights or coefficients),
x is the independent (explanatory) variable and € is the random error. This
simple linear regression model can then be enhanced with more features.
This process is called multiple linear regression, and the final notation will
be: y = By + frx1 + -+ + Bpx, + €. From this notation, we can predict the
outcome of an instance by summarizing its n features. To find optimal weights
(B1...0Bn) we can use various methods. Usually, the least squares method
is used to find the weights to minimize the squared differences between the
actual and the estimated outcomes [43].

To make the "correct" version of the model, the data’s relationships have
to meet certain assumptions, which are linearity, normality, homoscedasticity,
independence, fixed features, and absence of
multicollinearity [43].

Linearity This means that the response variable’s mean value is a linear
combination of the parameters (regression coefficients) and the pre-
dictor variables.

Normality It is assumed that the target outcome given the features follows
a normal distribution. If this assumption is violated, the estimated
confidence intervals of the feature weights are invalid [77].

Homoscedasticity This means that different values of the response variable
have the same variance in their errors, regardless of the values of the
predictor variables [77].

Independence This assumes that the errors of the response variables are
uncorrelated with each other.

Fixed features The input values are considered as "fixed". The feature is
considered fixed if they are treated as given values instead of statistical
variables.

Absence of multicollinearity Having strongly correlated features is prob-
lematic because it becomes hard to estimate the weights. In this situ-

24

ation, the feature effects are additive, and it becomes unclear to which
feature the attribute belongs to.

Interpretation

A fitted linear regression model can be used to identify the relationship
between a single explanatory variable (x;) and a dependent variable (y)
while other explanatory variables are fixed. The interpretation of weight in
the linear regression model depends on the type of the feature (e.g., numerical,
binary or categorical) [43].

In Figure 4.2 we can see visualization of some example data. The black
line is fitted linear regression line.

35

30

25

20
-

15

10

0 50 100 150 200 250 300

L
L
(=1

400

Figure 4.2: Example of linear regression.

4.1.2 Logistic Regression

Logistic regression is used to categorize the dependent (outcome) variable
(predict if the email is spam or not).

The most common example of modeling is linear regression model (§4.1.1),
where the dependent variable is assumed to be continuous. The logistic regres-
sion differentiates from the linear model (Figure 4.3) because the outcome
variable is binary (it is also possible to have multiple classes). Logistic re-
gression has three types [46]:

Binary logistic regression This type classifies into two possible outcomes.

Multinomial logistic regression Classifies for three or more categories
without ordering.

25

Ordinal logistic regression Classifies for three or more categories with
ordering.

1.0 4

0.0 ﬁ = | pgistic Regression Model

—— Linear Regression Model

—-4-3-2-101 2 3 45 6 7 8 9
X

Figure 4.3: Example of linear regression and logistic regression. Input data
are the black dots. Note that logistic regression is in binary range (0-1)[17].

Interpretation

The interpretation of any fitted model requires to be able to draw practical
inferences from the estimated coefficients in the model. For most models, we
need to know the estimated coefficients for input variables. The estimated
coefficients represent the slope (i.e., rate of change) of a function. Thus for
interpretation, we need to determine the relationship between input and
output variables and define the unit of change for input variable[46].

4.1.3 Decision Tree

Decision tree (Tree example in Figure 4.4) is a tree-like structure where
each node represents a test on an attribute, each connection represents the
outcome of the test, and each leaf node represents the class label.[58, 87]

26

sumny overcast Falm

VAN

high normal true talse

OO\ N

Lo Lomas A
Figure 4.4: Example simple decision tree[87].

Decision Rules

The decision tree can be approximated if we linearize the tree into decision
rules. Assembly of the rules follows this procedure: The content of the leaf
node is the outcome, and the conditions that we followed along the path
form a set of conditions. The set of conditions then form a conjunction in
the if statement (if condition and condition2 then outcome) [88].

Interpretation

Interpretation of small decision trees is straightforward because the only
thing we have to do is plot the tree. We might lose the interpretability for
big trees, but the model is still transparent because we can follow the path.

4.2 Local model interpretability

Local model interpretability includes techniques that uses principles discussed
in §3.2.4 and §3.2.5.

4.2.1 Local Interpretable

Model-Agnostic Explanations
Local Interpretable Model—Agnostic Explanationss (LIMEs)[90] overall goal
is to identify an interpretable model (can include any model from §4.1) over

the interpretable representation that is locally faithful to the classifier. LIME
is model-agnostic, so it treats every model as a black box, thus should be

27

able to explain any model. LIME can be used for text data, tabular data or
images.

To help us understand how the original model behaves, LIME needs to use
a representation of data, that we can easily recognize. For example, explaining
the image classification, one way of showing the explanation can be a vector
with pixels, or super-pixels (cluster of pixels, for example, in Figure 4.5), that

have their values as present or missing.

Figure 4.5: Showcase of image which is divided into super-pixels [110].

Super-pixel is a cluster of pixels with similar color and brightness. A
similar approach can be used for text classification, where the output can be
a vector with a pair of words and values, where values indicate if the word
is present or missing. Both approaches can then be used to visualize and
pinpoint, which features are mostly used as a deciding factor for the classifier.
Description of the LIME algorithm steps can be seen in Figure 4.6 [90].

Instance Random data .| Weight the Train a weighted,
perturbation new samples interpretable model
r
User Inter‘pretabrle Feature selection
Representation

Figure 4.6: LIME framework diagram.

Example
Simplified example:
1. Select instance (image)

2. Divide the image into super-pixels (Figure 4.5).

28

3. Create new dataset with perturbed images (Essentially create similar
images)

4. Tests the predictions by turning the super-pixels on or off (Figure 4.7a)
5. Train a weighted, interpretable model (Figure 4.7b)

6. Select the best feature (perturbed image) by interpreting the trained
model

7. Show result (Figure 4.7¢)

a) b)

Perturbed Instances | P(tree frog) / .

Figure 4.7: a) Random data perturbation step with weight assigned, b)
Weighting and sampling instances, ¢) Select and show the super-pixels with
best prediction [110].

4.2.2 Shapley values

Shapley values is a solution concept in the cooperative game theory of fairly
distributing both gains and costs to several actors working in a coalition.
The Shapley value applies in situations when each actor’s contributions are
unequal, but each player works in cooperation with each other to obtain the
gain or payoff. Although the original work is designed for use in games, we
can use Shapley value for a prediction task by defining the "game" as the
prediction task for a single instance of the dataset. The "gain" as the actual

29

prediction for this instance minus the average prediction for all instances and
the "players" as the feature values of the instance that collaborate to receive
gain. To calculate Shapley value, we need the average marginal contribution
of a feature value across all possible coalitions. Since computing, all possible
coalitions can be very time-consuming. We can simplify this task to compute
only a few samples of the possible coalitions. [51]

Interpretation of the Shapley value for feature value n is: The value of
the n-th feature contributed to the prediction of this particular instance
compared to the average prediction for the dataset. The Shapley value is
the average contribution of a feature value to the prediction in different
coalitions [77].

4.2.3 SHapley Additive exPlanations (SHAP)

SHapley Additive exPlanations (SHAP) first introduced by Lundberg and
Lee [70] and is based on Shapley values (section 4.2.2).

The goal of SHAP is to explain the prediction of an instance x by com-
puting the contribution of each feature to the prediction.

The SHAP method computes the Shapley values. In this case, the fea-
ture values act as "players" in a coalition. Shapley values then tell us the
fair distribution among the features. Similar to LIME, the explanation is
represented as an additive feature attribution method, as a linear model [70].

Additive feature attribution method is described in Equation 4.1. the
f(z) is the original model, g(z) is the explanation model, 2 is simplified
input (has several omitted features), such that x = hy(z). ¢9 = f(h(0))
represents the model output with all simplified inputs missing. ¢; is the
feature attribution for a feature i.

To compute Shapley values, we simulate that some features are present
and some are absent. The representation as a linear model of coalitions for
the computation is actually the trick of computing the ¢;’s. For the feature
of interest, we can omit every feature that is absent, so we can then simplify
the formula to Equation 4.2.

f@) = 9(&) = b+ 3 dut] (4.
fl@) = 9(e) = b0+ 20 (4.2

The properties of ¢;’s have to satisfy some properties to be considered
Shapley values:

30

Local accuracy When approximating the model for a specific instance,
local accuracy requires the explanation model to at least match the
output of the model for the simplified input .

Missingness Missingness means that the feature that is missing gets attri-
bution of zero, so such a feature should not have any impact.

Consistency Consistency states that if a model changes so that some simpli-
fied input’s contribution increases or stays the same, then the Shapley
value should also increase or stay the same.

Deep SHAP

Deep SHAP combines Shapley values(§4.2.2) and DeepLIFT[99]. DeepLIFT
linearizes non-linear components of a neural network. Deep SHAP adapts
DeepLIFT to become a compositional approximation of SHAP values. Deep
SHAP combines SHAP values computed for smaller components of the net-
work into SHAP values for the whole network (§3.2.5) [70].

COQ"\‘Laﬂb Og» »1)‘ (Z‘)
Super e\xdas ¢ ‘MO\Se

lns\anccx @

spA @
spt | spl| sp3
1411
11141 0

se

laslance x

W.l‘“r\ G\Oﬁffl“
Qeaﬂ vees

spt [spl| sp3

Figure 4.8: Example of Kernel SHAP with original instance X and instance
with absent super-pixels [77].

31

Kernel SHAP

Kernel SHAP (Example in Figure 4.8) combines two different ideas:

LIME (§4.2.1) and Shapley values (§4.2.2). Kernel SHAP uses linear re-
gression model (linear LIME model), and an appropriate weighting kernel
to locally approximate function f The regression coefficients of the LIME
model estimates the SHAP values. Kernel SHAP is model agnostic method,
but offers also model specific variant [70].

Tree SHAP

Introduced in the research paper [71]. This version of SHAP aims to explain
tree-based ML models such as random forests, decision trees(§4.1.3), and
gradient boosted trees. The proposed class TreeEzplainer is also part of the
library SHAP(§5.1.3).

TreeFxplainer enables new local explanation method, which builds on top
of Shapley values(§4.2.2). TreeExplainer enables the exact computation of
optimal local explanations for tree-based models, extends local explanations
to capture feature interactions directly, and provides a new set of tools for
understanding global model structure based on many local explanations|71].

4.2.4 Teaching explanations for decisions (TED)

Teaching explanations for decisions (TED) provides meaningful explanations
that match the mental model of the consumer. The meaningful explana-
tion is information that provides an understandable explanation to the tar-
get audience, is actionable and flexible enough to support various technical
approaches[52, 66]. This algorithm can be used for tabular, textual, and
image data.

TEDs model produces both decision and an explanation, instead of expos-
ing models parameters of how the model produces a decision. The explanation
provided can be adapted for the targeted audience[52].

In Figure 4.9, we can see the architecture of the proposed algorithm.
Notice the different inputs, that include the explanation (in any form), and
output of the whole architecture, which includes the classification and ex-
planation (Merged in training time).

32

Training Time

--------------- 1 s Model
Training DataSet | Foreachdata | Training Data Set Any Standard Creation
(X, Y, E) | item oy OGYE) lticlass ML .
X: features | Merge Y&E H X: features. i
I g : Kb Algorithm
Y: I to d “yE” i YE: classification
E: explanation '___:_________-J
Scoring Time
S
. . i DecomposeYE |
Eoranynew P Classification: : to produce E Y is Classification
feature, X === " I N ificati g -
predict class ! Y _classﬁlca?lon [Eis explanation
i E:explanation 1
I E——

Figure 4.9: Overview of TED algorithm[52].

4.3 Global model interpretability

Global model interpretability includes techniques that uses principles dis-
cussed in §3.2.2 and §3.2.3.

4.3.1 Boolean Decision Rules via Column Generation

Boolean Decision Rules via Column Generation creates a globally inter-
pretable model for binary classification and is used for tabular data.

The model uses Boolean rules in either disjunctive (DNF) or conjunctive
(CNF) normal form. DNF classification rules are also referred to as decision
rule sets, where each conjunction is considered a rule. At least one rule has
to be satisfied to be considered as a positive prediction[36].

The method uses integer programming formulation for the Boolean rule
(DNF or CNF) learning. It uses the large-scale optimization technique of
column generation (CG) to search over all possible clauses, so that only
useful clauses are generated or selected. CG starts with a small number of
clauses, and iteratively adds missing clauses (pricing problem) until there
are no improving clauses[36].

This method is best for small datasets, where it has the best interpretab-
ility and accuracy. Larger datasets might loose those aspects and add high
computational time[36].

4.3.2 ProfWeight

ProfWeight is post hoc explanation algorithm (§3.2), which enhances the
performance of another simple white-box model (lasso, decision trees, etc.).
The idea is to have high performing DNN model and create an interpretable
"copy" of that model. The implementation of this algorithm can be found in
ATX360 (§5.1.1). This algorithm can be used for tabular, textual, and image

33

data.

=
Hﬂ
=

#
I|'r‘l

et

#
‘Irh

Figure 4.10: Network with added probes (in the picture marked as diode
with label P). Probes have output Y} and are attached to layers Hj, [38].

The algorithm adds probes into the intermediate layers of original pre-
trained DNN (Figure 4.10). Probes’ goal is to obtain original models’ pre-
dictions at the layer the probe is located. The probe is essentially a linear
model with bias, followed by a softmax activation function [38].

The confidence scores (Figure 4.11) is a plot of the correct label of input
at each of the probe outputs. The confidence score forms a curve that is
called a confidence profile for that input [38].

¢ Easy Example £ Hard Example
;0.a 204

Eu [g 0.6

203 En.& ——
=]

= PR B ° PR - P

Figure 4.11: Confidence scores for two examples. Left example has high
confidence score and is considered as "easy' and example on the right is
considered "hard" [38].

When the probes are planted, the algorithm takes the confidence scores
and feeds it to the neural network, which outputs an optimal weighting. The
primary function of this process is to identify examples that the model will
most likely fail on. The simple model ignores the "hard" examples. To identify
the potential "hard" example, the algorithm computes the area under the
confidence score [38].

To summarize, the algorithm is performing following steps [38]:

34

Attach and train probes on intermediate representations of a high
performing neural network.

Train a simple model on the original dataset.

Learn weights for examples in the dataset as a function of the simple
model and the probes.

Retrain the simple model on the final weighted dataset.

35

5 Libraries

This section lists libraries that we have found with our search. First we will
describe some of the libraries, and then, we will compare the libraries.

5.1 Model interpretability

This section will have libraries that focus more on the model interpretation
rather than model debugging or visualization.

5.1.1 AI Explainability 360 (AIX360)

AT Explainability 360 (ATX360)" is a toolkit developed in Python. This toolkit
was designed to include multiple algorithms that help with explainability.
The toolkit offers API, which unifies the interface for each interpretable
algorithm, thus simplifying the toolkit usage. It is also prepared for custom
implementation so that the user can add his algorithms. [26]

AIX360 contains multiple algorithms with different aims. Some focus on
explaining data or model. Those algorithms that focus on model are then
differentiated by how they explain and what is the scope they look at. As of
now AIX360 contains these algorithms:

« ProtoDash [50]
« Disentangled Inferred Prior VAE [65]
 Contrastive Explanations Method [37]

» Contrastive Explanations Method
with Monotonic Attribute Functions|72]

 Local Interpretable Model—Agnostic Explanations (LIME) - described
in §4.2.1

« SHapley Additive exPlanations (SHAP) - described in §4.2.3
» Teaching explanations for decisions (TED) - described in §4.2.4

« Boolean Decision Rules via Column Generation (Light Edition) - de-
scribed in §4.3.1

Located at http://aix360.mybluemix.net

36

http://aix360.mybluemix.net

 Generalized Linear Rule Models[108]

o ProfWeight - described in §4.3.2

5.1.2 Local Interpretable Model—Agnostic Explana-
tions (LIME)

The used algorithm is described in §4.2.1. The code was introduced together
with the research paper [90]. LIME package is written in Python and is
available on GitHub? or can be installed via Pip®. The package supports
explaining text, tabular data, or images.

LIME package can use any classifier that implements a function that
takes in raw text or NumPy array and outputs a probability for each class.
The package also contains a scikit-learn classifier.

Authors state that they want to add more features to this package, but
as of now, it supports only LIME algorithm with the above limitations and
features.

5.1.3 SHapley Additive exPlanations (SHAP)

Used algorithm is described in §4.2.3. The code was also released with the
paper by Lundberg and Lee [70] and is available at GitHub? or via Pip®.

The main package is written in Python and offers various explainers.
These explainers usually have some focus which makes them better for some
tasks:

TreeExplainer TreeExplainer is an implementation of Tree SHAP (§4.2.3)
and is used to compute SHAP values for trees.

DeepExplainer DeepExplainer is an implementation of Deep
SHAP (§4.2.3) and is used to compute SHAP values for deep learning
models.

GradientExplainer GradientExplainer is used for deep learning models
for computing approximate SHAP values.

LinearExplainer LinearExplainer is for linear models.

’https://github.com/marcotcr/lime
Shttps://pypi.org/project/pip/
‘https://github.com/slundberg/shap
Shttps://pypi.org/project/shap/

37

https://github.com/marcotcr/lime
https://pypi.org/project/pip/
https://github.com/slundberg/shap
https://pypi.org/project/shap/

KernelExplainer KernelExplainer is an implementation of Kernel SHAP
(§4.2.3) which is model agnostic method to compute SHAP values for
any model.

5.1.4 Skater

Skater is Python package available at GitHub® or via Pip”. The project
started as a research idea and incorporated algorithms that interpret models
both locally or globally. Skater also includes naturally interpretable models.
At the repository, they offer many examples. [16]

5.1.5 XAI

XAT is a machine learning library that was designed by The Institute for
Ethical AI and ML. Package is available at GitHub® or via Pip?. The library
has been designed to analyze and evaluate data and models and was developed
to emphasize Al explainability. XAl implements a glass box model that has
many visualization functions. XAl, at this date, is still in its alpha version

(0.0.5). [7]

5.1.6 InterpretML

InterpretML is a package available at GitHub!® or via Pip!.

This package offers an interpretable model designed and developed for
this package by Nori et al. [83] in their research paper. The research paper
drafts this package and the design of the Explainable Boosting Machine
(EBM). EBM is an interpretable model that can be as accurate as black-box
models. Other than that, Interpret ML also offers other interpretable models,
black-box models, and tools for explaining black-box models. The package
offers a unified interface, so interchanging models or explainers is much more
comfortable. [83]

5.1.7 Others

This section lists other libraries that focus on interpreting models. We will
not go in detail for each library:

Shttps://github.com/oracle/Skater
"https://pypi.org/project/skater/
Shttps://github.com/EthicalML/xai
‘nttps://pypi.org/project/xai/
Ohttps://github.com/interpretml/interpret
Uhttps://pypi.org/project/interpret/

38

https://github.com/oracle/Skater
https://pypi.org/project/skater/
https://github.com/EthicalML/xai
https://pypi.org/project/xai/
https://github.com/interpretml/interpret
https://pypi.org/project/interpret/

Teller Model-agnostic tool for ML explainability[78]

Treelnterpreter Package for interpreting scikit-learn’s decision tree and
random forest predictions. [20]

Alibi Alibi is ML library that focuses on inspection and interpretation. Offer
multiple algorithms for global or local explanations.[63]

5.2 Debugging / Visualizing libraries

These libraries focus more on debugging or visualizing the models or data.

5.2.1 ELI5

ELI5 is a Python package that helps to debug machine learning classifiers
and explain their predictions. Its focus is more on debugging the ML models
by providing unified API for all of the supported frameworks and packages.
Although its focus is more on displaying the weights and predictions, it also
contains a way for interpreting black-box models. [75]

5.2.2 Facets

Facets are used for understanding the data we are working with. It contains
two visualizations that help in understanding and analyzing datasets.

One of the visualizations is called Facets Overview and is used for a
general overview of the dataset. It takes input feature data from one or more
datasets and analyzes them by features and visualizes the result.

The second visualization is Facets Dive. This visualization is used to
explore big amounts of data points.[§]

5.2.3 Keras Visualization Toolkit

Keras Visualization Toolkit is a toolkit for visualizing and debugging trained
Keras neural net models. Provides a generalized interface for debugging or
visualizing so it is easy to change the method of interpretation.[12]

5.2.4 Tf-explain

Tf-explain offers visualizations for TensorFlow 2.0 models.[19]

39

5.3 Libraries Comparison

In Table 5.1, we can observe which techniques the libraries are capable of.
Metrics in the table refer to quantitative metrics that serve as proxies of how
“good” a particular explanation is likely to be. Directly interpretable refers
to §4.1, Local explanations, global explanations and data explanations are
described in §3.2.

Library Data Explanations | Directly Interpretable | Local explanations | Global Explanations | Metrics
AIX360 v v v v v
Skater v v v
ELI5 v v v
LIME v
SHAP v
Interpret ML v v v
XAI v v
Teller v
Treelnterpreter v v
Alibi v v v
Facets v
Keras Visualization Toolkit v
H20[9] v v v
DALEX[5] v v v
tf-explain[19] v v
iNNvestigate[10] v

Table 5.1: Comparison of libraries based on their capabilities. Some of the
libraries were taken from [26]

In table Table B.2 we can see that LIME (§4.2.1) or SHAP (§4.2.3)
algorithms are fairly popular, because creators of the libraries choose to
include them in their package.

In Table B.1 we can see that most of the libraries are written for Python.
Note that LIME library was ported to R'?. For SHAP library was created a
wrapper in R'3.

Release years of libraries are in Table 5.2. We can see that the libraries
started to appear from the year 2016, and there is a steady growth of new
additions every year.

2https://github.com/thomasp85/1lime
Bhttps://github.com/ModelOriented/shapper

‘ Library ‘ AIX360 ‘ Skater ‘ ELI5 ‘ LIME ‘ SHAP ‘ InterpretML ‘ XAI ‘ Teller ‘
| Release Year | 2019 | 2017 | 2016 | 2016 | 2018 2019 | Alpha version | No release yet |
‘ Library ‘ Treelnterpreter ‘ Alibi | Facets ‘ Keras Visualization Toolkit ‘ iNNvestigate ‘ H20 DALEX ‘ ‘

[Release Year | No release yet | 2019 | 2017 | 2016 | 2018 2018 | \

Table 5.2: Table with release year of libraries (data taken from GitHub).

‘ No release yet ‘

40

https://github.com/thomasp85/lime
https://github.com/ModelOriented/shapper

5.4 Library selection

We were considering which dataset to use first. We were choosing from several
options like: Iris' | MNIST(§6.2) or Fashion-MNIST'® dataset. Iris dataset
contains only 150 instances, so this is too small and easy for nowadays stand-
ards. The MNIST dataset is described in §6.2. The fashion-MNIST dataset
contains 60,000 instances and contains ten classes of clothing. Datasets dif-
ferentiate with the difficulty of training the DNN (§2.3) [2]. Our experiments
are meant to introduce the reader to the topic, so we choose the easier of
the two: the MNIST dataset.

Since the MNIST dataset is an image classification problem, we had to

choose algorithms that support images. Suitable algorithms were:
SHAP (§4.2.3), LIME (§4.2.1), TED (§4.2.4), ProfWeigth (§4.3.2). For the
TED algorithm, we would have to have a special type of data, which would
include explanations. Since two of the algorithms use local explanation tech-
niques (§4.2), we could leverage this fact and compare the results of each
library with each other, thus selecting LIME and SHAP.

Another benefit for chosen libraries is that both methods are relatively
popular (Table B.2), so we will have better chances of comparing our results
to other work.

Since we want to test the libraries’ usability, we will couple one of them
with AIX360 (§5.1.1). This mix is possible because AIX360 only wraps ori-
ginal implementation of LIME and SHAP. We will use LIME from AIX360
and SHAP from the original library.

We choose AIX360 because it is currently the biggest library with most
capabilities, and according to the developers, they will be adding more al-
gorithms into it.

Ynttps://archive.ics.uci.edu/ml/datasets/Iris
https://github.com/zalandoresearch/fashion-mnist

41

https://archive.ics.uci.edu/ml/datasets/Iris
https://github.com/zalandoresearch/fashion-mnist

6 Use of XAI libraries

In this chapter we will use SHAP (§4.2.3) and LIME (§4.2.1) with help
of AIX360 §5.1.1. We will mainly focus on simple examples with relatively
common dataset (§6.2) to demonstrate the usage of chosen libraries (§5.3).

Examples will be in the form of a prototype. The prototype is written in
Python and requires basic knowledge of the language. Examples are written
as Jupyter Notebook and can be run in Google Colab!, which is the easiest
way of running sample code that is part of this thesis (Examples are available
as an attachment and on GitHub?.). See user manual (attachment §C) on
how to run provided examples.

To design the experiments, we will follow basic ML lifecycle (Figure 6.1).

- Handling missing
Import libraries Load dataset(s)
Encoding Data cl . Feat lecti
> categorical data &'a cleaning eatite seiection
_ ;) Modeling &
—p{ Train/test split Feature scaling

Figure 6.1: Machine learning (ML) life-cycle.

6.1 Structure of the chapter

MNIST dataset (§6.2) This section is describing the Modified National
Institute of Standards and Technology (MNIST) dataset.

Common part of the examples (§6.3) Description of the common part
of the examples that follow the ML lifecycle(Figure 6.1).

Using SHAP library (§6.4) Description of how to use the library.

Explaining with SHAP library (§6.4.1) Using SHAP to explain the pre-
dictions and interpret our understanding of explanation.

thttps://colab.research.google.com/
’https://github.com/fkolenak/XIA_thesis

42

https://github.com/fkolenak/XIA_thesis

Using LIME library (§6.5) Description of how to use the library.

Explaining with LIME library (§6.6) Using LIME to explain the pre-
dictions and interpret our understanding of explanation.

Results comparison (§6.7) Compare our results to each other and other,
similar work.

Comparison conclusion (§6.8)

6.2 MNIST handwritten digits dataset

The Modified National Institute of Standards and Technology (MNIST) data-
base was released by [69] and contains 60,000 images of handwritten digits.
An example of a few images contained is in Figure 6.2. Each image is gray-
scaled and is 28 pixels wide and 28 pixels high.

S04 /91
213 |
34’39
7013 & 6
Mo 7/

Figure 6.2: MNIST handwritten digits dataset example.

;
1

7
4

In the Figure 6.2, we can see there is much variety in the look of the
digits. From the example, we can also see that some digits can cause the
confusion in the sense of their shape (for instance third row, second column
show digit five which is very close to the shape of digit six)

Dataset is relatively balanced (Figure 6.3, with a mean number of in-
stances 6082 and standard deviation £660) and does not contain any null
values, so we do not have to do any handling of missing values or to clean
the data.

43

Frequency for each number in dataset.

6000

5000

]

Freguency

3000

2000

1000

=)
Number

Figure 6.3: Frequency of the digits in the MNIST dataset.

6.3 General code

This chapter describes common part code implementation for both examples,
i.e., experiments with SHAP (§6.4) and LIME (§6.5).

6.3.1 Importing libraries

First, we need to provide all the missing libraries to the environment we
are working in. After installing all the necessary libraries, we will import
packages that will be used in the program.

How to import current version of AIX360 (§5.1.1) for AIX360 and LIME
experiment (§6.5) is in attachment (§D.1). List with final versions of the
libraries:

o SHAP experiment §D.3
o AIX360 and LIME experiment §D.2

For our example we will be using Keras(§2.5) as our framework for creating
ANN(§2.2) models, more specifically CNN(§2.4) model.

6.3.2 Loading data

The MNIST dataset is well known and broadly used, so some libraries in-
tegrated the dataset. In our case we will import MNIST from keras.datasets
(Code Listing 6.1). The returned value is a tuple of Numpy arrays. The
first two arrays are for training, and include training dataset (train) and
labels (train_ labels), the second set is for testing (test, test_labels).

44

Load dataset

from keras.datasets import MNIST

Tuple of Numpy arrays: (x_train, y_ train), (x_test, y_ test).
(train, train__labels), (test, test_labels) = mnist.load__data()

Code Listing 6.1: Loading and splitting data

6.3.3 Examine data

After importing and loading dataset (§6.3.2), we will look at some information
from the data. Since we already know that the data are clean and ready to
use (§6.2), we do not have to do anything in that sense.

From the data, we will extract the width and height of the image and
number of classes (Code Listing 6.2). The training data have dimensions
(60000, 28, 28). So, we can extract the image height and width from the
shape of the training data. As for the number of classes, we will extract them
from the training labels, where we count unique numbers that are within the
set.

save Iinput image dimensions
train.shape[1]
train .shape[2]

img_rows

img_ cols

Get classes and number of values
value_counts = pd.value_counts(train_labels).sort_index ()
num__classes = value_ counts.count ()

Code Listing 6.2: Extract dimensions and number of classes.

6.3.4 Data wrangling

To prepare data for use, we need to reshape the images to a 3-dimensional
vector (height, width, color canal). We are adding the last dimension because
Keras (§2.5) requires the color canal at the end.

The original 2D vector consisted of 784 values (28x28). We reshape all
data to 3D matrices (28x28x1), which include canal. Our canal is equal to
one because we do not have RGB colored images. For RGB images, we would
reshape to 28x28x3 3D matrices, where the canal would be equal to three
(R, G, and B colors).

We also perform grayscale normalization (Feature scaling) to reduce the
effect of illumination’s differences and speed up the convergence of CNN (be-
cause CNN is most effective when numbers are between 0-1). Division by
255 is done because the pixels, in grayscale, range from 0 - 255.

45

To make the vectors we will use function reshape (Code Listing 6.3) on

the arrays with dimensions: (number of elements, width, height, number of
canals).

Reshape
train

train.reshape(train.shape[0], img_rows, img_cols, 1)

Normalization
train train /255

Code Listing 6.3: Reshaping arrays and grayscale normalization.

46

Since LIME requires as its input to have RGB images, we will reshape
the data to 28x28x3 3D matrices (as mentioned before). The trick we are
doing with Code Listing 6.4 is repeating one channel three times. This is
often used when a model is trained on RGB pictures.

def to_rgb(x):
x_rgb = np.zeros ((x.shape[0], 28, 28, 3))
for i in range(3):
x_rgb[..., i] =x[..., 0]

return x_rgb

Code Listing 6.4: Definition of a function for reshaping images.

Encoding data

Now we will need to encode labels to one-hot vector. Since we have ten
classes, our one-hot vector will be 1x10. One hot vector is used to distinguish
each class from every other class. The vector consists of Os in all cells, except
for a single 1 in a cell that identifies the class (normalize the weight of all
classes). Example for label 4 : [0,0,0,1,0,0,0,0,0,0]. We will use Keras
helper function to_ categorical, which does that for us.

Cleaning and splitting data

The MNIST dataset does not require any cleaning in the data (§6.3.3).
Since we loaded the dataset from Keras (§6.3.2), the data are already
split into training and testing data.

Feature scaling

To normalize we will divide whole array by 255. Example manipulation on
train array is in Code Listing 6.3.

6.3.5 The Machine learning (ML) model

We will use CNN (§2.4), with help of Keras sequential model. The model has
first layer that takes our input shape of (28, 28, 1). Output layer is dense
layer with activation Softmax (§2.2.3), convolutional (§2.4.1) hidden layers
use ReLu activation function (§2.2.3). Whole model structure can be seen
in Figure 6.4.

47

dense_2

Eully-Connected
conv2d_3 conv2d_4 conv2d_5 ANN (128)
Convolution max_pooling2d_3 Convolution max_pooling2d_4 ‘Convolution max_pooling2d_5 ReLU activation
(4 x 4) kernel Max Pooling (3 x 3) kernel Max Pooling (2 x 2) kernel Max Pooling
valid padding (4x4) valid padding 2x2) valid padding @x2)
— —

ﬂ
i -
INPUT nl channels nl channels nlchannels nl channels nlchannels nlchannels
(28x28x1) (24 x 24 x n1) (12x12xnl) (10 x 10 x n1) (5x5xn1) (4x4xn1) (2x2xn1)

Figure 6.4: CNN model overview.

dense_3

Eully-Connected
ANN (10)
Softmax act.

OO
Q:
OF
®:

dropout_1

Dropout
0.25

The model is created by adding layers one after another (Code Listing 6.5).

model.add (Conv2D (32, kernel size = 4, activation="relu", input_ shape=(

img rows,img_cols,1)))

model . add (MaxPooling2D (pool size=(2, 2)))
model.add (Conv2D (64, kernel size = 3, activation="relu"))
model . add (MaxPooling2D (pool__size=(2, 2)))
model.add (Conv2D (64, kernel size = 2, activation="relu"))
model . add (MaxPooling2D (pool__size=(2, 2)))

model.add (Flatten ())

model.add (Dense (128, activation="relu"))

model . add (Dropout (0.25))

model.add (Dense(num_ classes, activation='softmax"'))

Code Listing 6.5: Model layers creation.

Summary of the model is in Figure 6.5. In summary, we can see each

layer with parameters. This relatively simple model has 69674 parameters.

48

max_pooling2d (MaxPooling2D) (None, 1

conv2d_1 (Conv2D) (None, 10, 18, 64)
max _pooling2d 1 (MaxPooling2 (None, 5, 5, 64)
conv2d 2 (Conv2D) (None, 4, 4, 64)
max _pooling2d 2 (MaxPooling2 (None, 2, 2, 64)
flatten (Flatten) (None, 256)

dense (Dense) (None, 128)

dropout (Dropout) (None, 128)

Trainable params: 69,674
Non-trainable params: @

Figure 6.5: Used model summary.

6.3.6 Train the Machine learning (ML) model
After assembling our model, we will compile it (Code Listing 6.6).

Loss function (§2.2.2) Loss function is selected as CategoricalCrossen-
tropy®. This loss function computes the crossentropy loss between the
labels and predictions and is used when there are two or more label
classes.

Optimizer (§2.2.4) we have chosen Adam optimiser. The Adam optimiza-
tion is a stochastic gradient descent method.

Metrics (§2.2.5) From the various metrics used for ML models, the best fit
is accuracy as the primary measure of model training success. This is
because the dataset is balanced (§6.2), and we value the classification
of positive and negative cases equally.

model.compile(loss="'categorical_crossentropy ',
optimizer="adam',
metrics=['accuracy'])

Code Listing 6.6: Compiling the model

3https://keras.io/api/losses/probabilistic_losses/
#categoricalcrossentropy—-class

49

https://keras.io/api/losses/probabilistic_losses/##categoricalcrossentropy-class
https://keras.io/api/losses/probabilistic_losses/##categoricalcrossentropy-class

6.3.7 Model evaluation

Now that we have prepared the model, we can call the fit method to train it.
We will set batch_size = 128 and epochs = 1. Since our model is already
well trained at one epoch (see Table 6.1), it is not worth spending the addi-
tional time to train it with more epochs, and we will use one epoch trained
model in all of the further examples.

Epochs | Accuracy [%] | Loss [%] | Time [s]
1 97.86 6.58 42

) 99.20 2.52 210

10 99.31 2.38 420

Table 6.1: Resulting accuracy and loss based of number of epochs.

To evaluate the trained model a little bit further, we can look at the
confusion matrix for 1 and 10 epochs Figure 6.6. We can see that the model
had the most trouble with digits two, three, four, and seven for one epoch.
For ten epochs, these digits are reduced to only six and nine.

Confusicn matrix for 1 epoch Confusicn matrix for 10 epochs

. 3 0 D 0 0 0 1 0 O
1 0 1000 1 32 1 0 0 0 0 1000
2 g 3 i} v v
800 — 800
3 5 3 0 007 0
- _
£4 3 o B4 . 0 ’ 600
w 1 w
5 0 4 0
£ £°
6 4 400 5 5 0 0 400
7 2 7 2 00 o 1
8 5 200 8 0 30 2 0 200
3 . 9 0 0D 4 & 0
N R A ’

Predicted label Predicted label

Figure 6.6: Confusion matrix for 1 and 10 epochs.

6.3.8 Test the Machine learning (ML) model

Let us take a look at the prediction that we can get from the model. Every
digit in the Figure 6.7 is an example of input, which leads to the misclassi-
fication.

20

Figure 6.7: Example of digits which are missclassified by the model.

But how is that possible if some of the digits are clearly visible? Let’s
try to explain what model predicts by using SHAP (§6.4) and LIME (§6.5)
techniques in next sections.

6.4 Using SHAP

An example is in the form of an experiment that showcases the library usage
for previously trained model (§6.3.6) explanation.

We will demonstrate SHAP (§5.1.3) and its usage on MNIST data-
set (§6.2). We will follow basic ML project life-cycle (Figure 6.1) and add
explanation to its very end.

The common part of importing libraries, loading dataset, wrangling data,
training, and evaluating model was already explained (§6.3). Now follows
addition to the general code.

6.4.1 ML model explanation with SHAP

To initialize and get Shapley values, we use DeepFEzplainer (§4.2.3). In Code
Listing 6.7, we can see the functions to initialize explainer and to show the
explanation. We have to provide the model to the explainer as well as a
subset of training data. To show the explanation, we have to provide the
calculated Shapley values(§4.2.2) and instance we are explaining.

#Initialize
explainer = shap.DeepExplainer (model, (train[0:1000]))

Get Shap values

shap__values = explainer.shap_values(test_errors|[i]])
Plot
shap.image plot(shap values, test[i] ,index names ,show=False)

Code Listing 6.7: Creating instance of explainer, getting Shapley values and
visualization

51

The explanation’s output is in the following format: the red areas in
explanations are what the model expects for a given class, and blue areas
are the pixels that were not what model would have expected for its label.

In the following sections, we will introduce some of the output of the
explainer. We will then try to explain the explanation and comprehend the
root cause for the cases.

6.4.2 SHAP on correct prediction

First lets introduce correct classification (Figure 6.8). We can see that the
model fully expects this digit to look like this (red areas). The only resemb-
lance to other digits (according to the model) is for the digit three.

Figure 6.8: Correct classification of digit 2.

6.4.3 SHAP on incorrect predictions

In Figure 6.9 the model detected the circle with empty middle. From this
observation, the lines at the end of the circle can be part of the digit 0 too,
thus why it was inclined more to the 0 than 5. If we look at the correct
digit, we can see that the model did not expect the line to be so close to the
top part of the digit, and it did not detect the half circle that digit five is
supposed to have.

Predicted label :8
True label :5

o

Figure 6.9: Missclassification of digit 5 as 0.
In Figure 6.10 we can observe that the shape of three is indeed in the

picture. The model did not expect the connection but was still inclined to
this classification. From this example, we can see that some digits can have a

52

different orientation. To improve the accuracy, we could introduce some image
distortion like rotations or zoom and add it as a layer to the model (§7.1).

True label :9

>

Figure 6.10: Missclassification of digit 9 as 3.

In Figure 6.11 we can only assume that the model did not detect the digit
nine because the training set did not have any or not many examples with
this specific writing style (the line at the bottom).

Figure 6.11: Missclassification of digit 9 as 3.

6.5 Using LIME with AIX360

An example is in the form of an experiment that showcases the usage of the
library as well as using the library for explanations. In this example we will
use library Al Explainability 360 (AIX360) (§5.1.1) and its classes for Local
Interpretable Model-—Agnostic Explanations (LIME) (§4.2.1) explanation
approach.

We have covered the process of how the model is built in common code
section (§6.3). So, we will not explain it in detail again. For future comparison
we will also use MNIST (§6.2) dataset. The ML life-cycle from previous
example (§6.4.1) will be very similar, with the exception that instead of
using SHAP we will do the explanation with LIME at this time.

6.6 ML model explanation with LIME

To initialize and get explanations we use object from AIX360 LimelmageFz-
plainer. In Code Listing 6.8, we can see the functions to initialize explainer

23

and to show the explanation. We have to provide the model to the explainer
as well as a subset of training data. To show the explanation, we have to
provide an instance we are explaining, and models function to get the prob-
ability, for instance.

#Initialize
limeExplainer = LimelmageExplainer ()

Get explanation
explanation = limeExplainer.explain_ instance(test errors_rgb[i], model.
predict)

Get image and mask and show result

temp, mask = explanation.get_image and_mask(explanation.top_labels[0],
positive__only=True, num_ features=10,
hide_rest=True)

plt .imshow(mark boundaries(temp / 2 + 0.5, mask))

Code Listing 6.8: LIME creating explanation model and showing explanation.

Further image examples are always in a format: original image, an image
with superpixels highlighted, an image with the pros and cons’ Pros and
cons mean that parts of the image are highlighted (pros are green and cons
are red). In the examples there is also text with Top predictions: [Array].
This array is displaying the top 5 predictions. So the second digit has the
second-best probability and so on.

6.6.1 LIME on correct predictions

In the examples Figure 6.12 and Figure 6.13 we can see that LIME divided
the image into superpixels. Each superpixel can be seen as a yellow line in
the second and third image. With the first example we can see that the digit
nine has to have empty circle in the middle. Also notice how small the pros
part is in the images.

o4

Predicted label :9
True label :9
Top predictions: [9, 7, 8, 4, @]

a d

Figure 6.12: LIME explanation - correctly classified digit 9.

Predicted label :4
True label :4
Top predictions: [4, 9, 8, 7, 1]

-

Figure 6.13: LIME explanation - correctly classified digit 4.

Example Figure 6.14 is a special case, because LIME explanation did
not seem to pick up any superpixels or given any feasible interpretation.
This could be caused by the dimensions of the image, since 784 pixels is
quite small picture or it could be caused by the model itself where LIMEs
effort have no change in the prediction. To get better results from LIME,
we tried to alter some input parameters (In Code Listing 6.8 for a func-
tion get image__and_mask of explanation object) but the quality of the
explanations did not increase.

95

Predicted label :7
True label :7
Top predictions: [7, 2, 9, 8, 3]

Figure 6.14: LIME explanation - correctly classified digit 7, but no explana-
tion given.

6.6.2 LIME on incorrect predictions

If we take a look at some explanations that try to explain incorrect predic-
tion Figure 6.15 and Figure 6.16 we will notice that the pros part of the
explanation is much bigger than in the previous, correct, examples. Looking
at the images, the explanation only vaguely follows the shape and then in-
cludes the whole digit. Unfortunately, the superpixels were formed only for
the outer line and did not follow any actual shape.

Predicted label :1
True label :9
Top predictions: [1, 8, 9, 3, 4]

Figure 6.15: LIME explanation - incorrect explanation.

26

Predicted label :0
True label :4
Top predictions: [9, 4, 8, 7, @]

Figure 6.16: LIME explanation - incorrect explanation.

6.6.3 LIME on incorrect predictions with heatmap

In the explanation, using LIME can be helpful to generate heatmap (Fig-
ure 6.17) that showcases the main focus points in the image. From the image,
it is more apparent that the model is also looking at the shape and detects
the inner circle. However, other than that, we see no significant explanation
of the misclassified prediction.

Predicted label :0

True label :9
Top predictions: [@, 9, 6, 5, 8]

GG

L. |

Figure 6.17: LIME explanation - Explanation with addition of heatmap.

If we generate new image (Figure 6.18) with heatmap for the example in
Figure 6.16 we can see more clearly what matters to the model, but still no
useful explanation.

o7

Top predictions: [9, 4, 8, 7, @]

Figure 6.18: LIME explanation - Explanation with addition of heatmap.

6.7 Explanation comparison

Since the used MNIST dataset (§6.2) is fairly popular amongst researchers,
we will try to compare our results with other works (§6.7.2, §6.7.2 and §6.7.2).

6.7.1 Our work results comparison

We will first compare our results for the same instance using explanation
with LIME (§6.5) and SHAP (§6.4).

In Figure 6.21 it was incorrectly predicted that the label is 4. Comparing
results, we can see meaningful explanation only for SHAP algorithm. Same
phenomena is visible in the Figure 6.20, where LIME does not provide any
explanation even in the heatmap.

o8

Predicted label :4
True label :6

L

Figure 6.19: Comparison of our results. SHAP at the left and LIME at the
right.

Figure 6.20: Comparison of our results. SHAP at the left and LIME at the
right.

6.7.2 Lundberg and Lee [70] results comparison

Lets take first example Figure 6.21 from [70]. If we compare it to our results,
we can see that our approach for SHAP(§6.4.1) was correct, because we have
similar-looking results. In their example, they comment on the result, just
explaining the red and blue areas. The example includes a comparison to
other classes and a masked version where they removed the unwanted parts
for class 3 and displayed the result (Masked column). Unfortunately, they
do not mention how they obtained results for LIME, because, for their case,
it seems to work fine.

29

Input Explain® Explaind Masked

&
i, DeepLift g : : "
-
Mew Depplift g ;L p £
. —
- ©~
SHAP il r L
a
—
LIME - ; 'S
F .
-

Figure 6.21: Image explanation results [70].

6.7.3 Kanerva [59] results comparison

Other Figure 6.22 show that our result with LIME on this dataset seems to
be the same. They also got no explanation for some cases (Figure 6.14), or
wrong explanations like in Figure 6.15. In the thesis, they also mention that
they tried to change some parameters without results.

Image

LIME

LRP
£=10

EEE™-
EEE" -
ENE™ -
EEE. <

DeepLIFT

LRP
£=0.0001

Figure 6.22: Image with digits prediction explanation results [59].

6.7.4 Ancona et al. [24] results comparison

From the results of this report, we can see that the explanation output of
SHAP library is similarly looking to other libraries (Example in Figure 6.23).
In those examples, we can see that the model’s focus point is very similar to
SHAPs explanation.

60

(a) Occlusion-1 ib) Integrated Gradients

Figure 6.23: Example of output by Oclusion [109] and Integrated gradients
methods [102]. Image courtesy of [24].

6.7.5 Ilamanov [57] approach

The [57] presents an interesting approach where they interpret the model at
each layer and look at the activation at that layer. After printing the output,
they can interpret what each layer does (e.g., horizontal line detection).

6.8 Comparison conclusion

From our experiments (§6.4 and §6.5), we can see that explaining the results
of a model is one thing, and another is understanding the explanation itself.
It depends on the reviewers’ view and their interpretation of the results.

Comparing our work and other people’s work (§6.7), we can see that the
algorithm which is chosen for the explanation can produce different results
(§6.7.2 and §6.7.3), depending on the architecture of the whole system.

From [? | and [?], we can see other algorithms that can perform well on
the same dataset and model. Thus the algorithm choice plays a big part in
the success of explanation.

61

7 Conclusion

In this thesis, we have been introduced to XAI(§3) problematic and explained
why it is essential to be able to interpret Als decisions. We have given an
introduction to the AI(§2), which is the main point of interest in XAI. We
have described the approaches for explanation and presented some XAI
algorithms.

We have searched for XAl libraries and found out that many are still in
the beginning stage(§5.3) of development. By far, the most used libraries
were LIME and SHAP.

In the experiments, we have tried LIME and SHAP with the MNIST
dataset. We have used one of the biggest library AIX360 that includes LIME.
We used the original SHAP library that was released with its research paper.
With the AIX360, we have tested how simple it is to use this library. With
the used libraries, we verified the simplicity of explaining and understanding
the behavior of the model.

After comparing other works that use other explanation algorithms for
the dataset used, the SHAP had the best interpretability of its explanation
output. LIME, in our case, did not provide any meaningful explanation.

Experiments revealed some information about the dataset used, where
we were able to spot some irregularities(§6.4) within the dataset. Experi-
ments also pointed out that some of the numbers were written differently in
the testing set (Figure 6.11), so the model did not predict those instances
correctly.

7.1 Future work

With the explanation method, we found that within the dataset are some
numbers that have the desired shape but are slightly angled (§6.4.3 Fig-
ure 6.10). We could use data augmentation (Figure 7.1) [107] to further
improve the model’s accuracy. From the data augmentations available, the
rotation would be most helpful. Other techniques mostly apply to colored
images. With the usage of such technique, we will also increase the training
dataset, which is another added benefit.

62

De-texturized

ocf

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, De-colorized

Data Augmentation

Edge Enhanced

Salient Edge Map

" Flip/Rotate

Figure 7.1: Example data augmentation on a picture of a butterfly. For our
set of images, the rotation is most relevant [13].

Another improvement to models accuracy could be achieved with the
usage of Automated machine learning (also referred to as AutoML) tools.
AutoML method aims to automate the process of ML model development. It
automatically optimizes hyperparameters of the model and selects the best
one based on metrics selected.

Today’s XAl is in a state where we have to sacrifice accuracy for explain-
ability(§4). In the future, the aim will be to create more explainable models
(Figure 7.2) and, at the same time, maintain high performance. XATI will also
enable the trust of the Al systems by enabling the users to understand its
predictions[47].

63

Performance vs. Explainability

8 F 3

% @) @)

e o © Tomorrow
o

= Today

[0 (@)

o O

g -

c

| -

©

o

- i

Explainability (notional)

Figure 7.2: Darpas vision on the future of XAI [47].

64

Bibliography

AlphaGo | DeepMind. URL https:
//deepmind.com/research/case-studies/alphago-the-story-so-far.

Last visited 2020-07-31.

Benchmark dashboard. URL
http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/#.
Last visited 2020-08-09.

Top scientists call for caution over artificial intelligence - Telegraph. URL
https://www.telegraph.co.uk/technology/news/11342200/
Top-scientists-call-for-caution-over-artificial-intelligence.
html. Last visited 2020-08-09.

A Comprehensive Guide to Convolutional Neural Networks — the ELI5
way | by Sumit Saha | Towards Data Science. URL
https://towardsdatascience.com/
a-comprehensive-guide-to-convolutional-neural-\
networks-the-eli5-way-3bd2b1164a53. Last visited 2020-08-05.

ModelOriented/DALEX: moDel Agnostic Language for Exploration and
eXplanation. URL https://github.com/ModelOriented/DALEX. Last
visited 2020-08-05.

IBM100 - Deep Blue. URL
https://www.ibm.com/ibm/history/ibm100/us/en/icons/deepblue/.
Last visited 2020-07-31.

The AI-RFX Procurement Framework for Al Machine Learning Systems.
URL https://ethical.institute/xai.html. Last visited 2020-07-31.

Facets - Visualizations for ML datasets. URL
https://pair-code.github.io/facets/. Last visited 2020-07-31.

h2oai/mli-resources: H20.ai Machine Learning Interpretability Resources.
URL https://github.com/h20ai/mli-resources. Last visited
2020-08-05.

albermax/innvestigate: A toolbox to iNNvestigate neural networks’
predictions! URL https://github.com/albermax/innvestigate. Last
visited 2020-08-05.

65

https://deepmind.com/research/case-studies/alphago-the-story-so-far
https://deepmind.com/research/case-studies/alphago-the-story-so-far
http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/#
https://www.telegraph.co.uk/technology/news/11342200/Top-scientists-call-for-caution-over-artificial-intelligence.html
https://www.telegraph.co.uk/technology/news/11342200/Top-scientists-call-for-caution-over-artificial-intelligence.html
https://www.telegraph.co.uk/technology/news/11342200/Top-scientists-call-for-caution-over-artificial-intelligence.html
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-\networks-the -eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-\networks-the -eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-\networks-the -eli5-way-3bd2b1164a53
https://github.com/ModelOriented/DALEX
https://www.ibm.com/ibm/history/ibm100/us/en/icons/deepblue/
https://ethical.institute/xai.html
https://pair-code.github.io/facets/
https://github.com/h2oai/mli-resources
https://github.com/albermax/innvestigate

[11]

[12]

[22]

Keras: the Python deep learning API, . URL https://keras.io/. Last
visited 2020-08-05.

GitHub - raghakot /keras-vis: Neural network visualization toolkit for keras,
. URL https://github.com/raghakot/keras-vis. Last visited
2020-07-31.

Data Augmentation Increases Accuracy of your model — But how ? | by
sourav kumar | Secure and Private AI Writing Challenge | Medium. URL
https://medium.com/secure-and-private-ai-writing-challenge/
data-augmentation-increases-accuracy-of-\
your-model-but-how-aal1913468722. Last visited 2020-08-09.

Moral Machine. URL https://www.moralmachine.net/. Last visited
2020-08-09.

PyTorch. URL https://pytorch.org/. Last visited 2020-08-05.

Overview — skater 0 documentation. URL
https://oracle.github.io/Skater/overview.html. Last visited
2020-07-30.

scikit-learn: machine learning in Python — scikit-learn 0.23.2
documentation. URL https://scikit-learn.org/stable/index.html.
Last visited 2020-08-06.

TensorFlow. URL https://www.tensorflow.org/. Last visited
2020-08-05.

Available Methods — tf-explain documentation. URL
https://tf-explain.readthedocs.io/en/latest/methods.html. Last
visited 2020-07-31.

GitHub - andosa/treeinterpreter. URL
https://github.com/andosa/treeinterpreter. Last visited 2020-07-31.

Igor Aleksander. Artificial neuroconsciousness an update. In Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), volume 930, pages
565—581. Springer Verlag, 1995. ISBN 3540594973. doi:
10.1007/3-540-59497-3__224.

Ethem Alpaydin. Introduction to Machine Learning. MIT Press, 2014.
ISBN 9780262028189.

66

https://keras.io/
https://github.com/raghakot/keras-vis
https://medium.com/secure-and-private-ai-writing-challenge/data-augmentation-increases-accuracy-of-\your-model-but -how-aa1913468722
https://medium.com/secure-and-private-ai-writing-challenge/data-augmentation-increases-accuracy-of-\your-model-but -how-aa1913468722
https://medium.com/secure-and-private-ai-writing-challenge/data-augmentation-increases-accuracy-of-\your-model-but -how-aa1913468722
https://www.moralmachine.net/
https://pytorch.org/
https://oracle.github.io/Skater/overview.html
https://scikit-learn.org/stable/index.html
https://www.tensorflow.org/
https://tf-explain.readthedocs.io/en/latest/methods.html
https://github.com/andosa/treeinterpreter

[23]

[24]

[27]

Rayan Alshamrani and Xiaogang Ma. Deep Learning. In Encyclopedia of
Big Data, pages 1-5. Springer International Publishing, Cham, 2019. doi:
10.1007/978-3-319-32001-4_ 533-1. URL
http://link.springer.com/10.1007/978-3-319-32001-4_533-1.

Marco Ancona, Enea Ceolini, Cengiz Oztireli, and Markus Gross.
TOWARDS BETTER UNDERSTANDING OF GRADIENT-BASED
ATTRIBUTION METHODS FOR DEEP NEURAL NETWORKS.
Technical report, 2018.

Stevo and others Bozinovski. A self-learning system using secondary
reinforcement. Cybernetics and Systems Research, pages 397—-402, 1982.

Vijay Arya, Rachel K. E. Bellamy, Pin-Yu Chen, Amit Dhurandhar,
Michael Hind, Samuel C. Hoffman, Stephanie Houde, Q. Vera Liao, Ronny
Luss, Aleksandra Mojsilovi¢, Sami Mourad, Pablo Pedemonte, Ramya
Raghavendra, John Richards, Prasanna Sattigeri, Karthikeyan Shanmugam,
Moninder Singh, Kush R. Varshney, Dennis Wei, and Yunfeng Zhang. One
Explanation Does Not Fit All: A Toolkit and Taxonomy of Al
Explainability Techniques. sep 2019. URL
http://arxiv.org/abs/1909.03012.

Edmond Awad, Sohan Dsouza, Richard Kim, Jonathan Schulz, Joseph
Henrich, Azim Shariff, Jean Frangois Bonnefon, and Iyad Rahwan. The
Moral Machine experiment. Nature, 563(7729):59-64, nov 2018. ISSN
14764687. doi: 10.1038/s41586-018-0637-6. URL
https://doi.org/10.1038/s41586-018-0637-6.

Solveig Badillo, Balazs Banfai, Fabian Birzele, lakov 1. Davydov, Lucy
Hutchinson, Tony Kam-Thong, Juliane Siebourg-Polster, Bernhard Steiert,
and Jitao David Zhang. An Introduction to Machine Learning. Clinical
Pharmacology and Therapeutics, 107(4):871-885, apr 2020. ISSN 15326535.
doi: 10.1002/cpt.1796.

Alejandro Barredo Arrieta, Natalia Diaz-Rodriguez, Javier Del Ser, Adrien
Bennetot, Siham Tabik, Alberto Barbado, Salvador Garcia, Sergio
Gil-Lopez, Daniel Molina, Richard Benjamins, Raja Chatila, and Francisco
Herrera. Explainable Artificial Intelligence (XAI): Concepts, taxonomies,
opportunities and challenges toward responsible Al. Information Fusion,
58:82-115, jun 2020. ISSN 1566-2535. doi: 10.1016/J.INFFUS.2019.12.012.
URL https://www.sciencedirect.com/science/article/pii/
S51566253519308103#bib0016.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation
learning: A review and new perspectives. IEEE Transactions on Pattern

67

http://link.springer.com/10.1007/978-3-319-32001-4_533-1
http://arxiv.org/abs/1909.03012
https://doi.org/10.1038/s41586-018-0637-6
https://www.sciencedirect.com/science/article/pii/S1566253519308103#bib0016
https://www.sciencedirect.com/science/article/pii/S1566253519308103#bib0016

[31]

[32]

33]

[34]

[35]

[40]

[41]

Analysis and Machine Intelligence, 35(8):1798-1828, jun 2013. ISSN
01628828. doi: 10.1109/TPAMI.2013.50. URL
http://arxiv.org/abs/1206.5538.

Christopher Michael Bishop. Pattern Recognition and Machine Learning.
Journal of Electronic Imaging, 16(4):049901, jan 2007. ISSN 1017-9909. doi:
10.1117/1.2819119.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio.
Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
Modeling. dec 2014. URL http://arxiv.org/abs/1412.3555.

Miruna A Clinciu and Helen F Hastie. Proceedings of the 1st Workshop on
Interactive Natural Language Technology for Explainable Artificial
Intelligence (NL4XAI 2019). Technical report.

Daniel Crevier. Al : the tumultuous history of the search for artificial
intelligence. Basic Books, 1993. ISBN 0465029973.

G. Cybenko. Approximation by superpositions of a sigmoidal function.
Mathematics of Control, Signals, and Systems, 2(4):303-314, dec 1989.
ISSN 09324194. doi: 10.1007/BF02551274. URL
https://link.springer.com/article/10.1007/BF02551274.

Sanjeeb Dash, Oktay Giinliik, and Dennis Wei. Boolean Decision Rules via
Column Generation. Technical report, 2018.

Amit Dhurandhar, Pin-Yu Chen, Ronny Luss, Chun-Chen Tu, Paishun
Ting, Karthikeyan Shanmugam, and Payel Das. Explanations based on the
Missing: Towards Contrastive Explanations with Pertinent Negatives.
Technical report, 2018.

Amit Dhurandhar, Karthikeyan Shanmugam, Ronny Luss, and Peder Olsen.
Improving Simple Models with Confidence Profiles. Technical report, 2018.

Nicholas Diakopoulos and Michael Koliska. Algorithmic Transparency in
the News Media. Digital Journalism, 5(7):809-828, aug 2017. ISSN
2167082X. doi: 10.1080/21670811.2016.1208053. URL https:
//www.tandfonline.com/doi/abs/10.1080/21670811.2016.1208053.

Finale Doshi-Velez and Been Kim. Towards A Rigorous Science of
Interpretable Machine Learning. feb 2017. URL
http://arxiv.org/abs/1702.08608.

Jeffreyl Elman. Finding Structure in Time. Technical report, 1990.

68

http://arxiv.org/abs/1206.5538
http://arxiv.org/abs/1412.3555
https://link.springer.com/article/10.1007/BF02551274
https://www.tandfonline.com/doi/abs/10.1080/21670811.2016.1208053
https://www.tandfonline.com/doi/abs/10.1080/21670811.2016.1208053
http://arxiv.org/abs/1702.08608

[42]

[43]

[45]

D. A. Ferrucci. Introduction to "This is Watson", may 2012. ISSN
00188646.

Xiao Gang Su. Linear regression analysis: Theory and computing. World
Scientific Publishing Co., jan 2009. ISBN 9789812834119. doi:
10.1142/6986. URL https://www.worldscientific.com/
worldscibooks/10.1142/6986https://books.google.cz/books?id=
MjNv6rGv8NIC&pg=PAl&redir_esc=y#v=onepage&q&f=false.

Adam E. Gaweda, Mehmet K. Muezzinoglu, George R. Aronoff, Alfred A.
Jacobs, Jacek M. Zurada, and Michael E. Brier. Individualization of
pharmacological anemia management using reinforcement learning. In
Neural Networks, volume 18, pages 826—834. Pergamon, jul 2005. doi:
10.1016/j.neunet.2005.06.020.

TIan J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio.
Generative adversarial nets. In Advances in Neural Information Processing
Systems, volume 3, pages 2672—2680. Neural information processing
systems foundation, 2014.

Steven L. Gortmaker, David W. Hosmer, and Stanley Lemeshow. Applied
Logistic Regression. Contemporary Sociology, 23(1):159, jan 1994. ISSN
00943061. doi: 10.2307/2074954.

David Gunning. Explainable Artificial Intelligence (XAI). Technical report,
2017. URL
https://www.darpa.mil/attachments/XAIProgramUpdate.pdf.

David Gunning and David W Aha. DARPA’s Explainable Artificial
Intelligence Program Deep Learning and Security. Al Magazine: Deep
Learning and Security, 2019. ISSN 0738-4602.

David Gunning, Filip Karlo Dosilovic, Mario Brcic, Nikica Hlupic,
Alejandro Barredo Arrieta, Natalia Diaz-Rodriguez, Javier Del Ser, Adrien
Bennetot, Siham Tabik, Alberto Barbado, Salvador Garcia, Sergio
Gil-Lopez, Daniel Molina, Richard Benjamins, Raja Chatila, Francisco
Herrera, Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin, Amit
Dhurandhar, Karthikeyan Shanmugam, Ronny Luss, Peder Olsen, Tim
Miller, Avi Rosenfeld, Ariella Richardson, Bryce Goodman, Seth Flaxman,
Xiaocong Cui, Jung min Lee, J. Po-An Hsieh, David Gunning, and David W
Aha. Explainable Artificial Intelligence (XAI): Concepts, taxonomies,
opportunities and challenges toward responsible Al. Information Fusion, 58
(3):82-115, jun 2018. ISSN 1566-2535. doi: 10.1016/J.INFFUS.2019.12.012.
URL http://arxiv.org/abs/1904.08123http:

69

https://www.worldscientific.com/worldscibooks/10.1142/6986 https://books.google.cz/books?id=MjNv6rGv8NIC&pg=PA1&redir_esc=y#v=onepage&q&f=false
https://www.worldscientific.com/worldscibooks/10.1142/6986 https://books.google.cz/books?id=MjNv6rGv8NIC&pg=PA1&redir_esc=y#v=onepage&q&f=false
https://www.worldscientific.com/worldscibooks/10.1142/6986 https://books.google.cz/books?id=MjNv6rGv8NIC&pg=PA1&redir_esc=y#v=onepage&q&f=false
https://www.darpa.mil/attachments/XAIProgramUpdate.pdf
http://arxiv.org/abs/1904.08123 http://arxiv.org/abs/1706.07269 https://www.sciencedirect.com/science/article/pii/S1566253519308103#bib0016 https://ieeexplore.ieee.org/document/8400040/ http://listverse.com/
http://arxiv.org/abs/1904.08123 http://arxiv.org/abs/1706.07269 https://www.sciencedirect.com/science/article/pii/S1566253519308103#bib0016 https://ieeexplore.ieee.org/document/8400040/ http://listverse.com/
http://arxiv.org/abs/1904.08123 http://arxiv.org/abs/1706.07269 https://www.sciencedirect.com/science/article/pii/S1566253519308103#bib0016 https://ieeexplore.ieee.org/document/8400040/ http://listverse.com/

[50]

[53]

[54]

[55]

//arxiv.org/abs/1706.07269https://www.sciencedirect.com/
science/article/pii/S1566253519308103#bib0016https:
//ieeexplore.ieee.org/document/8400040/http://listverse.com/.

Karthik S. Gurumoorthy, Amit Dhurandhar, Guillermo Cecchi, and Charu
Aggarwal. Efficient Data Representation by Selecting Prototypes with
Importance Weights. Proceedings - IEEE International Conference on Data
Mining, ICDM, 2019-Novem:260-269, jul 2017. URL
http://arxiv.org/abs/1707.01212.

Kjell Hausken and Matthias Mohr. The value of a player in n-person
games. Social Choice and Welfare, 18(3):465-483, 2001. ISSN 01761714.
doi: 10.1007/s003550000070.

Michael Hind, Dennis Wei, Murray Campbell, Noel C.F. Codella, Amit
Dhurandhar, Aleksandra Mojsilovié¢, Karthikeyan Natesan Ramamurthy,
and Kush R. Varshney. TED: Teaching Al to explain its decisions. In
AIES 2019 - Proceedings of the 2019 AAAI/ACM Conference on Al
Ethics, and Society, pages 123-129, New York, NY, USA, jan 2019.
Association for Computing Machinery, Inc. ISBN 9781450363242. doi:
10.1145/3306618.3314273. URL
https://dl.acm.org/doi/10.1145/3306618.3314273.

Geoffrey Hinton. Deep belief networks. Scholarpedia, 4(5):5947, 2009. ISSN
1941-6016. doi: 10.4249/scholarpedia.5947.

Sepp Hochreiter and Jiirgen Schmidhuber. Long Short-Term Memory.
Neural Computation, 9(8):1735-1780, nov 1997. ISSN 08997667. doi:
10.1162/nec0.1997.9.8.1735.

Chia-Ling Huang, Yan-Chih Shih, Chyh-Ming Lai, Vera Yuk Ying Chung,
Wen-Bo Zhu, Wei-Chang Yeh, and Xiangjian He. Optimization of a
Convolutional Neural Network Using a Hybrid Algorithm. In 2019
International Joint Conference on Neural Networks (IJCNN), volume
2019-July, pages 1-8. IEEE, jul 2019. ISBN 978-1-7281-1985-4. doi:
10.1109/TJCNN.2019.8852231. URL
https://ieeexplore.ieee.org/document/8852231/.

Aaron Courville Ian Goodfellow, Yoshua Bengio. Deep Learning. 2016.

Nazar Ilamanov. Explainable MNIST classification: dissection of a
ConvNet | by Nazar Ilamanov | Jul, 2020 | Towards Data Science, 2020.
URL https://towardsdatascience.com/
explainable-mnist-classification-dissection\
-of-a-convnet-£32910d52842. Last visited 2020-08-06.

70

http://arxiv.org/abs/1904.08123 http://arxiv.org/abs/1706.07269 https://www.sciencedirect.com/science/article/pii/S1566253519308103#bib0016 https://ieeexplore.ieee.org/document/8400040/ http://listverse.com/
http://arxiv.org/abs/1904.08123 http://arxiv.org/abs/1706.07269 https://www.sciencedirect.com/science/article/pii/S1566253519308103#bib0016 https://ieeexplore.ieee.org/document/8400040/ http://listverse.com/
http://arxiv.org/abs/1904.08123 http://arxiv.org/abs/1706.07269 https://www.sciencedirect.com/science/article/pii/S1566253519308103#bib0016 https://ieeexplore.ieee.org/document/8400040/ http://listverse.com/
http://arxiv.org/abs/1904.08123 http://arxiv.org/abs/1706.07269 https://www.sciencedirect.com/science/article/pii/S1566253519308103#bib0016 https://ieeexplore.ieee.org/document/8400040/ http://listverse.com/
http://arxiv.org/abs/1904.08123 http://arxiv.org/abs/1706.07269 https://www.sciencedirect.com/science/article/pii/S1566253519308103#bib0016 https://ieeexplore.ieee.org/document/8400040/ http://listverse.com/
http://arxiv.org/abs/1707.01212
https://dl.acm.org/doi/10.1145/3306618.3314273
https://ieeexplore.ieee.org/document/8852231/
https://towardsdatascience.com/explainable-mnist-classification-dissection\-of-a- convnet-f32910d52842
https://towardsdatascience.com/explainable-mnist-classification-dissection\-of-a- convnet-f32910d52842
https://towardsdatascience.com/explainable-mnist-classification-dissection\-of-a- convnet-f32910d52842

[58]

[60]

[61]

[62]

[64]

[65]

Bogumil Kaminski, Michat Jakubczyk, and Przemystaw Szufel. A
framework for sensitivity analysis of decision trees. Central Furopean
Journal of Operations Research, 26(1):135-159, mar 2018. ISSN 16139178.
doi: 10.1007/s10100-017-0479-6. URL
https://doi.org/10.1007/510100-017-0479-6.

Olli Kanerva. Evaluating explainable AT models for convolutional neural
networks with proxy tasks. Technical report, 2019. URL
https://pdfs.semanticscholar.org/d910/
62a3e13ee034af6807e1819a9ca3051daf13. pdf.

Yoon Kim. Convolutional neural networks for sentence classification. In
EMNLP 201} - 2014 Conference on Empirical Methods in Natural
Language Processing, Proceedings of the Conference, pages 1746-1751.
Association for Computational Linguistics (ACL), 2014. ISBN
9781937284961. doi: 10.3115/v1/d14-1181.

Diederik P. Kingma and Jimmy Lei Ba. Adam: A method for stochastic
optimization. In 3rd International Conference on Learning Representations,
ICLR 2015 - Conference Track Proceedings. International Conference on
Learning Representations, ICLR, dec 2015. URL
https://arxiv.org/abs/1412.6980v9.

Diederik P. Kingma, Danilo J. Rezende, Shakir Mohamed, and Max
Welling. Semi-Supervised Learning with Deep Generative Models.
Advances in Neural Information Processing Systems, 4(January):3581-3589,
jun 2014. URL http://arxiv.org/abs/1406.5298.

Janis Klaise, Arnaud Van Looveren, Giovanni Vacanti, and Alexandru
Coca. Indices and tables — Alibi 0.5.2dev documentation. URL
https://docs.seldon.io/projects/alibi/en/latest/. Last visited
2020-07-31.

Mark A. Kramer. Nonlinear principal component analysis using
autoassociative neural networks. AIChE Journal, 37(2):233-243, feb 1991.
ISSN 15475905. doi: 10.1002/aic.690370209. URL
https://aiche.onlinelibrary.wiley.com/doi/full/10.1002/aic.
690370209https://aiche.onlinelibrary.wiley.com/doi/abs/10.
1002/aic.690370209https:
//aiche.onlinelibrary.wiley.com/doi/10.1002/aic.690370209.

Abhishek Kumar, Prasanna Sattigeri, and Avinash Balakrishnan.
Variational Inference of Disentangled Latent Concepts from Unlabeled
Observations. 6th International Conference on Learning Representations,

71

https://doi.org/10.1007/s10100-017-0479-6
https://pdfs.semanticscholar.org/d910/62a3e13ee034af6807e1819a9ca3051daf13.pdf
https://pdfs.semanticscholar.org/d910/62a3e13ee034af6807e1819a9ca3051daf13.pdf
https://arxiv.org/abs/1412.6980v9
http://arxiv.org/abs/1406.5298
https://docs.seldon.io/projects/alibi/en/latest/
https://aiche.onlinelibrary.wiley.com/doi/full/10.1002/aic.690370209 https://aiche.onlinelibrary.wiley.com/doi/abs/10.1002/aic.690370209 https://aiche.onlinelibrary.wiley.com/doi/10.1002/aic.690370209
https://aiche.onlinelibrary.wiley.com/doi/full/10.1002/aic.690370209 https://aiche.onlinelibrary.wiley.com/doi/abs/10.1002/aic.690370209 https://aiche.onlinelibrary.wiley.com/doi/10.1002/aic.690370209
https://aiche.onlinelibrary.wiley.com/doi/full/10.1002/aic.690370209 https://aiche.onlinelibrary.wiley.com/doi/abs/10.1002/aic.690370209 https://aiche.onlinelibrary.wiley.com/doi/10.1002/aic.690370209
https://aiche.onlinelibrary.wiley.com/doi/full/10.1002/aic.690370209 https://aiche.onlinelibrary.wiley.com/doi/abs/10.1002/aic.690370209 https://aiche.onlinelibrary.wiley.com/doi/10.1002/aic.690370209

[69]

[70]

[71]

73]

ICLR 2018 - Conference Track Proceedings, nov 2017. URL
http://arxiv.org/abs/1711.00848.

Christopher Kuner, Fred Cate, Orla Lynskey, Christopher Millard, Nora Ni
Loideain, and Dan Svantesson. Meaningful information and the right to
explanation . International Data Privacy Law, 7(2):73-75, nov 2017. doi:
10.1093/IDPL. URL
https://cyber.harvard.edu/publications/2018/03/BigDataPrivacy.

Pat Langley. The changing science of machine learning, mar 2011. ISSN
08856125. URL http://archive.ics.uci.edu/ml/.

Quoc V. Le, Marc’Aurelio Ranzato, Rajat Monga, Matthieu Devin, Kai
Chen, Greg S. Corrado, Jeff Dean, and Andrew Y. Ng. Building high-level
features using large scale unsupervised learning. ICASSP, IEEE
International Conference on Acoustics, Speech and Signal Processing -
Proceedings, pages 8595—-8598, dec 2011. URL
http://arxiv.org/abs/1112.62009.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.
Gradient-based learning applied to document recognition. Proceedings of
the IEEE, 86(11):2278-2323, 1998. ISSN 00189219. doi: 10.1109/5.726791.

Scott Lundberg and Su-In Lee. A Unified Approach to Interpreting Model
Predictions. Advances in Neural Information Processing Systems,
2017-Decem:4766-4775, may 2017. URL
http://arxiv.org/abs/1705.07874.

Scott, M. Lundberg, Gabriel Erion, Hugh Chen, Alex DeGrave, Jordan M.
Prutkin, Bala Nair, Ronit Katz, Jonathan Himmelfarb, Nisha Bansal, and
Su-In Lee. From local explanations to global understanding with
explainable AT for trees. Nature Machine Intelligence, 2(1):56-67, jan 2020.
doi: 10.1038/s42256-019-0138-9. URL
https://arxiv.org/abs/1905.04610.

Ronny Luss, Pin-Yu Chen, Amit Dhurandhar, Prasanna Sattigeri, Yunfeng
Zhang, Karthikeyan Shanmugam, and Chun-Chen Tu. Generating
Contrastive Explanations with Monotonic Attribute Functions. may 2019.
URL http://arxiv.org/abs/1905.12698.

Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas
immanent in nervous activity. The Bulletin of Mathematical Biophysics, 5
(4):115-133, dec 1943. ISSN 00074985. doi: 10.1007/BF02478259. URL
https://link.springer.com/article/10.1007/BF02478259.

72

http://arxiv.org/abs/1711.00848
https://cyber.harvard.edu/publications/2018/03/BigDataPrivacy
http://archive.ics.uci.edu/ml/
http://arxiv.org/abs/1112.6209
http://arxiv.org/abs/1705.07874
https://arxiv.org/abs/1905.04610
http://arxiv.org/abs/1905.12698
https://link.springer.com/article/10.1007/BF02478259

[74] Charles E. Metz. Basic principles of ROC analysis. Seminars in Nuclear
Medicine, 8(4):283-298, 1978. ISSN 00012998. doi:
10.1016,/S0001-2998(78)80014-2. URL
https://pubmed.ncbi.nlm.nih.gov/112681/.

[75] Korobov Mikhail and Lopuhin Konstantin. Welcome to ELI5’s
documentation! — ELI5 0.9.0 documentation. URL
https://elib.readthedocs.io/en/latest/index.html. Last visited
2020-07-29.

[76] Tim Miller. Explanation in artificial intelligence: Insights from the social
sciences, feb 2019. ISSN 00043702. URL
http://arxiv.org/abs/1706.07269.

[77] Christoph Molnar. Interpretable Machine Learning. 2019. URL
https://christophm.github.io/interpretable-ml-book/.

[78] T. Moudiki. GitHub - thierrymoudiki/teller: Model-agnostic Machine
Learning explainability. URL
https://github.com/thierrymoudiki/teller. Last visited 2020-07-31.

[79] Vinod Nair and Geoffrey E Hinton. Rectified Linear Units Improve
Restricted Boltzmann Machines. Technical report, 2010.

[80] Andrew Ng. Extract Data Conference | SlideShare. URL
https://www.slideshare.net/ExtractConf. Last visited 2020-08-09.

[81] Tong Niu and Mohit Bansal. Adversarial Over-Sensitivity and
Over-Stability Strategies for Dialogue Models. In Proceedings of the 22nd
Conference on Computational Natural Language Learning, pages 486—496,
Brussels, Belgium, 2018. Association for Computational Linguistics. doi:
10.18653/v1/K18-1047. URL
https://www.aclweb.org/anthology/K18-1047.

[82] Ritesh Noothigattu, Snehalkumar 'Neil’ S. Gaikwad, Edmond Awad, Sohan
Dsouza, Iyad Rahwan, Pradeep Ravikumar, and Ariel D. Procaccia. A
Voting-Based System for Ethical Decision Making. sep 2017. URL
http://arxiv.org/abs/1709.06692.

[83] Harsha Nori, Samuel Jenkins, Paul Koch, and Rich Caruana. InterpretML:
A Unified Framework for Machine Learning Interpretability. sep 2019.
URL http://arxiv.org/abs/1909.09223.

[84] Keiron O’Shea and Ryan Nash. An Introduction to Convolutional Neural
Networks. nov 2015. URL http://arxiv.org/abs/1511.08458.

73

https://pubmed.ncbi.nlm.nih.gov/112681/
https://eli5.readthedocs.io/en/latest/index.html
http://arxiv.org/abs/1706.07269
https://christophm.github.io/interpretable-ml-book/
https://github.com/thierrymoudiki/teller
https://www.slideshare.net/ExtractConf
https://www.aclweb.org/anthology/K18-1047
http://arxiv.org/abs/1709.06692
http://arxiv.org/abs/1909.09223
http://arxiv.org/abs/1511.08458

[85]

[89]

[90]

Ravindra Parmar. Common Loss functions in machine learning | by
Ravindra Parmar | Towards Data Science. URL
https://towardsdatascience.com/
common-loss-functions-in-machine-learning-46af0ffc4d23. Last
visited 2020-08-08.

Kevin L. Priddy and Paul E. Keller. Artificial Neural Networks: An
Introduction. SPIE, sep 2009. doi: 10.1117/3.633187.

J. R. Quinlan. Induction of Decision Trees. Machine Learning, 1(1):81-106,
1986. ISSN 15730565. doi: 10.1023/A:1022643204877.

J. R. Quinlan. Simplifying decision trees. International Journal of
Man-Machine Studies, 27(3):221-234, sep 1987. ISSN 00207373. doi:
10.1016,/S0020-7373(87)80053-6.

Shiv Ram Dubey, Soumendu Chakraborty, Swalpa Kumar Roy, Student
Member, Snehasis Mukherjee, Satish Kumar Singh, Senior Member, and
Bidyut Baran Chaudhuri. diffGrad: An Optimization Method for
Convolutional Neural Networks. Technical report. URL
https://github.com/shivram1987/diffGrad.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. "Why should i
trust you?" Explaining the predictions of any classifier. In Proceedings of
the ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, volume 13-17-Augu, pages 1135-1144. Association for
Computing Machinery, aug 2016. ISBN 9781450342322. doi:
10.1145/2939672.2939778.

Lorenzo Rosasco, Ernesto De Vito, Andrea Caponnetto, Michele Piana,
and Alessandro Verri. Are Loss Functions All the Same? Neural
Computation, 16(5):1063-1076, may 2004. ISSN 08997667. doi:
10.1162/089976604773135104. URL https:
//www.mitpressjournals.org/doi/10.1162/089976604773135104.

Sebastian Ruder, Matthew E Peters, Swabha Swayamdipta, and Thomas
Wolf. Transfer Learning in Natural Language Processing. In Proceedings of
the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Tutorials, pages 15-18, Minneapolis, Minnesota,
2019. Association for Computational Linguistics. doi:
10.18653/v1/N19-5004. URL
https://www.aclweb.org/anthology/N19-5004.

Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dynamic Routing
Between Capsules. Advances in Neural Information Processing Systems,

74

https://towardsdatascience.com/common-loss-functions-in-machine-learning-46af0ffc4d23
https://towardsdatascience.com/common-loss-functions-in-machine-learning-46af0ffc4d23
https://github.com/shivram1987/diffGrad.
https://www.mitpressjournals.org/doi/10.1162/089976604773135104
https://www.mitpressjournals.org/doi/10.1162/089976604773135104
https://www.aclweb.org/anthology/N19-5004

[95]

[96]

[97]

[99]

[100]

[101]

[102]

2017-Decem:3857-3867, oct 2017. URL
http://arxiv.org/abs/1710.09829.

Mansour Saffar. An Introduction to XAI! Towards Trusting Your ML
Models! URL https://www.slideshare.net/MansourSaffarMehrjar/
an-introduction-to-xai-towards-trusting-your-ml-models. Last

visited 2020-08-09.

Wojciech Samek, Grégoire Montavon, Sebastian Lapuschkin, Christopher J
Anders, and Klaus-Robert Miiller. Toward Interpretable Machine Learning:
Transparent Deep Neural Networks and Beyond. Technical report, 2020.

A. L. Samuel. Some studies in machine learning using the game of checkers.
IBM Journal of Research and Development, 44(1-2):207-219, 2000. ISSN
00188646. doi: 10.1147/rd.441.0206.

Juergen Schmidhuber. Deep Learning in Neural Networks: An Overview.
Neural Networks, 61:85-117, apr 2014. doi: 10.1016/j.neunet.2014.09.003.
URL http://arxiv.org/abs/1404.7828http:
//dx.doi.org/10.1016/j.neunet.2014.09.003.

A. Carlisle Scott, William J. Clancey, Randall Davis, and Edward H.
Shortliffe. Explanation capabilities of production-based consultation
systems. American Journal of Computational Linguistics, 1977. URL
https://wuw.academia.edu/11212222/EXPLANATION_CAPABILITIES_Of _
PRODUCTION_BASED_CONSULTATION_SYSTEMS.

Avanti Shrikumar, Peyton Greenside, Anna Y Shcherbina, and Anshul
Kundaje. Not Just A Black Box: Learning Important Features Through
Propagating Activation Differences. Technical report, 2016. URL
https://arxiv.org/.

Stephen V. Stehman. Selecting and interpreting measures of thematic
classification accuracy. Remote Sensing of Environment, 62(1):77-89, oct
1997. ISSN 00344257. doi: 10.1016/S0034-4257(97)00083-7.

Susan Stuart. Alvin I. Goldman, simulating minds: The philosophy,
psychology and neuroscience of mindreading. Minds and Machines, 19(2):
279-282, may 2009. ISSN 09246495. doi: 10.1007/s11023-009-9142-x. URL
https://link.springer.com/article/10.1007/s11023-009-9142-x.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic Attribution
for Deep Networks. Technical report, jul 2017. URL
http://proceedings.mlr.press/v70/sundararajani7a.html.

75

http://arxiv.org/abs/1710.09829
https://www.slideshare.net/MansourSaffarMehrjar/an-introduction-to-xai-towards-trusting-your-ml-models
https://www.slideshare.net/MansourSaffarMehrjar/an-introduction-to-xai-towards-trusting-your-ml-models
http://arxiv.org/abs/1404.7828 http://dx.doi.org/10.1016/j.neunet.2014.09.003
http://arxiv.org/abs/1404.7828 http://dx.doi.org/10.1016/j.neunet.2014.09.003
https://www.academia.edu/11212222/EXPLANATION_CAPABILITIES_Of_PRODUCTION_BASED_CONSULTATION_SYSTEMS
https://www.academia.edu/11212222/EXPLANATION_CAPABILITIES_Of_PRODUCTION_BASED_CONSULTATION_SYSTEMS
https://arxiv.org/
https://link.springer.com/article/10.1007/s11023-009-9142-x
http://proceedings.mlr.press/v70/sundararajan17a.html

[103]

[104]

[105]

[106]

[107]

108

[109]

[110]

William R. Swartout. Explaining and Justifying Expert Consulting
Programs. pages 254-271. 1981. doi: 10.1007/978-1-4612-5108-8__15. URL
http://link.springer.com/10.1007/978-1-4612-5108-8_15.

Andreas M. Tillmann. On the computational intractability of exact and
approximate dictionary learning. IEEE Signal Processing Letters, 22(1):
45-49, 2015. ISSN 10709908. doi: 10.1109/LSP.2014.2345761.

A M Turing. COMPUTING MACHINERY AND INTELLIGENCE.
Technical report, 1950. URL
https://www.csee.umbc.edu/courses/471/papers/turing.pdf.

Fjodor Van Veen. The Neural Network Zoo - The Asimov Institute. URL
https://www.asimovinstitute.org/neural-network-zoo/. Last visited
2020-08-08.

Jason Wang and Luis Perez. The Effectiveness of Data Augmentation in
Image Classification using Deep Learning. Technical report.

Dennis Wei, Sanjeeb Dash, Tian Gao, and Oktay G ~ Uni Uk. Generalized
Linear Rule Models. Technical report, may 2019. URL
http://proceedings.mlr.press/v97/weil9a.html.

Matthew D. Zeiler and Rob Fergus. Visualizing and understanding
convolutional networks. In Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), volume 8689 LNCS, pages 818-833. Springer Verlag, nov
2014. ISBN 9783319105895. doi: 10.1007/978-3-319-10590-1_53. URL
https://arxiv.org/abs/1311.2901v3.

Czako Zoltan. Explaining Explainable Al. Explainable AI—“An
approximation of... | by Czako Zoltan | The Startup | Medium. URL
https:
//medium.com/swlh/explaining-explainable-ai-b3ca0f8b357b. Last
visited 2020-08-09.

76

http://link.springer.com/10.1007/978-1-4612-5108-8_15
https://www.csee.umbc.edu/courses/471/papers/turing.pdf
https://www.asimovinstitute.org/neural-network-zoo/
http://proceedings.mlr.press/v97/wei19a.html
https://arxiv.org/abs/1311.2901v3
https://medium.com/swlh/explaining-explainable-ai-b3ca0f8b357b
https://medium.com/swlh/explaining-explainable-ai-b3ca0f8b357b

A Acronyms

XAI
ML

Al
ANN
FNN
DL
DNN
CNN
TED
MNIST
SHAP
LIME
ATX360
DBN
LSTM
GRU
GAN
CN
RNN

Explainable artificial intelligence

Machine learning

Artificial intelligence

Artificial neural networks

Feedforward Neural Network

Deep learning

Deep neural network

Convolutional neural network

Teaching explanations for decisions

Modified National Institute of Standards and Technology
SHapley Additive exPlanations

Local Interpretable Model-—Agnostic Explanations
AT Explainability 360

Deep Belief Network

Long / Short Term Memory Network

Gated Recurrent Unit

Generative Adversarial Network

Capsule Network

Recurrent Neural Network

77

B Additional Tables

Library ATIX360 Skater | ELI5 LIME SHAP InterpretML XAT Teller
Python v v v v v v v v
R v v
Library | Treelnterpreter | Alibi | Facets | Keras Visualization Toolkit | iNNvestigate H20 DALEX
Python v v v v v v v
R v
Table B.1: Table that shows compatible languages.
AIX360 | Skater | ELI5 | InterpretML | XAI | Teller | Alibi | H20 | DALEX | tf-explain | iNNvestigate
LIME v v v v v
SHAP v v v
Table B.2: Table that shows integration of either LIME or SHAP in libraries.

78

C User Manual

This chapter describes how to open and run examples. Examples are available
as an attachment and on GitHub'.

AIX360LIME.ipynb File contains example with AIX360 library using
LIME (§6.5).

SHAP.ipynb File contains example using library SHAP (§6.4).

Prerequisites

Since we will be running the files in an online service, we will only need

internet access.

Usage

To open and run examples, we will be using Google Colab?.

Load example

After the page loads, the page will show a window with different tabs Fig-
ure C.1, we will click the "Upload" tab (1) and then the "Choose File" button
(2). After clicking the button, windows explorer shows up and we can locate
and open the example.

Run example

To run examples, click on the "Runtime" tab, and click "Run all" to run the
whole example.

lhttps://github.com/fkolenak/XIA_thesis
’https://colab.research.google.com

79

https://github.com/fkolenak/XIA_thesis
https://colab.research.google.com

Choose File JRleRillsgelo=h]

Figure C.1: Open page in Google Colab.

A SHAP.ipynb

File Edit View st saved at 2:36 AM

Code + Text Run all Ctrl+F9

Run before Ctri+F8

Figure C.2: Control tabs, with selected "Runtime" tab.

80

D Experiments

D.1 AIX360 library Python compatibility

The most current stable version of AIX360 at the moment (August 2020)
is 0.2.0. This version of AIX360 is supported only by the Tensorflow (§2.5)
library version 1.14, for compatibility reasons. But there are no specific re-
quirements for Keras (§2.5) library and the latest version of Keras library
(version 2.4.3) requires Tensorflow version 2.2.0 and greater. To solve this is-
sue we will need to either override the installation with code Code Listing D.1
or downgrade installed Keras (to version 2.2.4).

The code Code Listing D.1 will install correct version of Tensorflow for
Keras and also provide backwards compatibility for Tensorflow. LIME is
included in AIX360 package.

Ipip install aix360
Ipip install tensorflow=—2.2.0

Code Listing D.1: Instalation order of libraries

D.2 AIX360 and LIME experiment versions

Final versions of the libraries after importing are:
 tensorflow 2.2.0
o keras 2.4.3
e aix360 0.2.0

e lime 0.2.0.1

D.3 SHAP experiment versions

Final versions of the libraries after importing are:
o tensorflow 2.3.0
o keras 2.4.0

e shap 0.35.0

81

	Title Page
	Specification
	Declaration/ Acknowledgement
	Abstract / Abstrakt
	Contents
	Introduction
	Artificial intelligence
	Machine learning
	Types of learning

	Artificial neural network
	Types of Artificial neural networks (ANN)
	Loss functions
	Activation function
	Optimizers
	Metrics
	Calculated Metrics

	Deep learning
	Convolutional neural network (CNN)
	Layers

	Neural Network Frameworks
	Trustworthiness of an AI
	Explainability need
	AI ethics

	Explainable artificial intelligence
	Explainability / Interpretability Definition
	Explainability Approaches
	Algorithm transparency
	Global model interpretability
	Global model interpretability on a modular level
	Local Interpretability for a Single Prediction
	Local Interpretability for a Group Prediction

	Techniques
	Interpretable models
	Linear Regression
	Logistic Regression
	Decision Tree

	Local model interpretability
	Local Interpretable Model-Agnostic Explanations
	Shapley values
	SHapley Additive exPlanations (SHAP)
	Teaching explanations for decisions (TED)

	Global model interpretability
	Boolean Decision Rules via Column Generation
	ProfWeight

	Libraries
	Model interpretability
	AI Explainability 360 (AIX360)
	Local Interpretable Model—Agnostic Explanations (LIME)
	SHapley Additive exPlanations (SHAP)
	Skater
	XAI
	InterpretML
	Others

	Debugging / Visualizing libraries
	ELI5
	Facets
	Keras Visualization Toolkit
	Tf-explain

	Libraries Comparison
	Library selection

	Use of XAI libraries
	Structure of the chapter
	MNIST handwritten digits dataset
	General code
	Importing libraries
	Loading data
	Examine data
	Data wrangling
	The Machine learning (ML) model
	Train the Machine learning (ML) model
	Model evaluation
	Test the Machine learning (ML) model

	Using SHAP
	ML model explanation with SHAP
	SHAP on correct prediction
	SHAP on incorrect predictions

	Using LIME with AIX360
	ML model explanation with LIME
	LIME on correct predictions
	LIME on incorrect predictions
	LIME on incorrect predictions with heatmap

	Explanation comparison
	Our work results comparison
	Lundberg2017 results comparison
	Kanerva2019 results comparison
	Ancona results comparison
	webmnist approach

	Comparison conclusion

	Conclusion
	Future work

	Bibliography
	Acronyms
	Additional Tables
	User Manual
	Experiments
	AIX360 library Python compatibility
	AIX360 and LIME experiment versions
	SHAP experiment versions

