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Abstract

During recent years, neural network-based methods are showing crucial im-
provements in catching semantic and syntactical properties of words or sen-
tences. Much has been investigated about word embeddings of English words
and phrases, but little attention has been dedicated to other languages.

At the level of words, we explore the behavior of state-of-the-art word
embedding methods on Czech and Croatian, which are representatives of
Slavic languages characterized by rich word morphology. We build the first
corpora for testing word embedding accuracy on similarity and analogy tasks
of Czech and Croatian language.

For understanding semantics on the sentence level, we show how to deal
with these languages on some of the currently most discused tasks such
as aspect-based sentiment analysis (ABSA) and semantic textual similar-
ity (STS). Most of the community work here is also dedicated to English
language. Free word order of Czech and Croatian complicates learning of
current state-of-the-art methods. We build first corpora and state-of-the-art
models for understanding sentence semantics adapted on highly inflectional
language for dealing with STS and ABSA task.

Finally, we develop a new approach for learning word embeddings en-
riched with global information extracted from Wikipedia. We evaluate our
new approach based on the Continuous Bag-of-Words and Skip-gram models
enriched with global context information on highly inflectional language and
compare it with English. The results of the model shows, that our approach
can help to create word embeddings that perform better with smaller corpora
and improve performance on highly inflected languages.



Our research helps the community to continue with improving the state-
of-the-art methods with focus on highly inflectioned languages. The thesis
also focuses on further use of neural networks (NN) in Natural Language
Processing (NLP) tasks. Basic machine learning algorithms for NLP are de-
scribed as well as the commonly used algorithms for extracting word embed-
dings. A brief overview of distributional semantics methods is presented. We
emphasize the analysis of models’ behaviour in the highly inflected language
environment.



Abstrakt

V posledńıch letech vykazuj́ı metody založené na neuronových śıt́ıch zásadńı
zlepšeńı v zachyceńı sémantiky a syntaxe slov nebo vět. Mnoho bylo vyzkou-
máno o vnořeńı anglických slov a fráźı, ale jen malá pozornost byla věnována
jiným jazyk̊um.

Na úrovni slov zkoumáme chováńı nejmoderněǰśıch metod pro tvorbu vno-
řených slov na češtině a chorvatštině, což jsou zástupci slovanských jazyk̊u
charakterizovaných bohatou morfologíı slov. Tvoř́ıme prvńı korpusy pro tes-
továńı kvality č́ıselné reprezentace (vnořeńı) slov na podobnost a tzv. úlohu
slovńıch analogíı českého a chorvatského jazyka.

Pro pochopeńı významu vět ukážeme, jak s těmito jazyky pracovat při ře-
šeńı aktuálně jedněch z nejdiskutovaněǰśıch úloh jako je sémantická textová
analýza a analýza sentimentu založená na aspektech. Většina praćı komu-
nity v poč́ıtačovém zpracováńı přirozeného jazyka věnuj́ıćı se těmto úlohám
se také zaměřuje výlučně na anglický jazyk. Nejen volný slovosled českého
a chorvatského jazyka komplikuje učeńı současných nejmoderněǰśıch metod.
Představ́ıme prvńı korpusy a modely, které dokáž́ı pochopit sémantiku vět
k řešeńı těchto úloh pro flektivńı jazyky.

Na závěr představ́ıme nový př́ıstup k učeńı č́ıselné reprezentace slov obo-
hacený o globálńı informace źıskané z Wikipedie. Pro náš nový př́ıstup vy-
cháźıme z model̊u Continuous Bag-of-Words a Skip-gram vylepšených o glo-
bálńı kontextové informace. Provedeme analýzu chováńı výsledného modelu
na flektivńım jazyku a porovnáváme je s výsledky v angličtině. Výsledky
tohoto modelu ukazuj́ı, že náš př́ıstup může pomoci vytvořit č́ıselné prepre-
zentace slov, které lépe funguj́ı s menš́ımi korpusy a zlepšuj́ı výkonnost ve
vysoce flektivńıch jazyćıch.

Náš výzkum pomáhá komunitě pokračovat ve zdokonalováńı nejmoderněj-
š́ıch metod s d̊urazem na flektivńı jazyky. Práce se také zaměřuje na využit́ı
neuronových śıt́ı mezi úlohami v poč́ıtačovém zpracováńı přirozeného jazyka.
Jsou popsány základńı algoritmy strojového učeńı a jejich použit́ı při zpraco-
váńı př́ırozeného jazyka a nejčastěji využ́ıvané algoritmy pro extrakci č́ıselné
reprezentace slov. Je uveden stručný přehled metod distribučńı sémantiky.
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1 Introduction

Understanding semantics of the text is crucial in many of Natural Language
Processing (NLP) tasks. Each improvement in semantic understanding of
text may also improve the particular application, where the model is used.
Its impact can be seen in sub-fields of NLP areas, such as sentiment analysis,
machine translation, natural language understanding, named entity recogni-
tion (NER), word sense disambiguation and many others.

Research on distributional semantics has been evolving more than 20 years.
Most of the techniques for modeling semantics have been outperformed by
neural network based models and deep learning during recent years. We be-
lieve that distributional semantics models (DSMs) are essential to understand
the meaning of text.

Semantics is the meaning of a text and if we understand the meaning, we
will likely benefit in many NLP tasks. The extraction of the meaning from
a text became the backbone research area in NLP. It led to impressive results
on English. However, during our research we experienced significantly lower
performance with most of state-of-the-art models dealing with tasks such as
(aspect-based) sentiment analysis or semantic textual similarity (STS) when
applied to Czech.

The fundamental question that we raised was: ‘What if the problem is
already in the basic extraction of word meaning?’ We could not immediately
answer our question, because there were no word analogy corpora to test the
quality of word embeddings on Czech for example. Czech has not yet been
thoroughly targeted by the research community. Czech as a representative of
an inflective language is an ideal environment for the study of various aspects
distributional sematics for inflectional languages. It is challenging because of
its very flexible word order and many different word forms.

The lack of data is always issue in NLP, especially with small languages.
There are many researchers trying to surpass the latest best results or achieve
the state-of-the-art results on a variety of NLP tasks in English. The research
is then usually adapted to other languages, but models usually do not perform
as well as on English.

1



Introduction Overall Aims of the PhD Thesis

We conceive this thesis to deal with several aspects of distributional se-
mantics. The breadth of this thesis can lead to more general view and better
understanding of meaning the text. We can reveal and overcome unexpected
obstacles, create necessary evaluation datasets and even come up with new
creative solutions to better extract the meaning of textual data.

Therefore, the aim of this doctoral thesis is to study various aspects of
distributional semantics with the emphasis on the Czech language.

1.1 Overall Aims of the PhD Thesis

The goal of this doctoral thesis is to explore models for distributional se-
mantics using neural networks for improving performance of semantic rep-
resentation with special emphasis on highly inflected languages. The work
will be focused on the following research tasks:

• Study the influence of rich morphology on the quality of meaning rep-
resentation.

• Propose novel approaches based on neural networks for improving the
meaning representation of inflectional languages.

• Use distributional semantic models for improving NLP tasks.

1.2 Outline

The thesis is organized as follows:

The state-of-the-art architectures for Distributional Semantics are dis-
cussed in Chapter 2. Chapter 3 discuss problem of standard Machine Learn-
ing approaches dealing with NLP problems and describes neural networks
architectures that currently play the key role in modeling semantics.

Semantic models based on distributional semantics can be used as ad-
ditional sources of information for aspect-based sentiment analysis (ABSA),
machine translation, named entity recognition, semantic textual similarity
and many other tasks of NLP.

2



Introduction Outline

The related work and testing DSMs with highly inflected languages is
presented in Chapter 4. Further, the unique and state-of-the-art model for
STS task is presented in Chapter 5, the model is adapted and tested on Czech
language in Section 5.3. The ABSA model and corpora with focus on Czech
language are presented in Chapter 6.

In Chapter 7 we show our new approach based on the state-of-the-art
distributional semantic models enriched with global context information and
evaluate with highly inflected Czech language.

We make a summary and conclude in Chapter 8 and show potential fur-
ther work in Section 8.4. Chapter 8.3 gives an overview of fulfilment of
individual research tasks defined in this chapter.

3



2 Distributional Semantics

Distributional semantics is a research area that develops and studies theories
and methods for quantifying and categorizing semantic similarities between
linguistic items based on their distributional properties in large samples of
language data. The basic idea of distributional semantics can be summed
up in the so-called Distributional Hypothesis: “linguistic items with similar
distributions have similar meanings”.

The idea that “you shall know a word by the company it keeps” was
popularized by Firth Firth [1957], followed by other researchers; “words with
similar meanings will occur with similar neighbors if enough text material is
available” [Schutze and O. Pedersen, 1996]; “a representation that captures
much of how words are used in natural context will capture much of what
we mean by meaning” [Landauer and Dumais, 1997]; and “words that occur
in the same contexts tend to have similar meanings” [Pantel, 2005].

The claim has theoretical bases in psychology, linguistics, and lexico-
graphy [Charles, 2000]. During last years it has become a popular. The
models based upon Distributional Hypothesis are often referred to as the
DSMs, see Section 2.2 for further information.

2.1 Model Types

2.1.1 Distributional Model Structure

Distributional models of words reflects the basic distributional hypothesis.
The idea behind the Distributional Hypothesis is clear: there is a correlation
between distributional similarity and meaning similarity. In other words: the
word meaning is related to the context where it usually occurs and therefore
it is possible to compare the meanings of two words by statistical comparisons
of their contexts. This implication was confirmed by empirical tests carried
out on human groups in [Rubenstein and Goodenough, 1965, Charles, 2000].

4



Distributional Semantics Model Types

Distributional profile of words is based on which other words surround
them. The DSMs typically represent the word meaning as a vector, where the
vector reflects the contextual information of a word across the training corpus.
Each word w ∈ W (where W denotes the word vocabulary) is associated
with a vector of real numbers w ∈ Rk. Represented geometrically, the word
meaning is a point in a high-dimensional space. The words that are closely
related in meaning tend to be closer in the space.

2.1.2 Bag-of-words Model Structure

In this model, a text (such as a sentence or a document) is represented
as the bag of its words, disregarding grammar and even word order. The
term bag means a set where the order has no role, however, the duplicates
are allowed (the bags a, a, a, b, b, c and c, a, b, a, b, a are equivalent). Bag-of-
words model is mainly used as a tool of feature extraction for NLP tasks.
After transforming the text into a “bag of words”, we can calculate various
measures to characterize the text. The most common type of characteristics,
or features calculated from the Bag-of-words model is term frequency, namely,
the number of times a term appears in the text.

An early reference can be found in [Harris, 1954], but the first practical
application was arguably in information retrieval. In work of [Salton et al.,
1975], the documents were represented as bags-of-words and the frequencies
of words in a document indicated the relevance of the document to a query.
The implication is that two documents tend to be similar if they have similar
distribution of similar words, no matter what is their order. This is supported
by the intuition that the topic of a document will probabilistically influence
the author’s choice of words when writing the document.

Similarly, the words can be found related in meaning if they occur in
similar documents (where document represents the word context). Thus,
both hypotheses (Bag-of-words Hypothesis and Distributional Hypothesis)
are related.

This intuition later expanded into many often used models for meaning
extraction, such as latent semantic analysis (LSA) [Deerwester et al., 1990],
probabilistic latent semantic analysis (PLSA) [Hofmann, 1999], latent Dirich-
let allocation (LDA) [Blei et al., 2003], and others.

5



Distributional Semantics Distributional Semantic Models

2.2 Distributional Semantic Models

DSMs learn contextual patterns from huge amount of textual data. They
typically represent the meaning as a vector which reflects the contextual
(distributional) information across the texts [Turney and Pantel, 2010]. The
words w ∈ W are associated with a vector of real numbers w ∈ Rk. Repres-
ented geometrically, the meaning is a point in a k-dimensional space. The
words that are closely related in meaning tend to be closer in the space. This
architecture is sometimes referred to as the Semantic Space. The vector rep-
resentation allows us to measure similarity between the meanings, most often
by the cosine of the angle between the corresponding vectors. Approaches
that extract such vectors are often called Word Embedding methods.

In last years, the extraction of meaning from a text became the funda-
mental research area in NLP. Word-based semantic spaces provide impressive
performance in a variety of NLP tasks, such as language modeling [Brychćın
and Konoṕık, 2015], NER [Konkol et al., 2015a], sentiment analysis [Hercig
et al., 2016a], and many others (see Section 3.8).

In this thesis we focus on Czech, which belongs to the West Slavic family
and Croatian, from the South Slavic family language. Czech has seven cases
and three genders. Croatian language has also seven cases and three genders.
Many properties of both languages are very similar because of historical sim-
ilarities and mutual interaction. Both languages have a relatively free word
order (from the purely syntactic point of view): words in a sentence can
usually be ordered in several ways which carry a slightly different meaning.
These properties of Czech and Croatian language complicate the distribu-
tional semantics modeling. High number of word forms and more sequences
of words that are possible in the language lead to a higher number of n-grams.
Free word order, according our opinion, complicates the fundamental use of
Distributional Hypothesis.

2.2.1 Context Types

Different types of context induce different kinds of semantic space models.
[Riordan and Jones, 2011] and [McNamara, 2011] distinguish context-word
and context-region approaches to the meaning extraction. In this thesis we
use the notion local context and global context, respectively, because we think
this notion describes the principle of the meaning extraction better.

6
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Global context

The models that use the global context are usually based upon bag-of-word
hypothesis, assuming that the words are semantically similar if they occur in
similar documents, and that the word order has no meaning. The document
can be a sentence, a paragraph, or an entire text. These models are able to
register long-range dependencies among words. For example, if the document
is about hockey, it is likely to contain words like hockey-stick or skates, and
these words are found to be related in meaning.

Local context

The local context models are those that collect short contexts around the
word using a moving window to model its semantics. These methods do not
require text that is naturally divided into documents or pieces of text. Thanks
to the short context, these models can take the word order into account,
thus they usually model semantic as well as syntactic relations among words.
In contrast to the global semantics models, these models are able to find
mutually substitutable words in the given context. Given the sentence The
dog is an animal, the word dog can be for example replaced by cat.

2.2.2 Model Architectures

There are several architectures that have been successfully used to extract
meaning from raw text. In our opinion, the following four architectures are
the most important for our work (see other architectures in [Svoboda, 2016]):

Co-occurrence Matrix

The frequencies of co-occurring words (often taken as an argument of some
weighting function, e.g. term frequency – inverse document frequency (TF-
IDF) [Ramos et al., 2003], mutual information [E. Shannon, 1948], etc.) are
recorded into a matrix. The dimension of such matrix is sometimes big, and
thus the singular value decomposition (SVD) or different algorithm can be
used for dimensionality reduction.
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Formally, the co-occurrence matrix of a textual corpus is a square matrix
of unique words with dimensions N × N . A cell mij contains the number
of times word wi co-occurs with word wj within a specific context. Context
can be either a natural unit such as a sentence or a certain window of m
words (where m is an application-dependent parameter). The upper and
lower triangles of the matrix are identical since co-occurrence is a symmetric
relation.

Representative of this architecture is GloVe (Global Vectors) [Pennington
et al., 2014] model that focuses more on the global statistics of the trained
data. This approach analyses log-bilinear regression models that effectively
capture global statistics and also captures word analogies. Authors propose
a weighted least squares regression model that trains on global word-word
co-occurrence counts. The main concept of this model is the observation
that ratios of word-word co-occurrence probabilities have the potential for
encoding meaning of words.

Topic Model

The group of methods based upon the bag-of-word hypothesis that try to
discover latent (hidden) topics in the text are called topic models. They
usually represent the meaning of the text as a vector of topics but it is also
possible to use them for representing the meaning of a word. The number of
topics in the text is usually set in advance.

It is assumed that documents may vary in domain, topic and styles, which
means that they also differ in the probability distribution of n-grams. This
assumption is used for adapting language models to the long context (do-
main, topic, style of particular documents). LSA (or similar methods) [Choi
et al., 2001] aim to partition a document into blocks, such that each segment
is coherent and consecutive segments are about different topics. This long
context information is added to standard n-gram models to improve their
performance. A very effective group of models (sometimes called topic-based
language models) work with this idea for the benefit of language modeling.

In [Bellegarda, 2000] a significant reduction in perplexity1 (down to 33%)

1A measurement of how well a probability distribution or probability model predicts
a sample
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and WER2 (down to 16%) in the WSJ3 corpus was shown. Many other
authors have obtained good results with PLSA [Gildea and Hofmann, 1999,
Wang et al., 2003] and LDA [Tam and Schultz, 2005, 2006] approaches.

Neural Network

In the last years, these models have become very popular. It is the human
brain that defines semantics, so it is natural to use a neural network for the
meaning extraction. The principles of the meaning extraction differ with the
architecture of a neural network. Much work on improving the learning of
word representations with Neural Networks has been done, from feed-forward
networks [Bengio et al., 2003] to hierarchical models [Morin and Bengio, 2005,
Mnih and Hinton, 2009] and recently recurrent neural networks [Mikolov
et al., 2010].

In [Mikolov et al., 2013a,c] Mikolov examined existing word embeddings
and showed that these representations already captured meaningful syntactic
and semantic regularities such as the singular and plural relation that vectors
orange− oranges = plane− planes. Read more in section 3.8

2.3 Language Models

Language models are crucial in NLP, and the backbone principle of language
modeling is often used in DSMs. The goal of a language model is very simple,
to estimate probability of any word sequence possible in the language. Even
though the task looks very easy, a satisfactory solution for natural language
is very complicated.

2.4 Statistical Language Models

A statistical language model is a probability distribution over sequences of
words. Given such a sequence, say of length m, it assigns a probability
P (w1, . . . , wm) to the whole sequence. Let W denote the word vocabulary.

2The Word Error Rate (WER) measure is often used in Speech recognition
3Wall Street Journal (WSJ) [Paul and Baker, 1992]
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The WN is the set of all combination of word sequences of length N which it
is possible to create from the vocabulary W . Let

L ⊆ WN (2.1)

be a set of all possible word sequences in a language.

The sequence of words (i.e. sentence) can be expressed as

S = w1, · · · , wm, S ∈ L. (2.2)

The language model tries to capture the regularities of a natural lan-
guage by giving constraints on sequences S. These constraints can be either
deterministic (some sequences are possible, some not) or probabilistic (some
sequences are more probable than others).

The reason we are talking about Language modeling is simple: the better
the models represent language, the better results we usually achieve solv-
ing our NLP problem (such as semantic understanding). Currently, there
is a massive research invested in language modeling, but this time invested
into creating the new representation is being outperformed by simple n-gram
model and recently by simple recurrent neural network models [Mikolov et al.,
2010]. In Chapter 3 we show that standard n-grams and many other language
models with strong mathematical background can be outperformed by Re-
cursive Neural Network with memory.

2.5 N-gram Language Models

There is no way to process all possible histories of words with all possible
lengths k. The number of training parameters needed to be estimated rises
exponentially with extending the history.

Truncating the word history is done to decrease the number of training
parameters. It means, that the probability of word wi is estimated only by
n− 1 preceding words, not by the complete history.
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P (S) = P (wm
1 ) ≈

m∏
i=1

P̃
(
wi|wi−1

i−n+1

)
. (2.3)

These models are referred to as the n-gram language models. N -gram lan-
guage models have been the most often used architecture for language mod-
eling for a long time. N-grams, where n = 1, are called unigrams. The most
often used are, however, bigrams (n = 2) and trigrams (n = 3).

2.6 Clustering (word classes)

The goal of clustering is simple; to find an optimal grouping in a set of
unlabeled data. That is to say, similar words should share parameters which
leads to generalization [Brychćın and Konoṕık, 2011].

Example:

Class1 = {black, white, blue, red}
Class2 = {Czech,German, French, Italian}

(2.4)

There are many ways of how to compute the classes – usually, it is assumed
that similar words appear in similar context. However, there are two prob-
lems. Firstly, the optimality criterion must be defined. This criterion depends
on the task that is being solved. The second problem is the complexity of the
problem. The number of possible partitioning rises exponentially4 with the
number of elements in the set. It is therefore impossible to examine every
possible partitioning of even a decently large set. The task is then to find
a computationally feasible algorithm that would be as close to the optimal
partitioning as possible. Combination of word- and class-based language
models gives promising results [Maltese et al., 2001].

In [Brown et al., 1992] the MMI5 clustering algorithm was introduced.

4To be exact, the number of possible partitioning of a n-element set is given by the
Bell number, which is defined recursively: Bn+1 =

∑n
k=0

(
n
k

)
Bk.

5Maximum Mutual Information
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The algorithm is based upon the principle of merging a pair of words into
one class according to the minimal mutual information loss principle.

The algorithm gives very satisfactory results and it is completely unsu-
pervised. This method of word clustering is possible only on very small
corpora and is not suitable for large vocabulary applications. The authors
in [Yokoyama et al., 2003] used the MMI algorithm to build class-based lan-
guage models.
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3 Neural Networks

Neural networks is the name of a biologically-inspired programming paradigm
which enables a computer to learn from observational data.

The simplest definition of a neural network, respective ’artificial’ neural
network (ANN), is provided by the inventor of one of the first neurocom-
puters, Robert Hecht-Nielsen. In [Hecht-Nielsen, 1990] he defines a neural
network as:

“...a computing system made up of a number of simple, highly intercon-
nected processing elements, which process information by their dynamic state
response to external inputs.”

3.1 Introduction

The architecture of neural networks is composed from neurons, layers and
connections. Artificial neural networks are generally presented as systems
of interconnected “neurons” which exchange messages between each other.
The connections have numeric weights that can be tuned based on experi-
ence, making neural nets adaptive to inputs and capable of learning. Either
the sigmoid or tanh function is commonly used as an activation function
that converts a neuron’s weighted input to its output activation, similarly
to logistic regression (see Section 3.2). More information about neurons (re-
spective perceptrons) and neural network architectures can be found in our
technical report [Svoboda, 2016].

The main motivation is to simply come up with more precise way how to
represent and model words, documents and language than the basic machine
learning approaches. Like other machine learning methods – systems that
learn from data – neural networks have been used to solve a wide variety
of tasks, in this thesis we will however focus on NLP problems. There is
nothing that neural networks can do in NLP that the basic machine learning
techniques completely fail at, but in general neural networks and deep learn-
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ing currently provide the best solutions to many problems in NLP. We can
benefit from those gains and see it as an evolution in machine learning.

3.2 Machine Learning

This section describes a brief indroduction into Machine learning and basic
classifiers. For more detailed description including derivations for the math
can be found in our report [Svoboda, 2016], for most of our implementations
we used Bainy library presented in [Konkol, 2014].

Machine learning explores the study and construction of algorithms that
can learn from input data and make predictions on data. Such algorithms
operate by building a model from the example data during a training phase.
New inputs is given to the resulting model in order to make data-driven pre-
dictions or decisions expressed as outputs. This is achieved by observing the
properties from labeled training data, this learning technique is called super-
vised learning. Unsupervised learning is the machine learning task of infer-
ring a function to describe hidden structure from unlabeled data. Creating
a manually annotated dataset is generally a hard and time-consuming task.
However most of current NLP problems are being solved based on annotated
data sets which have been annotated by humans. Often such datasets small
and speciaized and (together with features developed for NLP task) tend to
be over-tuned for the specific data set and fail to generalise to new examples.

With supervised learning, the acquired knowledge is later applied to de-
termine the best category for the unseen testing dataset. For unsupervised
learning there is no error or reward signal to evaluate potential solution,
the goal is to model input data. Commonly used unsupervised learning al-
gorithms are artificial neural network models, about which we will talk more
in Section 3.3.

Machine learning techniques applied to NLP often use n-gram language
models, word clustering and basic bag-of-words representations as basic fea-
ture representation and further infer more complicated features.

One basic machine learning technique to perform classification is logistic
regression that is described in next section (also commonly referred as Max-
imum Entropy classifier). Later, we describe Naive Bayes Classifier and SVM
Classifier.
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3.2.1 Logistic Regression Classifier

The Logistic Regression Classifier is based on the maximum entropy prin-
ciple. The principle says that we are looking for a model which will satisfy
all our constraints and at the same time resembles uniform distribution as
much as possible. Logistic regression is a probabilistic model for binomial
cases, that is, the input is a vector of features, output is usually one – binary
classification. A logistic classifier can be trained by stochastic gradient des-
cent. The Maximum Entropy (MaxEnt) generalizes the same principle for
multinomial cases.

We want a conditional probability:

p(y|x), (3.1)

where y is the target class and x is vector of features.

Logistic regression follows the binomial distribution. Thus, we can write
following probability mass function:

p(y,x) =

{
hΘ(x), if y = 1,
1− hΘ(x), if y= 0.,

(3.2)

where Θ is the vector of parameters, and hΘ(x) is the hypothesis:

hΘ(x) =
1

1 + exp(−ΘTx)
(3.3)

The probability mass function can be rewritten as follows:

p(y|x) = (hΘ(x))y(1− hΘ(x))1−y (3.4)

We use maximum log-likelihood for N observations to estimate parameters:

l(Θ) = log

[
N∏

n=1

(hΘ(xn))yn(1− hΘ(xn))1−yn

]

=
N∑

n=1

[yn log hΘ(xn) + (1− yn) log (1− hΘ(xn))]

(3.5)
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3.2.2 Naive Bayes Classifier

Naive Bayes (NB) classifier is a simple classifier commonly used as a baseline
for many tasks. The model computes the posterior probability of a class based
on the distribution of words in the given document as shown in equation 3.6,
where s is the output label and x is the given document.

P (s|x) =
P (x|s)P (s)

P (x)
(3.6)

ŝ = arg max
s∈S

P (s)
n∏

x=1

P (xi|s) (3.7)

The NB classifier is described by equation 3.7, where ŝ is the assigned output
label. The NB classifier makes the decision based on the maximum a pos-
teriori rule. In other words it picks the label that is the most probable.

3.2.3 SVM Classifier

The support vector machine was one of the most used classifiers until very
recently. It is very similar to logistic regression. It is a vector space based ma-
chine learning method where the goal is to find a decision boundary between
two classes that represents the maximum margin of separation in the training
data [Manning et al., 2008].

SVM can construct a non-linear decision surface in the original feature
space by mapping the data instances non-linearly to an inner product space
where the classes can by separated linearly with a hyperplane.

Support Vector Machines

Following the original description [Cortes and Vapnik, 1995] we describe the
basic principle. We will assume only binary classifier for classes y = −1, 1
and linearly separable training set {(xi, yi)}, so that the conditions 3.8 are
met.
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Figure 3.1: Optimal (and suboptimal) hyperplane.

w · xi + b ≤ −1 if yi = −1
w · xi + b ≥ 1 if yi = 1

(3.8)

Equation 3.9 combines the conditions 3.8 into one set of inequalities.

yi · (w0 · x + b0) ≥ 1 ∀i (3.9)

With an SVM we find the optimal hyperplane (equation 3.10) that separ-
ates both classes with the maximal margin. The formula 3.11 measures the
distance between the classes in the direction given by w.

w0 · x + b0 = 0 (3.10)

d(w, b) = min
x;y=1

x ·w
|w|

− max
x;y=−1

x ·w
|w|

(3.11)

The optimal hyperplane, expressed in equation 3.12, maximizes the distance
d(w, b). Therefore the parameters w0 and b0 can be found by maximizing
|w0|. For better understanding see the optimal and suboptimal hyperplanes
on figure 3.1.
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d(w0, b0) =
2

|w0|
(3.12)

The classification is then just a simple decision on which side of the hy-
perplane the object is. Mathematically written as (3.13).

label(x) = sign(w0 · x + b0) (3.13)

3.3 Training of Neural Networks

The goal of any supervised learning algorithm is to find a function that best
maps a set of inputs to its correct output. There are many ways how to train
neural networks [Scalero and Tepedelenlioglu, 1992, Hagan and Menhaj, 1994,
Montana and Davis, 1989]. However, the most widely used and successful in
practice is stochastic gradient descent (SGD) [Rumelhart et al., 1988].

Training of neural networks involves two stages, the first called the for-
ward pass (also called forward propagation)

3.3.1 Forward Pass

• Input vector are presented at first in input layer.

• Forward propagation of a training takes input feature vector through
the neural network in order to generate the propagation’s output ac-
tivations. The target vector presents the desired output vector.

• While training we change weights that in another cycle, where the same
input vector is presented, the output vector will be closer to the target
vector.

The second stage is called backpropagation (or also“backward propagation
of errors”). Backpropagation [Hecht-Nielsen, 1989] takes output activations
through the neural network using the training pattern target in order to
generate the deltas (the difference between the targeted and actual output
values) of all output and hidden neurons (see at picture 3.2).
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3.3.2 Backpropagation

The backpropagation algorithm was originally introduced in the 1970s [Kel-
ley, 1960], but its importance was not fully appreciated for use in artifi-
cial neural networks until 1986 [Rumelhart et al., 1988]. That paper de-
scribes neural networks where backpropagation works far faster than earlier
approaches to learning and makes it possible to use artificial neural networks
to solve problems which were not solvable before.

Read our technical report [Svoboda, 2016] to dive into more details about
Backpropagation.

Figure 3.2: Backpropagation

3.3.3 Regularization

While a network is being trained, it often overfits the training data, so it
has good performance during training, but fails to generalize on Test-data.
In Section 3.3.2 we briefly talked about Held-out data, but we did not say,
why to use them. Simple answer is that we are using them to setup the
hyper-parameters – such as α, regularization parameters, cache for RNN and
others. To understand why, consider that when setting hyper-parameters we
are going to try many different choices for the hyper-parameters. If we set the
hyper-parameters based on evaluations of the Test-data it is possible we will
end up overfitting our hyper-parameters to the Test-data. That is, we may
end up finding hyper-parameters which fit particular Test-data, but where
the performance of the network will not generalize to other data sets. We
guard against that by figuring out the hyper-parameters using the Held-out
data data.
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The network itself“memorizes”the training data, after training is finished,
it will contain high weights that are used to model only some small subset of
data.

We can try to force the weights to stay small during training to reduce
this problem.

3.4 Feed-forward Neural Networks

A feedforward neural network is biologically inspired classification algorithm.
It consist of a (possibly large) number of simple neuron-like processing units,
organized in layers. It is an artificial neural network where connections
between the units do not form a cycle and the network can be seen on figure
3.3. Every unit in a layer is connected with all the units in the previous layer.
These connections are not all equal: each connection may have a different
strength or weight. The weights on these connections encode the knowledge
of a network. Often the units in a neural network are also called nodes.

INPUT LAYER HIDDEN LAYER OUTPUT LAYER

Figure 3.3: Feed-forward Neural Network

Data enters at the inputs and passes through the network, layer-by-layer,
until it arrives at the outputs. During normal operation, that is when it
acts as a classifier, there is no feedback between layers. This is why they are
called feedforward neural networks. This is different from recurrent neural
networks introduced in following Section 3.6.

Any layer that is not an output layer is a hidden layer. The network
presented in figure 3.3 has one hidden layer and one output layer. When we
have more than one hidden-layer, we talk about Deep-feed-forward Neural
Network (see more about Deep-learning in Section 3.7).
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3.5 Convolutional Neural Networks

When we hear about Convolutional Neural Network (CNN), we typically
think of Computer Vision. CNNs were responsible for major breakthroughs in
Image Classification and are the core of most Computer Vision systems [Kr-
izhevsky et al., 2012, Lawrence et al., 1997] today, from Facebook’s auto-
mated photo tagging [Farfade et al., 2015] to self-driving cars [Bengio, 2009].

More recently NLP community has also started to apply CNNs and gotten
some interesting results. A good start is [Zhang and Wallace, 2015] where
authors evaluate different hyper parameter settings on various NLP problem.
Article [Kim, 2014] evaluates CNNs on various classification NLP problems.
In [Johnson and Zhang, 2014] they train CNN from scratch, without need
for pre-trained word embeddings. Another use case of CNNs in NLP from
Microsoft Research lab can be found in [Gao et al., 2015] and [Shen et al.,
2014]. They describe how to learn semantically meaningful representations
of sentences that can be used for Information Retrieval.

A detailed overview of CNN networks and their use in NLP is presented
in technical report [Svoboda, 2016].

3.6 Recursive Neural Networks

Recursive Neural Networks (RNN) are popular in NLP due to their capability
for processing arbitrary length sequences. The idea behind RNNs is to make
use of sequential information. In a traditional neural network we assume that
all inputs (and outputs) are independent of each other. But for many tasks
that is not ideal, especially in NLP tasks. If you want to predict the next word
in a sentence you better know which words came before it. RNNs operate
with each element of the sequence being presented to the input nodes of the
RNN in turn. They are called recurrent because values computed from each
element is carried over to the computation for the next element. Another
way to think about RNNs is that they have a “memory” which captures
information about what has been calculated so far. In theory RNNs can
make use of information in arbitrarily long sequences, but in practice they
are limited to looking back only a few steps, because it is also often claimed
that learning long-term dependencies by stochastic gradient descent can be
difficult [Bengio et al., 1994].
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For Language Modeling [Mikolov et al., 2010] a so called simple recurrent
neural network (see figure 3.4) or Elman network [Elman, 1990] is being used.

3.6.1 RNNs with Long Short-Term Memory

Long Short-Term Memory (LSTM) units [Hochreiter and Schmidhuber, 1997]
have re-emerged as a popular architecture due to their representational power
and effectiveness at capturing long-term dependencies. LSTMs do not have
a fundamentally different architecture from RNNs, but they use a different
function to compute the hidden state. There are many LSTM architectures,
some evaluation of different architectures has been done in [Jozefowicz et al.,
2015].

The memory in LSTMs are called cells and they take as input the previous
state hst−1 and current input xt. Internaly these cells decide what to keep
in (and what to erase from) memory. They then combine the previous state,
the current memory, and the input.

In a traditional recurrent neural network, during the gradient phase of
back-propagation, the gradient signal can end up being multiplied a large
number of times (as many as the number of timesteps) by the weight matrix
associated with the connections between the neurons of the recurrent hidden
layer. This means that, the magnitude of weights in the transition matrix
can have a strong impact on the learning process.

When the weights in this matrix are small (if the leading eigenvalue of the
weight matrix is smaller than 1), it can lead to a situation called vanishing
gradients [Bengio et al., 1994] where the gradient signal gets so small that
learning either becomes very slow or stops working altogether. It can also
make more difficult the task of learning long-term dependencies in the data.
Conversely, if the weights in this matrix are large (or, again, more formally,
if the leading eigenvalue of the weight matrix is larger than 1), it can lead to
a situation where the gradient signal is so large that it can cause learning to
diverge. This is often referred to as exploding gradients.

These issues are the main motivation behind the LSTM model which
introduces a new structure called a memory cell (fig. 3.5). Cells take as
input the previous state ht−1 and current input xt. Internally these cells
decide what to keep in (and what to erase from) memory. They then combine
the previous state, the current memory, and the input.
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Figure 3.4: Picture shows a RNN being unrolled (or unfolded) into a full
network. By unrolling we simply mean that we write out copies of the network
for the complete sequence. For example, if the sequence we care about is
a sentence of 5 words, the network would be unrolled into a 5-stage neural
network, one stage for each word. On the picture we see:

• xt is the input at time step t. For example for language modeling, x1

could be seen as a vector corresponding to the second word of a sen-
tence.

• hst is the hidden state at time step t. It is the networks “memory”
(captures information about what happened in all the previous time
steps0) and it is calculated based on the previous hidden state and
the input at the current step: hst = f(Uxt + Whst−1), where the f is
usually our well known nonlinearity function such as tanh. hs−1, which
is required to calculate the first hidden state, is typically initialized to
all zeroes.

• yt is the output at step t. For example, if we wanted to predict the
next word in a sentence, it would be a vector of probabilities across our
vocabulary, yt = softmax(V hst). Output is calculated based on the
memory at time t, but it is more complicated in practice, because hst
can not capture information from too many time steps ago (explained
in Section 3.6.1). Softmax regression is a probabilistic method with
function similar to the Logistic regresion, we use the softmax function
to map inputs to the the predictions (can be multinomial).

• U and W are parameters of RNN that are shared across the whole
network and are not different at each layer as it is for example in Feed-
forward Neural Networks and its weight parameters.
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Figure 3.5: LSTM memory cell. Green boxes represent learned neural net-
work layers, while circles inside a cel represents pointwise operations.

The forget gate is one of the most important features of the LSTM net-
work [Greff et al., 2015]. It makes the decision what information we are going
to throw away from the cell state. The input gate layer decides which values
we will update (which information we keep). It has turned out that these
types of units are very efficient at capturing long-term dependencies.

Mathematical background of LSTM and further information has been
presented in our technical report [Svoboda, 2016].

3.7 Deep Learning

Deep learning algorithms attempt to learn multiple levels of representation
of increasing complexity (or abstraction of the problem) [LeCun et al., 2015].
Most current machine learning techniques require human-designed represent-
ations and input features. Machine learning then just optimizes the weights
to produce the best final prediction. Machine Learning methods thus are
heavily dependent on quality of input features created by humans.

Deep Belief Networks (DBNs), Markov Random Fields with multiple lay-
ers, various types of multiple-layer neural networks are techniques which has
more than one hidden layer and are able to model complex non-linear prob-
lems. Deep architectures can, in principle, represent certain families of func-
tions more efficiently (and with better scaling properties) than shallow ones,
but the associated loss functions are almost always non convex. Deep learn-
ing is practically putting back together representation learning with machine
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learning. It tries to learn good features, across multiple levels of increasing
complexity and abstraction (hidden layers) of the problem [Bengio et al.,
2007].

The hidden layers represent learned non-linear combination of input fea-
tures. With hidden layers, we can solve non-linear problems (such as XOR):

• Some neurons in the hidden layer will activate only for some combina-
tion of input features.

• The output layer can represent combination of the activations of the
hidden neurons.

A neural network with one hidden layer is a universal approximator. The
universal approximator theorem for neural networks states that every con-
tinuous function that maps intervals of real numbers to some output interval
of real numbers can be approximated arbitrarily closely by a multi-layer per-
ceptron with just one hidden layer. However, not all functions can be repres-
ented efficiently with a single hidden layer – thus deep learning architectures
can achieve better accuracy for complex problems.

Figure 3.6: Deep neural network. X represents the input layer, h1, h2, . . . hn
represents hidden layers and y denotes to output layer

In recent work, deep LSTM networks are being used, often bidirectional
deep recurrent (LSTM) networks [Tai et al., 2015a]. Bidirectional RNNs are
based on the idea that the output at time t may not only depend on the
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previous elements in the sequence, but also future elements. For example, to
predict a missing word in a sequence you want to look at both the left and
the right context. Bidirectional RNNs are quite simple. They are just two
RNNs stacked on top of each other. The output is then computed based on
the hidden state of both RNNs. Deep (Bidirectional) RNNs are similar to
Bidirectional RNNs, only that we now have multiple layers per time step. In
practice this gives us the higher learning capacity already mentioned (but we
also need a lot of training data).

3.7.1 Representations and Features Learning Process

Developing good features is a hard and time-consuming process. Features are
eventually over-specified and incomplete anyway. In NLP research we usually
after some time can find and tune features for a manually annotated corpus
dealing with some NLP problem. However, we will often find that developed
features were over specified for the concrete corpus and fail in generalization
for a real application.

If machine learning could learn features automatically, the learning pro-
cess could be automated more easily and more tasks could be solved. Deep
learning provides one way of automating the feature learning process. Usu-
ally, we need big datasets for deep learning to avoid over-fitting. Deep neural
networks have many parameters, therefore if they don’t have enough data,
they tend to memorize the training set and perform poorly on the test set.

3.8 Distributional Semantics Models
Based on Neural Networks

Many models in NLP are based on counts over words, for example, Prob-
abilistic Context Free Grammars (PCFG) [Manning et al., 1999]. In those
approaches it can hurt generalization performance when specific words dur-
ing testing were not present in the training set. Because an index vector
over a large vocabulary is very sparse, models tends to overfit to the training
data. The classical solutions to the problem is the already mentioned time
consuming manual engineering of complex features. Deep Learning models of
language usually use distributed representation (see 2.1.1). These are meth-
ods for learning word representations in which meaning of words or phrases
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is represented by vectors of real numbers, where the vector reflects the con-
textual information of a word across the training corpus.

These word vectors can significantly improve and simplify many NLP
applications [Collobert and Weston, 2008, Collobert et al., 2011]. There are
also NLP applications, where word embeddings do not help much [Andreas
and Klein, 2014].

Recent studies have introduced several methods based on the feed-forward
NNLP (Neural Network Language Model). One of the Neural Network based
models for word vector representation which outperforms previous methods
on word similarity tasks was introduced in [Huang et al., 2012]. The word
representations computed using NNLP are interesting, because trained vec-
tors encode many linguistic properties and those properties can be expressed
as linear combinations of such vectors.

Nowadays, word embedding methods Word2Vec [Mikolov et al., 2013a]
and GloVe [Pennington et al., 2014] significantly outperform other meth-
ods for word embeddings. Word representations made by these methods
have been successfully adapted on variety of core NLP task such as named
entity recognition [Siencnik, 2015, Demir and Ozgur, 2014], Part-of-speech
Tagging [Al-Rfou et al., 2013], sentiment Analysis [Pontiki et al., 2015], and
others.

There are also neural translation-based models for word embeddings [Cho
et al., 2014, Bahdanau et al., 2014] that generate an appropriate sentence
in the target language given a sentence in the source language, while they
learn distinct sets of embeddings for the vocabularies in both languages.
Comparison between monolingual and translation-based models can be found
in [Hill et al., 2014].

In following sections, we will introduce current state-of-the-art Word Em-
bedding methods called Word2Vec [Mikolov et al., 2013a] and other methods
for sentence representation.

3.8.1 Vector Similarity Metrics

The distance (similarity) between two words can be calculated by a vector
similarity function. Let a and b denote the two vectors to be compared and
S (a,ab) denote their similarity measure.
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Such a metric needs to be symmetric: S (a, b) = S (b,a).

There are many methods to compare two vectors in a multi-dimensional
vector space. Probably the simplest vector similarity metrics are the familiar
Euclidean (r = 2) and city-block (r = 1) metrics

Smink (a, b) = r

√∑
|ai − bi|r, (3.14)

that come from the Minkowski family of distance metrics.

Another often used metric characterizes the similarity between two vec-
tors as the cosine of the angle between them. Cosine similarity is probably
the most used similarity metric for words embedding methods:

Scos(a, b) =
a · b

‖a‖ · ‖b‖
=

∑
aibi√∑
a2
i

∑
b2
i

, (3.15)

where a and b are two vectors we try to compare. The cosine similarity is
used in all cases where we want to find the most similar word (or top n most
similar words) for a given type of analogy.

3.8.2 CBOW

The CBOW (Continuous Bag-of-Words) [Mikolov et al., 2013a] architecture
forfinding word embeddings tries to predict the current word from a small
context window around the word. The architecture is similar to the feed-
forward NNLM (Neural Network Language Model) which was proposed in
paper [Bengio et al., 2006]. The NNLM is computationally expensive between
the projection and the hidden layer. Thus, in the CBOW architecture, the
(non-linear) hidden layer is removed (or in reality is just linear) and projec-
tion layer is shared between all words. The word order in the context does
not influence the projection (see Figure 3.7a). This architecture proved to
have low computational complexity.
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(b) Skip-gram

Figure 3.7: Nerual network based architectures, w(t− 1) represents previous
word, w(t) current word and w(t+ 1) next word.

3.8.3 Skip-gram

The Skip-gram architecture is similar to CBOW, although instead of pre-
dicting the current word based on the context, it tries to predict a word’s
context based on the word itself [Mikolov et al., 2013c]. Thus, the intention
of the Skip-gram model is to find word patterns that are useful for predict-
ing the surrounding words within a certain range in a sentence (see Figure
3.7b). Skip-gram model estimates the syntactic properties of words slightly
worse than the CBOW model, but it is much better for modeling the word
semantics on an English test set [Mikolov et al., 2013a,c]. Training of the
Skipgram model does not involve dense matrix multiplications 3.7b and that
makes training also efficient [Mikolov et al., 2013c], but generaly slower than
CBOW architecture.

3.8.4 Fast-Text

FastText tool introduced in [Bojanowski et al., 2017] combines concepts of
CBOW (resp. Skip-Gram) architectures introduced earlier in Section 3.8.2
and 3.8.3. In additon to representing contexts with bag of words, it also
considers them as a bag of n-grams, thus using subword information, and
shares information across classes through a hidden representation.
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3.8.5 GloVe

The GloVe (Global Vectors) [Pennington et al., 2014] model is not based
on neural network architecture and focuses more on the global statistics of
the training data. This approach analyses log-bilinear regression models that
effectively capture global statistics and also captures word analogies. Authors
propose a weighted least squares regression model that trains on global word-
word co-occurrence counts. The main concept of this model is the observation
that ratios of word-word co-occurrence probabilities have the potential for
encoding meaning of words.

3.8.6 Paragraph Vectors

Paragraph vectors were proposed in [Le and Mikolov, 2014] as an unsuper-
vised method of learning text representation. The article shows how to com-
pute vectors for whole paragraphs, documents or sentences. The resulting
feature vector has fixed dimension while the input text can be of any length.
The paragraph vectors and word vectors are concatenated to predict the next
word in a context. The paragraph token acts as a memory that remembers
what information is missing from the current context.

The sentence representations can be further used in classifiers (logistic
regression, SVM or NN).

3.8.7 Tree-based LSTM

Tree-structured input for LSTM was presented in [Tai et al., 2015a], where
a tree model represents the sentence structure. Dependency parsing is being
used as a typical sentence-tree structure representation [De Marneffe et al.,
2006]. The LSTM processes input sentences of variable length via recursively
apply the hidden state of child nodes to a head node, rather than following
the sequential order of words in a sentence, as is common in LSTMs. The
model was tested for sentiment analysis and sentence semantic similarity,
achieving state-of-the-art results on both tasks.
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4 Word Embeddings of Inflected
Languages

Word embedding methods have been proven to be very useful in many NLP
tasks. Much has been investigated about word embeddings of English words
and phrases, but only a little attention has been dedicated to other languages.
Our goal in this chapter is to explore the behavior of state-of-the-art word
embedding methods on Czech and Croatian, two languages that are charac-
terized by rich morphology. We introduce a new corpus for the word ana-
logy task that inspects syntactic, morphosyntactic and semantic properties
of Czech and Croatian words and phrases. We experiment with Word2Vec,
Fasttext and GloVe algorithms and discuss the results on this corpus. We
added some of the specific linguistic aspects from Czech and Croatian lan-
guage to our word analogy corpora. All corpora are available for the research
community.

In [Svoboda and Brychćın, 2016] we explore the behavior of state-of-the-
art word embedding methods on Czech, which is a representative of the
Slavic language family (Indo-European languages) with rich word morpho-
logy. These languages are highly inflected and have a relatively free word
order. Czech has seven cases and three genders. The word order is very
variable from the syntactic point of view: words in a sentence can usually be
ordered in several ways, each carrying a slightly different meaning. All these
properties complicate the learning of word embeddings. We introduced a new
corpus for the word analogy task that inspects syntactic, morphosyntactic
and semantic properties of Czech words and phrases. We experimented with
Word2Vec and GloVe algorithms and discussed the results on this corpus.
We showed that while current methods can capture semantics on English in
a similar corpus with 76% of accuracy, there is still room for improvement
of current methods on highly inflected languages where the models work on
less than 38%, respectively 58% for single tokens without phrases (CBOW
architecture) presented later in [Svoboda and Brychćın, 2018a].

In [Svoboda and Beliga, 2018] we explore the behavior of state-of-the-art
word embedding methods on Croatian that is another highly inflected lan-
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guage from the Slavic family. Next, we created Croatian WordSim353 and
RG65 corpora for a basic evaluation of word similarities. We compared cre-
ated corpora on two popular word representation models, based on Word2Vec
tool and fastText tool.
Models were trained on a 1.37 billion tokens training data corpus and tested
on a new robust Croatian word analogy corpus. Results show that the models
are able to create meaningful word representation. This research has shown
that free word order and the higher morphological complexity of Croatian
language significantly influences the quality of resulting word embeddings.
We showed that there is similarly to Czech language room for improvement
of current DSMs as well and proves our theory about highly inflected lan-
guages.

The word-analogy-based evaluation is one of the most common tools to
evaluate linguistic relationships encoded in monolingual meaning represent-
ations. In [Brychćın et al., 2019], we go beyond monolingual representations
and generalize the word analogy task across languages to provide a new in-
trinsic evaluation tool for cross-lingual semantic spaces. Our approach allows
examining cross-lingual projections and their impact on different aspects of
meaning. It helps to discover potential weaknesses or advantages of cross-
lingual methods before they are incorporated into different intelligent sys-
tems. Furthermore, we generalize the word analogy task across languages, to
provide a new intrinsic evaluation method for cross-lingual semantic spaces.
We experiment with six languages within different language families, includ-
ing English, German, Spanish, Italian, Czech, and Croatian. State-of-the-art
monolingual semantic spaces are transformed into a shared space using dic-
tionaries of word translations. We compare several linear transformations
and rank them for experiments with monolingual (no transformation), bilin-
gual (one semantic space is transformed to another), and multilingual (all
semantic spaces are transformed onto English space) versions of semantic
spaces. We show that tested linear transformations preserve relationships
between words (word analogies) and lead to impressive results. We achieve
average accuracy of 51.1%, 43.1%, and 38.2% for monolingual, bilingual, and
multilingual semantic spaces, respectively.

The structure of this chapter is following. Section 4.1 puts our work into
the context of the state of the art. In Section 4.2 we present the first Czech
analogy word corpus, Section 4.3 presents Croatian analogy and similarity
corpora. The experimental results are presented and discussed in Sections
4.2.1,4.2.2 for Czech and in Sections 4.3.3,4.3.4 for Croatian language. We
conclude in Section 4.5 and offer some directions for future work.
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4.1 Introduction

Word representation based on Distributional Hypothesis (see Chapter 2) rep-
resent words as vectors of real numbers from high-dimensional space. The
goal of such representations is to capture the syntactic and semantic rela-
tionship between words.

It was shown that the word vectors can be sucessfully used in order to im-
prove and/or simplify many NLP applications [Collobert and Weston, 2008,
Collobert et al., 2011]. There are also NLP tasks, where word embeddings
do not help much [Andreas and Klein, 2014].

Most of the work is focused on English. Recently the community has
realized that the research should focus on other languages with rich morpho-
logy and different syntax [Berardi et al., 2015, Elrazzaz et al., 2017, Köper
et al., 2015], but there is still little attention to languages from Slavic family.
These languages are highly inflected and have a relatively free word order.
Since there are open questions related to the embeddings in the Slavic lan-
guage family, we will focus mainly on Czech and Croatian word embeddings,
from the Slavic language family. With the aim of expanding existing findings
about Czech and Croatian word embeddings, we will:

1. Compare different word embeddings methods on Czech/Croatian lan-
guage that is not deeply explored highly inflected language.

2. For the purposes of the word embeddings experiments, we created three
new Croatian datasets and two Czech word analogy datasets. Two ba-
sic word similarity corpora based on original WordSim353 [Finkelstein
et al., 2002] and RG65 [Rubenstein and Goodenough, 1965] translated
to Croatian. Except the similarity between words, we would like to
explore other semantic and syntactic properties hidden in word embed-
dings. A new evaluation scheme based on word analogies were presented
in [Mikolov et al., 2013a]. Based on this popular evaluation scheme, we
have created a Croatian and Czech version (with and without phrasal
words) of original Word2Vec analogy corpus in order to qualitatively
compare the performance of different models.

3. Empirically compare the results obtained from the Czech/Croatian lan-
guage to the results obtained from English – the most commonly stud-
ied language.
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Nowadays, word embeddings are typically obtained as a product of train-
ing feed-forward NNLP (Neural Network Language Models). One of the first
architectures was presented in [Huang et al., 2012]. The word representations
computed using NNLP are interesting, because trained vectors encode many
linguistic properties and those properties can be expressed as linear combina-
tions of such vectors. Language modeling is a classical NLP task of predicting
the probability distribution over the “next” word (see Section 2.3). In these
models a word embedding is a vector in Rn, with the value of each dimension
being a feature that weights the relation of the word with a “latent” aspect
of the language. These features are jointly learned from plain unannotated
text data. This principle is known as the Distributional Hypothesis [Harris,
1954](see Chapter 2).

There is a variety of datasets for evaluating semantic relatedness between
English words, such as:

• WordSimilarity-353 [Finkelstein et al., 2002],

• Rubenstein and Goodenough (RG) [Rubenstein and Goodenough, 1965],

• Rare-words [Luong et al., 2013],

• Word pair similarity in context [Huang et al., 2012],

• and many others.

[Mikolov et al., 2013a] reported that word vectors trained with a simplified
neural language model [Bengio et al., 2006] encode syntactic and semantic
properties of language, which can be recovered directly from the vector space
through linear translations, to solve analogies such as: ~king− ~man = ~queen−
~woman. This evaluation scheme based on word analogies was presented

in [Mikolov et al., 2013a].

To the best of our knowledge, only a small portion of recent studies
attempted evaluating Croatian and Czech word embeddings. In [Zuanovic
et al., 2014] the authors translated small portion from the English analogy
corpus to Croatian to evaluate their neural network based model. However,
this translation was only made for a total of 350 questions.

Many methods have been proposed to learn such word vector represent-
ations. One of the neural network based models for word vector repres-
entation which outperforms previous methods on word similarity tasks was
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introduced in [Huang et al., 2012]. Word embeddings methods implemented
in tool Word2Vec [Mikolov et al., 2013a] and GloVe [Pennington et al., 2014]
significantly outperform other methods for word embeddings. Word vector
representations made by these methods have been successfully adapted on
variety of core NLP tasks. The recent library FastText [Bojanowski et al.,
2017] tool is derived from Word2Vec and enriches word embeddings vectors
with subword information.

In this work we will focus on CBOW, Skip-gram and Glove monolingual
models (see Sections 3.8.2, 3.8.3 and 3.8.5) that produce high quality word
embeddings. In general, given a single word in the corpus, these models
predict which other words should serve as a substitution for this word.

4.2 Czech Word Analogy Corpus

In this section we present a new Czech word analogy corpus for testing word
embeddings. Inspiration was taken from English corpus revealed in [Mikolov
et al., 2013a]. We follow the observation that the state-of-the-art models for
word embeddings can capture different types of similarities between words.
Given two pairs of words with the same relationship as a question: Which
word is related to export in the same sense as minimum is related to max-
imum? Correct answer should be import.

Such a question can be answered with a simple algebraic operation with
the vector representation of words:

x = vector(“maximum”)− vector(“minimum”) + vector(“export”) (4.1)

The difference between vector(“maximum”) and vector(“minimum”)
should be similar to difference between vector(“export”) and vector(“import”).
For resulting vector x we search in the vector space for the most similar
word. When the model works well and is properly trained, we will find that
the closest vector representing correct answer for our question is the vector
for the word import.

If the model has sufficient data, it is able to learn also more complicated
semantic relationships between words, such as the main city Prague to the
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state Czech Republic is in the same relation as Paris is to France, or capturing
the presidents of individual states, already mentioned antonyms, plural versus
singular words, gradation of adjectives, and other word relationships.

To measure quality of word vectors, we designed test set containing 8,705
semantic and 13,552 syntactic questions, together than 22,257 combinations
of questions. The dataset contains only frequent-enough words from the
Czech Wikipedia. We split the dataset into several categories. Each category
usually contains about 35–40 pairs of words with same relationship. The
questions are built from all combinations of word pairs in the same category.

There is a majority of word-to-word relationships, but Presidents and
states category contains also bigram-to-word (word-to-bigram) relationships
such as Prague vs. Czech Republic.

Semantic questions are represented in categories:

• Presidents-states-cities: Consists of 34 pairs of states in Europe
and their main cities combining 1,122 questions. There is also 1,122
questions for state with corresponding current president.

• Antonyms: This category compounds of three subcategories. In first
subcategory we have 38 noun antonym pairs that is resulting in 1406
questions combined. Example of such question is: anode, cathode
versus export, import. Similarly we have 42 adjectives pairs (such as
big, small) and 34 verb pairs – buy, sell versus give, take.

• Family-relations (man-woman): In this category we have 19 pairs
of family representatives with man-woman relation as brother, sister
versus husband, wife.

Syntactic questions are represented in categories:

• Adjectives-gradation: In this category we have two antonym pairs
with three degrees of adjectives in positive, comparative, and superlat-
ive form: big, bigger vs small, smaller.

• Nationalities (woman/man): This category is specific for Czech lan-
guage, which distinguish between masculine and feminine word rela-
tions. Every nationality has its corresponding masculine and feminine
word form. For example, English word Japan has in Czech masculine
form Japonec and feminine form Japonka. We have 35 such pairs.
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• Nouns-plural: We find here 37 pairs of nouns and their plural forms.

• Jobs: Category with 35 pairs of professions with masculine-feminine
word relations.

• Verb-past: This category consists of verbs in present form versus
verbs in past tense form, such as play, played versus see, saw.

• Pronouns: Last category consists of pairs of pronouns in singular
versus plural form.

4.2.1 Experiments

In our experiments, we used unsupervised learning of word-level embeddings
using Word2Vec [Mikolov et al., 2013a] and GloVe tool [Pennington et al.,
2014]. We used the January 2015 snapshot of the Czech Wikipedia as a source
of unlabeled data. The Wikipedia corpus has been preprocessed with the
following steps:

1. Removed special characters such as #$&%, HTML tags and others.

2. Filtering XML dumps, removed tables, links converted to normal text.
We lowercase all words. We have also removed sentences with less than
5 tokens.

The resulting training corpus contains about 2,6 billion words. For our
purpose, it is useful to have vector representation of word phrases, i.e. for
bigram representing state Czech Republic, it is desirable to have one vector
representing those two words. This was achieved by preprocessing the train-
ing data set to form the phrases using the Word2Phrase tool [Mikolov et al.,
2013c]. We have to note that due to the preprocessing of the corpus using
Word2Phrase tool, we have lost a lot of usefull single-token words, or those
words were not obtained in sufficient frequency to train a robust word em-
beddings. Therefore, we have lower score than in other articles mentioned in
further chapters, where we have used only our non-phrasal corpora for testing
word-analogies. Word2Phrase tool would have to be additionaly tuned for
Slavic family languages to make better phrasal word representations.
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We evaluate the word embedding models on our corpus by accuracy that
is defined as

Acc =
NC

NT
[%] , (4.2)

where NC is the number of correctly answered questions for a category and
NT is total number of questions in category.

In our experiments, we use cosine similarity (see 3.15) as a measure of
similarity between two word vectors.

Models settings

During the training of Word2Vec (resp. GloVe) models, we limited the size
of the vocabulary to 400,000 most frequent single token words and about
800,000 most frequent bigrams. OOV (Out-of-vocabulary) word rate was
6%. That means that out of 22,257 questions about 1,300 questions had at
least one word not seen in the vocabulary.

To train word embedding methods we use context window of size 10. We
also explore results with different vector dimension (set to 100, 300, and 500).
We choose to compare three training epochs as in [Mikolov et al., 2013a] for
similarly sized training corpus versus ten training epochs for Word2Vec tool.
For GloVe tool we choose 10 and 25 iterations, because algorithms cannot
be simply compared with the same settings [Pennington et al., 2014]. Other
Word2Vec and GloVe settings were on their default values.

Results

In this section we present the accuracies for all tested models (CBOW, Skip-
gram, and GloVe) on our word analogy corpus. In all tables below we present
results for different vector dimension ranging between 50 and 500, except for
Skip-gram model with dimension 500 and 10 training epochs, where the time
of computation was much higher than with other methods. The model did
not finish after 4 days of training and results of 500 dimension vector does
not adequately reward such long training time. We use notation n D in
the tables, n means that the correct word must be between n most similar
words for a given analogy. D denote the dimension of vectors. Accuracies
are expressed in percents.
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In Table 4.1 we present the results for CBOW model. There is a significant
improvement between 3 and 10 training epochs. Interesting is also fact that
300-dimensional vectors perform better than 500-dimensional vectors on most
categories. Similarly, the results for Skip-gram model are in Table 4.2. This
model performs significantly worse on most categories in comparison with
CBOW model. There is also significant improvement between 50-dimensional
and 100-dimensional vector, but less significant between 100 and 300. Table
4.3 shows result for GloVe model. This model gives on Czech the worst
results compared to both Word2Vec models.

Categories, where the models gives best results are Verb-past, Noun-
plural, and State-city. In general, all models gives better results on tasks
exploring syntactic information. Poor accuracy was in categories State-
presidents and category Nationality.

Type
3 training epochs

1 50 1 100 1 300 1 500 5 50 5 100 5 300 5 500 10 50 10 100 10 300 10 500
Anton. (nouns) 1.35 4.84 5.55 5.69 3.98 10.88 13.16 10.95 5.69 13.44 16.00 13.30
Anton. (adj.) 4.82 8.86 11.79 13.24 10.63 14.29 18.70 19.16 13.24 17.31 23.64 22.76
Anton. (verbs) 0.20 1.88 2.68 1.25 2.77 3.13 6.25 3.57 2.94 3.84 7.77 4.38
State-president 0.00 0.00 0.18 0.09 0.18 0.00 0.98 0.18 0.45 0.27 1.43 0.71
State-city 14.62 14.8 16.22 8.47 29.77 30.93 32.89 23.26 35.92 39.57 42.96 31.82
Family 6.42 9.01 11.60 9.26 12.10 17.28 21.85 18.64 14.44 21.11 25.80 23.95
Noun-plural 34.46 42.42 41.74 44.60 45.95 53.60 54.35 54.35 50.45 57.43 57.43 57.81
Jobs 2.95 3.87 3.37 2.78 6.57 10.52 10.00 8.92 9.18 14.05 13.80 12.37
Verb-past 14.83 24.29 42.52 34.91 29.94 40.91 60.61 52.00 36.66 48.31 66.50 58.80
Pronouns 1.59 3.84 5.95 3.57 3.97 8.07 12.70 10.05 5.69 9.66 16.00 13.10
Adj.-gradation 12.50 20.00 22.50 15.00 20.00 22.50 22.50 27.50 20.00 27.50 25.00 27.50
Nationality 0.08 0.42 0.33 0.16 0.84 0.92 0.84 1.10 1.26 1.26 1.26 2.01

10 training epochs
1 50 1 100 1 300 1 500 5 50 5 100 5 300 5 500 10 50 10 100 10 300 10 500

Anton. (nouns) 3.84 7.82 8.53 7.40 8.39 15.93 18.49 16.07 10.38 19.42 22.76 20.55
Anton. (adj.) 7.26 11.90 15.45 15.04 13.53 19.63 25.49 23.58 16.49 23.05 30.26 28.92
Anton. (verbs) 0.89 1.88 2.86 3.12 4.01 5.98 6.43 6.07 5.09 6.70 7.59 7.41
State-president 0.18 0.35 0.09 0.09 0.71 0.98 0.62 0.71 1.16 1.60 1.33 1.16
State-city 16.58 27.99 25.94 18.63 37.07 50.62 52.05 39.13 43.49 58.47 61.41 50.71
Family 11.85 15.43 15.68 15.93 19.75 25.55 30.99 29.13 25.56 30.12 38.02 36.42
Noun-plural 50.23 56.68 60.56 57.96 63.21 68.92 70.35 66.52 67.87 72.97 74.02 69.14
Jobs 6.73 10.52 6.82 4.04 14.39 19.78 17.68 13.30 17.59 24.24 23.06 19.36
Verb-past 25.87 38.71 48.53 48.71 46.92 58.95 69.34 68.78 55.10 66.75 76.00 74.94
Pronouns 5.03 6.22 7.80 7.14 10.71 12.17 15.61 15.48 13.76 16.53 19.31 19.84
Adj.-gradation 25.00 25.00 20.00 17.50 25.00 25.00 27.50 25.00 25.00 30.00 32.50 27.50
Nationality 0.67 1.26 0.34 0.42 2.35 2.60 1.68 2.35 3.03 3.19 3.27 2.77

Table 4.1: Results for CBOW.

4.2.2 Discussion

How to achieve better accuracy? It was shown in [Mikolov et al., 2013c] that
sub-sampling of the frequent words and choosing larger Negative Sampling
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Type
3 training epochs

1 50 1 100 1 300 1 500 5 50 5 100 5 300 5 500 10 50 10 100 10 300 10 500
Anton. (nouns) 0.85 1.71 3.34 5.55 2.20 3.84 8.04 10.74 2.92 5.41 9.67 14.08
Anton. (adj.) 2.26 3.02 5.23 8.48 4.59 5.69 9.00 12.37 6.21 7.14 11.32 14.81
Anton. (verbs) 0.18 0.36 0.36 0.98 0.27 1.61 0.45 2.05 0.89 1.79 0.89 2.68
State-president 0.18 0.18 0.09 0.09 0.53 0.71 0.36 0.62 0.62 1.16 0.71 0.80
State-city 6.60 14.26 8.20 3.48 17.20 27.27 18.89 12.75 22.99 33.69 25.94 21.93
Family 1.98 2.72 2.59 6.79 3.70 6.30 9.01 12.59 6.30 8.52 12.72 16.42
Noun-plural 8.11 14.04 19.14 18.77 15.17 24.62 27.25 36.41 18.17 29.05 31.23 44.59
Jobs 1.77 1.26 1.09 1.01 5.05 3.96 3.45 3.53 6.40 5.81 4.88 5.39
Verb-past 1.72 4.36 4.14 6.08 4.20 8.28 7.67 12.74 6.04 10.62 9.90 19.97
Pronouns 0.79 1.06 0.66 0.40 2.78 2.25 1.72 1.72 3.97 4.23 2.65 2.78
Adj.-gradation 2.50 5.00 5.00 10.00 5.00 7.50 12.50 17.50 5.00 12.50 12.50 25.00
Nationality 0.17 0.08 0.08 0.00 0.84 0.67 0.17 0.42 1.26 1.01 0.25 0.92

10 training epochs
1 50 1 100 1 300 1 500 5 50 5 100 5 300 5 500 10 50 10 100 10 300 10 500

Anton. (nouns) 1.35 2.63 6.19 x 3.27 5.83 10.24 x 4.41 7.25 12.23 x
Anton. (adj.) 1.74 4.82 5.69 x 4.53 9.12 10.05 x 5.57 11.85 12.54 x
Anton. (verbs) 0.36 0.00 0.18 x 0.98 1.96 0.36 x 1.52 2.95 0.62 x
State-president 0.27 0.09 0.27 x 1.07 0.36 0.80 x 1.52 0.62 1.60 x
State-city 4.55 15.15 9.98 x 14.26 31.73 25.85 x 19.88 39.48 35.29 x
Family 3.09 3.70 6.67 x 6.30 9.14 13.46 x 10.37 12.22 16.54 x
Noun-plural 19.22 29.95 23.95 x 31.91 43.92 37.91 x 37.39 47.75 44.59 x
Jobs 2.53 3.03 2.53 x 6.99 7.58 4.88 x 9.93 10.44 7.58 x
Verb-past 2.93 8.25 8.77 x 7.41 15.15 16.69 x 9.73 18.72 20.84 x
Pronouns 0.66 0.66 0.79 x 2.65 2.25 3.44 x 3.84 3.44 4.76 x
Adj.-gradation 2.50 10.00 7.50 x 10.00 15.00 12.50 x 10.00 15.00 15.00 x
Nationality 0.17 0.42 0.08 x 0.50 1.26 0.34 x 0.67 1.60 0.76 x

Table 4.2: Results for Skip-gram.

Type
3 training epochs

1 50 1 100 1 300 1 500 5 50 5 100 5 300 5 500 10 50 10 100 10 300 10 500
Anton. (nouns) 0.36 1.28 0.64 0.81 1.00 2.92 1.99 1.72 1.49 4.27 2.63 2.42
Anton. (adj.) 0.87 0.81 1.34 1.34 2.44 4.01 6.10 5.81 3.60 5.40 8.89 7.62
Anton. (verbs) 0.00 0.00 0.00 0.00 0.36 0.00 0.00 0.00 0.36 0.00 0.18 0.00
State-president 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
State-city 1.52 0.98 1.16 0.98 3.83 3.21 4.01 2.85 5.17 4.90 6.68 5.81
Family 3.33 4.20 0.99 1.42 6.67 6.42 4.81 3.85 8.52 8.64 7.41 4.35
Noun-plural 14.79 15.32 12.69 5.54 24.47 26.35 25.83 14.30 28.53 31.46 33.03 18.70
Jobs 0.67 0.25 0.00 0.00 1.43 0.76 0.08 0.00 1.68 1.09 0.17 0.00
Verb-past 5.39 6.96 3.15 0.82 11.59 13.71 7.72 2.78 15.11 17.70 10.80 4.71
Pronouns 0.79 0.66 0.00 0.00 1.59 1.32 1.46 0.00 2.12 1.72 2.38 0.00
Adj.-gradation 7.50 7.50 5.00 0.00 10.00 12.50 7.50 7.50 10.00 12.50 10.00 7.50
Nationality 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.08 0.17 0.00 0.00

25 training epochs
1 50 1 100 1 300 1 500 5 50 5 100 5 300 5 500 10 50 10 100 10 300 10 500

Anton. (nouns) 0.50 0.85 1.14 1.42 1.28 2.70 4.69 4.05 1.71 4.34 6.33 5.62
Anton. (adj.) 1.68 2.67 1.34 1.34 3.83 6.68 6.56 6.21 5.28 7.96 9.87 8.65
Anton. (verbs) 0.18 0.00 0.00 0.00 0.36 0.18 0.09 0.18 0.89 0.18 0.45 0.36
State-president 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
State-city 0.98 1.07 0.98 0.45 3.39 4.19 4.01 2.85 4.99 5.97 7.66 6.51
Family 2.35 3.70 2.10 2.22 5.43 5.80 6.05 4.20 7.04 7.65 8.52 5.56
Noun-plural 28.00 30.56 15.32 6.98 39.79 43.84 29.20 18.02 43.47 48.35 38.44 28.23
Jobs 0.17 0.00 0.00 0.00 0.59 0.42 0.00 0.00 0.76 0.76 1.18 0.51
Verb-past 7.86 10.78 3.98 1.13 16.53 19.25 10.07 4.19 20.82 23.64 14.12 6.81
Pronouns 1.32 1.32 0.26 0.00 3.44 2.25 1.06 0.00 4.76 3.57 1.72 0.00
Adj.-gradation 5.00 5.00 5.00 0.00 7.50 10.00 12.50 7.50 15.00 12.50 12.50 7.50
Nationality 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 4.3: Results for GloVe.
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Type
3 training epochs for CBOW and Skip-gram, 10 training epochs for GloVe.

1 50 1 100 1 300 1 500 5 50 5 100 5 300 5 500 10 50 10 100 10 300 10 500
CBOW – semantics 4.77 6.57 8.00 6.33 9.90 12.75 15.64 12.63 12.11 15.92 19.6 16.15
Skip-gram – semantics 2.00 4.75 6.66 x 3.71 7.57 9.62 x 3.30 7.62 10.21 x
GloVe – semantics 1.01 1.21 0.69 0.78 2.38 2.76 2.82 2.56 3.19 3.87 4.30 3.63
CBOW – syntactics 11.06 15.81 19.40 16.84 17.85 22.76 26.84 25.65 20.48 26.37 30.00 28.60
Skip-gram – syntactics 2.51 5.51 6.81 x 4.30 7.88 10.54 x 5.02 8.79 10.24 x
GloVe – syntactics 4.86 5.11 3.50 0.98 8.20 9.11 7.10 3.72 9.59 10.77 9.40 5.26

10 training epochs for CBOW and Skip-gram, 25 training epochs for GloVe.

1 50 1 100 1 300 1 500 5 50 5 100 5 300 5 500 10 50 10 100 10 300 10 500
CBOW – semantics 6.77 10.90 11.42 10.03 13.91 19.78 22.35 19.12 17.02 23.23 26.90 24.20
Skip-gram – semantics 1.89 4.40 4.83 4.23 5.07 9.69 10.13 8.52 7.21 12.40 13.14 11.79
GloVe – semantics 0.95 1.38 0.93 0.90 2.38 3.26 3.57 2.92 3.32 4.35 5.47 4.45
CBOW – syntax 18.92 23.07 24.01 22.63 27.10 31.24 33.69 31.9 30.34 35.61 38.03 35.59
Skip-gram – syntax 4.67 8.72 7.27 6.04 9.91 14.19 12.63 12.05 11.93 16.16 15.59 15.94
GloVe – syntax 7.06 7.94 4.09 1.35 11.31 12.63 8.81 4.95 14.14 14.80 11.33 7.17

Table 4.4: Accuracy on semantic and syntactic part of corpus.

window helps to improve performance. Also, adding much more text with in-
formation related to particular categories would help (see [Pennington et al.,
2014]), especially for class State-presidents.

In paper [Svoboda and Brychćın, 2016], we focused more on how number
of training epochs influences overall performance in respect to the reasonable
time of training and how vector embeddings hold semantics and syntactic
information of individual Czech words (with respect to dimension of vector).
We have a relatively large corpus for training so we choose 10 iterations (re-
spectively 25 for GloVe) as maximum to compare. To train such models can
take more than 3 days with Core i7-3960X, especially for Skip-gram model
and vector dimension set to 500. We also do not expect much improvement
with more iterations on our corpus, however, we recommend to do more
training epochs than is set by default.

As we already mentioned in Section 4.2.1, phrases of Czech language
complicates learning and the automatic phrase extraction tool that comes to-
gether with Word2Vec merged a lot of word tokens. Therefore, the frequency
of single word tokens is much lower and the robustness of word-embeddings
representation is not high as in our newer articles [Svoboda and Brychćın,
2019], or look at Table 5.6 where we use the corpora without Czech phrasal
words for testing and tuning the word-embeddings accuracy for particular
task.

Our goal here was not to achieve maximal overall score, but rather to
analyze the behavior of word embedding models on Czech language and to
build a first word-analogy corpus to do so. In following text, we discuss, how
well these models hold semantic and syntactic information. From results
on semantic versus syntactic accuracy (see Table 4.4) we can say that for
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Czech the CBOW approach that predicts the current word according to the
context window is better, than predicting a word’s context based on the
word itself as in Skip-gram approach. The results are highly affected by
phrasal-words, because Skip-gram approach is usually considered better. We
have proven that Skip-gram is also better than CBOW in Czech in our later
research [Svoboda and Brychćın, 2019, 2018a].

Accuracy on category State-president is very low with all models. We
expected to achieve similar results as with category State-city. However,
such low score was caused by few simple facts. Firstly, we are missing data,
this is supported by argument that this category has 27% OOV of questions,
then the probability that resulting word will also be missing in vocabulary is
going to be high. Second thing is that even if the correct word for a question
is not missing in vocabulary, we have more often different corresponding
candidates mentioned as presidents of Czech Republic in training data. For
example for a question: “What is a similar word to Czech as is Belarus
Alexandr Lukasenko” we are expecting word Milos Zeman, who is our current
president. However the models tells us that the most similar word is a word
president, which is good answer, but we would rather like to see actual name.
When we explore other most similar word, we will find Vaclav Klaus, who
was our former president, fourth similar word was the word Vaclav Havel,
our first and famous president of Czech Republic after 1992. Based on those
statements we can say that we had lack of data corresponding to current
presidents in our training corpus.

Czech language has a lot of synonyms. That is why there is overall better
improvement in considering more similar words – TOP 10, rather than just
comparing again one word with the highest similarity – TOP 1. Therefore
there is a bigger improvement in TOP 1 versus TOP 10 similar words on
semantics than there is on syntactic tasks.

The most interesting results are however for a category Nationality, where
we compare nationalities in masculine and feminine form. Complete category
is covered in vocabulary. However, answers for questions are completely out
of topic. For a question which should return feminine form of resident of
America, the closest word which model returns is Oscar Wilde, respective
just his last name, second word is peacefully philosophy and another name
showing up is Louise Lasser. Similar task to category Nationalities with
masculine-feminine word form is category Jobs, all models there also perform
poorly. This specific task for Czech language seems to be difficult for current
state-of-the-art word embeddings methods.
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The GloVe model seems to give worse results than Word2Vec models,
where on the English analogy task it gives better accuracy [Pennington et al.,
2014]. We could probably get better results with tuning the model’s proper-
ties, but that might be achieved with either presented toolkit.

4.3 Croatian Corpora

4.3.1 Word Analogies

The original Word2Vec analogy corpus is composed of 19,558 questions di-
vided into two tested groups : semantic and syntactic questions, e.g. king :
man = queen : woman . Fourth word in question is typically the predicted
one.

Our Croatian analogy corpus has 115,085 question divided in the same
manner as for English into two tested groups: semantic and syntactic ques-
tions.

Semantic questions are divided into 9 categories, each is having around
20 – 100 word question pairs. Combination of question pairs gives overall
36,880 semantics questions:

• capital-common-countries: This group consists of 23 of the most
common countries. These countries are adopted from english Word2Vec
analogies and they have the highest number of occurrences in text in
all languages.

• chemical-elements: Represents 119 pairs of chemical elements with
their shortcut symbol (i.e. O – Oxygen).

• city-state: Gives 20 regions (states) inside Croatia and gives one of
city example in such region.

• city-state-USA: 67 pairs of cities and corresponding states in USA.
This category is adopted from original English word analogy test.

• country-world: 118 pairs of countries with main cities from all over
the world. Translated from original Word2Vec analogies.
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• currency-shortcut: 20 pairs of state currencies with its shortcut name
(i.e. Switzerland – CHF).

• currency: 20 pairs of states with their currencies (i.e. Japan – yen).
Translated from original EN analogy corpus.

• eu-cities-states: 40 word pairs of states from EU and their corres-
ponding main city (i.e. Belgium – Brussels).

• family: 41 word pairs with family relation in masculine vs feminine
form (i.e. brother – sister).

Syntactic part of corpus is divided into 14 categories, consisting of 78,205
questions:

• jobs: This category is language-specific, consist of 109 pairs of job
positions in masculine× feminine form.

• adjective-to-adverb: 32 pairs of adjectives and related adverb forms.

• opposite: 29 pairs of adjectives with their opposites. This category
collects words from which is easy to make the opposite usually with the
prefix “un” or “in”. The corresponding prefix is “ne” in Croatian (i.e.
certain – uncertain). Adopted from original EN word analogies.

• comparative: 77 pairs of adjectives and their comparative form (i.e.
good – better).

• superlative: 77 pairs of adjectives and their superlative form.

• nationality-man: 84 pairs of states and humans representing their
nationalities in masculine form. (i.e. Switzerland – Swiss).

• nationality-female: 84 pairs of states and their nationalities in fem-
inine form. This is language specific.

• past-tense: 40 pairs of verbs and their past tense form.

• plural: 46 pairs of nouns and their plural form.

• nouns-antonyms: 100 pairs of nouns and their antonyms.

• adjectives-antonyms: Similar category to opposite, it consists of
96 word pairs of adjectives and their antonyms. However, words are
much more complex (i.e. good – bad).
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• verbs-antonyms: 51 pairs of verbs and their antonyms.

• verbs-pastToFemale: 83 pairs of verbs and their past tense in fem-
inine form. This category is extended from category past-tense and is
language-specific.

• verbs-pastToMale: 83 pairs of verbs and their past tense masculine
form. Category is same as past-tense, only its extended variation to be
comparable with category verbs-pastToFemale.

4.3.2 Word Similarities Corpora

For basic comparison with English, we have translated state-of-the-art Eng-
lish word similarity data sets WordSim353 [Finkelstein et al., 2002] and
RG65 [Rubenstein and Goodenough, 1965]. These corpora have 353 (re-
spespective 65) word pairs. Each word pair is manually annotated with
similarity. We kept similarities untouched. The words in WordSim353 are
assessed on a scale from 0 to 10, in RG65 from 0 to 5.

4.3.3 Experiments

We experimented with state-of-the-art models used for generating word em-
beddings.
These were neural network based models CBOW and Skip-gram from the
Word2Vec [Mikolov et al., 2013a] tool and the tool FastText that promises
better score for morphologically rich languages.

Training data

We trained our models on two datasets in the Croatian language. We made
the entire dump of Croatian Wikipedia – dated 08-2017 with approximately
275,000 articles. We have tokenized the text, removed nonalphanumeric
tokens and extracted only sentences with at least 5 tokens. Resulting corpus
has 92,446,973 tokens. We merged data from Wikipedia with the Croatian
corpus presented in [Šnajder et al., 2013] that has over 1.2 billion tokens.
The resulting corpus has 1.37 billion tokens and 56,623,398 sentences. The
corpus has vocabulary of 955,905 words with at least 10 occurences.
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For English version of data, we used Wikipedia dump from June 2016.
This dump was made of 5,164,793 articles, has 2.2 billion tokens and a vocab-
ulary of 1,759,101,849 words.

We tested analogies and similarity corpora for both languages with most
frequent 300,000 words.

Results

Vocabulary tf > 10 Tokens
EN corpus 3,234,907 2,201,735,114
HR corpus 955,905 1,370,836,176

Table 4.5: Properties of Croatian training data corpus.

Model CBOW Skip-gram fastText-Skip fastText-CBOW
Capital 44.17 62.5 59.58 21.25
Chemical-elements 1.02 2.25 0.74 0.41
City-state 22.11 37.89 47.63 46.32
City-state-USA 5.78 8.23 4.30 0.37
Country-world 23.93 44.49 40.15 7.31
Currency 4.68 8.19 6.43 0.58
Currency-shortcut 2.08 8.19 2.50 0.42
EU-cities-states 21.59 41.95 42.33 6.16
Family 34.83 41.82 42.72 34.76
Jobs 68.94 64.06 88.54 95.45
Adj-to-adverb 18.36 21.36 35.33 62.01
Opposite 17.34 18.05 59.03 86.10
Comparative 34.90 33.57 43.22 41.46
Superlative 33.22 27.70 40.50 51.77
Nationality-man 17.01 23.87 60.05 62.13
Nationality-female 14.38 55.66 57.77 53.98
Past-tense 67.31 61.03 66.67 78.21
Plural 37.12 44.65 44.24 35.10
Nouns-ant. 12.70 10.96 10.80 21.24
Adjectives-ant. 13.39 13.11 18.59 12.59
Verbs-antonyms 9.18 6.18 7.25 9.71
Verbs-pastFemale 60.92 19.47 71.04 80.50
Verbs-pastMale 66.68 62.89 76.04 85.04

SEMANTICS EN 73.63 83.64 68.77 68.27
SYNTACTIC EN 67.55 66.8 67.94 76.58
SEMANTICS HR 16.60 28.54 25.94 7.76
SYNTACTIC HR 37.06 35.63 49.60 54.56

ALL HR 32.03 33.89 43.83 43.13

Table 4.6: Detailed results of Croatian word analogy corpus.
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English
Models WordSim353 RG65 EN-analogies
CBOW 57.94 68.69 69.98 (44.02)
Skip-gram 64.73 78.27 73.57 (46.28)
fastText-Skip 46.13 76.31 68.27 (42.94)
fastText-CBOW 44.64 73.64 76.58 (48.17)

Croatian
CBOW 37.61 52.01 32.03 (19.19)
Skip-gram 52.16 58.47 33.89 (20.31)
fastText-Skip 52.98 64.31 43.83 (25.79)
fastText-CBOW 30.41 51.06 43.14 (25.79)

Table 4.7: Comparison with English models. Measurement in brackets gives
the results including OOV questions.

4.3.4 Discussion

In total, we tested on 68,986 out of 115,085 questions, which means that
almost 40% of questions had OOV words. All question containing OOV
words were discarded from testing process. We tested the semantic group on
16,968 questions and the part of the corpus testing syntactic properties was
measured on 52,018 questions.

Only 10 out of 353 questions were OOV for the WordSim353 corpus and
all 65 questions of RG65 were in vocabulary. Unknown words in Word-
Sim353 were represented as word vector averaged from 10 least common
words in vocabulary.

Semantic tests give overall poor performance on all tested models, as we
can see in Table 4.6. The opposite is true for English, where semantic tests
usually give similar scores as syntactic tests. This behavior we already saw
on Czech corpus presented in [Svoboda and Brychćın, 2016]. It seems that
free word order and other properties of highly inflected languages from the
Slavic family have a big impact on the performance of current state-of-the-art
word embeddings methods.
From results of City-state and City-state-USA category it can be seen that
knowledge of the topic in training data has significant impact on performance
of a model. We wanted to show differences between two similar categories
in case we have an insufficient amount of training data covering a particu-
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lar topic. Category City-state is showing that model is able to carry such
knowledge – if the topic is sufficiently represented in a training data, the
model is able to carry this type of information. This behavior is seen in
regions from Croatia mentioned in many articles on Croatian Wikipedia, but
this was not a case with states from USA. All questions of City-state were
covered, but only around 50% of questions in category City-state-USA were
in vocabulary. On categories Country-world and EU-cities-states it can be
seen that there is no difference between knowledge about states and main
cities from EU again state-city pairs from all over the world. Another very
poor performance gives group Currency, but this group is usually weak across
all languages and shows the weaknesses of the model.

Syntactic tests give better performance than tests oriented to semantic,
but they still have significantly worse performance than on English. This
part of corpus includes language-specific group of tests – such as Verbs-
pastMale/Female, Nationality-man/female. Simple Past-tense tests gives
surprisingly high score – similarly it was also with Czech language in [Svoboda
and Brychćın, 2016]. We could say, that languages from Slavic family tends
to have easier patterns for past tense. From language-specific groups we see
that slightly better score is given in categories with word pairs in the mas-
culine form, these results also corresponds with the fact that there are more
articles written in masculine form in the training data.

4.4 Cross-lingual Word Analogies

Lately, research in Distributional Semantics is moving beyond monolingual
representations. The research is motivated mainly by two factors:

1. cross-lingual semantic representation enables reasoning about word
meaning in multilingual contexts, which is useful in many applications
(crosslingual information retrieval, machine translation, etc.)

2. it enables transferring of knowledge between languages, especially from
resourcerich to poorly-resourced languages.

In [Brychćın et al., 2019] we experiment with six languages within differ-
ent language families, including English, German, Spanish, Italian, Czech,
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and Croatian. State-of-the-art monolingual semantic spaces are transformed
into a shared space using dictionaries of word translations. We compare
several linear transformations and rank them for experiments with mono-
lingual (no transformation), bilingual (one semantic space is transformed to
another), and multilingual (all semantic spaces are transformed onto English
space) versions of semantic spaces. We show that tested linear transform-
ations preserve relationships between words (word analogies) and lead to
impressive results. We achieve average accuracy of 51.1%, 43.1%, and 38.2%
for monolingual, bilingual, and multilingual semantic spaces.

Several approaches for inducing cross-lingual semantic representation (i.e.,
unified semantic space for different languages) have been proposed in recent
years, each requiring a different form of cross-lingual supervision [Upadhyay
et al., 2016]. They can be roughly divided into three categories according
to the level of required alignment: a) document-level alignments [Vulić and
Moens, 2016], b) sentence-level alignments [Levy et al., 2017], and c) word-
level alignments [Mikolov et al., 2013b].

We focus on the last case, where a common approach is to train monolin-
gual semantic spaces independently of each other and then to use bilingual
dictionaries to transform semantic spaces into a unified space. Most related
works rely on linear transformations [Mikolov et al., 2013b, Faruqui and Dyer,
2014, Artetxe et al., 2016] and profit from weak supervision.

4.5 Conclusion

We made an evaluation of Croatian and Czech word embeddings. New cor-
pora are derived from the original Word2Vec. Additionally, some of the spe-
cific linguistic aspects of the Slavic family language were added. We experi-
mented with state-of-the-art methods of word embeddings, namely, CBOW,
Skip-gram, GloVe and FastText (see Chapter 7 for Czech results). Mod-
els have been trained on a new robust Czech and Croatian analogy corpus.
WordSim353 and RG65 corpora were translated from English to Croatian,
in order to perform basic semantic measurements. Results show that models
are able to create meaningful word representation.

However, it is important to note that paper in this chapter presents the
first comparative study of word embeddings for Czech, Croatian and English,
and therefore, new insights for NLP community according to the behavior
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of the Czech and Croatian word embeddings. Both languages belong to the
group of Slavic languages and have only preliminary and basic knowledge
insights from word embeddings. In addition, another contribution of this
work is certainly new data sets for the Croatian/Czech languages, which are
publicly available from: <https://github.com/Svobikl/>. These are also
the first parallel English-Croatian/Czech word embeddings datasets.

As the results showed, the Czech/Croatian models do not achieve such
good results as for English. Following this statement, we would like to point
out that future research should be focused on model improvements for Slavic
languages. The difference in English and Slavic language morphology is huge.
Compared to the Czech/Croatian language, English language morphology
is considerably poorer. Czech/Croatian is a highly inflected language with
mostly free word ordering in sentence structure, unlike English, which is in-
flectional language and has a strict word ordering in a sentence. These differ-
ences are reflected in the results of embeddings modeling. Models give good
approximations to English, they are better tailored to the English language
morphology and better match the structure of such a language.

In future research, it would be worthwhile to explore, which Slavic lan-
guages specificities could be advisable to incorporate into models, in order to
achieve better modeling of complex morphological structures. On the other
hand, corpora preprocessing which simplifies morphological variations, such
as stemming or lemmatization procedures, could also have an effect on word
embeddings and should be one of the future research directions.

One of the possible directions to achieve better performance is presented
in Chapter 7.
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In [Brychćın and Svoboda, 2016] we present our UWB1 system for Semantic
Textual Similarity (STS). Given two sentences, the system estimates the de-
gree of their semantic similarity. In the monolingual task, our system achieve
mean Pearson correlation 75.7% compared with human annotators. Our sys-
tem was ranked second among 113 submitted systems. In the cross-lingual
task, our system has correlation of 86.3% and is ranked first among 26 sys-
tems. It shows how well simple Tree LSTM neural network architecture
and other syntax, semantic and linguistic features can perform together and
represent a meaning of sentence. The system was compared with complex
state-of-the-art algorithms for the meaning representation. We also experi-
mented with Paragraphs vector models and linear combination of word vec-
tors (CBOW model) representing the sentence.

Clustering of word vectors and Paragraphs vector models showed sig-
nificant improvement in sentiment analysis at SemEval2016 competition in
[Hercig et al., 2016b] and also in recent work targeted on Czech [Hercig et al.,
2016a]. Neural network based Word Embedding models has helped the previ-
ous model originally developed for SemEval2014 competition [Brychćın et al.,
2014] to get into first position on several tasks during the competition of the
year 2016.

So far, most of the STS research has been devoted to English. In [Svoboda
and Brychćın, 2018a] we present the first Czech dataset for STS. The Corpus
contains 1425 manually annotated pairs. Czech is highly inflected language
and is considered challenging for many NLP tasks and STS is one of the
core NLP disciplines. The dataset is publicly available for the research com-
munity.
We adapt our UWB system (originally for English) and experiment with new
Czech dataset. Our UWB system achieves very promising results and can
serve as a strong baseline for future research.

1University of West Bohemia
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The structure of this Chapter is following. Section 5.1 puts our work into
the context of the state of the art and introduces the SemEval competition.
In Section 5.2 we deal with Semantic Textual Similarity task on English
language, respective Section 5.3 for Czech. We define our model features in
Sections 5.2.1 and 5.2.2. The experimental results presented and discussed
in Sections 5.2.5 and 5.2.6, respective Sections 5.3.4 and 5.3.5 for Czech. We
conclude in Section 5.4.

5.1 Introduction

Semantic Textual Similarity (STS) is one of the core disciplines in NLP.
Assume, we have two textual pairs (word phrases, sentences, paragraphs, or
full documents), the goal is to estimate the degree of their semantic similarity.

STS systems are usually compared with the manually annotated data.
In the case of SemEval the data consist of pairs of sentences with a score
between 0 and 5 (higher number means higher semantic similarity). For
example, English pair

Two dogs play in the grass.

Two dogs playing in the snow.

has a score 2.8, i.e. the sentences are not equivalent, but share some inform-
ation.

This year, SemEval’s STS is extended with the Spanish-English cross-
lingual subtask, where e.g. the pair

Tuve el mismo problema que tú.

I had the same problem.

has a score 4.8, which means nearly equivalent.

Each year STS is one of the most popular tasks at SemEval competition.
The best STS system at SemEval 2012 [Bär et al., 2012] used lexical similarity
and Explicit Semantic Analysis (ESA) [Gabrilovich and Markovitch, 2007].
In SemEval 2013, the best model [Han et al., 2013] used semantic models such
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as Latent Semantic Analysis (LSA) [Deerwester et al., 1990], external inform-
ation sources (WordNet) and n-gram matching techniques. For SemEval 2014
and 2015 the best system comes from [Sultan et al., 2014a,b, 2015]. They
introduced a new algorithm, which aligns the words between two sentences.
Overview of systems participating in previous SemEval competitions can be
found in [Agirre et al., 2012, 2013, 2014, 2015].

The best performing systems from previous years are based on various
architectures benefiting from lexical, syntactic, and semantic information.
In [Brychćın and Svoboda, 2016] we try to use the best techniques presented
during last years, enhance them, and combine into a single model. Later,
in [Svoboda and Brychćın, 2018a] we present the first Czech dataset for STS
and adapt our model to this language as well.

5.2 Semantic Textual Similarity with English

This section describes various techniques for estimating the text similarity
on English language and later bring our novel approach to do so.

5.2.1 Lexical and Syntactic Similarity

This section presents the techniques exploiting lexical and syntactic inform-
ation in the text. Some of them have been successfully used by [Bär et al.,
2012]. Many of the following techniques benefit from the weighing of words
in a sentence using Term Frequency – Inverse Document Frequency (TF-
IDF) [Manning et al., 1999].

• Lemma n-gram overlaps: We compare word n-grams in both sen-
tences using Jaccard Similarity Coefficient (JSC) [Manning et al., 1999].
We do it separately for different orders n ∈ {1, 2, 3, 4}. Containment
Coefficient [Broder, 1997] is used for orders n ∈ {1, 2}. We extend ori-
ginal metrics by weighing of n-grams. We define this weight as a sum
of IDF values of words in n-gram. N -gram match is not counted as
one but as the weight of this n-gram. According to our experiments,
this weighing significantly improves performance.

We also use information about the length of Longest Common Sub-
sequence compared to the length of the sentences.
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• POS n-gram overlaps: In similar way as for lemmas, we calculate
Jaccard Similarity Coefficient and Containment Coefficient for n-grams
of part-of-speech (POS) tags. Again, we use n-gram weighing and n ∈
{1, 2, 3, 4}. These features exploit syntactic similarity of the sentences.

• Character n-gram overlaps: Similarly to lemma or POS n-grams,
we use Jaccard Similarity Coefficient and Containment Coefficient for
comparing common substrings in both sentences. Here the IDF weights
are computed on character n-gram level. We use n-gram weighing and
n ∈ {2, 3, 4, 5}.
We enrich these features also by Greedy String Tiling [Wise, 1996]
allowing to deal with reordered text parts and by Longest Common
Substring (LCS) measuring the ratio between LCS and length of the
sentences.

• TF-IDF: For each word in a sentence we calculate TF-IDF. Given the
word vocabulary V , the sentence is represented as a vector of dimension
|V | with TF-IDF values of words present in the sentence. The simil-
arity between two sentences is expressed as cosine similarity between
corresponding TF-IDF vectors.

5.2.2 Semantic similarity

In this section we describe in detail the techniques that we use in our STS
model. These techniques are more semantically oriented and are based on
the Distributional Hypothesis (see Chapter 2).

• Semantic composition: This approach is based on Frege’s principle
of compositionality, which states that the meaning of a complex ex-
pression is determined as a composition of its parts, i.e. words. To
represent the meaning of a sentence we use simple linear combination
of word vectors, where weights are represented by the TF-IDF values
of appropriate words. We use state-of-the-art word embedding meth-
ods, namely Continuous Bag of Words (CBOW) [Mikolov et al., 2013a]
and Global Vectors (GloVe) [Pennington et al., 2014]. We use cosine
similarity to compare vectors.
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• Paragraph2Vec: Paragraph vectors are described in Section 3.8.6.
The paragraph token acts as a memory that remembers what inform-
ation is missing from the current context. We use cosine similarity for
comparing two paragraph vectors.

• Tree LSTM: is described in more details in Section 3.8.7. We use
tree-structured representation of LSTM presented in [Tai et al., 2015a].
Tree model represents the sentence structure. RNN processes input
sentences of variable length via recursive application of a transition
function on a hidden state vector ht. For each sentence pair it creates
sentence representations hL and hR using Tree-LSTM model. Given
these representations, model predicts the similarity score using a neural
network considering distance and angle between vectors.

• Word alignment: Method presented in [Sultan et al., 2014a,b, 2015]
has been very successful in last years. Given two sentences we want
to compare, this method finds and aligns the words that have similar
meaning and similar role in these sentences.

Unlike the original method, we assume that not all word alignments
have the same importance for the meaning of the sentences. The weight
of a set of words A is a sum of word’s IDF values ω(A) =

∑
w∈A

IDF (w),

where w is a word. Then the sentence similarity is given by

sim (S1,S2) =
ω(A1) + ω(A2)

ω(S1) + ω(S2)
, (5.1)

where S1 and S2 are input sentences (represented as sets of words). A1

and A2 denote the sets of aligned words for S1 and S2, respectively.
The weighting of alignments improves our results significantly.

5.2.3 Similarity Combination

The combination of STS techniques is in fact a regression problem where the
goal is to find the mapping from input space xi ∈ Rd of d-dimensional real-
valued vectors (each value xi,a, where 1 ≤ a ≤ d represents the single STS
technique) to an output space yi ∈ R of real-valued targets (desired semantic
similarity). These mapping are learned from the training data {xi, yi}Ni=1 of
size N . There exist a lot of regression methods. We experiment with several
of them:

55



Semantic Textual Similarity Semantic Textual Similarity with English

• Linear Regression: Linear Regression (LR) is probably the simplest
regression method. It is defined as yi = λxi, where λ is a vector of
weights that can be estimated for example by the least squares method.

• Gaussian processes regression: Gaussian process regression (GPR)
is nonparametric kernel-based probabilistic model for non-linear regres-
sion [Rasmussen and Williams, 2005].

• SVM Regression: We use Support Vector Machines (SVM) for re-
gression with the radial basis functions (RBF) as a kernel. We use
improved Sequential Minimal Optimization (SMO) algorithm for para-
meter estimation introduced in [Shevade et al., 2000].

• Decision Trees Regression: The output of the Decision Trees Re-
gression (DTR) [Breiman et al., 1984] is predicted by the sequence of
decisions organized in a tree.

• Perceptron Regression: Multilayer Perceptron (MLP) is feed-forward
artificial neural network that uses back-propagation to classify instances.

5.2.4 System Description

This section describes the settings of our final STS system. For monolingual
STS task we submitted two runs. The first is based on supervised learning
and the second is an unsupervised system:

• UWB sup: Supervised system based on SVM regression with RBF
kernel. We use all techniques described in 5.3.2 as features for regres-
sion. During the regression we also use this simple trick: we create
a set of additional features represented as a product of each pair of
features xi,a × xi,b for a 6= b. We do so to better model the dependen-
cies between single features. Together, we have 301 STS features. The
system is trained on all SemEval datasets from prior years (see Table
5.1).

• UWB unsup: Unsupervised system based only on weighted word
alignment (Section 5.2.2).

We handled the cross-lingual STS task with Spanish-English bilingual sen-
tence pairs in two steps. Firstly, we translated Spanish sentences to English
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Corpora Pairs
SemEval 2012 Train 2,234
SemEval 2012 Test 3,108
SemEval 2013 Test 1,500
SemEval 2014 Test 3,750
SemEval 2015 Test 3,000

Table 5.1: STS gold data from prior years.

via Google translator. The English sentences were left untouched. Secondly,
we used the same STS systems as for monolingual task.

For preprocessing pipeline we used the Stanford CoreNLP library [Man-
ning et al., 2014], i.e. for tokenization, lemmatization and POS tagging.
Most of our STS techniques (apart from word alignment and POS n-gram
overlaps) work with lemmas instead of word forms (this leads to slightly bet-
ter performance). Some of our STS techniques are based on unsupervised
learning and thus they need large unannotated corpora to train. We trained
Paragraph2Vec, GloVe and CBOW models on One billion word benchmark
presented in [Chelba et al., 2014]. Dimension of vectors for all these models
was set to 300. TF-IDF values were also estimated on this corpus.

All regression methods mentioned in Section 5.2.3 are implemented in
WEKA [Hall et al., 2009].

5.2.5 Results

This section presents the results of our systems for both English monolingual
and Spanish-English cross-lingual STS task of SemEval 2016. In addition
we present detailed results on the test data from SemEval 2015. As an
evaluation measure we use Pearson correlation between system output and
human annotations.

5.2.6 Discussion

In the tables we present the correlation for each individual test set. Column
Mean represents the weighted sum of all correlations, where the weights are
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Model \Corpora
Answers- Answers-

Belief Headlines Images Mean
forums students

Winner of SemEval 2015 0.7390 0.7725 0.7491 0.8250 0.8644 0.8015
Linear regression – all lexical 0.7053 0.7656 0.7190 0.7887 0.8246 0.7728
Linear regression – all syntactic 0.3089 0.3165 0.4570 0.2900 0.1862 0.2939
Tf-idf 0.5629 0.6043 0.6762 0.6603 0.7530 0.6593
Tree LSTM 0.4181 0.5490 0.5863 0.7324 0.8168 0.6501
Paragraph2Vec 0.5228 0.7017 0.6643 0.6562 0.7385 0.6725
CBOW composition 0.6216 0.6846 0.7258 0.6927 0.7831 0.7085
GloVe composition 0.5820 0.6311 0.7164 0.6969 0.7972 0.6936
Weighted word alignment 0.7171 0.7752 0.7632 0.8179 0.8525 0.7964
Linear regression 0.7411 0.7589 0.7739 0.8193 0.8568 0.7982
Gaussian processes regression 0.7363 0.7701 0.7846 0.8393 0.8749 0.8112
Decision trees regression 0.6700 0.6991 0.7281 0.7792 0.8206 0.7495
Perceptron regression 0.7060 0.7481 0.7467 0.8093 0.8594 0.7858
SVM regression 0.7375 0.7678 0.7846 0.8398 0.8776 0.8116

Table 5.2: Pearson correlations on SemEval 2015 evaluation data and com-
parison with the best performing system in this year.

Model \Corpora
Answer-

Headlines Plagiarism Postediting
Question-

Mean
answer question

UWB sup 0.6215 0.8189 0.8236 0.8209 0.7020 0.7573
UWB unsup 0.6444 0.7935 0.8274 0.8121 0.5338 0.7262

Table 5.3: Pearson correlations on monolingual STS task of SemEval 2016.

News
Multi-

Mean RR TR
Source

UWB sup 0.9062 0.8190 0.8631 1 1
UWB unsup 0.9124 0.8082 0.8609 2 1

Table 5.4: Pearson correlations on cross-lingual STS task of SemEval 2016.
RR denote the run (system) ranking and TR denote our team ranking.
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given by the ratio of data set length compared to the full length of all datasets
together. The mean value of Pearson correlations is also used as the main
evaluation measure for ranking the system submissions.

In the Table 5.2 we show the results of combined features for the test
data from 2015. We trained our systems on SemEval STS data from years
2012–2014. We provide comparison of individual STS techniques as well as
of different types of regressions. Clearly, the SVM regression and Gaussian
processes regression perform best and with our feature set it is 1% better than
the winning system of SemEval 2015. The best performing single technique
is indisputably the weighed word alignment correlated by 79.6% with gold
data. Note that without weighing, we achieved only 74.2% on this data.
The original result from authors of this approach was, however, 79.2%. This
is probably caused by some inaccuracies in our implementation. Anyway,
the weighing improves the correlation even if we compare it to the original
results. Note that for estimating regression parameters we use the data from
all years apart from 2015 (see Table 5.1).

The results for the monolingual STS task of SemEval 2016 are shown in
Table 5.3. We can see that our supervised system (SVM regression) per-
forms approximately 3% better than the unsupervised one (weighed word
alignment). On the data from SemEval 2015 this difference was not so sig-
nificant (approximately 1.5%).

Finally, the results for cross-lingual STS task of SemEval 2016 are shown
in Table 5.4. We achieved very high correlations. We expected much lower
correlation through the fact that we use the machine translation via Google
translator causing certainly some inaccuracies (at least in the syntax of the
sentence). On the other hand, it proves that our model efficiently generalizes
the learned patterns. Here, there is almost no difference in performance
between supervised and unsupervised version of submitted systems. Our
submitted runs finished first and second among 26 competing systems.

5.3 Semantic Textual Similarity with Czech

For Czech there are corpora for measuring the individual words embeddings
properties, such as: RG-65 [Krcmár et al., 2011], WS-353 [Cinková, 2016]
and now Czech Word analogy corpora – see Chapter 4, but no corpora for
measuring sentence similarity.
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We introduce new Czech dataset for STS task. The corpora have been
divided into 925 training and 500 testing pairs (see Table 5.5) translated to
Czech by four native speakers from previous SemEval years. In SemEval
competition the data consist of pairs of sentences with a score between 0 and
5 (higher number means higher semantic similarity). For example, Czech
pair:

Černobı́lý pes se dı́vá do kamery2

Černobı́lý býk se dı́vá do kamery3

has a score of 2, sharing information about camera, but it is about different
animal. We kept annotated similarities unchanged.

Corpora Pairs
SemEval 2014-15 Images CZ – Train 550
SemEval 2013-15 Headlines CZ – Train 375
SemEval 2014-15 Images CZ – Test 300
SemEval 2013-15 Headlines CZ – Test 200

Table 5.5: Corpora with STS gold sentences in Czech.

5.3.1 Data preprocessing

To deal with Czech rich morphology, we use lemmatization [Straková et al.,
2014] and stemming [Brychćın and Konoṕık, 2015, Dolamic and Savoy, 2009]
to preprocess the training data. Stemming and lemmatization are two re-
lated fields and are among the basic preprocessing techniques in NLP. Both
methods are often used for similar purposes: to reduce the inflectional word
forms in a text. Stemming usually refers to a crude heuristic process that
removes the ends of words in the hope of achieving this goal correctly most
of the time, and often includes the removal of derivational affixes. Product
of lemmatization is a lemma which is a valid linguistic unit (the base or
dictionary form of a word).

2A black and white dog looking at the camera
3The black and white bull is looking at the camera
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5.3.2 System Description

For estimating the text similarity on Czech we used some of techniques
presented in Section 5.3.2.

We summarize these basic features as follows:

• IDF weighted lemma n-gram overlapping, measured with Jaccard
Similarity Coefficient (JSC).

• IDF weighted POS n-gram overlapping, measured with JSC.

• Character n-gram overlapping, measured with JSC.

• TF-IDF as standalone feature.

• String features, such as longest common subsequence, longest com-
mon substring where similarity is computed as fraction of longest com-
mong subsequence/substring divided by the length of both sentences.

From semantically oriented methods we use state-of-the-art word embed-
ding methods: CBOW and SkipGram [Mikolov et al., 2013a] and compare its
semantic composition properties with recently published [Bojanowski et al.,
2017] method that enriches word vectors with subword information. This
method promises significant improvement of word embeddings quality espe-
cially for languages with rich word morphology.

We train all three above mentioned methods on Czech Wikipedia and
provide experiments on datasets for word similarity (WS-353 [Cinková, 2016]
and RG-65 [Krcmár et al., 2011]) and word analogy [Svoboda and Brychćın,
2016]. Results are shown in Table 5.6.

Word similarity Word
Model WS-353 RG-65 analogy

FastText-SkipGram 300d wiki 67.04 67.07 71.72
FastText-CBOW 300d wiki 40.46 58.35 73.23

CBOW 300d wiki 54.31 47.03 58.69
SkipGram 300d wiki 65.93 68.09 53.74

Table 5.6: Word similarity and word analogy results on Czech Wikipedia.
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5.3.3 Czech STS model

The combination of STS techniques mentioned in Sections 5.2.1 and 5.2.2 is
a regression problem that is already described in Section 5.2.3. We experi-
ment similarly to English with three regression methods:

• Linear Regression (LR),

• Gaussian Process (GP),

• Support Vector Machines (SVM) with Sequential Minimal Optimiza-
tion (SMO) algorithm [Platt, 1998].

The system was trained on 925 pairs and further tested on 500 pairs (see
Table 5.5).

We use algorithms for the meaning representation in the same manner as
we have used for English at SemEval 2016 (see Section 5.2). Methods benefit
from various sources of information, such as lexical, syntactic, and semantic.

This section describes all measured settings and their reasons. The former
is a traditional STS task with paired monolingual sentences originally trans-
lated from English data sources to Czech followed by cross-lingual test. Gold
data were evaluated:

• Lexical, syntactic and semantic features: We evaluated each fea-
ture from three categories individually in the same manner as with
English to see influence of particular feature (see Table 5.9).

• Preprocessing tests: Most of our STS techniques (apart from word
alignment and POS n-gram overlaps) work with lemmas instead of word
forms (this leads to better performance). We tested all features with
three techniques of representing individual tokens in sentence – word,
stemming and lemma (see Table 5.10).

• Crosslingual test: Cross-lingual STS involves assessing paired Eng-
lish and Czech sentences. Cross-lingual STS measure enables an altern-
ative way to comparing text. Due to lack of the supervised training
data in the particular language, cross-lingual task is getting still higher
attention during last years.
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We handled with the cross-lingual STS task with Czech-English bilingual
sentence pairs in two steps. Firstly, we translated original Czech sentences
to English via Google translator. We did not use original-matching EN sen-
tences, we did not want to involve potential manual processing of translation
for cross-lingual evaluation and that was also in most cases the way, how
cross-lingual task was evaluated on SemEval2016. However, the situation is
changing with new bilingual word embeddings methods coming up in recent
years (see our research presented in Section 4.4). The Czech sentences were
left untouched. Secondly, we used the same STS system as for monolingual
task. Because we have much bigger training set for English sentences, we
wanted to see if such data-set will help us in performance on Czech, results
can be seen in Table 5.7.

Some of our STS techniques are based on unsupervised learning and thus
they need large unannotated corpora to train. We trained CBOW, Skipgram
and FastText models on Czech Wikipedia. Wikipedia dump comes from
05/10/2016 with 847 million tokens, resulting models has vocabulary of size
773,952. This dump has been cleaned from any Wiki Markup tags and from
HTML tags. Dimension of vectors for all these models was set to 300.

Model \Corpora Headlines Images
Monolingual test 0.7999 0.7887
Czech-English crossling. (850 pairs) 0.8060 0.7583
Czech-English crossling. (3000 pairs) 0.8198 0.7649

Table 5.7: Comparison of Pearson correlations on monolingual STS task
versus crosslingual STS task with automatic translation to English. Cross-
lingual model is trained on data from SemEval 2014 and 2015.

5.3.4 Results

Based on the learning curve (see Figure 5.1), the system needs at least 170
pairs to set weights of individual features, therefore we can state that our
system has reasonable amount of training data for learning – this theory is
also supported by larger amount of training data thanks to cross-lingual test
(see Table 5.7).

We have achieved the best score of 78.87% on short Images labels with
simple Linear regression. With such short sentences we will not benefit from
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a larger dataset, as can be seen in Table 5.7 from our evaluation of cross-
lingual test with the much larger dataset base (3000 pairs) that we have
for English. We benefit from larger corpora on longer Headlines sentences,
where we have achieved a score of 81.98%.

Model \Corpora Headlines Images
Our best at SemEval 2016 (EN) 0.8398 0.8776
Linear regression 0.7918 0.7887
Gaussian processes regression 0.7986 0.7829
SVM regression 0.7999 0.7856

Table 5.8: Pearson correlations on Czech evaluation data and comparison
with the second best system from SemEval 2016 on English data.

Model \Corpora Images Headlines
Longest Common Subsequence 0.6586 0.6993
Longest Common Substring 0.4998 0.5886
Greedy String Tiling 0.7005 0.7983
all string features 0.7379 0.7932
IDF weighted word n-grams 0.5979 0.6432
IDF weighted character n-grams 0.6885 0.7869
POS n-grams 0.5331 0.5618
TF-IDF 0.5785 0.5892
CBOW composition 0.6774 0.6355
SkipGram composition 0.6299 0.6785
Char-SkipGram composition 0.5966 0.6396
Char-CBOW composition 0.4958 0.5102

Table 5.9: LR test of individual features, word base is lemma.

5.3.5 Discussion

Interesting results can be seen in Table 5.9 for standalone vector composition.
The standard Skipgram model seems to be more suitable to carry the meaning
of a sentence as a simple linear combination of word vectors, despite the fact
that it has lower score on similarity measurements of individual words (see
Table 5.6).
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Czech is a language with rich morphology, as it can be seen from Table 5.9,
so string features plays important role, especially Greedy String Tailing. The
more matches found in words endings, the higher success of reasoning about
two sentences. Results of testing lemma versus stemming techniques give
similar score. Of course without preprocessing we get slightly lower score, this
can be seen on n-gram features, where stemming is performing the best (see
Table 5.10). When the model is covered by syntactic features, the situation
for lemma and stemming techniques is nearly equal.

Together with presented Czech corpora we have original matching sen-
tences in English, so our corpora can be used for new STS cross-lingual task
without manually translating the sentences to English and can be evaluated
directly with bilingual word embeddings methods [Vulić and Moens, 2015,
Gouws and Søgaard, 2015] in future. These methods are getting popular in
recent years and take a key part in the current SemEval competitions.

[Brychćın and Svoboda, 2016] showed that use of syntactic parse tree and
training with tree-based LSTM [Tai et al., 2015b] does not provide benefit
on English where classic bag-of-words semantic approaches does better job,
however this situation might change on highly inflected languages as Czech
and might be worth testing.
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Figure 5.1: Pearson correlation achieved by linear regression with different
training data size (ranging between 50 and 850 pairs).
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Model features \Corpora Correlation
ngram features (word) 0.6140
ngram features (lemma) 0.6959
ngram features (stem) 0.7319
ngram + string features (word) 0.7732
ngram + string features (lemma) 0.7897
ngram + string features (stem) 0.7829
all previous + syntactic (word) 0.7704
all previous + syntactic (lemma) 0.7860
all previous + syntactic (stem) 0.7865
all + CBOW composition (word) 0.7796
all + SkipGram composition (word) 0.7814
all + Char-SkipGram composition (word) 0.7774
all + CBOW composition (lemma) 0.7917
all + SkipGram composition (lemma) 0.7924
all + CBOW composition (stem) 0.7910
all + SkipGram composition (stem) 0.7939

Table 5.10: Pearson correlations on Czech evaluation data and comparison
with the second best system from SemEval 2016 on English data. Test made
with linear regression.

5.4 Conclusion

In this chapter we described our UWB system participating in SemEval 2016
competition in the task of Semantic Textual Similarity. We participated on
both monolingual and cross-lingual parts of competition.

We introduced a new dataset for semantic textual similarity of Czech
sentences. We created strong baseline based on state-of-the-art approaches.
Our baseline on Czech achieved mean Pearson correlation of 80% (compared
with 88% achieved on English data).

The Czech STS dataset with its original matching sentences in English
is available for free at following link: <https://github.com/Svobikl/sts-
czech.git>.

66



6 Aspect-Based Sentiment Analysis

In [Hercig et al., 2016b] we build a system for ABSA using distibutional
semantic models on English, further in [Hercig et al., 2016a] we examine the
effectiveness of several unsupervised methods for latent semantics discovery
as features for ABSA on Czech language. We use the shared task definition
from SemEval 2014.

In our experiments we use labeled and unlabeled corpora within the res-
taurants domain for two languages: Czech and English. We show that our
models improve the ABSA performance and prove that our approach is worth
exploring. Moreover, we achieve new state-of-the-art results for Czech.

Another important contribution of our work is that we created two new
Czech corpora within the restaurant domain for the ABSA task: one labeled
for supervised training, and the other (considerably larger) unlabeled for
unsupervised training. The corpora are available to the research community.

The structure of this Chapter is as follows: Section 6.1 puts our work
into the context of the state of the art and introduces the ABSA task. Czech
ABSA corpora are defined in Section 6.1.2, our model features in Sections 6.2.
The experimental results are presented and discussed in Section 6.3. We
conclude in Section 6.4.1.

6.1 Introduction

The majority of recent approaches to sentiment analysis try to detect the
overall polarity of a sentence (or a document) regardless of the target entit-
ies (e.g. restaurants, laptops) and their aspects (e.g. food, price, battery,
screen). In contrast, the current approach, ABSA identifies the aspects of
a given target entity and estimates the sentiment polarity for each mentioned
aspect.
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In the context of the ABSA task, the bottleneck is the size of the an-
notated data, which should be considerably larger in order to simulate real
world applications. Web content such as blogs, forums, reviews etc. present
a large amount of easily accessible domain-relevant unlabeled data which we
could use to add specific domain knowledge essential for improving the state
of the art of sentiment analysis. Thus we try to demonstrate the usefulness
of these data.

There have been several attempts in Czech as well [Veselovská et al., 2012,
Brychćın and Habernal, 2013, Habernal et al., 2013], but all were focused on
the global (sentence or document level) sentiment.

The first attempt at aspect-based sentiment analysis in Czech was presen-
ted in [Brychćın et al., 2014]. This work provides an annotated corpus of 1244
sentences from the restaurant reviews domain and a baseline model achieving
68.65% F-measure in aspect term extraction, 74.02% F-measure on aspect
category extraction, 66.27% accuracy in aspect term polarity classification,
and 66.61% accuracy in aspect category polarity classification. The work
in [Tamchyna et al., 2015] creates a dataset in the domain of IT product
reviews. This dataset contains 200 annotated sentences and 2000 short seg-
ments, both annotated with sentiment and marked aspect terms (targets)
without any categorization and sentiment toward the marked targets.

The current state of the art of aspect-based sentiment analysis methods
for English was presented at the latest SemEval ABSA tasks namely the
SemEval 2015 – 2016 [Pontiki et al., 2015, 2016]. The detailed description of
each system is beyond the scope of this thesis.

Our main goal is twofold: to show how unsupervised methods can improve
an ABSA system in different languages; and the creation of sufficiently large
corpora for the ABSA task in Czech.

6.1.1 The ABSA task

Aspect-based sentiment analysis firstly identifies the aspects of the target
entity and then assigns a polarity to each aspect. There are several ways to
define aspects and polarities. We use the definition based on the SemEval
2014’s ABSA task, which distinguishes two types of aspect-based sentiment:
aspect terms and aspect categories.
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Subtask 1: Aspect term extraction

The aspect term extraction is based on experiences in NER [Konkol and
Konoṕık, 2013, Konkol et al., 2015b]. The NER task tries to find special ex-
pressions in a text and classify them into groups. The aspect term extraction
task is very similar, because it also tries to identify special expressions. In
contrast with NER, these expressions are not classified, and have different
properties, e.g. they are not so often proper names.

We have decided to use Conditional Random Fields (CRF) [Lafferty et al.,
2002], because they are regarded as the state-of-the-art method for NER. The
baseline feature set consists of W, BoW, B, LD, and A. In our experiments,
we extend this with the semantic features C and CB. The context for this
task is defined as a five word window centred at the currently processed word.

Subtask 2: Aspect term polarity

Our aspect term polarity detection is based on the Maximum Entropy clas-
sifier, which works very well in many NLP tasks, including document-level
sentiment analysis [Habernal et al., 2014].

For each aspect term, we create a context window ten words to the left
and right of the aspect term. The features for each word and bigram in this
window are weighted based on their distance from the aspect term given by
weighing function. This follows the general belief that close words are more
important than distant words, which is used in several methods [Lund and
Burgess, 1996].

We have tested several weighing functions and selected the Gaussian func-
tion based on the results. The expected value µ and the variance σ2 of the
Gaussian function were found experimentally on the training data. We omit
the description of these experiments, as they are outside the scope of this
thesis.

The feature set for our baseline system consists of BoW and BoB, and
we further experiment with BoC and BoCB.
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Subtask 3: Aspect category extraction

The aspect category extraction is based on research in multi-label document
classification [Brychćın and Král, 2014]. The multi-label document classific-
ation system tries to assign several labels to a document. We do exactly the
same, although our documents are only single sentences and the labels are
aspect term categories.

We use one binary Maximum Entropy classifier for each category. It de-
cides whether the sentence belongs to the given category. The whole sentence
is used as the context.

The baseline uses the features BoW, BoB, and T. We try to improve it
with BoC and BoCB.

Subtask 4: Aspect category polarity

The aspect category task is very similar to document-level sentiment analysis
[Habernal et al., 2014] when the document is of similar length. We create
one Maximum Entropy classifier for each category. For a given category, the
classifier uses the same principle as in global sentiment analysis. Of course,
the training data are different for each category. The context in this task is
the whole sentence.

We use the following features as a baseline: BoW, BoB, and T. In our
experiments, we extend this with BoC and BoCB.

6.1.2 ABSA Corpora

The methods described in Section 6.3.1 require large unlabeled data in order
to be trained. In [Hercig et al., 2016a] we used two types of corpora, labeled
and unlabeled for both Czech and English. The properties of these corpora
are shown in Table 6.1.

Labeled corpora for both languages are required to train the classifiers (see
Section 6.2). For English, we use the corpora introduced in SemEval 2014
Competition Task 4 [Pontiki et al., 2014]. The main criterion in choosing the
dataset was the dataset size (see Table 6.1).

70



Aspect-Based Sentiment Analysis Introduction

Dataset Sentences Targets Categories Tokens Words

English labeled 2016 train + test 2.7k 2.5k 3.4k 39.1k 4.4k

English labeled 2015 train + test 2k 1.9k 2.5k 29.1k 3.6k

English labeled 2014 train 3k 3.7k 3.7k 46.9k 4.9k

Czech labeled 2014 train 2.15k 3.3k 3k 34.9k 7.8k

English unlabeled 409k – – 27M 121k

Czech unlabeled 514k – – 15M 259k

Table 6.1: Properties of the SemEval ABSA tasks and corpora used in the
experiments in terms of the number of sentences, aspect terms (targets),
aspect categories (categories), tokens and unique words

For Czech, we extended the dataset from Steinberger et al. [2014], nearly
doubling its size. The annotation procedure was identical to that of the
original dataset. The corpus was annotated by five native speakers. The
majority voting scheme was applied to the gold label selection. Agreement
between any two annotators was evaluated in the same way as we evaluate
our system against the annotated data (taken as the gold standard). This
means we take the output of the first annotator as the gold standard and
the output of the second annotator as the output of the system. The same
evaluation procedure as Pontiki et al. [2014] used, i.e. the F -measure for
the aspect term and aspect category extraction, and the accuracy for the
aspect term and aspect category polarity. The resulting mean values of an-
notator agreement for the Czech labeled corpus are 82.91% (aspect term
extraction), 88.02% (aspect category extraction), 85.71% (aspect term po-
larity) and 88.44% (aspect category polarity). We believe this testifies to the
high quality of our corpus. The corpus is available for research purposes at
<http://nlp.kiv.zcu.cz/research/sentiment>.

The labeled corpora for both languages use the same annotation scheme
and are in the same domain. This allows us to compare the effectiveness of
the used features on the ABSA task for these two very different languages.

The lack of publicly available data in the restaurant domain in Czech
forced us to create a cross-domain unlabeled corpus for Czech. The Czech
unlabeled corpus is thus composed of three related domains: recipes (8.8M
tokens, 57.1%), restaurant reviews (2M tokens, 12.8%), and hotel reviews
(4.7M tokens, 30.1%). We selected these three domains because of their
close relations, which should be sufficient for the purposes of the ASBA task.

The English unlabeled corpus is taken from <http://opentable.com>.
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6.2 ABSA System Description

We use and extend the systems created by Brychćın et al. [2014]. We imple-
mented four separate systems – one for each subtask of ABSA. We further
extended this system and competed in the SemEval 2016 ABSA task and we
were ranked as one of the top performing systems [Hercig et al., 2016b].

The systems share a simple preprocessing phase, in which we use a token-
izer based on regular expressions. The tokens are transformed to lower case.
Punctuation marks and stop words are ignored for the polarity task. In the
case of Czech, we also remove diacritics from all the words, because of their
inconsistent use.

The feature sets created for individual tasks are based on features com-
monly used in similar natural language processing tasks, e.g. named entity
recognition [Konkol and Konoṕık, 2013], document level sentiment analysis
[Habernal et al., 2014], and document classification [Brychćın and Král, 2014].
The following baseline features were used:

Affixes (A) – Affix (length 2-4 characters) of a word at a given position.

Tf-idf (T) – Term frequency – inverse document frequency of a word.

Learned dictionary (LD) – Dictionary of aspect terms from training data.

Words (W) – The occurrence of word at a given position (e.g. previous
word).

Bag of words (BoW) – The occurrence of a word in the context window.

Bigrams (B) – The occurrence of bigram at a given position.

Bag of bigrams (BoB) – The occurrence of a bigram in the context win-
dow.

The baseline feature set is then extended with semantic features. The
features are based on the word clusters created using the semantic models
described in Section 6.3.1. The following semantic features were used:

Clusters (C) – The occurrence of a cluster at a given position.
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Bag of clusters (BoC) – The occurrence of a cluster in the context win-
dow.

Cluster bigrams (CB) – The occurrence of cluster bigram at a given po-
sition.

Bag of cluster bigrams (BoCB) – The occurrence of cluster bigram in
the context window.

Each C (alternatively, CB, BoC, or BoCB) feature can be based on any of
the models from Section 6.3.1. In the description of the systems for individual
tasks, we use simply C to denote that we work with this type of feature. When
we later describe the experiments, we use explicitly the name of the model
(e.g. HAL).

6.3 Experiments

In the following presentation of the results of the experiments, we use the
notation BL for a system with the baseline feature set (i.e. without cluster
features). Cluster features based on HAL are denoted by HAL. For other
semantic spaces, the notation is analogous.

Because Czech has rich morphology we use stemming to deal with this
problem (stemming is denoted as S). Also we use the stemmed versions of
semantic spaces (the corpora used for training semantics spaces are simply
preprocessed by stemming). The system that uses this kind of cluster features
is denoted by S-HAL for the HAL model, and analogously for the other
models.

The union of feature sets is denoted by the operator +. E.g. BL+S-
BL+S-GloVe denotes the baseline feature set extended by stemmed baseline
features and by a stemmed version of GloVe clusters.

The number of clusters for a particular semantic space is always explicitly
mentioned in the following tables.
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6.3.1 Unsupervised Model Settings

All unsupervised models were trained on the unlabeled corpora described in
Section 6.1.2.

The implementations of the HAL and COALS algorithms are available in
an open source package S-Space [Jurgens and Stevens, 2010]1. The settings of
the GloVe, CBOW, and Skip-gram models reflect the results of these methods
in their original publications [Pennington et al., 2014, Mikolov et al., 2013a]
and were set according to a reasonable proportion of the complexity and the
quality of the resulting word vector outputs. We used the GloVe implement-
ation provided on the official website2, CBOW and Skip-gram models use
the Word2Vec3 implementation and the LDA implementation comes from
the MALLET [Kachites McCallum, 2002] software package.

The detailed settings of all these methods are shown in Table 6.2.

dimension window special settings

HAL 50,000 4

COALS 14,000 4 without SVD

GloVe 300 10 100 iterations

CBOW 300 10 100 iterations

SKIP 300 10 100 iterations

LDA 100 sentence 1000 iterations

Table 6.2: Model settings

CLUTO software package [Karypis, 2002] is used for words clustering with
the k-means algorithm and cosine similarity metric. All vector space models
in this chapter cluster the word vectors into four different numbers of clusters:
100, 500, 1000, and 5000. For stemming, we use the implementation of
HPS [Brychćın and Konoṕık, 2015]4 that is the state-of-the-art unsupervised
stemmer.

1Available at <https://code.google.com/p/airhead-research/>.
2Available at <http://www-nlp.stanford.edu/projects/glove/>.
3Available at <https://code.google.com/p/word2vec/>.
4Available at <http://liks.fav.zcu.cz/HPS>.
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6.4 Results

Task TE TP CE CP

BL 75.6 67.4 77.5 68.3

BL+HAL 80.3 (+4.6) 70.6 (+3.2) 79.5 (+2.0) 69.5 (+1.3)

BL+COALS 78.7 (+3.0) 69.0 (+1.6) 78.6 (+1.1) 69.2 (+0.9)

BL+CBOW 80.6 (+5.0) 71.1 (+3.7) 79.3 (+1.8) 71.4 (+3.2)

BL+SKIP 78.9 (+3.2) 69.9 (+2.5) 79.6 (+2.1) 70.8 (+2.6)

BL+GLOVE 78.7 (+3.0) 70.2 (+2.8) 79.5 (+2.1) 70.8 (+2.5)

BL+LDA 78.5 (+2.9) 69.8 (+2.4) 78.4 (+0.9) 70.0 (+1.8)

BL+CBOW+GLOVE 80.4 (+4.8) 70.9 (+3.5) 80.6 (+3.1) 72.1 (+3.8)

Table 6.3: Aspect term, category extraction (TE, CE) and and polarity (TP,
CP) of models combinations on English dataset

Task TE TP CE CP

BL 71.4 67.4 71.7 69.7

BL+S-BL 74.9 (+3.4) 69.0 (+1.6) 73.6 (+1.9) 71.3 (+1.6)

BL+S-BL+S-HAL 78.5 (+7.0) 70.5 (+3.1) 78.5 (+6.8) 72.3 (+2.6)

BL+S-BL+S-COALS 77.8 (+6.3) 70.9 (+3.6) 77.5 (+5.7) 73.1 (+3.4)

BL+S-BL+S-CBOW 77.9 (+6.4) 72.1 (+4.7) 78.1 (+6.4) 73.6 (+3.9)

BL+S-BL+S-SKIP 77.8 (+6.3) 71.6 (+4.3) 78.0 (+6.3) 75.2 (+5.5)

BL+S-BL+S-GLOVE 78.5 (+7.1) 71.3 (+3.9) 79.5 (+7.8) 74.1 (+4.4)

BL+S-BL+S-LDA 77.4 (+6.0) 70.2 (+2.9) 75.6 (+3.8) 73.4 (+3.7)

BL+S-BL+S-CBOW+S-GLOVE 78.7 (+7.3) 72.5 (+5.1) 80.0 (+8.3) 74.0 (+4.3)

Table 6.4: Aspect term, category extraction (TE, CE) and and polarity (TP,
CP) of models combinations on Czech dataset

We experimented with two morphologically very different languages, Eng-
lish and Czech. English, as a representative of the Germanic languages, is
characterized by almost no inflection. Czech is a representative of the Slavic
languages, and has a high level of inflection and relatively free word order.

We provide the same evaluation as in the SemEval 2014 [Pontiki et al.,
2014]. For the aspect term extraction (TE) and the aspect category extrac-
tion (CE) we use F -measure as an evaluation metric. For the sentiment
polarity detection of aspect terms (TP) and aspect categories (CP), we use
accuracy.

We use 10-fold cross-validation in all our experiments. In all the tables
in this section, the results are expressed in percentages, and the numbers in
brackets represents the absolute improvements against the baseline.
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We started our experiments by testing all the unsupervised models separ-
ately. In the case of Czech, we also tested stemmed versions of all the models.
For English, we did not use stemming, because it does not play a key role
[Habernal et al., 2014]. The detailed results of all models tested separately
are in [Hercig et al., 2016a].

Each model brings some improvement in all the cases. Also, the stemmed
versions of the models are almost always better than the unstemmed models.
Thus, we continued the experiments only with the stemmed models for Czech.
The stems are used as a separate features and are seen to be very useful for
Czech (see Table 6.4).

In the subsequent experiments, we tried to combine all the clusters from
one model. We assumed that different clustering depths could bring useful
information into the classifier. These combinations are shown in Table 6.3
for English and Table 6.4 for Czech. We can see that the performance was
considerably improved. Taking these results into account, the best models
for ABSA seem to be GloVe and CBOW.

To prevent overfitting, we cannot combine all the models and all the
clustering depths together. Thus, we only combined the two best models
(GloVe, CBOW). The results are shown again in Tables 6.3 and 6.4 in the
last row. In all the subtasks, the performance stagnates or slightly improves.

Our English baseline extracts aspect terms with 75.6% F -measure and
aspect categories with 77.6% F -measure. The Czech baseline is considerably
worse, and achieves the results 71.4% and 71.7% F -measures in the same
subtasks. The behaviour of our baselines for sentiment polarity tasks is
different. The baselines for aspect term polarity and aspect category polarity
in both languages perform almost the same: the accuracy ranges between
67.4% and 69.7% for both languages.

In our experiments, the word clusters from semantic spaces (especially
CBOW and GloVe models) and stemming by HPS proved to be very useful.
Large improvements were achieved for all four subtasks and both languages.
The aspect term extraction and aspect category extraction F -measures of our
systems improved to approximately 80% for both languages. Similarly, the
polarity detection subtasks surpassed 70% accuracy, again for both languages.
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6.4.1 Conclusion

We explored several unsupervised methods for word meaning representation.
We created word clusters and used them as features for the ABSA task.
We achieved considerable improvements for both the English and Czech lan-
guages. We also used the unsupervised stemming algorithm called HPS,
which helped us to deal with the rich morphology of Czech.

Out of all the tested models, GloVe and CBOW seem to perform the best,
and their combination together with stemming for Czech was able to improve
all four ABSA subtasks. To the best of our knowledge, these results are now
the state-of-the-art for Czech.

We created two new Czech corpora within the restaurant domain for the
ABSA task: one labeled for supervised training, and the other (considerably
larger) unlabeled for unsupervised training. The corpora are available to the
research community.

Since none of the methods used to improve ABSA in our model require
any external information about the language, we assume that similar im-
provements can be achieved for other languages. Thus, the main direction
for future research is to experiment with more languages from different lan-
guage families.
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7 Word Embeddings and Global
Information

In this chapter we evaluate our new approach based on the Continuous Bag-
of-Words and Skip-gram models enriched with global context information
on highly inflected Czech language and compare it with English results. As
a source of information we use Wikipedia, where articles are organized in
a hierarchy of categories. These categories provide useful topical information
about each article.

Both models are evaluated on standard word similarity and word analogy
datasets. Proposed models outperform other word representation methods
when similar size of training data is used. The models provide similar per-
formance to methods trained on much larger datasets.

The structure of this chapter is following. Section 7.2 puts our work into
the context of the state of the art. In Section 7.3 we review Word2Vec models
on which our work is based. We define our model in Section 7.5 and 7.4. The
experimental results presented in Section 7.7. We conclude in Section 7.9
and offer some directions for future work.

7.1 Introduction

The principle known as the Distributional Hypothesis has been presented in
Chapter 2; the research presented in this Chapter directly refers to it.

7.1.1 Local Versus Global Context

Different types of context induce different kinds of semantic spaces. [Riordan
and Jones, 2011] and [McNamara, 2011] distinguish context-word and context-
region pproaches to the meaning extraction. In this chapter we use the
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notation local context and global context, respectively. Global-context DSMs
are usually based on the bag-of-words hypothesis, assuming that the words are
semantically similar if they occur in similar articles and the order in which
they occur in articles has no meaning. These models are able to register
long-range dependencies among words and are more topically oriented. In
contrast, local-context DSMs collect short contexts around the word using
moving window to induce the meaning. Resulting word representations are
usually less topical and exhibit more functional similarity (they are often
more syntactically oriented).

To create a proper DSM a large textual corpus is usually required. Very
often Wikipedia is used for training, because it is currently the largest know-
ledge repository on the Web and is available in dozens of languages. Most
current DSMs learn the meaning representation merely from the word distri-
butions and do not incorporate any of the metadata which Wikipedia con-
tains.

7.1.2 Our Model Using Global Information

In this work we combine both the local and the global context to improve
the word meaning representation. We use local-context DSMs Continuous
Bag-of-Words (CBOW) and Skip-Gram models [Mikolov et al., 2013a], the
original tool is often denoted as Word2Vec. We incorporate Wikipedia cat-
egories as a global context.

We train our models on English and Czech Wikipedia. We evaluate it on
standard word similarity and word analogy datasets. Proposed models signi-
ficantly outperform other word representation methods when similar training
data size is used and provide similar performance compared with methods
trained on much larger datasets.

7.2 Related Work

In the past decades, simple frequency-based methods for deriving word mean-
ing from raw text were popular, e.g. Hyperspace Analogue to Language [Lund
and Burgess, 1996] or paper Correlated Occurrence Analogue to Lexical Se-
mantics [Rohde et al., 2004] as a representatives of local-context DSMs and
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Latent Semantic Analysis [Landauer et al., 1998]. Or Explicit Semantic Ana-
lysis [Gabrilovich and Markovitch, 2009] as a representatives of global-context
DSMs. All these methods record word/context co-occurrence statistics into
the one large matrix defining the semantic space.

Later on, these approaches have evolved in more sophisticated models.
[Mikolov et al., 2013a] revealed neural network based models CBOW and
Skip-gram that we are going to use as our baseline to incorporate Global
context. His simple single-layer architecture is based on the inner product
between two word vectors (detailed description is in Section 7.3). [Penning-
ton et al., 2014] introduced Global Vectors, the log-bilinear model that uses
weighted least squares regression for estimating word vectors. The main
concept of this model is the observation that global ratios of word/word co-
occurrence probabilities have the potential for encoding meaning of words.

7.2.1 Local Context with Subword Information

Above mentioned models currently serve as a basis for many researches.
[Bojanowski et al., 2017] improved Skip-Gram model by incorporating sub-
word information. Similarly, a recent study [Salle and Villavicencio, 2018]
incorporated sub-word information into LexVec [Salle et al., 2016] vectors.
Improvement is especially evident for languages with rich morphology. [Levy
and Goldberg, 2014] used syntactic contexts automatically produced by de-
pendency parse-trees to derive the word meaning. Their word representations
are less topical and exhibit more functional similarity (they are more syn-
tactically oriented).

[Huang et al., 2012] presented a new neural network architecture which
learns word embeddings that capture the semantics of words by incorporating
both local and global document context. It accounts for homonymy and
polysemy by learning multiple embeddings per word. Authors introduce
a new dataset with human judgments on pairs of words in sentential context,
and evaluate their model on it. Their approach is focusing on polysemous
words and generally does not perform as well as Skip-Gram or CBOW.
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7.3 Word2Vec

This section describes the Word2Vec package which includes two neural net-
work model architectures (CBOW and Skip-Gram) that produce distribu-
tional representations of words [Mikolov et al., 2013a]. Given the training
corpus represented as a set of documents D, each document (resp. article)

aj ∈ D is a sequence of words aj = {wj,i}
Lj

i=1, where Lj denote the length
of the article aj. Each word w in the vocabulary W is represented by two
different vectors v and u depending whether it is used as a context word
vw ∈ Rd or a target word uw ∈ Rd. The task is to estimate these vec-
tor representations in a way that optimize the objective functions described
below.

We use a training procedure introduced in [Mikolov et al., 2013c] called
negative sampling. For the word at position i in the article aj we define the
negative log-likelihood

E(w,h) = −log σ(u>wo
h)−

∑
wn∈N

log σ(u>wn
h), (7.1)

whereN = (wn ∼ P (W )|n = 1, ..., K) is a set of negative samples (randomly
selected words from a noise distribution P (W ), wo is the output word, and
uwo is its output vector; h is the output value of the hidden layer:
h = 1

C

∑
C=1..N vwc for CBOW and h = vwI

in the Skip-gram model;
σ(x) = 1/(1 + exp(−x)).

Considering articles aj, in the CBOW architecture, the model predicts the
current word wj,i from a window of surrounding context words wc ∈ Cj,i. The
context is based on bag-of-words hypothesis, so that the order of the words
does not influence the prediction. The CBOW model optimizes following
objective function:

∑
aj∈D

Lj∑
i=1

E(wj,i,
1

|Cj,i|
∑

wc∈Cj,i

vwc). (7.2)

According to [Mikolov et al., 2013a], CBOW is faster than Skip-Gram, but
Skip-Gram usually performs better for infrequent words.
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7.4 Wikipedia Category Structure

Wikipedia is a good source of global information. Overall, Wikipedia com-
prises more than 40 million articles in 301 different languages. Each article
references others that describe particular information in more detail. Wiki-
pedia gives more information about an article that we might not see at the
first glance, such as the mentioned links to other articles, or at the end of the
article there is a section that describes all categories where current article
belongs. The category system of Wikipedia (see fig. 7.1) is organized as an
overlapping tree [Shuai et al., 2014] of categories1 with one main category and
a lot of subcategories. Every article contains several categories to which it
belongs. Categories are intended to group together pages on similar subjects.
Any category may branch into subcategories, and it is possible for a category
to be a subcategory of more than one ’parent’ category (A is said to be
a parent category of B when B is a subcategory of A) [Shuai et al., 2014].
The page editor uses either existing categories, or creates one. Generally the
user-defined categories are too vague or may not be otherwise suitable to
use in our model as a source of global information. Fortunately, Wikipedia
provides 25 main topic classification categories for all Wikipedia pages.

Wikipedia
page

Top-level
categories

Politics Arts Science ...

1st level
subcategories

nth-level  
categories

...

Figure 7.1: Wikipedia category system.

1https://en.wikipedia.org/wiki/Portal:Contents/categories
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For example the article entitled Czech Republic has categories Central
Europe, Central European countries, Eastern European countries, Member
states of NATO, Member states of EU, Slavic countries and territories and
others.
Wikipedia categories provide very useful topical information about each art-
icle. In our work we use extracted categories to improve the performance of
word embeddings. We denote articles as aj and categories as xk.

7.5 Proposed Model

Some authors tried to extract a more concrete meaning using Frege’s prin-
ciple of compositionality [Pelletier, 1994], which states that the meaning of
a sentence is determined as a composition of words. [Zanzotto et al., 2010] in-
troduced several techniques to combine word vectors into the final vector for
a sentence. In [Brychćın and Svoboda, 2016] we experimented with Semantic
Textual Similarity, from the tests with words vector composition based on
CBOW architecture, we can see that this method is a powerful way to carry
the meaning of a sentence.

Our model is shown in Figure 7.2. We build up the model based on our
previous knowledge and beliefs that global information might improve the
performance of word embeddings and further lead to improvements in many
NLP subtasks.

Each article aj in Wikipedia is associated with the set of categories Xj.
We represent the category x ∈Xj as a real-valued vector mx ∈ Rd.

For the CBOW model optimize following objective function:

∑
aj∈D

Lj∑
i=1

E(wj,i,

∑
wc∈Cj,i

vwc +
∑

x∈Xj
mx

|Cj,i|+ |Xj|
) (7.3)
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For the Skip-gram model optimize following objective function:

∑
aj∈D

Lj∑
i=1

∑
wc∈Cj,i

E(wj,i,vwc +
∑
x∈Xj

mx) (7.4)

Visualization of the modified CBOW architecture is shown in Figure 7.2

CBOW

Composition

mxj,n

mxj,1

j,i-2vw j,i-1vw j,i+1vw j,i+2vw

Categories

j,iuw

Figure 7.2: Architecture of enriched CBOW model with categories.

Visualization of the modified Skip-gram architecture is shown in Figure 7.3

We tested with CBOW and Skip-gram architectures enriched with cat-
egories that are shown at Figures 7.2 and 7.3. The CBOW architecture
is generally much faster and easier to train and gives a good performance.
The Skip-gram architecture takes ten times longer to train, and was unstable
during our setup with categories.

7.5.1 Setup 1

Categories are initialized with uniform vector distribution and no training of
categories is performed. Only word embeddings are trained. Output of this
setup is a model with trained word embeddings. The objective function 7.3
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Skip-gram

Composition

mx j,n

mx j,1

j,i-2uw
j,i-1uw j,i+1uw j,i+2uw

Categories

j,i 
vw

Figure 7.3: Architecture of enriched Skip-gram model with categories.

remains intact, the vectors mx stays untouched during the complete training.
The motivation behind this setup is, that some articles share similar categor-
ies. We expect, that if we sum vectors of similar categories and mix them
with context word vectors, we end up closer each other in the n-dimensional
vector space. We assume that improvement in training of individual words
enriched with this information may lead to a better vector representation,
especially in describing the words with similar meaning and context.

7.5.2 Setup 2

Many models benefit from the weighing of words in a sentence using Term
Frequency – Inverse Document Frequency (TF-IDF) [Manning et al., 1999].
Categories are initialized with uniform vector distribution. Vectors repres-
enting categories were also not trained, only weighted using TF-IDF. In sen-
tences the punctuation, prepositions, conjunctions and others have smaller
impact on the overall meaning of sentence. The idea here is that not all
categories have equal impact on description of the document. Output of this
setup is a model with trained word embeddings.
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Adapted objective function is as follows:

∑
aj∈D

Lj∑
i=1

E(wj,i,

∑
wc∈Cj,i

vwc +
∑

x∈Xj
tfidf(x, d,D) ·mx

|Cj,i|+ |Xj|
), (7.5)

where tfidf(t, d,D) = tf(t, d) · idf(t,D), fd(t) is frequency of term t in docu-
ment d. D is corpus of documents (resp. articles).

7.5.3 Setup 3

The model is initialized with categories uniformly distributed, embeddings
for categories are trained during training word embeddings. Motivation of
this setup comes from Distributional hypothesis [Harris, 1954] that says: ”lin-
guistic items with similar distributions have similar meanings”. If we train
the categories, we assume they would behave similarly. For example, having
an article with categories ’vehicles’ and ’transportation’, those categories will
likely have similar distribution of articles and they will slowly come closer to
each other in vector space during training. With uniformly distributed vec-
tors representing such categories, we would not benefit from Distributional
hyphothesis adapted to categories. Outputs of the model are embeddings
trained for both – categories and for words.

7.5.4 Setup 4

First, the model trains the vectors representing categories (using Setup 3 ) and
in the second round we use those pre-trained category vectors and continue
with setup 1, using the pre-trained embeddings for categories. The main
motivation is to have categories organised in vector space according to the
meaning and help the words from document to end up on vector positions
that have better semantic and syntactic representations.
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7.6 Training

We previously tested our models on the English Wikipedia dump from June
20162. The XML dump consist of 5,164,793 articles and 1,759,101,849 words.
We firstly removed XML tags and kept only articles marked with respect-
ive id, further we removed articles with less than 100 words or less than
10 sentences. We removed categories that has less than 10 occurrences in
between all articles. We have removed the articles without categories. The
final corpus used for training consist of 1,554,079 articles. The Czech Wiki-
pedia dump comes from March 2017. Detailed statistics on these corpora are
shown in Tables 7.1 and 7.2. For an evaluation, we experiment with word
analogy and a variety of word similarity datasets.

English (dump statistics)
Articles 5,164,793
Words 1,759,101,849

English (final clean statistics)
Articles 1,554,079
Avg. words per article 437
Avg. number of categories per article 4.69
Category names vocabulary 4,015,918

Table 7.1: Training corpora statistics. English Wikipedia dump from June
2016.

Word similarity datasets are used to measure the semantic similarity
between pair of words. For English, these include WordSim-353 [Finkelstein
et al., 2002], RG-65 [Rubenstein and Goodenough, 1965], RW [Luong et al.,
2013], LexSim-999 [Hill et al., 2015], and MC-28 [Miller and Charles, 1991].
For Czech, only two datasets are available and these include RG-65 [Krcmár
et al., 2011] and WordSim-353 [Cinková, 2016]. Both datasets consists of
translated word pairs from English, re-annotated by Czech native speakers.

Word analogies are following the observation that the word representation
can capture different aspects of meaning, [Mikolov et al., 2013a] introduced an
evaluation scheme based on word analogies. The scheme consists of questions,
e.g. which word is related to man in the same sense as queen is related to
king? The correct answer should be woman. Such a question can be answered
with a simple equation: vec(king)− vec(queen) = vec(man)− vec(woman).

2 <dumps.wikimedia.org>
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Czech (dump statistics)
Articles 575,262
Words 88,745,854

Czech (final clean statistics)
Articles 480,006
Avg. words per article 308
Avg. number of categories per article 4.19
Category names vocabulary 261,565

Table 7.2: Training corpora statistics. Czech Wikipedia dump from June
2016.

We evaluate on English and Czech word analogy datasets, proposed by [Miko-
lov et al., 2013a] and [Svoboda and Brychćın, 2016], respectively. Word-
phrases were excluded from the original datasets, resulting in 8869 semantic
and 10,675 syntactic questions for English (19,544 in total), and 6018 se-
mantic and 14,820 syntactic questions for Czech (20,838 in total).

7.6.1 Training Setup

We tokenize the corpus data. We use a simple tokeniser based on regular
expressions. After the model is trained, we keep the most frequent words in
the vocabulary (|W | = 300, 000). Vector dimension for all our models is set
to d = 300. We always run 10 training iterations. The window size is set 10 to
the left and 10 to the right from the center word wj,i, i.e. |Cj,i| = 20. The
set of negative samples N is always sampled from unigram word distribution
raised to 0.75 and has fixed size |N | = 10. We do not use the sub-sampling
of frequent words. The process of parameter estimation is described in detail
in [Goldberg and Levy, 2014]. We prefixed categories to be unique in training
and not interfere with words during the training phase.

fastText is trained on our Wiki. dumps (see results in Table 7.3 and
7.4). LexVec is tested only for English, trained on Wiki. 2015 and News-
Crawl3, has 7 billion tokens, vocabulary of 368,999 words and vectors of 300d.
Both (fastText and LexVec) models use character n-grams of length 3-6 as
subwords. For a comparison with much larger training data (only available

3 <http://www.statmt.org/wmt14/translation-task.html>
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Word similarity Word analogy
Model WS-353 RG-65 MC-28 Simlex-999 Sem. Syn. Total

B
a
se

li
n

e
s

fastText – SG 300d wiki 46.12 76.31 73.26 26.78 68.77 67.94 68.27
fastText – cbow 300d wiki 44.64 73.64 69.67 38.77 69.32 81.42 76.58

SG GoogleNews 300d 100B 68.49 76.00 80.00 46.54 78.16 76.49 77.08
CBOW 300d wiki 57.94 68.69 71.70 33.17 73.63 67.55 69.98

SG 300d wiki 64.73 78.27 82.12 33.68 83.64 66.87 73.57
LexVec 7B 59.53 74.64 74.08 40.22 80.92 66.11 72.83

CBOW 300d + Cat 63.20 78.16 78.11 40.32 77.31 68.68 72.13
SG 300d + Cat 62.55 80.25 86.07 33.54 80.77 71.05 74.93

Table 7.3: Word similarity and word analogy results on English.

for English), we downloaded GoogleNews100B4 model that is trained using
Skipgram architecture on 100 billion words corpus and negative sampling,
vocabulary size is 3,000,000 words.

Prefered model architecture

Previously, we talked about four different types of model architectures and
approaches, how to incorporate the categories for training the word embed-
dings (see Sections 7.5.1, 7.5.2, 7.5.3 and 7.5.4 for further information). The
results of different architectures are mainly presented on English.

For the Czech language, we chosed the model with Setup #3 defined in
Section 7.5.3. We choose this setup due to its simplicity, faster and more
stable training.

7.7 Results

In this section we present results of our DSMs improved with global inform-
ation for Czech language.

As an evaluation measure for word similarity tasks we use Spearman cor-
relation between system output and human annotations. For word analogy
task we evaluate by accuracy of correctly returned answers. Results for Eng-
lish Wikipedia are shown in Table 7.3 and for Czech in Table 7.4. These

4 <https://developer.syn.co.in/tutorial/bot/oscova/pretrained-vectors.html>
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Word similarity Word analogy
Model WS-353 RG-65 MC-28 Sem. Syn. Total

B
a
se

li
n

e
s fasttext – SG 300d wiki 67.04 67.07 72.90 49.03 76.95 71.72

fasttext – CBOW 300d wiki 40.46 58.35 57.17 21.17 85.24 73.23
CBOW 300d wiki 55.9 41.14 49.73 22.05 52.56 44.33

SG 300d wiki 65.93 68.09 71.03 48.62 54.92 53.74
CBOW 300d + Cat 54.31 47.03 49.31 42.00 62.54 58.69

SG 300d + Cat 62 57.55 64.64 47.03 54.07 52.75

Table 7.4: Word similarity and word analogy results on Czech.

detailed results allow for a precise evaluation and understanding of the be-
haviour of the method. First, it appears that, as we expected, it is more
accurate to predict entities when categories are incorporated.

7.8 Discussion

Type Baseline Cat
Antonyms (nouns) 15.72 7.14
Antonyms (adj.) 19.84 46.20
Antonyms (verbs) 6.70 5.00
State-cities 35.80 50.57
Family-relations 31.82 50.64
Nouns-plural 69.44 75.93
Jobs 76.66 95.45
Verb-past 51.06 61.04
Pronouns 11.58 10.42
Antonyms-acjectives 71.43 81.82
Nationalities 20.40 21.31

Type Baseline Cat.
Capital-common-countries 84.98 88.34
Capital-world 81.78 87.69
Currency 5.56 5.56
City-in-state 62.55 65.22
Family-relations 92.11 90.94
Adjective-to-adverb 25.38 29.38
Opposite 41.67 37.08
Comparative 79.14 78.82
Superlative 59.74 64.50
Present-participle 61.95 65.89
Nationality-adjective 91.39 98.69
Past-tense 63.66 66.59
Plural 74.19 71.67
Plural-verbs 62.33 46.33

Table 7.5: Detailed word analogy results comparison – left table shows Czech
with CBOW and categories, right table shows English with CBOW and cat-
egories.

Distributional vector models capture some aspect of word co-occurrence
statistics of the words in a language [Levy and Goldberg, 2014]. Therefore,
if we allow that shared categories imply semantically similar textual data,
these extended models produce semantically coherent representations, and
we believe that the improvements presented in Tables 7.3 and 7.4 are the
evidence for the existence of distributional hypothesis.
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Our model on English also outperforms fastText architecture [Bojanowski
et al., 2017], a recent improvement of Word2Vec with sub-word information.
With our adaptation, the CBOW architecture gives similar performance to
the Skipgram architecture trained on much larger data. On RG-65 word
similarity test and semantic oriented analogy questions in Table 7.3 it gives
better performance. We can see, that our model is powerful in semantics.

There is also significant performance gain on WS-353 similarity dataset
and English language. Czech generally performs poorer, because there is less
data for training and also because of the language properties. Czech has free
word order and higher morphological complexity that influences the quality
of resulting word embeddings. That is also the reason why the sub-word
information tends to give much better results. However, our method shows
significant improvement in semantics, where the performance with the Czech
language has improved twofold (see Table 7.4).

The individual improvements of word analogy tests with CBOW archi-
tecture are available in Table 7.5. These detailed results allow for a precise
evaluation and analyse the behaviour of our model.

In Czech, we see the biggest gain in understanding of the category “Jobs”.
This semantic category is specific to the Czech language as it distinguishes
between feminine and masculine form of professions.

However, we do not see much difference in the section “Nationalities”
that also relates countries and the masculine versus the feminine form of
their citizens. We think this might be caused of lack data from Wikipedia.
In Czech, we use mostly the masculine form in articles when talking about
people from different countries. In a section “Pronouns” that deals with
analogy questions such as: “I,we”versus“you, they”, we clearly cannot benefit
from incorporating the categories. The biggest performance gain is as we
expected in semantic oriented categories such as: Antonyms, State-cities and
Family-relations.

English gives a slightly lower score in the Family-relations section of the
analogy corpus. However, as English semantic analogy questions are already
hitting correlations above 80% and especially for this section already more
than 90%, we believe that we are already hitting the maximal capabilities
of machine and humans agreement. This is the reason why we bring up the
comparison with highly inflected language. In [Svoboda and Brychćın, 2016]
and [Svoboda and Beliga, 2018] it has been shown that there is a room for the
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performance improvement of current state-of-the-art word embedding models
on languages from Slavic families – see in Chapter 4.

For the Czech language, we saw a drop in performance of the Skip-gram
model. This might be caused by insufficient data for the reverse logic of
training the Skip-gram architecture.

7.9 Conclusion

7.9.1 Contributions

Our model with global information extracted from Wikipedia significantly
outperforms the baseline CBOW model. It provides similar performance
compared with methods trained on much larger datasets.

We focus on the currently widely used CBOW method and the Czech
language. As a source of global document (in this case, article) context we
used Wikipedia which is available in 301 languages. Therefore, our method
can be adopted to any other language without necessity of manual data
annotation. The model can help to create word embeddings that perform
better with smaller corpora.

7.9.2 Future work

The future community work might lead to integrate our model to the latest
architectures such as fastText or LexVec and improve the performance fur-
ther by incorporating the sub-word information. This further improvement
together with our method can have even bigger impact on poorly resourced
and highly inflected languages, such as Czech. Also we suggest to take a look
into the other possibilities, for extracting useful information from Wikipedia
and ways to use it during training – such as references, notes, literature,
external links, summary info and others.

The global information data and trained word vectors for research pur-
poses are at <https://github.com/Svobikl/global_context/>.
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8 Summary

This thesis presents an overview of the current state-of-the-art approaches for
distributional semantics. The performance of modeling semantics represent-
ation has rapidly improved during recent years with use of neural networks
and deep learning techniques.

We chose to aim at a hard target and tried to beat current state-of-the-
art methods to extract word embeddings on highly inflected languages. We
explore further use of machine learning techniques in solving NLP problems
where the semantic knowledge is crucial to solve the actual problem. We
achieved second (respective first) place among 113 submitted systems at the
famous SemEval competition with our STS system. We have presented a new
ideas for extracting word embeddings. In all our studies we focus on achieving
best results and engineering novel features. Results and corpora from all our
papers are publicly available1.

8.1 Conclusions

We present our contribution to distributional semantics:

• We have done in-depth research on machine learning methods used in
NLP tasks (see Chapter 3). Different classifiers, namely Naive Bayes,
SVM (Support Vector Machines), Feed-forward Neural Network and
LSTM Neural Network were used on large-scale labeled corpora (see
Chapters 4, 5 and 7).

• We explored several pre-processing techniques and employed various
features and classifiers in order to achieve artificial understanding of
semantics and syntax of text (see Chapter 5 and 6).

• We propose a simple model that benefits from global information ex-
tracted from Wikipedia (see Chapter 7).

1 <https://github.com/Svobikl/>
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We aim to investigate the effectiveness of several models based on distrib-
utonal semantics to catch the meaning of textual data with focus on highly
inflected languages. We believe that semantics contains hidden information
that can improve various NLP tasks.

Czech/Croatian as a representative of inflective language is an ideal envir-
onment for the study of various aspects of text understanding for inflectional
languages. It is challenging because of its very flexible word order and many
different word forms.

8.2 Contributions

The contributions of the thesis are the following:

• We build a first Czech and Croatian word analogy corpora and various
Croatian word similarity corpora, researchers are now able to tune per-
formance of their extracted word embeddings on those languages and
this can also have impact across different tasks in NLP area.

We studied different languages from various language families and ex-
perimented with state-of-the-art methods for word embeddings, namely:
CBOW, Skip-gram, GloVe, FastText. We have made a first evaluation
of Croatian and Czech word embeddings. Focusing on inflectional lan-
guages, we proved their difficulty to model. These languages have not
gained as much attention until now. We believe that the results of our
studies will help the community to focus more on highly inflected lan-
guages (see Chapter 4). All corpora are available online1 for research
purposes.

• We introduced the first dataset for semantic textual similarity of Czech
sentences and corpora for Aspect based sentiment analysis1. We created
strong baselines based on state-of-the-art approach for both STS and
ABSA task – see Chapter 5 and Chapter 6). Thanks to the presented
datasets, the NLP community is able to do further research of aspect
based sentiment analysis and semantic textual similarity tasks with
Czech language.

• Our research presented in Chapter 7 focuses on modeling distributional
semantics that is the backbone research area in NLP. We developed the
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new approach to train word emebeddings using the global information
extracted from Wikipedia. We need less data to train high quality
word embeddings – our method gives similar performance compared to
current state-of-the-art methods trained on much larger datasets (up
to 100× larger). Such improved models can be used as basic features
for sentiment analysis, machine translation, named entity recognition,
semantic textual similarity and many other tasks across NLP area.

8.3 Fulfilment of the Thesis Goals

In the following paragraphs, we summarize our contribution according to the
thesis goals.

Study the influence of rich morphology on the quality of meaning rep-
resentation. Most of the publications listed in Appendix A are directly or
indirectly related to this point. In [Svoboda and Brychćın, 2016] we repor-
ted results of our initial experiments with word embeddings and the Czech
language. We created the first Czech word analogy corpus to test the qual-
ity of word embeddings. Further, in [Svoboda and Beliga, 2018] we built
the first word analogy and various word similarity corpora and tested word
embedding properties on the Croatian language, another representative of
the Slavic language family. We confirmed the lack of performence against
English and the need of further research of current state-of-the-art method
with focus on the Slavic language family.

In [Hercig et al., 2016a] we created two new Czech corpora within the
restaurant domain for the ABSA task and achieved state-of-the-art results for
the Czech language. We dealt with specific aspects of Czech using stemming
techniques. The word clusters from semantic spaces (CBOW and GloVe) and
the stems used as a separate features proved to be very useful combination
to deal with ABSA task for Czech.

Our paper [Svoboda and Brychćın, 2018a] presents the first Czech corpora
and state-of-the art system for semantic textual similarity. We showed im-
portance of data preprocessing with lemmatization/stemming techniques on
the Czech language and the robustness of our system using lexical, syntactic
and semantic fetures.
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Article [Brychćın et al., 2019] generalizes the word analogy task across
languages, to provide a new intrinsic evaluation method for cross-lingual
semantic spaces. We experiment with six languages within different language
families, including English, German, Spanish, Italian, Czech, and Croatian.
The rest of the publications are related indirectly.

All our experiments shows a need of further NLP research and community
focus on highly inflected languages.

Propose of novel approaches based on neural networks for improving
the meaning representation of inflectional languages. In [Svoboda and
Brychćın, 2018b] we extend Skip-Gram and Continuous Bag-of-Words Dis-
tributional word representations NN-based models via global context inform-
ation. We present four new approaches, to enrich word meaning represent-
ation with such information. Our model with global information extracted
from Wikipedia significantly outperform the baseline CBOW and Skipgram
models. We tested on various similarity corpora and standard word ana-
logy corpus. Our method gives similar performance compared with standard
methods trained on much larger (100x) datasets.

Later, in [Svoboda and Brychćın, 2019] we test the properties of our new
model with highly inflected language. Our methods need much less data to
provide a state-of-the-art performance. The lack of data is usually significant,
especially in low-resource languages such as Czech.

In [Brychćın and Svoboda, 2016, Svoboda and Brychćın, 2018a] we ex-
plore semantic textual similarity using lexical, syntactic and semantic in-
formation on both Czech and English languages. We experiment with tree-
structured Recurrent Neural Network with a complex computational unit
and CBOW, SkipGram and GloVe models. We have also experimented with
Paragraph2Vec NN-based model that includes not only the word vectors of
each word in the context as CBOW/Skip-gram does, but also the paragraph
vector during the training procedure. In the monolingual task, our system
achieves mean Pearson correlation of 75.7% compared with human annotat-
ors. Our system was ranked second among 113 submitted systems. In the
cross-lingual task, our system has correlation of 86.3% and is ranked first
among 26 systems. To deal with Czech rich morphology, we use lemmatiza-
tion and stemming techniques to preprocess the training data.
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Use of distributional semantic models for improving NLP tasks. In our
publications we specifically focus on achieving best results and engineering
novel features. In [Brychćın and Svoboda, 2016, Svoboda and Brychćın,
2018a] we build novel models for Semanic Textual Similarity task, previewed
in previous point.

In [Hercig et al., 2016b] we build system for ABSA using distibutional se-
mantic models. As already discussed, in [Hercig et al., 2016a] we examine the
effectiveness of several unsupervised methods for latent semantics discovery
as features for aspect-based sentiment analysis (ABSA) on Czech language.

In article [Brychćın et al., 2019] we created a unified semantic space for
six languages, which produces very promising results on word analogy task
between any pair of languages.

The rest of the publications are related to this point indirectly, our new
approach [Svoboda and Brychćın, 2018b] for extracting high quality word
embeddings will likely have an further impact on variety of NLP tasks.

8.4 Future Work

As an outcome from this thesis, we believe that using our method described
in Chapter 7 together with a sub-word information can have even bigger
impact on poorly resourced and highly inflected languages, such as Czech
from the Slavic family. Therefore, the future community work might lead to
integrate our model into the latest architectures such as fastText or LexVec
and improve the performance further by incorporating sub-word information.

Use of external sources of information (such as part-of-speech tags, NER,
or lemma/stemming and character n-grams) during training process of cur-
rent state-of-the-art neural network based word embedding methods might
lead to further performance gains. Also, we suggest to take a look into other
possibilities, for extracting useful information from Wikipedia and ways to
use it during training – such as references, notes, literature, external links,
summary info (usually displayed on the right side of the screen) and others.

The NLP community can use either our word analogy and word similarity
corpora to investigate performance bottlenecks of systems they applying to
Czech or Croatian languages. We showed that corpora preprocessing which
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simplifies morphological variations, such as stemming or lemmatization pro-
cedures, could also have an effect on quality of word embeddings and may be
one of the future research directions on Czech and Croatian languages.

Researchers can also use our state-of-the-art models presented on STS
and ABSA tasks including corpora for further research improvements on
particular tasks.
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A Author’s publications

A.1 Conference Publications

[c1] L. Svoboda and T. Brychćın. New word analogy corpus for exploring
embeddings of czech words. In International Conference on Intelli-
gent Text Processing and Computational Linguistics, pages 103–114.
Springer, 2016

[c2] T. Brychćın and L. Svoboda. Uwb at semeval-2016 task 1: Semantic
textual similarity using lexical, syntactic, and semantic information. In
Proceedings of the 10th International Workshop on Semantic Evalu-
ation (SemEval 2016), San Diego, California, June, 16, 2016

[c3] T. Hercig, T. Brychćın, L. Svoboda, and M. Konkol. Uwb at semeval-
2016 task 5: Aspect based sentiment analysis. In Proceedings of the
10th International Workshop on Semantic Evaluation (SemEval 2016),
San Diego, California, June, volume 16, 2016b

[c4] L. Svoboda and S. Beliga. Evaluation of croatian word embeddings.
In Proceedings of the Eleventh International Conference on Language
Resources and Evaluation (LREC-2018), 2018

[c5] L. Svoboda and T. Brychćın. Czech dataset for semantic textual sim-
ilarity. In International Workshop on Temporal, Spatial, and Spatio-
Temporal Data Mining, pages 213–221. Springer, 2018a

A.2 Journal Publications

[j1] T. Hercig, T. Brychćın, L. Svoboda, M. Konkol, and J. Steinberger.
Unsupervised methods to improve aspect-based sentiment analysis in
czech. Computación y Sistemas, 20(3):365–375, 2016a

[j2] L. Svoboda and T. Brychćın. Improving word meaning representa-
tions using wikipedia categories. Neural Network World, 28(6):523–534,
2018b
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[j3] L. Svoboda and Brychćın. Enriching word embeddings with global in-
formation and testing on highly inflected language. Computación y
Sistemas, accepted, waiting for print, 2019

[j4] T. Brychćın, S. Taylor, and L. Svoboda. Cross-lingual word analogies
using linear transformations between semantic spaces. Expert Systems
with Applications, 135:287 – 295, 2019. ISSN 0957-4174. doi: https:
//doi.org/10.1016/j.eswa.2019.06.021
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T. Brychćın and P. Král. Novel unsupervised features for czech multi-label
document classification. In Mexican International Conference on Artificial
Intelligence, pages 70–79. Springer, 2014.
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T. Brychćın, M. Konkol, and J. Steinberger. Uwb: Machine learning ap-
proach to aspect-based sentiment analysis. In Proceedings of the 8th Inter-
national Workshop on Semantic Evaluation (SemEval 2014), pages 817–
822, 2014.
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K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio. Learning phrase representations using
rnn encoder-decoder for statistical machine translation. arXiv preprint
arXiv:1406.1078, 2014.

F. Y. Choi, P. Wiemer-Hastings, and J. Moore. Latent semantic analysis
for text segmentation. In Proceedings of the 2001 conference on empirical
methods in natural language processing, 2001.
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