
University of West Bohemia

Faculty of Applied Sciences

Construction of Geometric Models
for Moving Points

Ing. Tomáš Vomáčka

Doctoral thesis
submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy
in Computer Science and Engineering

Supervisor: Prof. Dr. Ing. Ivana Kolingerová

Department: Department of Computer Science and Engineering

Pilsen 2019



Západočeská univerzita v Plzni

Fakulta aplikovaných věd

Konstrukce geometrických modelů
pro pohybující se body

Ing. Tomáš Vomáčka

Disertační práce
k získání akademického titulu doktor

v oboru Informatika a výpočetní technika

Školitel: Prof. Dr. Ing. Ivana Kolingerová

Katedra: Katedra informatiky a výpočetní techniky

Plzeň 2019



Prohlášení

Předkládám tímto k posouzení a obhajobě disertační práci zpracovanou na závěr doktorského
studia na Fakultě aplikovaných věd Západočeské univerzity v Plzni. Prohlašuji, že tuto práci
jsem zpracoval samostatně s použitím odborné literatury a dostupných pramenů uvedených v se-
znamu, jenž je součástí této práce.

V Plzni dne 27. srpna 2019

Ing. Tomáš Vomáčka

3



Contents

1 Introduction 10
1.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

I State of the Art and Examples 13

2 Spatial Data Structures 14
2.1 Voronoi Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Delaunay Triangulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Properties of Delaunay Triangulation . . . . . . . . . . . . . . . . . . . 16
2.2.2 Incircle Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Locally Minimal Triangulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.1 Properties of Locally Minimal Triangulation . . . . . . . . . . . . . . . 18

3 Construction Algorithms 20
3.1 Construction Method Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Construction Methods Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Incremental Insertion Algorithm Details . . . . . . . . . . . . . . . . . . . . . . 22

3.3.1 Overall Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.2 Initial Triangle Construction . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.3 Point Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.4 Point Insertion and Edge Legalization . . . . . . . . . . . . . . . . . . . 25

4 Kinetic Data Structures 27
4.1 Kinetic Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Kinetic & Dynamic Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 Kinetic Data Structure Cornerstones . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3.1 Predicates and Certificates . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3.2 Point Movement Description . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3.3 Certificate Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.4 Kinetic Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4 Kinetic Data Structures General Properties . . . . . . . . . . . . . . . . . . . . . 30
4.5 Combinatorial Analysis of Kinetic Data Structures . . . . . . . . . . . . . . . . 32

4.5.1 Sweeping Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.5.2 Arangement of Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.5.3 Kinetic Data Structure Events Analysis . . . . . . . . . . . . . . . . . . 35

4



CONTENTS

4.5.4 Kinetic Data Structure Lifecycle . . . . . . . . . . . . . . . . . . . . . . 36

5 Examples of Kinetic Data Structures Applications 37
5.1 Collision Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Simulation of Crowds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3 Mathematical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.4 Motion Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

II Theoretical Research 41

6 Analysis of Selected Kinetic Data Structures 42
6.1 General Arrangements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.2 Kinetic Delaunay Triangulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.2.1 Events in Kinetic Delaunay Triangulation . . . . . . . . . . . . . . . . . 42
6.2.2 General Properties of Kinetic Delaunay Triangulation . . . . . . . . . . . 44
6.2.3 Bounds on the Number of Events in Kinetic Delaunay Triangulation . . . 44

6.3 Kinetic Locally Minimal Triangulation . . . . . . . . . . . . . . . . . . . . . . . 44
6.3.1 Events in Kinetic Locally Minimal Triangulation . . . . . . . . . . . . . 44
6.3.2 General Properties of Kinetic Locally Minimal Triangulation . . . . . . . 47

6.4 Comparison of Kinetic Delaunay Triangulation and Locally Minimal Triangulation 50

7 Event Time Computation 51
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.2 Event Computation Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7.2.1 Event Computation Methods Overview . . . . . . . . . . . . . . . . . . 52
7.2.2 Polynomial Solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.3 Analytical Methods for Solving Polynomials . . . . . . . . . . . . . . . . . . . . 54
7.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.3.2 Analytical Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7.4 Numerical Methods for Solving Polynomials . . . . . . . . . . . . . . . . . . . 56
7.4.1 General Methods for Solving Nonlinear Equations . . . . . . . . . . . . 56
7.4.2 Specialized Methods for Solving Polynomials . . . . . . . . . . . . . . . 57
7.4.3 Sturm Sequences of Polynomials . . . . . . . . . . . . . . . . . . . . . 58

7.5 Event Classification and Redundancy . . . . . . . . . . . . . . . . . . . . . . . . 59
7.5.1 Insignificant Polynomial Roots . . . . . . . . . . . . . . . . . . . . . . . 59
7.5.2 Redundant and Obsolete Events . . . . . . . . . . . . . . . . . . . . . . 61

III Applications of Kinetic Data Structures 64

8 Hybrid Method for Managing Kinetic Delaunay Triangulation 65
8.1 Basic Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
8.2 Event Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
8.3 Redundant Event Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

9 Video Representation based on Kinetic Delaunay Triangulation 72
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
9.2 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5



CONTENTS

9.2.1 Video Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
9.3 Video Processing by Kinetic Delaunay Triangulation . . . . . . . . . . . . . . . 73

9.3.1 Selecting the Points of Interest . . . . . . . . . . . . . . . . . . . . . . . 74
9.3.2 Motion Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
9.3.3 Video Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

9.4 Managing the Kinetic Delaunay Triangulation . . . . . . . . . . . . . . . . . . . 76
9.5 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
9.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

10 Early Warning System for Air Traffic Control 81
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
10.2 Air Traffic Control Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

10.2.1 Current Methods and Conventions . . . . . . . . . . . . . . . . . . . . . 82
10.2.2 Air Traffic Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

10.3 Geometric Features of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . 82
10.3.1 Problem Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
10.3.2 Aircraft Movement Mapping to 2D . . . . . . . . . . . . . . . . . . . . 83
10.3.3 Kinetic Delaunay Triangulation Modifications . . . . . . . . . . . . . . . 84

10.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
10.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

11 Corridor Selection for Virtual Pedestrian Navigation 86
11.1 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
11.2 Corridor Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
11.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
11.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

12 Conclusion 91

A Activities 93
A.1 Publications in Impacted Journals . . . . . . . . . . . . . . . . . . . . . . . . . 93
A.2 Publications on Web of Science and Scopus Conferences . . . . . . . . . . . . . 93
A.3 Other Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
A.4 Unpublished Manuscripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
A.5 Related Talks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
A.6 Participations in Scientific Projects . . . . . . . . . . . . . . . . . . . . . . . . . 94

Bibliography 96

6



Abstract

Kinetic data structures represent a valuable tool for the geometry challenges in computer graph-
ics, because they allow the extension of the standard tools and data structures for time-dependent
data. Thanks to this concept, it is possible to exploit the properties of, e.g., Delaunay triangulation
for moving entities which can represent for instance pedestrians, airplanes, or entirely abstract
data in applications such as video compression or computation of different physical phenomena
using the finite elements method. A necessary consequence of the fact, that the primitives ordi-
narily used to construct these data structures are time-dependent is that the kinetic data structures
will change in time. These changes are determined by the so-called kinetic events, which as a
matter of fact represent the very basic cornerstone of the discussed topic. Generally, two different
types of kinetic events are recognized – external events which directly affect the topology of the
data structure and internal events which do not affect the topology but they need to be considered
in order to ensure the proper lifecycle of the data structure. In this thesis the focus is aimed at
the general analysis of the kinetic events, especially their computation, estimation of their total
amount and reduction of the computed and discarded potential events. This analysis is first gen-
eral and then later applied to concrete examples of kinetic Delaunay triangulation and used to
establish the kinetic locally minimal triangulation. Kinetic Delaunay triangulation is also used
in two different cases as a tool for potential collision detection in air traffic and as an underlying
data structure in a video compression method.

This dissertation thesis was supported by the following projects:

• GA17-07690S: Methods of Identification and Visualization of Tunnels for Flexible Ligands in Dynamic
Proteins, Czech Science Foundation, 2017–2019.

• SGS-2016-013: Advanced Graphical and Computing Systems, University of West Bohemia, 2016–
2018.

• SGS-2010-028: Advanced Computer and Information Systems, University of West Bohemia, 2013–
2015.

• LH11006: INGEM – Interactive Geometric Models for Simulation of Natural Phenomena and Crowds,
The Ministry of Education, Youth and Sports of the Czech Republic, 2011–2013.

• 201/09/0097: Triangulated Models for Haptic and Virtual Reality, Czech Science Foundation, 2009–
2011.

• KJB101470701: Alternative Representation of Image Information Using Triangulations, junior re-
search project, Czech Science Foundation, 2007–2009.

• LC 06008: CPG - Center of Computer Graphics - National Network of Fundamental Research Centers,
The Ministry of Education, Youth and Sports of the Czech Republic, 2006–2011.

Copyright c© 2019 University of West Bohemia, Czech Republic

7



Abstrakt

Kinetické datové struktury představují cenný nástroj pro řešení geometrických úloh v kontextu
počítačové grafiky, nebot’ umožňují rozšíření standardně používaných nástrojů a datových struk-
tur na data proměnná v čase. Díky tomu je možno využít vlastnosti například Delaunayovy trian-
gulace pro pohyblivé entity, které mohou v kontextu aplikace představovat jako chodce, letadla
nebo reprezentovat abstraktní datové entity v aplikacích jako komprese videa nebo výpočet nej-
různějších fyzikálních fenoménů metodou konečných prvků. Vzhledem k tomu, že primitiva, nad
nimiž jsou tyto datové struktury běžně vytvářeny, jsou proměnná v čase, musí průběžně dochá-
zet také ke změnám v těchto strukturách. Tyto změny jsou určeny tzv. kinetickými událostmi,
které zároveň představují základní stavební kámen této problematiky. Obecně jsou rozeznávány
dva typy kinetických událostí – vnější, které přímo ovlivňují topologii datové struktury a vnitřní,
které topologii neovlivňují, ale je potřeba se jimi zabývat aby bylo zajištěno korektní chování
datové struktury v čase. Tato práce se zabývá analýzou kinetických událostí, zejména jejich vý-
počtem, odhadem jejich počtu a problémem redukce vypočtených, avšak nevyužitých potenciál-
ních událostí. Tato analýza je vedena v obecné rovině a později aplikována na případy kinetické
Delaunayovy triangulace a nově odvozené kinetické lokálně minimální triangulace. Konkrétní
příklady využití kinetické Delaunayovy triangulace pak představují dvě pokusné aplikace – de-
tekce potenciálních kolizí v kontextu letového provozu a podpůrná datová struktura v aplikaci
pro kompresi videa.

Tato disertační práce byla podporována následujícími projekty:

• GA17-07690S: Metody identifikace a vizualizace tunelů pro flexibilní ligandy v dynamických protei-
nech, Grantová agentura České republiky, 2017–2019.

• SGS-2016-013: Pokročilé grafické a výpočetní systémy, Západočeská univerzita v Plzni, 2016–2018.
• SGS-2010-028: Pokročilé počítačové a informační systémy, Západočeská univerzita v Plzni, 2013–

2015.
• LH11006: Interaktivní geometrické modely pro simulaci přírodních jevů - INGEM, Ministerstvo škol-

ství, mládeže a tělovýchovy České republiky, 2011–2013.
• 201/09/0097: Triangularizované modely pro haptiku a virtuální realitu, Grantová agentura České re-

publiky, 2009–2011.
• KJB101470701: Alternativní reprezentace obrazové informace s využitím triangulací, Akademie věd

České republiky, 2007–2009.
• LC 06008: Centrum počítačové grafiky, Ministerstvo školství, mládeže a tělovýchovy České republiky,

2006–2011.

Copyright c© 2019 Západočeská univerzita v Plzni, Česká republika

8



Acknowledgement

I dedicate this thesis to my late father, who has brought me to the academy career and always
served as an endless source of inspiration and support.

I would like to thank my thesis advisor Ivana Kolingerová for great support from the begin-
ning to the end. And to all the people who helped me along the way with research, advice and
consultation; Martin Maňák, Světlana Tomiczková, Petr Puncman, to name just a few. Last but
not least, many thanks belong to my family for always believing I will finish my thesis eventually.

9



Chapter 1

Introduction

Traditionally, the field of computer graphics include a wide variety of geometry-based challenges,
such as geometric sorting, path planning, exploring different relationships within data sets, and
many others. In order to solve these problems, various algorithms and data structures are em-
ployed, specific to the task at hand. Since the challenges are very often tied to specific real-life
scenarios, it is natural to expect that the environment will change with the passage of time and
this may result in variations of the data set we are using to tackle the problem – for instance one
might be trying to plan a path of an autonomous agent in an environment with moving obstacles.
These agents may represent pedestrians, groups of animals of different kinds, or autonomous
robots. A variation of this task would be an early warning system that detects possible collision
trajectories among planes flying in a certain area.

In order to be able to handle a set of moving data, the commonly used spatial division data
structures have to be modified so that they become able to incorporate the movement. There are
several ways of doing so – the most straighforward approach is to discretize the movement and
exploit such a set of tools that allow both addition and removal of the constructing primitives
into and from the data structure. Movement is then simulated by removing and reinserting the
primitives on new positions according to their trajectories. Such structures are then called dy-
namic. The other commonly used approach is based on the geometric features specific to the
data structures. By computing the times when the data structure reaches a singular state due to
the movement of the underlying data, it is possible to maintain its properties by introducing a
certain kind of updates. Structures of this kind are then called kinetic. This work focuses almost
exclusively on the kinetic data structures.

Similarly to the ordinary spatial division structures, their kinetic counterparts divide the given
space (usually the Euclidean plane) into cells corresponding to the individual generators, accord-
ing to a certain set of rules. The generators are in our case given as a set of points, but sometimes
it is convenient to use more sophisticated generators, such as weighted points, line segments,
circles, general polygons or even more complex primitives, depending on the intended applica-
tion. The construction rules determine the type and properties of the spatial division and most
commonly take the form of evaluating an algebraic function.

The most commonly used kinetic data structures are represented by kinetic Voronoi diagram
and especially by its dual structure – kinetic Delaunay triangulation – and their modifications [45,
64]. The cells produced by using ordinary Voronoi diagram are composed of points that are closer
to their generator (each cell belongs to one of the generators) than to any other primitive in the
generator set. Together with the motion of the points inside the generator set, this basic feature is

10



CHAPTER 1. INTRODUCTION

most commonly used in applications where general location or proximity of the generators plays
an important role, such as collision detection as in [31], navigation in the virtual environments
shown in [14, 34], mesh generation for various purposes, such as fininte element method [11]
and many others. The Delaunay triangulation is a structure dual to Voronoi diagram and thus has
exactly the same features. Moreover, the triangles produced by the Delaunay triangulation are
usually of very good quality (close to equilateral, prolonged and narrow triangles occur rarely)
which makes it very useful for various applications where a triangular mesh needs to be generated
and its quality is important.

Since the introduction of kinetic data structures in [6], many scientists have focused not
only on the utilization of this powerful tool in various environment, but also on the general
analysis of its behavior, with the most important questions being asked about the nature and
amounts of the changes occuring during their lifecycle. Since one cannot employ the usual tools
for data structure analysis due to the ever-changing nature of the structure itself, the analysis
of kinetic data structures differs significantly and a completely new way of thinking has to be
introduced [8].

1.1 Problem Definition

The aim of this thesis is to explore the process of kinetization of the planar spatial data struc-
tures with special respect to the event computation and role in the data structure lifecycle. The
first objective is to analyze the event computation process in kinetic data structures in order to
determine which of the events may be omitted from execution before or after they are computed.
The acquired knowledge is then used to propose the application of kinetization principle on a lo-
cally minimal triangulation and the obtained theoretical results are compared to the well-known
kinetic Delaunay triangulation. The last objective of this thesis is to evaluate the obtained theo-
retical results in the context of various applications.

1.2 Summary of Contributions

The first three contributions [92,94,95] deal with kinetic Delaunay triangulation principles with a
special focus on event computation methods and event redundancy research. The principle of the
introduced improvements lies in using a Sturm sequence of polynomials to determine intervals
of time which contain the roots that determine the time of event occurence. Combined with
knowledge about the data structure behavior, this allows a non-negligible portion of the events to
be discarded before they are even computed and therefore improves the performance and stability
of the data structure.

The fourth contribution [96] introduces a novel video compression method based on kinetic
Delaunay triangulation which was created in cooperation with Petr Puncman from the University
of West Bohemia. The triangulation is constructed over a collection of samples from selected
intra-coded frames, point movement vectors are determined by precomputed optical flow vectors
gained by block matching algorithm in inter-coded frames and decoding data from samples by
means of barycentric interpolation and feature-based warping.

The fifth contribution is an application of kinetic Delaunay triangulation for early warning
system in air traffic control [90]. The application is an extension of a collision detection system
with some features specific to the air traffic – since we consider a real life use case scenario,

11



CHAPTER 1. INTRODUCTION

the movement of the points in the triangulation is very specific as the updates on the airplane
positions come only when they are acquired by the radar and therefore the triangulation needs
to be periodically updated because the planes may be too far away from the predicted positions
from the previously available data.

The next group of contributions [53,54,91] focuses on the features of kinetic locally minimal
triangulation with respect to the general properties of this data structure and comparison to ki-
netic Delaunay triangulation which might be the best known type of kinetic triangulation to this
date. Using advanced statistical methods, the bounds on the number of events in these types of
triangulations are estimated and compared.

Finally, the last contribution is represented by a single unpublished manuscript created in co-
operation with Jakub Szkandera, a researcher from the University of West Bohemia. It discusses
the problem of large scale pedestrian navigation in an environment with varying preference lev-
els. The manuscript is currently available online, see [97].

1.3 Organization of the Thesis

The first part of this thesis summarizes the basics of spatial data structures that are often used in
computational geometry. Chapter 2 discusses the basic principles of selected data structures and
outlines the basic rules that must be adhered to in order to validate these structures. Chapter 3
discusses some of the construction algorithms and their properties which may become important
when related to the kinetic data structures. The kinetic data structures themselves are introduced
in Chapter 4 and some of the examples of their use in different fields of expertise are provided in
Chapter 5.

The focus of the second part of this thesis is on the process of kinetization and the statistical
evaluation of the kinetic data structures. Chapter 6 describes the lifecycle, the events and the
general properties of kinetic Delaunay triangulation and kinetic locally minimal triangulation.
Chapter 7 provides an overview of the most commonly used methods for event time computation
and delves into the topic of event redundancy reduction and specialized computation methods
that may be exploited in order to improve the performance and stability in kinetic applications.

The third and last part of this thesis summarizes the contributions and applications. Chapter 8
describes how the different methods described in the earlier chapter may be utilized in order to
create an enhanced implementation of kinetic Delaunay triangulation where the main focus is on
event redundancy reduction. Chapter 9 shows a novel video compression method based on kinetic
Delaunay triangulation. Chapter 10 describes an application of kinetic Delaunay triangulation as
a tool for early warning system in air traffic control. Chapter 11 provides an overview of a basic
research in the related field of path planning in the context of crowd simulation. The thesis is
concluded in Chapter 12.

12



Part I

State of the Art and Examples

13



Chapter 2

Spatial Data Structures

In order to handle the relations within a set of moving data one has to deal with many different
data structures, purpose of which is to subdivide the 2−dimensional space into regions according
to a specific set of rules – spatial division data structures. This chapter describes some of their
most commonly used types from the static point of view; the exact way of handling the movement
of the underlying points in the generator set will be shown later in Chapter 6.

The discussed data structures are usually defined by functions of the input data (e.g., the
coordinates of the given points). These functions are called predicates. Some of the common
predicates used in computational geometry will be described in this chapter and will be referred
to in Chapter 4.

2.1 Voronoi Diagram

Let S = {p1, . . . , pn} be a set of n points (generators) in R2, then let us define:

Definition 1 (Voronoi cell). A set of points V (pi), where:

V (pi) = {x ∈ R2 | ∀p j ∈ S : i 6= j : ‖pi− x‖ ≤ ‖p j− x‖} (2.1)

is called a Voronoi cell of pi (point pi is called the generator of V (pi)).

Definition 2 (Voronoi diagram). A set of Voronoi cells

V D(S) = {V (p1), . . . ,V (pn)} (2.2)

is called a Voronoi diagram of S.

The boundaries of the Voronoi cells are also called the Voronoi edges and are composed of
such points that are equally distant to two of the generators. Points of conjuction of the Voronoi
edges are called Voronoi vertices and represent points that are equally close to three or more of
the generators.

2.2 Delaunay Triangulation

A planar triangulation T (S) of set of n points S = {p1, . . . , pn} may be defined in the following
fashion:

14



CHAPTER 2. SPATIAL DATA STRUCTURES

Definition 3 (Planar triangulation, [45, 98]). A set of edges in R2 that fulfill the following condi-
tions:

• No two edges E1,E2 ∈ T (S) intersect at a point not in S.

• The edges divide the convex hull of S into triangles.

• The spatial division of the convex hull is maximal.

Delaunay triangulation may now be defined as a special case of a planar triangulation:

Definition 4 (Delaunay triangulation, [45]). Triangulation T (S) that fulfills the condition:

• No point pi ∈ S lies inside a circumcircle of any of the triangles in T (S).

is called Delaunay triangulation of S, or DT (S).

The added condition is also sometimes called the Delaunay condition or the empty circum-
circle condition. An example of a Delaunay triangulation, together with a Voronoi diagram is
shown in Fig. 2.1. In this figure, the duality between these two data structures may be clearly
seen – for each point in the generator set, there is a cell in V D(S). The number of edges this
Voronoi cell has is equal to the number of other points in the generator set, to which is this
generator connected in the Delaunay triangulation (i.e., for each edge separating two generator
points in the Voronoi diagram, there is a corresponding edge connecting these two points in the
Delaunay triangulation).

Figure 2.1: Voronoi diagram (grey lines) and its dual structure, the Delaunay triangulation (black
lines).

This duality between Delaunay triangulation and Voronoi diagram may be used for various
purposes. The most straighforward use is represented by the possibility to construct one of these
structures from the other (i.e., to construct V D(S) from a given DT (S) or vice versa). However,
this case is used rarely, because it is often more convenient to create the wanted structure directly.
On the other hand, if we are given a set of points and want to exploit some of the properties of
a Voronoi diagram over this set, we will often construct DT (S) rather than the Voronoi diagram.
This is caused by the fact that the Delaunay triangulation is composed of only one type of prim-
itives (triangles versus general convex polygons) and thus it is often much simpler to construct
and maintain.

15



CHAPTER 2. SPATIAL DATA STRUCTURES

2.2.1 Properties of Delaunay Triangulation

Uniqueness and Singular Configurations

As long as there are no four cocircular points in the generator set, the Delaunay triangulation
will be unique for the given set. This property is caused by the feature that defines the Delaunay
triangulation (no point may lie inside a circumcircle of any triangle in DT ) – if there are four (or
more) cocircular points in the generator set, then there will be two possible legal triangulations
that fulfill the given criteria, see Fig. 2.2 – these points are then said to be in a singular position
. It is important to note that the singular states are crucial for handling the movement of the
generating points (see further).

~

Figure 2.2: Two legal topologic configurations in Delaunay triangulation.

Locality

As shown by Delaunay himself in [19], any triangulation which is locally Delaunay, is also
globally Delaunay. This means that if each pair of adjacent triangles in the triangulation fulfills
the abovementioned Delaunay condition (i.e., if we construct the circumcircle of arbitrary one
of the two adjacent triangles, the remaining point of the quadruple will not lie inside this circle),
then each point in the triangulation fullfills this condition against each of its triangles.

Higher Dimension Embedding

Let us first define some of the terms we will need in order to inspect the relationship between
Delaunay triangulations in R2 and convex hulls in R3:

Definition 5 (Lifted point, lifted space, [24]). Given a point p = (x,y) in R2, its lifted point
p+ ∈ R3 is given as:

p+ = (x,y,x2 + y2) (2.3)

and similarly for higher dimensions. If p lies in a d−dimensional Euclidean space, p+ will lie
on a paraboloid in a (d +1)−dimensional space, called lifted space.

It is well known from [24, 45] that Delaunay triangulations (as well as Voronoi diagrams)
are closely related to higher dimension convex hulls. Given a set of points S and a set of corre-
sponding lifted points S+ = {p+1 , p+2 , . . . , p+n }, the Delaunay triangulation DT (S) will be equal to
planar projection of lower CH(S+).

In other words, if the points in the generator set are projected on a paraboloid z = x2 + y2, a
convex hull of this projection is constructed and the lower facets of this convex hull are projected

16



CHAPTER 2. SPATIAL DATA STRUCTURES

back onto the original plane using a planar projection, a Delaunay triangulation of the original
point set is obtained. An illustration of this relationship is given in Fig. 2.3.

(a) 1D illustrational example. (b) 2D triangulation example.

Figure 2.3: Relationship between a convex hull and a Delaunay triangulation.

A set of points in R2 may be seen in this figure, represented by the red balls. These points
are then projected on a paraboloid using the relation in Eq. (2.3) – the projections are marked by
the green balls. A convex hull constructed over the set of the projections is shown and its lower
facets are then projected back into R2 where they form the Delaunay triangulation of the original
(red) points.

Nearest Neighbors

As said before, the Voronoi edges of V D(S) are composed entirely of points that are equally
distant to two of the generators. Considering the duality between V D(S) and DT (S) we may see
that in the DT (S), each of the generators is connected to several other nearby points. The number
of such connections depends on the exact locations of each of the generators, but each generator
will be connected to its nearest neighbor.

2.2.2 Incircle Test

The Delaunay criterion requires that no point pi ∈ S in the generator set lies inside a circumcircle
of any of the triangles in DT (S). There are numerous ways to determine whether a point lies
inside a circumcircle of a given triangle, but the most commonly used one is based on the re-
lationship between the Delaunay triangulation and the higher dimension convex hull which was
described earlier. An illustration is shown in Fig. 2.3(a), where a one-dimensional illustration
of the situation can be seen – the lifted points p+i are projected onto a parabola. In order to
determine if p3 lies between p1 and p2 one has to check if p+3 lies below the line defined by p+1
and p+2 . This one-dimensional variant of this test is in fact the well known orientation test. The
situation in higher dimensions is then analogical.

17



CHAPTER 2. SPATIAL DATA STRUCTURES

Mathematically, the Delaunay criterion can be formulated in the form of a matrix determinant
computation. Given a planar triangle pi p j pk and a point pl , we may determine if pl lies inside
the circumcircle of pi p j pk by computing the value of incircle(pi, p j, pk, pl):

incircle(pi, p j, pk, pl) = det


xi yi x2

i + y2
i 1

x j y j x2
j + y2

j 1
xk yk x2

k + y2
k 1

xl yl x2
l + y2

l 1

 (2.4)

where pi = (xi,yi) and so forth for p j, pk and pl .

If the triangle defined by points pi p j pk is oriented counterclockwise, a positive value of
Eq. (2.4) means that pl lies inside the circumcircle of pi p j pk, a negative value means that pl lies
outside and a zero value shows that the point lies exactly on the circumcircle. If the orientation
of the points pi p j pk is unknown, an orientation test needs to be made together with the incircle
test [45]:

orient(pi, p j, pk) = det

 xi yi 1
x j y j 1
xk yk 1

 (2.5)

The incircle(pi, p j, pk, pl) value may be then computed as follows:

incircle(pi, p j, pk, pl) = incircle′(pi, p j, pk, pl) ·orient(pi, p j, pk) (2.6)

where incircle′(pi, p j, pk, pl) is in the exact same form as shown in Eq. (2.4) with the exception
that it is not necessary to know the orientation of pi p j pk beforehand.

Note: The incircle test function is an example of a predicate which has been mentioned at the
beginning of this chapter as it is a function of the input data and it is the only function we
need to compute in order to determine if a triangulation is Delaunay or not.

2.3 Locally Minimal Triangulation

Another special case of planar triangulation described in this chapter is the locally minimal tri-
angulation (LMT):

Definition 6 (Locally minimal triangulation, [75]). A triangulation of a set of points
S = {p1, p2, . . . , pn} ,n > 2,S ⊂ R2, is locally minimal if and only if every edge pi p j shared
by two triangles pi p j pk, pi p j pl forming a convex quadrilateral is not longer than the diagonal
pk pl .

2.3.1 Properties of Locally Minimal Triangulation

Local Minimality Condition

As given in Definition 6, LMT (S) is proven valid by comparing the lengths of the two pos-
sible diagonals in convex quadrilaterals, this gives us two different conditions that need to be

18



CHAPTER 2. SPATIAL DATA STRUCTURES

checked - the length comparison itself and the convexity check of the four points. Let SQ =
(pi, p j, pk, pl) ,SQ ⊆ S be a subset containing four points which create two adjacent triangles
pi p j pk and pi p j pl . Every such quadrilateral in LMT (S) will be checked thus creating two predi-
catess for the local minimum LM(SQ) and convexity CH(SQ):

LM(SQ) = |pi− p j|− |pl− pk| (2.7)

CH(SQ) = orient(pk, pl, pi) ·orient(pk, pl, p j) (2.8)

Eq. (2.7) compares the lengths of the two possible diagonals inside the quadrilateral SQ and
from practical point of view, it makes perfect sense to simplify it by comparing square length,
therefore simplifying the computation by removing one square root operation per length com-
pared. Introducing the second predicate in Eq. (2.8) is necessary because the check for a shorter
diagonal in any given quadrilateral is only valid if the convexity requirement is met. As we may
see, this predicate is composed of two orientation tests and determines if both of the vertices
connected by the inner diagonal are on the same side of the line segment defined by the other two
vertices.

Uniqueness and Convex Subsets

Unlike the Delaunay triangulation that was mentioned earlier, LMT (S) is not unique for S and it is
dependent on the concrete method of its construction. Also note the fact that the local minimality
is only ensured for convex qaudrilaterals – if a quadrilateral formed by two adjacent triangles in
LMT(S) is not convex, it is generally not possible to make sure that the shorter of its diagonals
will be present as an edge in the triangulation, see Fig. 2.4 which shows two basic examples.
As you can see, the convex quadrilateral in Fig. 2.4(a) is formed by the two triangles sharing
its shorter diagonal. On the other hand, the diagonals in the quadrilateral shown in Fig. 2.4(b)
cannot be swapped because it is not convex.

(a) Convex quadrilateral. (b) Nonconvex quadrilateral.

Figure 2.4: Possible quadrilateral configurations.

19



Chapter 3

Construction Algorithms

Many different construction algorithms are commonly used in order to create various types of
spatial division data structures. This chapter provides a brief overview of some selected examples
of the construction methods together with some of the data structures mentioned in the previous
chapter. Furthermore, a more detailed description of the incremental insertion algorithm is given
with a special regard to the construction of the Delaunay triangulation, because its properties
make it extremely suitable for later use in its kinetization.

3.1 Construction Method Properties

There are numerous properties that may be used to compare construction algorithms, [52]. Among
them, the following provide valuable information in the context of kinetic data structures (for oth-
ers, see [16]):

Time and space complexity: the algorithms are often judged by the amount of time and space
they need in order to work. Perhaps the most important feature of each algorithm is the
dependency of the runtime it consumes on the size of the input dataset, but the amount
of consumed memory is not less important, especially for algorithms that are designed to
operate on large datasets.

Online property: we say that an algorithm is online if it allows addition of points into the set of
generators after the initial construction step.

Parallelism: the possibility to parallelize an algorithm represents a valuable possibility to in-
crease its performance, however, some of the mentioned algorithms are unsuitable for
parallel execution.

Extensibility to higher dimensions: even though this thesis focuses on planar data exclusively
and thus higher dimension functionality is of rather low importance, some of the described
algorithms may not be extended to higher dimensions which will handicap them if this
kind of a future development is considered.

20



CHAPTER 3. CONSTRUCTION ALGORITHMS

3.2 Construction Methods Overview

The general complexity of planar Delaunay triangulation construction is O(n logn) in the worst
case as shown in [16], but the exact time complexity depends on the algorithm used; there are
algorithms that run in O(n) expected time. The following list provides a brief overview of some
of the most commonly used algorithms, [52].

Higher Dimension Embedding: as shown before, there is a relation between n−dimensional
Delaunay triangulations and n+ 1−dimensional convex hulls which may be used for the
purposes of DT construction [7]. It is obvious that the properties of this algorithm depend
solely on the used method for convex hull construction. The time complexity is in the
optimal case equal to O(n logn).

Divide and Conquer: this type of algorithms is based on the idea that the initial dataset may
be divided recursively – partial sub-triangulations are then created for the divided parts
and connected together [16]. Divide and conquer algorithms are usually time-optimal in
the worst case, even though they are usually untrivial to implement. This approach is not
online, is easy to parallel but the extensibility to higher dimensions is difficult because
of problems with sorting in higher dimensions. The time complexity of this approach is
O(n logn) in the worst case.

Local Optimization: starting with a random initial triangulation of the given dataset, the lo-
cal optimality of Delaunay triangulation may be exploited. By testing the satisfaction of
the Delaunay property for each pair of adjacent triangles, the locations where the Delau-
nay property is violated are discovered and the given triangulation is converted to DT by
swapping the common edge of these triangle pairs. This method is not online, may not
be reliably extended to three dimensions, is difficult to parallelize and its performance is
dependent on the algorithm used for creating the initial construction. The time complexity
of this approach is determined by the number of performed edge swaps. In R2, it is O(n2)
in the worst case and O(n) in the expected case. Details may be found in [45, 49].

Incremental Construction: Delaunay triangulation may be constructed by starting with the
shortest edge from the given dataset and successive construction of such triangles, that
fulfill the Delaunay condition [20]. The time complexity of this approach is O(n3) in two
dimensions if we do not use any acceleration techniques. Using data structures as di-
rected acyclic graphs [18] or advanced point location algorithms such as different types of
walks [23], the expected time complexity of O(n logn) can be achieved.

Sweep Construction: after sorting the given points along an axis, the Delaunay triangulation is
created by adding them to a partial triangulation in the order given by the sorting. This
approach is not online, may be parallelized, is extensible to three dimensions and runs in
O(n logn) time. Examples of this approach may be found in [29, 79]. Even though the
properties of this algorithm make it slightly inconvenient for the use in kinetic data struc-
tures management, it plays very significant role in the general principle of kinetization, see
Chapter 4 for further details.

Incremental Insertion: starting with an initial triangle large enough to contain the given dataset,
the points from the dataset are added, one at a time. The triangle that contains the added
point is divided and the triangulation is locally repaired if the Delaunay condition is broken

21



CHAPTER 3. CONSTRUCTION ALGORITHMS

in the process. This algorithm is online, may be paralellized and extended to three dimen-
sions. Its time and memory complexity is derived from the used point location method. It
will be described in detail in the following section.

3.3 Incremental Insertion Algorithm Details

3.3.1 Overall Functionality

The functionality of the incremental insertion algorithm [18] for constructing a Delaunay trian-
gulation is shown in Alg. 1. The algorithm consists of four distinct parts – first, the initial simplex
is constructed that contains the whole area covered by the points in S, after that, the points from
the generator set are separately added to the current triangulation (which contains only the auxil-
iary simplex at the beginning of this step) and during the addition of the points, the triangulation
is being constantly checked for edges that do not satisfy the Delaunay condition and these edges
are replaced by the other possible edges by swapping. This process is called edge legalization.
Finally, all the edges connecting the points from the auxiliary simplex with any other point are
removed from the triangulation (this step is usually not performed in the kinetic applications, see
further).

Algorithm 1: Overall functionality of the incremental insertion algorithm for DT con-
struction.

Input: Set S = {p1, p2, . . . , pn} of n distinct points
Output: DT (S)

1 DT (S) = p0 p−1 p−2 containing S // Initialization

2

3 foreach pr ∈ S do
4 Localize the triangle pi p j pk such that pr ∈ pi p j pk
5 if pr is inside pi p j pk then
6 DT (S) = DT (S)\{pi p j pk}
7 DT (S) = DT (S)+{pr pi p j, pr p j pk, pr pk pi}

// pi p j pk is split into three triangles

8 else // pr lies on the edge common to pi p j pk and pi p j pl
// The two adjacent triangles are split into four

9 DT (S) = DT (S)\{pi p j pk, pi p j pl}
10 DT (S) = DT (S)+{pr pi pk, pr p j pk, pr pl pi, pr pl p j}
11 end
12 Legalize all newly created edges // Details in Alg. 2

13 end
14 Remove all the edges containing pq ∈ {p0, p−1, p−2} if needed

3.3.2 Initial Triangle Construction

In order to be able to locate the point location performed in the following step, it is necessary to
make sure that a triangle containing the added point exists. This can be done by encapsulating
the whole area covered by the triangulation by a single simplex (i.e., a triangle R2, a tetrahedron

22



CHAPTER 3. CONSTRUCTION ALGORITHMS

in R3, etc.) that is large enough not to alter the edges of the convex hull of the original set.
On the other hand, it must not be too large, because otherwise it could make the construction
of the triangulation numerically unstable. The correct size of these simplices has been adressed
by [48, 98] and experiments show that the ideal way to construct the initial simplex is the one
illustrated in Fig. 3.1.

Figure 3.1: The ideal initial simplex construction for the incremental insertion algorithm, [49].

It can be seen in the figure, the ideal simplex in R2 should be constructed using the vertices
with coordinates (K,0), (0,K) and (−K,−K) where K is equal to κ ·max(xmax,ymax), where
xmax and ymax are the width and the height of the bounding box of the generating set S and κ is
a real constant. The referenced sources show that κ = 10 or κ = 3.5 are good choices but other
simillar numbers should work as well.

3.3.3 Point Location

As shown in Alg. 1, in order to add a point into the triangulation, the triangle containing its loca-
tion has to be found. Generally, there are two different classes of approaches for point location
– the approaches based on the walking algorithms and the approaches based on special location
data structures.

The walking algorithms take advantage of the fact that no special data structure is needed.
Each point location process starts in an arbitrary triangle and by following a given set of con-
ditions traverses the triangulation until the triangle containing the given point pr is reached.
According to [23, 81], there are three main types of the walking algorithms, based on the type of
traversal they use – see Fig. 3.2 (all the walks start in the triangle containing the point q).

Straight walk: Each triangle is traversed, which lies on the line segment connecting the starting
triangle and the given point pr.

Orthogonal walk: Two axis-aligned line segments are created that connect the starting triangle
with the given point pr. The triangulation is then traversed along these two line segments.
According to [81], the traversal may not end in the correct triangle and it is necessary to
combine it with some other traversal type.

Stochastic walk: The next triangle of the stochastic walk algorithms traversal is chosen by ran-
domly picking an edge of the currently processed triangle and testing if the target point

23



CHAPTER 3. CONSTRUCTION ALGORITHMS

pr lies in the other half-plane given by this edge and the rest of the current triangle (an
orientation test is usually used as shown in Eq. (2.5)). If it does, the algorithm traverses to
the neighbouring triangle by walking over the chosen edge. In the other case, the next edge
of the current triangle is tested and so on. After two failed tests (or three in the case of the
first traversed triangle), we know that the traversal has reached the triangle containing pr

(or more precisely, we know that we have reached the target triangle after two failed tests
since we do not usually test the edge common with the previously visited triangle).

q

pr

(a) Straight walk

q

pr

(b) Orthogonal walk

q

pr

(c) Stochastic walk

Figure 3.2: Comparison of different walking strategies, [80].

As shown in [61, 81] and others, the time needed by the walking algorithms to locate a point
strongly depends on the selection of the starting triangle. Depending on the choice of the starting
triangle, the expected time complexity of a walk algorithm may vary from O(n1/2) to O(n1/4)
which is worse than the optimal O(logn).

The other approach for triangle location uses special auxiliary data structures such as Di-
rected Acyclic Graphs (DAG), skip-lists and others [18, 22, 48]. These special data structures
usually work by creating a hierarchy of the triangles in the triangulation. Let us have a look at
the DAG structure – as can be seen in Fig. 3.3, where a very simple version of DAG is shown.
In this figure, a simple triangulation is shown as the initial state. The associated DAG structure
starts with a pointer to each of its triangles. As new points are being added into the triangulation
and the edges are being swapped in order to maintain the Delaunay property of the triangulation,
we may see that two things happen in the DAG. When a triangle is subdivided into three triangles
(T2→ {T4,T5,T6}) a new level in the DAG is created and the original triangle is connected to its
children with pointers. When an edge swap occurs, all the upper level triangles that contain at
least part of the newly created triangles are connected to them via new pointers. As we can easily
see, the DAG structure is organized in a tree-like fashion and thus enables point location with
expected time complexity of O(logn).

24



CHAPTER 3. CONSTRUCTION ALGORITHMS

T3T1 T2 T3T1 T2

T6

T6 T6

T4

T4

T5

T5 T5

T6T4 T5

T3

T3 T3 T3

T1

T1 T1

T2

T2

T7

T7

T8

T8

Figure 3.3: A simple triangulation and an associated DAG, [80].

3.3.4 Point Insertion and Edge Legalization

Once the triangle pi p j pk containing the given point pr is located, two cases may occur (consid-
ering two dimensional triangulation) – pr may either lie inside pi p j pk or on one of its edges.
Theoretically, a third special case might occur when pr is identical to one of the vertices of the
target triangle, but only if we allow the set of input data S contain multiple identical points (as
shown in Alg. 1, we require S to contain n distinct points). The process of handling both the
allowed cases is similar – see Fig. 3.4.

(a) pr is added inside a triangle. (b) pr is added on an existing edge.

Figure 3.4: Triangle splitting after adding a new point into the triangulation.

In Fig. 3.4(a), the case when pr is added into an existing triangle pi p j pk can be seen. The
original triangle is divided into three new triangles. Fig. 3.4(b) shows the other possible case,
when pr is added on the edge common to two triangles – pi p j pk and pi pk pl , these are then
divided into four new triangles.

25



CHAPTER 3. CONSTRUCTION ALGORITHMS

Because of the fact that new triangles are being added into the triangulation without paying
respect to the Delaunay condition which has to be preserved, it is necessary to check if the newly
created triangles satisfy this condition. If the newly added triangles do violate the Delaunay
condition, they have to be swapped (let us call these edges illegal):

Definition 7 (Edge swap). Given two adjacent triangles pi p j pk and p j pk pl , an edge swap per-
formed on these triangles replaces them with triangles pi p j pl and pi pl pk.

After the illegal edges are swapped, the legality test is recursively performed on the outer
edges of the new triangles, created by the swapping. This process is shown in Alg. 2.

Algorithm 2: Edge legalization in the process of DT (S) construction.

Input:

• pr – a point being inserted into T (S)
• pi p j – the edge of T (S) that may need to be swapped
• T (S) – a triangulation

Output: DT (S) – Delaunay triangulation

1 if pi p j is illegal then
2 Let pi p j pk be the triangle adjacent to pr pi p j along pi p j

3 Replace pi p j with pr pk // Swap pi p j

4 LegalizeEdge(pr, pi pk, T (S))
5 LegalizeEdge(pr, pk p j, T (S))
6 end
7 Return DT (S) // T (S)≡ DT (S)

26



Chapter 4

Kinetic Data Structures

This chapter describes the general principles of kinetic data structures. The general process of
static structure kinetization is discussed as well as the most commonly used methods of evalu-
ation of the kinetic data structure properties. First, the difference between the dynamic and the
kinetic approach to point movement is described. After that, general functionality of the kinetic
data structures is discussed in general. The last part of this chapter provides the tools for sta-
tistical analysis of kinetic data structures. This knowledge and tools will be used to deduce the
properties of concrete data structures in later chapters.

4.1 Kinetic Data Structure

Kinetic data structure (KDS) is defined informally in [8] as a pair of two structures: a proof of
correctnes of an attribute and a priority queue. This essentially means that such a data structure
could be constructed over a set of time-dependent generators and is valid with respect to the given
set of certificates for any value of time.

4.2 Kinetic & Dynamic Approach

In general, there are two different approaches for handling movement in the given dataset (in the
case of this thesis, it is a set of planar points). The movement may be discretized and simulated by
removing the points from the given data structure and reinserting them back at new positions as
if they moved there or it may be understood as a continuous change of the dataset. To distinguish
between these two approaches, the discrete one is often referred to as the dynamic movement
whereas the continuous one is often considered to be the true kinetic approach [9].

Dynamic approach: there are several advantages of the dynamic approach – first of all, its per-
formance is completely independent of the type of the movement of the points. The points
may move along any type of trajectory with no restrictions on acceleration or other move-
ment properties. The runtime consumption is then dependent on the algorithms for point
insertion and removal. On the other hand, the discretization of movement generates some
drawbacks, for instance it cannot be reliably used for collision detection and similar prob-
lems; [59] shows that this type of data manipulation is most commonly used for simulating

27



CHAPTER 4. KINETIC DATA STRUCTURES

time-dependent datasets where some points are only used for a limited time period. Gen-
erally speaking, we may say that the dynamic approach to movement simulation tends to
suffer from two problems – either it is oversampled and we are wasting computational
resources on computing unnecessary data, or it is undersampled and we miss important
events.

Kinetic approach: the over/under-sampling difficulties of the dynamic approach may be over-
come by using the kinetic approach – by computing a certain time events we are able to
determine when the underlying data structure changes and needs our attention (topologic
update, etc.). This type of simulation is then obviously strongly dependent on the type
of the underlying data structure and the type of movement as these two properties deter-
mine the type of computation that needs to be performed in order to keep its properties.
However, the data can be accessed at any given time without a loss of information. Fur-
thermore, according to [36,74], in certain applications it is faster to simulate the movement
using this type of approach. Very similar principles can also be used even in the case that
the triangulation does not move in the usual sense, but is only perturbated and needs to be
quicky updated according to the new positions of generator as in [104].

4.3 Kinetic Data Structure Cornerstones

In order to be able to kinetize an ordinary (i.e., static) data structure, one has to understand
the basic cornerstones of the kinetization process. These will be described in this section. The
described properties are general and may be applied to any type of kinetic data structure.

4.3.1 Predicates and Certificates

As shown in Chapter 2, the spatial division data structures are often defined by special functions
called predicates. Examples of such predicates include the incircle and orientation test as shown
in Eq. (2.4) and Eq. (2.5) respectively. As shown in [9,36], each geometric structure constructed
over a set of geometric primitives may be proven valid by checking a finite numbers of predicates
of these primitives. These checks are then called certificates. In the case of Delaunay triangu-
lation, the certificates are represented by the incircle test functions Eq. (2.6) as we are able to
determine if any given triangulation T (S) is Delaunay by performing the incicrcle test on each
pair of adjacent triangles in the triangulation (if S is a finite set, then the triangulation will have a
finite number of edges and thus we will have to perform a finite number of tests).

4.3.2 Point Movement Description

A moving point is such a point which has time-dependent coordinates:

pi(t) = (xi(t),yi(t)) (4.1)

where t ∈ R represents the time variable. For the purposes of physics-based applications, it
is most commonly reasonable to use only continuous functions of time for the point coordinates.
In the field of kinetic data structures, polynomial functions are often used as coordinates.

28



CHAPTER 4. KINETIC DATA STRUCTURES

Theoretically, it is possible to use other functions than polynomials to describe the point
movement, but only polynomials are practically used. This is caused by the fact that they provide
us with a relatively wide variety of options of the point behavior and their roots are relatively
easy to compute. The polynomials also represent one of the best choices because we usually
require the given functions to behave in an algebraic (or at least in pseudo-algebraic) fashion,
which means that we require the functions to have a finite number of roots [37]. Furthermore, the
polynomials (albeit of high degrees) may be used to interpolate almost any physically tangible
trajectory, for instance by using the Taylor expansion [2].

Note: In order to eveluate one of the basic properties of kinetic data structures described later
(namely the strong efficiency), any type of movement of the underlying point set needs to
be considered. This will be the only exception to the polynomial movement allowed in
the following text.

4.3.3 Certificate Functions

If the points are allowed to move continuously by replacing their coordinates by functions of
time, the certificates themselves will become functions of time – certificate functions. The type
of these functions depends both on the original certificates and on the type of point movement
we allow. As we have already mentioned in Chapter 2, the certificates are functions of the input
data.

4.3.4 Kinetic Events

With the change of the time, the value of the certificate functions also changes. As long as
its sign remains unchanged, the certificate remains valid and the topology of the kinetic data
structure remains unchanged as well. It is important to note that the movement of the points
does not necessarily mean the need to perform changes in the kinetic data structure. Let us for
instance consider a situation when all the points in DT (S) move in the same direction with the
same velocity – the whole triangulation would change its position but it would remain unchanged
topologically.

On the other hand, in common situations, instants in time will usually occur when the sign
of the certificate function changes. These instants indicate that the structure is about to lose its
properties and in order to preserve its validity, a change in the structure needs to be performed
(such as the case of a point entering the circumcircle in Delaunay triangulation). These instants
are called kinetic events (or events for short) because they are caused by the movement of the
points, or certificate failure times because they denote that the certificate function has failed.

Internal and External Kinetic Events

Two types of kinetic events are usually described in the literature [9, 37] – the internal and the
external kinetic events. The difference between these two types of events is that the external
events as defined in [37] are those which directly change the topology of the kinetic data structure.
An example of an external event is the edge swap in the kinetic Delaunay triangulation – it needs
to be done in order to retain the Delaunay property of the triangulation and it changes its topology.
The internal events only exist in some kinetic data structures (e.g., in the kinetic locally minimal

29



CHAPTER 4. KINETIC DATA STRUCTURES

triangulation) but cannot be found in others, such as the kinetic Delaunay triangulations. These
events are not "visible from the outside", they are such events that need to be processed for the
KDS to work correctly but do not directly change its topology.

Event Queue

In order to be able to manage the kinetic structure continuously, it is vital to process the kinetic
events in the correct order. If two different certificates fail (i.e., the corresponding certificate
functions change signs), it is necessary to process the changes in the kinetic data structures in the
correct order. A priority queue is most commonly used for this task [9] – the certificate failures
are stored in the queue ordered by the time when they occur.

Lifecycle of Kinetic Data Structures

The management of a kinetic data structure generally consists of two phases [5, 8, 31] – the
initialization phase, where the data structure itself is constructed and the update phase, which is
periodically repeated as long as needed. The lifecycle is summarized by Algorithm 3.

The initialization phase of Alg. 3 consists of two steps – first of all, the desired data structure
is constructed using an arbitrary construction algorithm as described in Chapter 3 and once it
is created, the set of nearest kinetic events is computed. The exact process of the initial events
computation is dependent on the concrete data structure being used. For example in the case of
kinetic Delaunay triangulation, for each pair of adjacent triangles such a time is computed, when
their four points become cocircular.

All the initial events are then placed into a priority queue with the priority defined in such a
way to ensure that the events taking place earlier will be popped from the queue before the events
scheduled after them. One such a priority function may be defined as follows:

p =−tevent (4.2)

where tevent ∈ R is the time of the event. This priority function, along with the fact that the item
with the maximum priority value is popped from the queue first, ensure the required functionality.

The update phase of the algorithm consists of locally repeating the iteration step each time
the value of time has changed. This step consists solely of popping the events from the top of
the priority queue, executing them (thus possibly changing the topology of the data structure or
some of its features) and pushing new events into the queue, if any. The pop-execute-push cycle
is repeated until the time of the event on the top of the queue (i.e., the nearest future event) is
greater than the value of current time. The current value of time is then increased as necessary
for the given application.

4.4 Kinetic Data Structures General Properties

According to [9,10,37], there are four basic properties that may be used to judge the effectiveness
of a particular data structure for kinetic data. These are responsiveness, efficiency, locality and
compactness. Note that these properties are dependent on the exact implementation of the given
kinetic data structure, not only on its type and the property it is maintaining. For the purposes of

30



CHAPTER 4. KINETIC DATA STRUCTURES

Algorithm 3: General lifecycle of kinetic data structures.
Input:

• Q – Priority queue
• S = {p1, p2, . . . , pn} – set of time-dependent points

Output:

• Continually legalized kinetic data structure

Auxiliary:

• t – The current time of the triangulation
• E – temporary event variable

// Initialization phase

1

2 Create KDS(S) using arbitrary construction algorithm
3 t← 0 // Set current value of time to 0

4 foreach Primitive n−tuple in KDS(S) do
5 Compute the next future event Ei at time ti
6 if Ei exists then
7 Q.push(Ei, ti)
8 end
9 end

// Update phase

10 while t < tmax do
11 while Time of Q.head()> t do
12 E← Q.pop()
13 Execute E
14 Push new events into Q as required
15 end
16 t← t +∆t
17 end

the KDS properties description, let us denote that a given KDS contains n moving primitives. Let
us also denote that a function is small if it is bounded by O(logε(n)) or O(nε), for an arbitrarily
small ε > 0.

Responsiveness: A responsive kinetic data structure is such a KDS that takes only a small
amount of time to handle every certificate failure (an internal or external event). Han-
dling of the event may include changing the topology of the data structure, altering its
properties, adding new certificate functions or removing old ones, etc. If expressed as a
function of n, a KDS is responsive if the time required to handle every certificate failure is
small.

(Weak) Efficiency: KDS is said to be efficient if the total number of events processed in the
worst case is asymptotically the same as (or slightly larger than) the number of external

31



CHAPTER 4. KINETIC DATA STRUCTURES

events processed in the worst case. Let us note that these two worst cases do not necessarily
need to be the same cases (which is the reason that this property is called weak efficiency).

Strong Efficiency: KDS is strongly efficient if and only if the ratio of all processed events to
processed external events in the worst case is small for any given motion.

Locality: A kinetic data structure is called local if the number of directly affected certificates is
small for any input data. Any minor change in the kinetic data structure may influence quite
a large number of certificates, it is often convenient to be able to determine the relationship
between each primitive and the certificates it may directly affect.

Compactness: Kinetic data structures use a priority queue for event management. The length
of the queue may be then expressed as a function of the size of the input data n. The data
structure is compact if the maximum number of events ever present in the queue is small.

4.5 Combinatorial Analysis of Kinetic Data Structures

As described by [8], there is a significant difference between analyzing a discrete algorithm and
a data structure behavior in the context of computational geometry. Consider for instance sorting
algorithms as an example of discrete algorithms – it is easy to construct a sorting algorithm that
runs in O(n logn) time over a set of general dataset of size n. There are sorting algorithms, that
run in this amount of time in the worst case and furthermore, the performance of the algorithms
is independent of the distribution of the sorted data. Using randomization, the average case can
usually be transformed to the worst case [60]. It can be stated that the average case is completely
subsumed by other measures – through randomization, any set of input data can be processed in
O(n logn) time.

In computational geometry, the situation is different. For instance, in the case of convex hull
construction over a set of n primitives in d−dimensional space, the computational complexity
can be as high as Θ(nb

d
2c) in the worst case [58, 76]. On the other hand, if the primitives are

uniformly distributed inside a convex polytope, the expected asymptotic complexity of their con-
vex hull construction is only Θ(n logd−1 n) [12]. The difference between the average and worst
case cannot be mitigated by changing the order in which the input data are processed or any
other type of randomization; the complexity may differ significantly depending on the input data
distribution.

The situation gets even more complicated when the context of kinetic data structures is con-
sidered, the main interest is to determine how many events (internal or external as defined earlier)
will occur between time 0 and +∞. Can there be infinitely many of them? In order to do that,
one needs to start looking at the kinetic data structures from a different point of view. It can be
observed that the problem of kinetic data structure analysis has some common features with one
of the basic techniques in computational geometry – the sweeping algorithm.

4.5.1 Sweeping Algorithm

The very basic idea of the sweeping algorithm is to reduce a (static) d−dimensional problem to
one less dimension by keeping track of (d−1)−arangements that change over time. An example
of such approach would be the task of finding all intersections among a set of line segments S in
a plane. In this case, a vertical sweep line is moving in the direction of axis x from left to right

32



CHAPTER 4. KINETIC DATA STRUCTURES

over the line segments and one has to keep track of the y−coordinates of the segments that are
currently intersecting the sweep line as shown in Fig. 4.1. Set S can be split into three different
sets Sl,Sr,Si for any value of x representing the current value of the sweep line. Sets Sl,Sr contain
all the lines that are completely left or right from the sweep line respectively, Si contains all the
lines that are intersected by the sweep line.

Figure 4.1: Sweeping sort algorithm principle.

Let x represent the current position of the sweep line, smin,smax are the minimum and maxi-
mum values of x of line segment s∈ S, s(x) is the y value of a line segment s at position x and ups

is the line segment immediately above s at the current value of the sweep line, we can formalize
the algorithm in the following fashion [8]:

∀s ∈ Sl, smax < x
∀s ∈ Sr, smin > x
∀s ∈ Si, smin < x∧ smax > x
∀s ∈ Si, s(x)< ups(x)

All of the comparisons stated above will become equal for some values of x. If the x co-
ordinate of the sweep line is considered to be a time variable, these values of x will essentialy
become failure times and the comparisons themselves will become certificate functions and the
failure times will represent kinetic events.

This is very important observation because it allows a direct connection to be tied between
the kinetic data structures and the space sweep paradigm. As mentioned in [8], the general nature
of space sweep can be observed when one realizes that the convex hull diagram, closest pair, and
Voronoi diagram problems can be solved in O(n logn) time using plane sweep methods [29].

4.5.2 Arangement of Curves

Since the connection between kinetic data structures and the plane sweep methods has been
described, the fundamental question of this chapter can be addressed – how many events can be
expected to happen in a kinetic data structure for any given interval of time. Let a lower envelope
of functions and minimization diagram be defined as:

Definition 8 (Lower Envelope of Functions, [8]). The lower envelope of a family ( fi)i of functions
from Rd to R is the point-wise minimum:

F(x) = min
i

fi(x)

33



CHAPTER 4. KINETIC DATA STRUCTURES

The minimization diagram is the combinatorial description of the lower envelope of such
a family of functions, i.e., which function realizes the minimum at every point x ∈ Rd . For
univariate functions, this is simply a sequence of indices of the functions for individual sub-
intervals of the axis x as shown in Fig. 4.2. For bivariate functions, this diagram is a planar map
made of connected regions (faces, edges, and vertices) for which the minimum is realized by a
fixed set of functions. Upper envelope and maximization diagram can be defined similarly.

Figure 4.2: Minimization diagram.

Many problems in computational geometry can be converted into computing a lower or upper
envelope using the principle of geometric duality which allows us to associate a point with a line.
For example, the dual of convex hull diagram is a maximization diagram. Voronoi diagram
of a set of points in d dimensions is a minimization diagram of a set of paraboloids in d + 1
dimensions or a set of planes in d +1 dimensions.

It can be observed that the points where the function realizing the minimum in the mini-
mization diagram changes, represent the kinetic events. The question itself can be formulated
to estimate the worst-case complexity of constructing the minimization diagram and has been
reduced into purely combinatorial task in the past. In order to solve this question, let us now
define the Davenport-Schinzel Sequence:

Definition 9 (Davenport-Schinzel Sequence, [78]). Let n,s be two positive integers. A sequence
σ = (σ1, . . . ,σm) of integers is an (n,s)-Davenport-Schinzel sequence if it satisfies the following
conditions:

1. ∀i≤ m : 1≤ σi ≤ n

2. ∀i < m : σ i 6= σi+1

3. there do not exist s+2 indices 1≤ i1 < i2 < .. . < is+2 < m such that
σi1 = σi3 = σi5 = . . . = a, σi2 = σi4 = σi6 = . . . = b,
and a 6= b

Where n is referred to as the number of symbols composing σ , s as the order of σ and
m = |σ | as the length of σ . The third condition basically states that long sequences of two
alternating symbols are not allowed in Davenport-Schinzel sequences or in other words that the
sequence is non-repeating.

Let λs(n) be defined as the length of the longest (n,s)-Davenport-Schinzel sequence. To be
able to compute the value of λs(n), one has to define the Ackermann function first:

34



CHAPTER 4. KINETIC DATA STRUCTURES

Definition 10 (Ackermann Function, [78]).

A(m,n) =


n+1 ifm = 0
A(m−1,1) ifn = 0
A(m−1,A(m,n−1)) otherwise

Note that A(n) = A(n,n) and let α(n) be the inverse function of A(n). It has been shown
in [78] that α(n)≤ 4 for any practical values of n. For the purposes of this text, we will need the
following values of λs(n):

Theorem 1 (Values of λs(n), [78]).

λ1(n) = n
λ2(n) = 2n−1
λ3(n) = Θ(nα(n))
λ4(n) = Θ(n ·2α(n))

Finally, if ( fi)
n
i=1 is a family of polynomials of degree up to s, the sequence of indices of

the functions that realize its minimization diagram is a Davenport-Schinzel sequence as any two
functions of fi can intersect at most s times and therefore can alternate on the lower envelope at
most s+1 times.

4.5.3 Kinetic Data Structure Events Analysis

As mentioned earlier in this text, the main interest in the analysis of kinetic data structures is to
determine how many events can occur for a given data structure between time 0 and +∞. The
principle can be demonstrated on a very simple KDS – the closest pair. Consider a set of n points
that move along linear trajectories in time with constant velocity. The task is to keep track of the
single closest pair of points in this set. It can be easily seen that although the change of the closest
pair is discrete, the distance between any two points changes continuously. If the distances of any
two points in the set is plotted,

(n
2

)
curves will be obtained and the closest pair at any given time t

is the pair that corresponds to the function at the lower envelope of these curves for t. Because the
plotted curves describe the distance between pair of points, they can intersect at most twice (this
fact can be seen easier if the quadratic distance of points is used instead of the normal distance).
Changes in the closest pair then correspond with the vertices of the minimization diagram of this
set of curves, the amount of which is O(n2) as per Theorem 1.

Many authors have examined this question in the past for different kinds of data structures,
it has been shown in [6] that the closest pair changes O(nλ2δ (n)) times in a (δ ,n)-scenario and
there is a (1,n)-scenario in which the closest pair changes Ω(n2) times. The term scenario in
this context describes the basic properties of the moving points – in a (δ ,n)-scenario, there is n
points that move along polynomial trajectories of degree up to δ .

The same author has also shown that planar convex hull diagram changes O(nλ2δ (n)) times
in a (δ ,n)-scenario and there is a (1,n)-scenario in which the closest pair changes Ω(n2) times.

Moving to some of the more complex data structures, it has been shown in [5] that the up-
per bound on the number of events for Delaunay triangulation (or Voronoi diagram, since the
structures are mutually dual) is O(ndλs(n)) using the same notation as in previous cases. The
lower bound is the same as for convex hull, because convex hull is contained in the Delaunay
triangulation as a subset. This topic will be discussed in more detail in Chapter 6.

35



CHAPTER 4. KINETIC DATA STRUCTURES

4.5.4 Kinetic Data Structure Lifecycle

In order to explore the properties of external events in KDS, one needs to be able to describe the
changes in the topology that are associated with them. To do that, let the explored data structures
to be considered graphs KDS(S) = {S,E} and extend the idea of graph isomorphism for the
kinetic environment.

Note: Two graphs G1 = {S,E1} ,G2 = {S,E2} constructed over the same set S of points are
isomorphic iff ∀(u,v) ∈ E1⇔ (u,v) ∈ E2.

Let KDS(P, t) denote the state at time t of a kinetic data structure KDS(P), constructed over
a set of n time-dependent points S = {p1(t), . . . , pn(t)}, where ∀pi ∈ S : pi(t) = (xi(t),yi(t)). Let
E = {e1, . . . ,em} be a set of m edges in KDS(S). Let ∀ei ∈ E : ei = (pk, pl) if ei is the edge defined
by points pk, pl ∈ S. Finally, let E(t) be the set of edges in a kinetic data structure at time t.

Definition 11 (Kinetic Equality). Given two KDS graphs G1(S, t1), G2(S, t2) constructed over
the same set of (time-dependent) points, the graphs are kinetically equal iff they are isomorphic.

This relation will be denoted as G1(S, t1)∼= G2(S, t2). In other words, two kinetic data struc-
tures constructed over the same set of points are kinetically equal if their topology is identical
and the edges in those two data structures connect the same pairs of points. It is not necessary for
the graphs to have equal values of time in order to be kinetically equal and therefore the (moving)
points do not need to be at the same positions.

Let E = (tex
1 , . . . , tex

n ) , tex
i < tex

i+1∀i < n be the set of all time values for which external events
happen in G(S, t). Formally, we can state that:

∀tex
i ∈ E∃ε > 0 : G(S, tex

i − ε)� G(S, tex
i + ε) (4.3)

Eq. (4.3) describes the lifecycle of a KDS over a time interval [tex
1 ; tex

n ] and highlights the
fact that external events change the topology of the graph as the set of edges changes with each
external event. It is also worth mentioning that some of the states of G(S, t) may be topologically
equal to other states that existed in the graph for earlier values of t – this is the whole purpose
of using the kinetic approach to handle data structures over sets of time dependent data. By
computing the times of external topologic events, it is possible to determine every single different
state of the data structure during its lifecycle without the risk of missing any of them. The internal
events are more complicated to describe and shall be discussed later in this text with a concrete
data structure to provide an example of their effect.

Note: The movement of points may affect multiple certificates at the same time. If such circum-
stances occur, it is vital to know that every single topologic change that is to happen in the
data structure will be accompanied by a corresponding event and every single processed
topologic event will result in one change in topology of the data structure. In the case
of kinetic Delaunay triangulation, this means that no edge swap will cause the potential
recursive swapping of nearby edges as in the case of some construction algorithms (e.g.,
the incremental insertion algorithm described in Chapter 3).

36



Chapter 5

Examples of Kinetic Data Structures
Applications

The kinetic data structures (and kinetic Delaunay triangulations in particular) are a tool with a
wide variety of possible uses, in this chapter we will describe some of their practical applications
covering completely different areas and one general-use method. The kinetic Delaunay triangu-
lation may be used as a tool for any object proximity based task, such as air traffic, simulation
of animal groups of various kinds and might even be exploited for wide range of mathematical
problems that may be described with systems of partial differential equations and solved by finite
element method.

5.1 Collision Detection

Gavrilova proposed in [31] the concept of using the kinetic Delaunay triangulation as a means of
collision detection between points in the generator set. The principle of this method lies in the fact
that only such points may collide that share a common edge in the Delaunay triangulation. This
is a consequence of the aforementioned duality of the Delaunay triangulation and the Voronoi
diagram. Two colliding points are in fact a limit example of extremely close points. As shown
in (2.1), the closer two points are, the more probable it is that their cells will neighbour in the
Voronoi diagram. Together with the principle of duality, it may be stated that there will be
a Delaunay edge connecting the two colliding points. Because all the points in the generator
set may be moving, the edge between two colliding points will be present in the triangulation
unspecifiably earlier than the collision occurs.

Erickson et al. showed in [26] that the kinetic approach may be used to detect collisions
between convex polygons in R2. This work has later been extended by Guibas et al. in [40]. The
later work then uses a kinetic regular triangulation, where the point weights are used to represent
the radii of bounding spheres of the moving polyhedra.

Some practical applications of kinetic collision detection may include such applications as
the one proposed by Goralski and Gold in [35] where the kinetic Voronoi diagrams are used to
provide the spatial relations as an aid for human navigators of marine vessels – see Fig. 5.1.
They may then use the provided information to improve their performance, as the main cause of
accidents in this field is, according to the referred paper, the human error.

37



CHAPTER 5. EXAMPLES OF KINETIC DATA STRUCTURES APPLICATIONS

Figure 5.1: An example of the collision detection application of kinetic Voronoi diagram in the
marine environment, [35].

Another practical use of the kinetic data structures (a kinetic regular triangulation in this
specific case) is the work of Ferrez, see [27], where the kinetic regular triangulation is used to
simulate movement of granular material (which incorporates the collision detection among the
grains). Similarly as in the already mentioned work of Guibas et al. (see [35], the weights of the
points in the simulation are used to represent the radii of the individual grains.

5.2 Simulation of Crowds

As presented by various research groups, the problem of crowd simulation (or other groups of
autonomous agents such as different animal groups) may be handled in many different ways
which are usually based on the adaptations of one of the basic approaches which include agent-
based systems (examples may be found in [34,47,65,84]) and potential based approach (such as
the one presented in [43, 87]).

If an agent based simulation is utilized (each pedestrian is considered to be an autonomous
entity with possibly unique behaviour), two different problems are usually faced. At first, there is
the problem of global navigation as it is necessary to navigate the pedestrians through the virtual
environment and each of the pedestrians may have a unique point of origin and also a unique
target. As shown in the referred sources, this problem is usually handled by using some kind
of graph structure that covers the whole environment and enables the global navigation. The
other problem covers the local behaviour of the pedestrians and basically consists of collision
avoidance (as it is unlikely for two pedestrians to collide in real situations) and of local behavior
management such as group coherence preservation.

Goldenstein et al. shows in [34] that the local behaviour of the pedestrians may be handled
by using a special kinetic data structure, which is in fact a special case of kinetic Delaunay
triangulation. In this approach, each agent is assigned a "safe zone" and the kinetic data structure
is used to keep track of the other agents that are nearby and may enter this safe zone. As we
may see in Fig. 5.2, each agent (marked with the X in this figure) considers not only its nearest
neighbours, but also some of their neighbours and so on if the concentration of agents is localy
dense. In order to do that, it is necessary to add a new type of events to keep track of other agents
entering or exiting the safety zone (agents inside the safety zone of X are shown as black circles).

38



CHAPTER 5. EXAMPLES OF KINETIC DATA STRUCTURES APPLICATIONS

Figure 5.2: Crowd agent with a safe zone and connection to other nearby agents, [34].

5.3 Mathematical Simulations

The simulations of various different natural phenomena, such as fluid dynamics, requires to solve
systems of partial differential equations. In practise, these equations are usually discretized and
solved using finite difference method (FDM) or finite element method (FEM). Beni addresses the
problem of solving partial differential equations in [11] in the field of Geographic Information
System (GIS) simulations and suggests that the kinetic data structures (namely the kinetic De-
launay triangulation and kinetic Voronoi diagram) may be used for the purposes of fluid dynamic
simulations in R3.

The Voronoi diagram is shown to be very well usable for the purposes of fluid representation
as it is dynamic (incremental insertion algorithm is used for its construction) and thus allows
mesh refinement in areas that need to be more detailed. Furthermore, the Voronoi cells are well-
shaped and therefore provide good basis for the differential equations. To prove the usability of
this approach, three different case studies are also presented in [11] – reflection of a compressible
fluid inside a solid bounding cube where it is shown that the particles will compress upon reaching
the walls of the bounding area, their velocity drops and their temperature, density and presure
increases. The second case study shows one-directional expansion of gas in a tube; in this case
the particles with higher density (which are in the middle of the tube) tend to move outwards and
their volume increases. The last case study shows a fully three dimensional expansion of gas –
the particles are initially pressurized in the centre of the simulation area and then begin to move
outwards (see Fig. 5.3). Results from these case studies show that the kinetic Voronoi diagrams
represent a valid choice for fluid dynamics simulations and are comparable with other commonly
used approaches.

5.4 Motion Interpolation

The problem of motion interpolation is slightly different than the other presented applications
of kinetic data structures as it uses the kinetic approach for handling purely dynamic problem
(speaking in terms of triangulation updating techniques as shown in Chapter 4). An example
would be a sampled process that is represented by different states of Delaunay triangulation
for individual samples at t = {t0, t1, . . . , tn} and it does not matter whether ti+1− ti is constant
or variable. In order to perform any sort of computation over the dataset at any given ti, the

39



CHAPTER 5. EXAMPLES OF KINETIC DATA STRUCTURES APPLICATIONS

Figure 5.3: Simulation of gas expansion using kinetic Voronoi diagram, [11].

triangulation needs to be changed from the state at the time ti−1 to the state at t = ti. As the
sampling frequencies are usually quite high in practise, it may be expected that the states of the
triangulation at ti will be very similar to the state at ti+1 and thus it would be very convenient if
this resemblance was exploited in any fashion.

Guibas and Russel showed in [36, 74] that this can be done by using the idea that only the
states of the dataset at precisely given time instants are provided and nothing is known about the
data between these times. The lack of information about the dataset inbetween the given times
may even be exploited because the intermediate states will not be used for any kind of compu-
tation and may thus be manipulated in any viable fashion. The most straighforward method of
transforming the dataset given at ti to the dataset given at ti+1 would be to remove the points from
the old triangulation and reinsert them back at the coordinates that correspond with the new state.
To do so, one might either discard the whole old triangulation and recreate it from the scratch or
remove and reinsert the points one-by-one. However, the referred works show that both of these
ideas are slower than using the kinetic approach.

There are two different ways of moving the points from their old positions to the new ones
with greater efficiency than rebuilding the whole triangulation. Either the trajectory travelled
by each of the points or the polynomial degree in the certificate failure computation may be
minimized. If the lengths of the point trajectories are to be minimized, they are moved along
linear trajectories. If this approach is to be optimized a little further and it is possible to use
the regular triangulation, the points might be moved along linear trajectories in the lifted space.
The other approach, where the degrees of polynomials of the certificate functions are minimized,
consists of moving the points along one axis at a time in the linear fashion.

Russel shows in his PhD. thesis [74] that the abovementioned methods themselves are not
faster than the static updates due to the overhead of certificate failures computation, but they may
be modified using a method called filtering. Filtering is based on the fact that a certain knowledge
about the certificate functions might be used to determine whether any failures worth computing
will occur or not; this is done by using methods similar to those mentioned in Chapter 4 such as
the Descartes’ rule of sign, Sturm sequences of polynomials and others. If the filtering is used,
then the kinetic-based update techniques of the datasets outperform the static-based methods. A
very similar filtering method was also presented in [104] with comparable results. The compari-
son of triangulation updates using the dynamic and kinetic approach not only shows the potential
of the kinetic approach to be faster in the field of sets of moving data but also demonstrates its
extraordinal versatility.

40



Part II

Theoretical Research

41



Chapter 6

Analysis of Selected
Kinetic Data Structures

In this chapter, the kinetic Delaunay triangulation (KDT) and kinetic locally minimal triangula-
tion (KLMT) are defined as kinetic data structures extension to their static counterparts. Their
general properties are explored, as well as the existence of different types of kinetic events in both
of these structures and the predicates and certificates associated with these events. The combi-
natorial properties of these data structures are also investigated, in order to establish the bounds
on the number of events (both internal and external where they exist) which are processed during
the lifecycle of these data structures. The results obtained in the analysis of both of these data
structures are compared.

The introduction and analysis of KLMT represents a new research and has been published
in [53, 54, 91].

6.1 General Arrangements

For the purpose of this chapter, kinetic data structures will be considered to be constructed over
a set S = {p1, p2, . . . , pn} of n time-dependent points so that ∀pq ∈ S : pq(t) = (xq(t),yq(t)) and
the point movement will be limited so that xq(t),yq(t) are polynomials. This restriction is quite
common in kinetic data structure research as it provides a reasonably robust way of approximat-
ing more sophisticated trajectories and a good platform for further analysis and comparison with
other kinetic data structures.

6.2 Kinetic Delaunay Triangulation

6.2.1 Events in Kinetic Delaunay Triangulation

If the points are allowed to move continuously by replacing their coordinates by functions of
time, the certificates will become functions of time – certificate functions. In the case of the
Delaunay triangulation, the only certificate validating the input data is represented by the incircle
test as described in Chapter 2 – see Eq. (2.4). In this case, a determinant of a 4×4 matrix has to
be computed in order to determine if a point lies inside, outside or on a circumcircle of any given

42



CHAPTER 6. ANALYSIS OF SELECTED KINETIC DATA STRUCTURES

triangle (considering a planar triangulation). If the static points are replaced by moving points as
defined in Eq. (4.1), a time dependent matrix incircle test is obtained in the following form:

incircle(pi(t), p j(t), pk(t), pl(t)) = det


xi(t) yi(t) x2

i (t)+ y2
i (t) 1

x j(t) y j(t) x2
j(t)+ y2

j(t) 1
xk(t) yk(t) x2

k(t)+ y2
k(t) 1

xl(t) yl(t) x2
l (t)+ y2

l (t) 1

 (6.1)

where (similarly to the static case) the position of pl(t) against a circumcircle of triangle
pi(t)p j(t)pk(t) may be computed for any given time t ∈R. Furthermore, the certificate functions
may be used to determine if and when the certificate will cease to be valid (for instance when
pl(t) enters the circumcircle of pi(t)p j(t)pk(t)).

Note: If polynomial functions are used as the coordinate functions, the certificate function be-
comes a polynomial function itself. If only linear functions are used for the coordinates,
the certificate function becomes a polynomial of the fourth or lower degree (in this case,
the points move along linear trajectories without any acceleration).

An example of topologic event in KDT is given in Fig. 6.1. In Fig. 6.1(a), a point marked
as pl moves inside the circumcircle of a static triangle pi p j pk (none of its points is moving).
As pl reaches the circumcircle of pi p j pk (shown in Fig. 6.1(b)), the assigned certificate function
reaches a zero value which causes the certificate to fail. In order to keep the Delaunay property,
an edge swap has to be performed, which is done by replacing the edge pi p j by the edge pk pl , as
depicted in Fig. 6.1(c).

(a) Initial situation. (b) Topologic event. (c) Edge swap is performed.

Figure 6.1: Topologic event in the Delaunay triangulation.

There are only topologic events of this type in KDT since it is validated simply by checking
if every point lies outside the circumcircles of all the triangles in the triangulation, no other
condition needs to be checked and therefore, no other certificate functions exist for this particular
kinetic data structure.

Since the topologic event in the Delaunay triangulation is an external event as defined earlier
in Chapter 4, its direct result is a change in the topology of KDS (the aforementioned edge swap).
An important consequence of this change in topology is that two triangles are destroyed that have
existed in the triangulation until the time of the event and two other triangles are created that did
not previously exist. It is important to compute if any topologic events should be scheduled for
the new triangles and deschedule any events that might still be scheduled for the triangles being
destroyed as outlined in Alg. 3.

43



CHAPTER 6. ANALYSIS OF SELECTED KINETIC DATA STRUCTURES

6.2.2 General Properties of Kinetic Delaunay Triangulation

The kinetic data structures properties may be used to evaluate the KDT (similar evaluations may
be found in [10,37], where the properties of KDT and other kinetic data structures are explored).
Using the knowledge from the previous text, it may be stated that KDT has the following prop-
erties:

KDT is responsive: Each event in KDT will create two new triangles, which means that up to
five new events need to be scheduled – one for the edge between the new triangles and then
one for each of the triangles and its two other neighbors. Therefore, managing an event
takes almost constant time for any event.

KDT is strongly efficient: Only one type of events exist in KDT, and thus all the events are
external. The ratio of all processed events to processed external events is O(1).

KDT is not local: Each moving point may be connected to a relatively large number of neigh-
bours and thus participate in a relatively large number of events.

KDT is compact: Although the precise relations between the size of the input set, the allowed
type of movement and the size of the event queue are not known, the compactness of KDT
has been shown – see [5, 37].

6.2.3 Bounds on the Number of Events in Kinetic Delaunay Triangulation

As discussed in [5,39,73], there are certain properties of the topologic events in KDT, that can be
used to estimate the upper bound on the number of events that will occur in its lifecycle. First of
all, every topologic event is connected with a subset S′⊂ S of size d+2, where d is the dimension
of the data structure. In the case of planar KDT, the events are tied to a pair of adjacent triangles.
For the computation of the bounds, only certificate functions with finite number of roots are
allowed (such as polynomials of bounded degree up to r). This assumption implies that each
quadrilateral formed by two adjacent triangles generates at most a constant number of events and
provides an overall upper bound of at mostr

(n+1
d+2

)
⊂ O(nd+2) on the total number of events.

Using the Davenport-Schinzel argument, this upper bound can be improved by approximately
a linear factor to O(n2λs(n)). For points moving along linear trajectories, the maximum number
of roots of each certificate function is 4. According to Theorem 1, the value of λ4(n) = Θ(n ·
2α(n)) this provides an upper bound of O(n3 ·2α(n)).

It was also shown in [3] that the convex hull of a moving point set may change Θ(n2) times,
which implies a lower bound of Ω(n2) topologic events in any triangulation constructed over a
set of moving points.

6.3 Kinetic Locally Minimal Triangulation

6.3.1 Events in Kinetic Locally Minimal Triangulation

As described in the previous text, there are two predicates that need to be validated for KLMT –
the local minimum as defined in Eq. (2.7) and the local convexity as defined in Eq. (6.2). Each

44



CHAPTER 6. ANALYSIS OF SELECTED KINETIC DATA STRUCTURES

of those certificates will provide one predicate and by extension one type of event which are
illustrated in Fig. 6.2.

(a) Initial configuration. (b) Colinear event. (c) Local minimum event.

Figure 6.2: Events in KLMT.

In this example, two triangles forming pi p j pk and pi pl p j are shown that share a common
edge pi p j and form a non-convex quadrilateral. Point p j moves along a linear trajectory as shown
by the gray arrow. The edge pk pl is clearly shorter than the edge pi p j, but it has been described
in the previous text that the common edge shared by the two triangles cannot be swapped unless
the quadrilateral is convex.

As soon as p j reaches the position shown in Fig. 6.2(b), points p j, pk, pl become colinear
and the quadrilateral ceases to be non-convex. This denotes a so called a colinear event. Note
that the edge still cannot be swapped because the quadrilateral is now in a singular state and the
other possible edge pk p j should formally replace pi p j immediately after p j moves away from
the line pk pl . The result of this edge swap is shown in Fig. 6.2(c). The swap itself is a result of a
topologic event.

(a) Initial configuration. (b) Topologic event. (c) Final configuration.

Figure 6.3: KLMT with topologic events only.

The colinear event is an internal event because it does not change the topology of KLMT but
is necessary to be processed in order to schedule and de-schedule the topologic events, which
on the other hand are external events because they result in topology changes represented by the
edge swaps as described above. Generally, the two types of events are not directly tied together
and it is not necessary for the edge swap to follow immediately after the colinear event and in
some configurations, it will not happen at all. The events may occur in the triangulation totally
independent of one another. Perhaps the most basic example of this fact is shown in Fig. 6.3,

45



CHAPTER 6. ANALYSIS OF SELECTED KINETIC DATA STRUCTURES

where such a KLMT is presented, in which only topologic events occur. In this example, the
initial triangulation shown in Fig. 6.3(a) reaches a singular state shown in Fig. 6.3(b) because
of the movement of pl along the linear trajectory marked by the grey line and an edge swap
is performed in order to maintain the local minimality condition, resulting in the configuration
shown in Fig. 6.3(c). It is obvious that no more events of any kind will be scheduled for the
future movement of pl .

It is also possible to construct such cases of KLMT that will schedule and execute only inter-
nal events. Example of such a triangulation can be seen in Fig. 6.4. In this particular example,
the length of pi p j is shorter than the length of pk pl for any value of time. A colinear event will
be scheduled but no topologic change will ever occur in the triangulation.

(a) Initial configuration. (b) Colinear event. (c) Convex quadrilateral.

Figure 6.4: Non-convex configuration without external events.

Fig. 6.5 shows another special case of possible event configuration in KLMT. In the initial
state, the length of edge pi p j is shorter than pk pl and the quadrilateral is non-convex. Due to the
movement of p j, the two edges become of equal length when p j reaches the position of p′j and
finally pi p j becomes longer than pk pl , represented here by the position of p′′j . During the whole
lifecycle of this triangulation example, the quadrilateral remains non-convex and therefore, no
topology change can be performed on the triangulation even though a topologic event would be
scheduled at the time when p j = p′j.

Figure 6.5: Configuration of KLMT without colinear events.

Colinear Events Computation

It is important to note that the convexity certificate as described in Eq. (2.8) is simplified to
provide the result using the least possible number of mathematical operations. This makes it

46



CHAPTER 6. ANALYSIS OF SELECTED KINETIC DATA STRUCTURES

optimal for the use in static LMT construction, however, it also makes it insufficient for the use
in KLMT. Consider the triangulation in Fig. 6.6 – in this example, there are two adjacent triangles
pi p j pk and pi p j pl forming a convex quadrilateral with the common edge (the shorter diagonal)
being pi p j and point p j moves towards point pi.

(a) Initial configuration. (b) Non-convex state.

Figure 6.6: Special case of the convexity certificate computation.

It can be observed that the value of Eq. (2.8) will not change its sign after the quadrilateral
becomes non-convex, because the orientation of both of the tested triangles pk pl pi and pk pl p j

does not change as a result of the movement. Because of this fact, a different convexity certificate
needs to be introduced for KLMT as shown in Eq. (6.2):

CH ′(Sq) = orient(pi, p j, pk) ·orient(pl, pk, pi) ·orient(p j, pi, pl) ·orient(pk, pl, p j) (6.2)

6.3.2 General Properties of Kinetic Locally Minimal Triangulation

The general kinetic data structure properties of KLMT will be explored as defined in Chapter 4.
Let the responsiveness and compactness be considered first.

Lemma 1. KLMT is responsive.

Proof. There are two different types of events in KLMT: colinear and edge swap. If KLMT is
responsive, handling them will take only a small amount of time:

Colinear: Since this event is internal, it will not directly affect the data structure in any way.
However, if the affected quadrilateral was non-convex prior to this event, it becomes con-
vex and therefore, valid for topologic events. Because of that, up to one topologic event
needs to be scheduled for the newly convex quadrilateral. And vice versa if the quadrilat-
eral was convex prior to the colinear event, up to one topologic event needs to be desched-
uled, that might have been scheduled for the quadrilateral.

Edge Swap: This is an external event because swapping the inner edge in a convex quadrilateral
will change the topology of KLMT. The result of the edge swap is up to 5 new quadrilaterals
being formed in the triangulation (one is created by the edge swap and the other four
may be created from the newly created triangles and the triangles directly adjacent to the
quadrilateral). For each of those quadrilaterals up to one new event needs to be scheduled

47



CHAPTER 6. ANALYSIS OF SELECTED KINETIC DATA STRUCTURES

(either colinear or topologic, depending on the actual current state of the quadrilateral).
Also, up to four events may be descheduled, because the quadrilaterals that were used to
compute them do not exist any more as a result of the edge swap.

Each of the aforementioned operations is independent of the total number of points in the trian-
gulation, therefore, the amount of time required to handle the events in KLMT is O(1). Also,
the topologic changes performed as a result of handling an external event are local and will only
affect the related quadrilateral.

Lemma 2. KLMT is compact.

Proof. To prove that KLMT is compact, it must be shown that the number of events ever present
in the queue is small. There is only a constant number of events that can be scheduled for any
given edge present in the triangulation represented by the roots of the certificate function for the
given quadrilateral. When an edge is removed from the triangulation as a result of handling a
topologic event, the connected events are also removed from the event priority queue. And since
the number of edges in KLMT (P) is O(n) at any given time, KLMT is compact.

Regarding the efficiency of KLMT, it is quite simple to show that KLMT is not strongly
efficient even for polynomial trajectories of the points. The strong efficiency condition requires
the aforementioned ratio to be small for any movement – consider the example shown in Fig. 6.7.
Point pl = (a · sin(b · t + c),d), where a,b,c,d = const., moves in a similar way as shown in
Fig. 6.4 with the exception that once it reaches position p′l , its direction of movement is reversed
and it starts moving back to its original position along the same trajectory, with the same velocity.
Therefore, generating four colinear events per each completion of its trajectory cycle and no
topologic events are ever scheduled during the triangulation lifecycle.

Figure 6.7: Periodic type of movement in KLMT.

Lemma 3. KLMT is not strongly efficient.

Proof. As shown in Fig. 6.7, it is possible to construct such a KLMT, where colinear events occur,
but no topologic event is ever scheduled. Therefore, the ratio of all processed events to processed
external events cannot be small, since there are no processed external events.

Our previous work in [91] stated that KLMT is strongly efficient, however in the subse-
quent research, Martin Maňák suggested that the opposite is in fact true and this data structure
is weakly efficient, which was proved, as stated in this text. Nevertheless, if the point movement

48



CHAPTER 6. ANALYSIS OF SELECTED KINETIC DATA STRUCTURES

is strictly limited to polynomial trajectories, the resulting KLMT is indeed strongly efficient as
shown in [91], the proof of strong efficiency in this limited case is identical to the proof of KLMT
weak efficiency in this thesis, see further.

Before the weak efficiency of KLMT can be evaluated, the worst case number of external
events this data structure can process during its lifetime has to be determined. Note that λs(n) is
the maximum length of (n,s) Davenport-Schinzel sequence (see [5]) as defined in the previous
text.

As mentioned in the previous text, [5] shows that number of topologic events in a kinetic
Delaunay triangulation in 2-dimensional Euclidean space is bounded by O(n2λs(n)), if each sub-
set of P of size 4 generates at most a constant number s of external events. The same proof is
also valid for KLMT: since the movement of the points in P is limited to polynomial trajectories,
Eq. (2.7) will be a polynomial and therefore, provide a constant number of roots (which corre-
spond with the topologic events). Similarly to KDT, the topologic events are also bound to a
single quadrilateral and leave its bounding edges unchanged.

Corollary 1. The upper bound on the total number of external (edge swap) events in KLMT (P)
is O(n2λs(n)).

Theorem 2. The number of internal (colinear) events processed by KLMT (P) is bounded by
O(n2λs(n)).

Proof. As stated in the previous text, internal events do not change the topology of the kinetic
data structure by their definition. Therefore, if the number of possible internal events on each
quadrilateral is at most a constant number, the total number of internal events is bounded by the
number of external events in the data structure because new quadrilaterals can only be formed as a
result of handling external (edge swap) events. Eq. (6.2) shows that the number of internal events
for any given quadrilateral is equal to the number of roots of a polynomial equation, therefore,
independent of the size of P and thus constant.

Lemma 4. KLMT is weakly efficient.

Proof. Theorem 2 shows that the upper bounds on internal (colinear) and external (topologic)
events is O(n2λs(n)). Corollary 1 shows that the number of external events in KLMT(P) is
bounded by O(n2λs(n)). The ratio between the number of all processed events to the number
of processed external events can be written as follows:

O(n2λs(n))+O(n2λs(n))
O(n2λs(n))

=
O(n2λs(n))
O(n2λs(n))

O(n2λs(n))
O(n2λs(n))

⊂ O(logε n)

The ratio is small as defined in the previous text and therefore, KLMT(P) is weakly efficient.

49



CHAPTER 6. ANALYSIS OF SELECTED KINETIC DATA STRUCTURES

Lemma 5. KLMT is not local.

Proof. Consider the triangulation in Fig. 6.8 - all the points in KLMT but q are placed on a
circular arc. The triangulation is locally minimal and no edge swaps can be performed because
the quadrilaterals containing q are non-convex, yet q is connected to all other points in P, the
number of which is bounded by Θ(n). Therefore, q is included in every single certificate that
will occur in KLMT (P) and any change of q will affect all the enqueued certificates.

Figure 6.8: Non-local case of KLMT.

6.4 Comparison of Kinetic Delaunay Triangulation and
Locally Minimal Triangulation

The comparison of the basic KDS properties is shown in Tab. 6.1. Both of these structures are
responsive and compact, neither is local and while KDT is strongly efficient, KLMT is only
weakly efficient.

Property KDT KLMT
Responsiveness yes yes
Efficiency strong weak
Locality no no
Compactness yes yes

Table 6.1: Comparison of KDT and KLMT basic properties.

Using the apparatus published in [78], it can be shown that the bounds on the number of
events processed during the lifecycle of KLMT are O(ndλs(n)), similarly to the case of KDT.
The certificates used to compute the events are generally simpler in the case of KLMT which
results in tighter bounds on the number of events. For linear trajectories in R2, the total number
of events in KLMT is bounded by O(n3) which is smaller for any values of n than O(n3 · 2α(n))
which is the respective bound for the number of events in KDT. All the discussed events can
be handled in O(1) and therefore, the management of KLMT should be computationally simpler
than the management of KDT. However, the management of KDT only requires handling of one
type of external events, while the management of KLMT requires us to handle internal events as
well and this may lead to increased numerical instability.

50



Chapter 7

Event Time Computation

According to our research [93], the event computation in kinetic data structures can represent
the most time consuming part of the whole KDS management process by a large percentage.
Depending on the ratio of moving points to static points in the generating point set, the task of
event time computation can consume as much as roughly 95 % of the time. This chapter will
describe some of the methods used for the computation of events and focus on their properties
regarding the event classification. Later, a method will be shown, how the potential events can be
classified ahead of time in order to avoid the computation of events that will never be executed.
Without any loss of generality, the aforementioned topics will be described on the example of
kinetic Delaunay triangulation. The research presented in this chapter has been published in [92,
94, 95].

7.1 Introduction

The kinetic data structures and especially the kinetic Delaunay triangulation have been under-
going an extensive research in the past years. Result of this is that their behavior is relatively
very well understood, especially in their planar variants (there is an ongoing research in higher
dimensions [11, 56, 74]. One of the main issues in this field (and perhaps the most important
one) is the way of certificate failures (i.e., events) computation. Various methods are presented
with the modern trend being the use of interval approach [74] or a speed-optimized numerical
solvers [11]. Each of these methods is usable in different conditions – the numerical solvers
are usually quicker for polynomials of low degree, whereas the polynomials of degree greater
than six are better solved by the interval-based methods. This feature also partially determines
the field of use of these methods. The numerical solvers are more likely to be found in the ap-
plications where the continuity of the movement does not play a key role and it is possible to
simulate curved trajectories by piecewise linear curves (points moving along linear trajectories
generate low order polynomials as certificate functions). On the other hand, if the movement is to
be smooth, a more sophisticated methods are likely to be used which will ensure better runtime
consumption for higher order polynomials.

51



CHAPTER 7. EVENT TIME COMPUTATION

7.2 Event Computation Equations

As stated before, for several reasons it is often convenient to restrict the allowed point movement
to polynomial functions of time, let the moving points as shown in Eq. (4.1) be defined as such
– i.e., with the point coordinates xi(t),yi(t) being polynomial functions of variable t ∈ R. The
certificate functions then becomes a polynomial:

c(t) = incircle(pi(t), p j(t), pk(t), pl(t)) =
n

∑
i=0

ai · t i (7.1)

where incircle(pi(t), p j(t), pk(t), pl(t)) is the certificate function for KDT as shown in Eq. (6.1),
n is the degree of the resulting polynomial, t ∈ R is the time variable and a0, . . . ,an are the
coefficients of the polynomial. It can be seen that n satisfies the following condition:

n≤ 4 · max
q=i, j,k,l

{deg pq(t)}

Specifically, for linear point trajectories, n≤ 4 as the certificate function becomes a polyno-
mial of degree no greater than four. In order to obtain the times of the events associated with
pi, p j, pk, pl , the roots of c(t) have to be found. Some of the methods for solving these polyno-
mials will be discussed in this chapter.

7.2.1 Event Computation Methods Overview

This section provides an overview of the most commonly used methods for polynomial root
location in the context of the kinetic data structures. According to [38], these methods may be
divided into three basic categories:

Naive approach: the most straighforward method consists of computing all the real roots of the
given polynomial, discarding the roots that are not usable (e.g., all the negative roots) and
enqueuing new events that occur at the times determined by the remaining roots (if there
are any left). The methods used for computing these roots may include such approaches as
Laguerre method, eigenvalue-based solvers, Newton method, Bairstow method and other
numerical methods or their combination. Details on variety of these methods may be found
in literature – see [25, 67, 71] and others.

Interval based methods: first proposed in [38], these methods represent a different approach.
Instead of computing the polynomial roots, intervals are used that contain only one root
each. The intervals may be of virtually any size when they are computed and they are
reduced when the need to do so emerges – for instance when they are stored in the priority
queue or it needs to be determined which root certificate should be handled first. The main
advantage of this approach is the fact that not each root becomes computed exactly and
runtime can be saved by not computing the roots that are not really needed (the events may
become de-scheduled as explained later in Section 7.5). Details on this approach may be
found in [38, 74].

Hybrid methods: using algebraic preliminaries such as the Descartes’ rule of sign and the
Sturm sequences of polynomials – see Section 7.4, these methods are able to divide the
real axis into intervals containing the individual roots of a given polynomial. Using some

52



CHAPTER 7. EVENT TIME COMPUTATION

iterative approach (such as the Newton method or bisection), it is possible to determine the
location of the roots. In order to be able to employ these iterative methods efficiently, the
polynomials may be replaced by other polynomials with exactly the same roots but with
multiplicities equal to one (see [38]). Details on these methods may be found in [38,72,74].

Guibas and Karavelas also provide a comparison of some representants of the aforementioned
methods in [38], where they show that both the hybrid and the interval based methods are better
than the numerical solvers (in the terms of runtime consumption) for polynomial trajectories,
where the certificate function result in a polynomial of degree greater than six. For the lower
degree polynomials, the numerical methods are quicker.

Note: Analytical methods for polynomial solving are not practically usable as they only allow
us to solve polynomials of low degrees and they usually need to use complex numbers
even in the process of finding real roots, which is considered to be a potential source of
errors.

7.2.2 Polynomial Solving

In the previous text, the term polynomial has been used informally, in order to explore the meth-
ods for polynomial root location, it is necessary to lay down some basic definitions:

Definition 12 (Polynomial). Polynomial represents a special case of nonlinear equation:

f (z)≡ anzn +an−1zn−1 + ...+a1z+a0 = 0 (7.2)

where an, ...,a0 ∈R,an 6= 0 are the real coefficients of the polynomial and z is either complex
or real variable, depending on the type of the polynomial. From now on, let z ∈ R, thus making
the polynomial in Eq. (7.2) a real polynomial of n-th degree.

Definition 13 (Monic Polynomial). A polynomial of degree n is monic iff an = 1.

Monic polynomial fmon(z) may be created from any polynomial f (z) (defined as above) by
simply dividing all its coefficients by the value an, thus gaining:

fmon(z) = zn +a′n−1zn−1 + ...+a′1z+a′0 = 0

where a′i =
ai
an
, i = 0, ...,n−1.

Definition 14 (Polynomial root, root multiplicity). Let f (z) be a real polynomial as defined
above. A real number z0 is called a root of multiplicity k of f (z) if there is a polynomial s(z) such
that:

s(z0) 6= 0

f (z) = (z− z0)
ks(z)

If k = 1, then z0 is called a simple root.

53



CHAPTER 7. EVENT TIME COMPUTATION

Polynomial Root Count

As a result of the fundamental theorem of algebra [100] applied to polynomials with real coeffi-
cients, it can be stated that the number of the complex roots of such a polynomial will be either
zero or even.

Root Position Bounds

Given a polynomial equation as shown in Eq. (7.1), according to [44] the value of each of its real
roots zi may be restricted as follows:

|zi|= max

{
1,

1
an

n

∑
i=0
|ai|
}

(7.3)

In other words, for each polynomial, there is an interval that contains all of its real roots. The size
of this interval may be computed by using solely the coefficients a0, . . . ,an of this polynomial.

Descartes’ Rule of Sign

This simple rule (discussed for instance in [72]) can be used to simply obtain an upper bound on
the number of the real roots of a polynomial on any given interval:

Theorem 3 (Descartes’ Rule of Sign). Let c(t) be a polynomial as in Eq. (7.1). Let V (c) be the
number of sign variations in the sequence (a0, . . . ,an), discarding all zero values, and ‖c+‖ the
number of all the positive roots of c(t) with multiplicities, then ‖c+‖ ≤V (c) and V (c)−‖c+‖ is
even.

Using the transformations of paramater t as shown in [72], the number of real roots can be
determined for any given interval.

7.3 Analytical Methods for Solving Polynomials

7.3.1 Introduction

Analytical methods for polynomial solving are well known and often successfully used especially
for polynomials of lower degrees (up to the second degree). They are based on the properties
and features of the solved functions. In theory, the analytical approach is better than most of
the numerical methods, because it leads to an exact result, but due to the limited precision, the
result may be quite imprecise without the ability to improve it by using multiple iterations of the
algorithm.

7.3.2 Analytical Formulas

Linear equation: The only single root of the linear equation, which is defined as

a1z+a0 = 0

54



CHAPTER 7. EVENT TIME COMPUTATION

may be found using the following formula:

z =−a0

a1
(7.4)

Quadratic equation: A quadratic equation may have either zero or two real roots (which may be
equal, thus forming a single multiple root). The number of these roots may be determined
by the value of the discriminant D of the polynomial. The quadratic equation can be
defined as:

a2z2 +a1z+a0 = 0

then the discriminant can be enumerated by the following formula:

D = a2
1−4 ·a0a2

After the value of the discriminant is known, the real of the equation roots may be com-
puted:

x1,x2 =−b±
√

D
2 ·a2

(7.5)

The sign of the discriminant determines the number and multiplicity of the roots. If D < 0
then both of the roots are complex and the equation thus does not have any real roots. If
D = 0 then the roots are equal (thus forming one double root). For values of D > 0, the
roots are simple - two distinct real numbers.

Cubic Equation: A general cubic equation is of the following form (written as a monic polyno-
mial):

z3 +a2z2 +a1z+a0 = 0

According to the fundamental theorem of algebra, the number of real roots of this poly-
nomial may either be one or three (with the possibility that some of them are equal, thus
gaining two distinct roots - one of multiplicity two and the other one of multiplicity one -
or just one root of multiplicity three).

Analytical solution of this kind of equation is more complicated and, moreover, some of
the temporary subresults have to be stored as complex numbers. These facts, combined
with the limited computer precision, may cause that the analytically obtained roots are
relatively far away from the real ones. They may even contain (or lack) an imaginary part,
even if the actual roots are real (or complex) numbers.

The cubic equation in the above defined form is most often analytically solved by using
the so called Cardano’s formula, which may be found in [99]. Some simpler solution
methods, such as the Vietta’s formula, only usable for solving appropriate special cases of
the equation are presented as well there.

Quartic Equation: To solve the quartic equation, defined as

z4 +a3z3 +a2z2 +a1z+a0 = 0

the Vietta’s formula can be used, described for instance in [101], but the same restrictions
as in the previous case apply. The subresults need to be stored as complex numbers even
if the roots themselves are real, which may theoretically decrease the precision of the final
results.

The number of real roots may be zero, two or four as defined by the fundamental theorem
of algebra. Some or all of them may, again, be equal, thus forming roots of multiplicities
greater than one.

55



CHAPTER 7. EVENT TIME COMPUTATION

7.4 Numerical Methods for Solving Polynomials

7.4.1 General Methods for Solving Nonlinear Equations

Polynomial being a special case of nonlinear equation of one variable, it can be solved by using
any suitable method (or combination of several methods) usable for solving these equations.
Such methods are often divided into two groups. The first of them contains the methods, which
converge slowly, but will converge to a root (if one exists) for any input data (i.e., any suitable
function and any initial estimation of the root value). The other group consists of methods that
are usually used to increase the precision of a previous root estimation. These methods converge
faster in general, but the initial estimation needs to be sufficiently near the actual root, otherwise
the method may fail to converge at all.

Another possible way of dividing the numerical methods into groups is the number of initial
estimations that need to be passed as input arguments to the method. Some methods need two
points that define an interval, which contains the root to be found, other methods need just one
initial estimation of the value of the root. Other possibilities exist and may be found in the
appropriate literature.

Bisection: Is one of the simplest numerical methods, which is often used in various fields of
computer engineering (with some modifications). Given an interval [x1,x2] and a function
f = f (x) such that f is continuous at [x1,x2] and

f (x1) · f (x2)< 0 (7.6)

then, due to the law of the mean, at least one root of f lies in [x1,x2].

The method of bisection will converge to the root by splitting the given interval into two
halves and repeating the process on the half that fulfills the condition Eq. (7.6).

Bisection converges for any initial interval that fulfills the above defined conditions, al-
though the convergence is rather slow. In general, the root estimation is improved by one
decimal position after three iterations of the method (see [71]).

Regula Falsi: This method is very similar to the previous method of bisection. The input values
need to fulfill the same conditions, but the interval that contains the root is divided in a
different way. Instead of splitting it in half, a line segment is constructed between points
(x1, f (x1)) and (x2, f (x2)) and its point of intersection with the x-axis defines the division
of [x1,x2]. The progress of Regula falsi is illustrated in Figure 7.1.

This figure also displays the most significant disadvantage of Regula falsi method - the
fact that for convex functions (or convex on the current interval at least), only one of the
border points is affected by this method, the other one remains unchanged, thus slowing
down the convergence process. Even though this method seems more sophisticated than
the Bisection method, it has been shown that their convergence speed is essentially the
same (see [71]).

Newton-Rhapson Method: Sometimes also called simply Newton’s method, this numerical
method uses the tangents of the computed function at the current root estimation to im-
prove its precision. The progress of this method is illustrated in Figure 7.2.

56



CHAPTER 7. EVENT TIME COMPUTATION

Figure 7.1: The first few iterations of Regula falsi method.

Newton’s method only needs one root estimation as an input parameter (not an interval
like the previous two methods), the formula to compute the next iteration is the following:

xi+1 = xi−
f (xi)

f ′(xi)
(7.7)

Figure 7.2: The first few iterations of Newton-Rhapson method.

This method converges very quickly, especially when compared to the previous methods,
but may not be used on functions that are not differentiable over their domain. And even if
this criterion is fulfilled, the method may fail to converge for a bad initial value of the root
estimation.

7.4.2 Specialized Methods for Solving Polynomials

Apart from the methods for solving general nonlinear equations, a special sort of methods exist,
which are designed to find the roots of polynomials. These methods vary by the type of the roots

57



CHAPTER 7. EVENT TIME COMPUTATION

which they are able to find (real or complex) and the approach they use to do so. Some examples
of such functions include (but are not limited to) Lehmer-Schur method, Bairstow’s method,
Bernoulli’s method and others. Details of these methods may be found in literature [66, 71].

7.4.3 Sturm Sequences of Polynomials

Definition 15 (Sturm Sequences, [71]). The sequence of polynomials

f1(x), f2(x), . . . , fm(x)

will be Sturm sequence at interval [a,b] (a and b may be infinite), if:

1. fm(x) is nonzero at the whole interval [a,b]

2. The two adjacent polynomials to the polynomial fk(x),k = 2, ...,m−1 are nonzero at zero
points of this polynomial and have the opposite signs there, thus:

fk−1(x) fk+1(x)< 0

The key feature of the Sturm sequences of polynomials is that they may be used to com-
pute the total number of polynomial roots on any given interval including their multiplicities.
Consequence of this fact is that Sturm sequences may be quite easily used for polynomial root
computation. Sturm sequence of a polynomial f (x) may be constructed [71]:

f1(x) = f (x)

f2(x) = f ′(x) (7.8)

f j−1(x) = q j−1(x) f j(x)− f j+1(x), j = 2, ...,m−1

fm−1(x) = qm−1(x) fm(x)

In these relations, q j−1(x) is the quotient and f j+1(x) is the negation of the remainder of division
of the polynomial f j−1(x) by the polynomial f j(x). Therefore, { fi(x)} is a sequence of polyno-
mials of a decreasing degree. The first term of the sequence is the input polynomial, the second
term its derivate and each of the following terms fi(x) is obtained by computing the remainder of
the division fi−1

fi−2
and changing the sign of this remainder.

These facts may become easier to observe if the third equation from Eq. (7.8) is rewritten to
the following form:

f j−1(x)
f j(x)

= q j−1(x)+(−1) ·
f j+1(x)
f j(x)

(7.9)

A division of two polynomials can be seen in Eq. (7.9), with f j−1(x) being the numerator and
f j(x) being the denominator of the division. q j−1(x) then denotes the quotient (which is not
used for the practical computation of the Sturm sequences) and f j+1(x) is the negation of the
remainder of the division (the multiplication of f j+1(x) by the constant −1 is necessary to make
the relation correct.

58



CHAPTER 7. EVENT TIME COMPUTATION

Important Features of Sturm Sequence of Polynomials

Counting the Roots: Let V (x) be the number of the sign changes in the Sturm sequence Eq. (7.8)
(ignoring all zeros). This function may then be used to count the number of distinct real
roots of f (x) on any interval [a,b]:

ra,b =V (a)−V (b) (7.10)

where a,b ∈R or either of a,b may be infinite. As proved in [71], Eq. (7.10) remains valid
even if a or b are the roots of f (x).

Root Multiplicity: The last term of the Sturm sequence Eq. (7.8) may be used to distinguish
and compute the values of the multiple roots of f (x). As proved in [71], all the multiple
roots of f (x) with multiplicities decreased by one are the roots of fm(x), which does not
have any other roots. Together with the fundamental theorem of algebra, this statement
may be extended to various useful conclusions. For instance if fm(x) is of an odd degree,
then f (x) has at least one multiple root, etc.

Generalized Sturm Sequence

If the initial polynomial has some multiple roots, the created sequence is no further a Sturm
sequence as defined in Def. 15, because the second required condition is not met. In this case,
the sequence is called a generalized Sturm sequence and has all the aforementioned features.
The generalized Sturm sequence is formally defined as an extension of Sturm sequence { fi(x)}
by multiplying all of its terms by any polynomial p(x), thus gaining a sequence in the form
of {p(x) · fi(x)}. If a Sturm sequence is mentioned anywhere in this text, a generalized Sturm
sequence is meant.

7.5 Event Classification and Redundancy

Generally speaking, there are two reasons why the root of a certificate function would not de-
scribe a to-be-executed event in the kinetic data structure. In some cases, the root might point to
a specific topologic situation that does not require an event to be executed, while in other cases,
the execution of the event might become unnecessary because it is scheduled too far in the future
and the kinetic data structure will enter such a state that prevents the event from execution due to
some other events executed earlier and the event becomes obsolete.

7.5.1 Insignificant Polynomial Roots

Consider the situation depicted in Fig. 7.3. In this figure, the point pl moves tangentially to the
circumcircle of the triangle pi p j pk.

If the points pi, p j, pk are static there is only one certificate failure which is displayed as a
singular state in Fig. 7.3(b). If an event is scheduled for this certificate failure, the triangulation
will cease to be Delaunay and eventually it would even cease to be a triangulation as defined
earlier because the edges would start to overlap. It is thus necessary to distinguish this type of
events.

59



CHAPTER 7. EVENT TIME COMPUTATION

(a) Initial situation. (b) Singular state. (c) Point pl moves forward
without any changes in the
topology.

Figure 7.3: Tangential movement of a point against the circumcircle of a triangle.

Note: In accordance with Eq. (4.3), it can be seen that during the whole depicted interval of pl
movement, the graph does not change its topology and therefore no external event could
have occured.

The situation shown in Fig. 7.3 is the simplest possible case of the occurence of this type
of event and it may distinguished by obtaining a double root of the certificate function. The
following lemma shows how the similar situations can be detected for more complicated point
configurations as long as the movement of the points remain polynomial.

Lemma 6. The roots of a polynomial certificate function c(t) may be divided into two groups as
follows:

• All roots of even multiplicity may be ignored when determining the times of topological
events.

• All roots of odd multiplicity determine the time of a single topologic event.

Proof. Let us rewrite the polynomial c(t) as:

c(t) = (t− t0)r ·q(t) (7.11)

where t0 is a root of c(t) with multiplicity r and q(t) is a polynomial function. Let us now find
an arbitrary small ε > 0 such that there will be an interval I = (t0− ε; t0 + ε) such that q(t) has
no roots in I. Also, let us define c0(t) = (t− t0)r.

If t0 is of even multiplicity, then r = 2k and thus:

c0(t) =
[
(t− t0)2]k

It can be seen that ∀t ∈R : c0(t)≥ 0 and since q(t) does not have any roots in I (and thus the
sign of its value does not change over I because it is a continuous function), the sign of c(t) does
not change over I (if the zero at t = t0 is ignored). Moreover, the certificate with the certificate
function c(t) does not fail for any time t ∈ I and since t0 is the only root of c(t) in I, it does not
mark a certificate failure.

60



CHAPTER 7. EVENT TIME COMPUTATION

If t0 is of odd multiplicity, r can be expressed as r = 2k+1 and c0 can be expressed as:

c0(t) =
[
(t− t0)2]k · (t− t0)

The sign of c0(t) does change exactly once in the interval I and thus the sign of c(t) changes, too,
and the certificate function fails, determining the time of a single topologic event.

As a result of the presented knowledge, it can be stated that any method suitable for an
easy determination ot the polynomial roots multiplicity is highly valuable. Also, the hybrid
method presented by Guibas and Karavelas in [38] is not entirely correct. Prior to the actual root
computation, their method replaces each certificate function c(t) with other polynomial function
d(t) which has the same roots but all with multiplicities equal to one. As shown in the example
in Fig. 7.3, this may lead to the execution of nonexistent topologic events, topology distortion
and increase in numerical instability.

7.5.2 Redundant and Obsolete Events

Many of the computations of topologic events are redundant or obsolete. Some of the events
will have to be computed more than once or will be computed but will never be processed, these
events are called redundant or obsolete respectively. Consider the situation displayed in Fig. 7.4.

Figure 7.4: Redundant/obsolete topologic event.

A triangulation is shown in this figure, where a topologic event for triangles p j pl pk and
pk pl pm will occur at time t0 and another topologic event will occur for the same pair of triangles
at time t1. It is not necessary to spend time computing the later as only the first future topologic
event for each triangle pair is pushed into the queue. Another topologic event is scheduled for
triangles pi p j pk and p j pl pk and it will occur at time t2. Events taking places at times t0 and
t2 are computed with respect to the movement of the points pm and pl and will occur at the
circumcircles of the triangles that do not exist yet; their topology is correct but the position of the
points will change due to the movement. In order to keep the figure as simple as possible, these
events are marked on the currently existing circumcircle which will change its radius due to the
movement of the points.

61



CHAPTER 7. EVENT TIME COMPUTATION

(a) Event scheduled for t0 occurs. (b) The topology returns
to original state.

(c) Event scheduled for t2
occurs.

Figure 7.5: Topologic changes in the vicinity of an upcoming event (t0 < t1 < t2).

Let t0 < t1 < t2 (the events will occur in the following order: t0, t1, t2). In this case the
topology of the triangulation changes at t0 as shown in Fig. 7.5(a), making the event scheduled
for triangles pi p j pk and p j pl pk at t2 illegal and removing it from the queue. After that, the
topology changes again at t1 as shown in Fig. 7.5(b), reverting topologically to the original state.
This change invokes a new computation of topologic event for the triangle pair pi p j pk and p j pl pk
which results in the topology event at time t2 that has been already computed and discarded as
shown in Fig. 7.5(c) thus making the event redundant. The situation can be even more complex
when multiple points leave and enter the vicinity of a triangle pair similar to the one displayed
in Fig. 7.4. In order to make the problem simpler to observe, the points in the figure are moved
subsequently (point pl remains static during the movement of pm and vice versa). In the real
application, the points would move simultaneously, but the speed of movement of pl would be
much slower than the speed of pm.

Note: In the example shown in Fig. 7.5, there will be other events scheduled and executed be-
tween times t0 and t1. The example is simplified to provide a better insight into the nature
of the obsolete events and to show that some of the events do not need to be computed if
it is obvious that some of the preceding event will have changed the topology by the time
of the obsolete event execution in such a manner that the event could not be processed.

In the case that t0 < t2 < t1 (the order of the occurence of these events is that the event at
t2 will occur before the event scheduled at t1), the event denoted by t1 might not be executed at
all and it is therefore obsolete. The situation is similar to the previous case - the first topologic
event, scheduled at t0 makes the event at t1 obsolete and it is then removed from the queue. But
due to the fact that t2 < t1, this exact topology event will never occur because the triangulation
does not return to its original topologic state as shown in Fig. 7.6.

62



CHAPTER 7. EVENT TIME COMPUTATION

Similarly to the previous case, it can be seen that the first event that occurs at t0 changes the
topology of the triangulation as shown in Fig. 7.6(a). Then the event scheduled at t2 is executed
as shown in Fig. 7.6(b), but the topology of the triangulation at time t1 is completely different.
The triangles pk pl pm and p j pl pk do not exist at time t1. Therefore, the Delaunay criterion is not
violated and no event should be scheduled and executed for this time. The practical application
of this principle will be discussed later in Chapter 8.

(a) Event scheduled for t0 occurs. (b) Event scheduled for t2 occurs. (c) Event scheduled for t1 does not
occur.

Figure 7.6: Topologic changes in the vicinity of an upcoming event (t0 < t2 < t1).

Note: It is generally not practical to distinguish between redundant and obsolete events. The
most important point of their detection is that their computation can be postponed until
they are needed (if they are needed). Therefore, the terms can be used interchangeably in
the context of practical application.

63



Part III

Applications of Kinetic Data Structures

64



Chapter 8

Hybrid Method for Managing
Kinetic Delaunay Triangulation

Independentely of the research performed by Guibas and Karavelas in [38], we developed an
advanced method that may be characterized as hybrid according to the terminology established
earlier in this text (this classification only considers the method of the event times computation as
we have already described in Chapter 7). It is important to note that KDT management includes
several other parts which determine its overall functionality and performance. This chapter de-
scribes our implementation of the problem of kinetic Delaunay triangulation management (this
research has been published in [92–94]).

Figure 8.1: Experimental implementation of the kinetic Delaunay triangulation for 2.5D wave
simulation.

For demonstration purposes, we have used our method to create a simulation of a 2.5D wave.
This simple application consists of a grid of points. Each point in this grid has slightly altered
its y−coordinate by adding a small random number. One row of these points is then assigned
a velocity vector in the form of [0,y]. If the moving row collides with the boundary of the

65



CHAPTER 8. HYBRID METHOD FOR MANAGING KINETIC DELAUNAY
TRIANGULATION

triangulation area, it is deflected backwards without any loss of speed. If two points collide, then
they switch their velocity vectors, meaning that the previously moving point is now static and
vice versa. The points are then assigned a z coordinate by using an equation of a Gaussian curve
with its peak being at the coordinates of the moving row of points. This creates the illusion of a
wave as shown in Fig. 8.1.

8.1 Basic Preliminaries

Construction Methods and Data Structures

From the variety of methods available for Delaunay triangulation construction, we decided to use
the incremental insertion algorithm with a walk-based triangle search. This algorithm has several
very important features with respect to the kinetization principle. At first, it is very simple to im-
plement, it is online (we may simulate discrete time movement by removing and reinserting the
points in the triangulation, if needed) and the search algorithm allows us to change the triangula-
tion structure with relative ease. This last feature is especially important, because the movement
of the points will almost surely cause a large number of alternations in the triangulation. If we
used a DAG-based or similar lookup structure, we would have to perform relatively large-scale
alternations in its structure, which would be prone to errors. From the variety of possible walk-
ing algorithms, we have chosen to use an orthogonal walk algorithm in combination with the
Remembering stochastic walk (see [51, 81, 82]).

The online property also allows us to manipulate the dataset at any moment during the lifecy-
cle of the application and (together with some point removal algorithm such as the one presented
in [21]) makes the triangulation extremely versatile and even allows us to simulate the movement
by the dynamic approach.

Point Movement

As stated earlier in the text, it is sufficient for most applications to limit the point movement to
polynomial or even linear trajectories. For our implementation, we decided to limit the point
movement to linear trajectories. Our experiments, as well as some of other applications, suggest
that this type of movement, however simple, is usable for a wide variety of problems – e.g.,
collision detection applications may use a piecewise linear movement approximation and the
motion interpolation problem also uses various kinds of linear movement functions. We will
show how our own applications of KDT use linear movement of the generating points later in
this chapter in order to simulate real-life scenarios.

8.2 Event Computation

As shown in the previous text, the certificate function computed for the points pi, p j, pk, pl is in
the form shown in Eq. (6.1) and since the linear point movement results in polynomial certificate
functions of the fourth or lower degree, c(t) is a polynomial function.

66



CHAPTER 8. HYBRID METHOD FOR MANAGING KINETIC DELAUNAY
TRIANGULATION

In order to compute the events, we have developed a special method for polynomial root
finding. This method is general and technically able to solve polynomials of any given degree,
but since we only work with linear movement it is only used for polynomials of degree up to four
in our context. The method is based on the information about the polynomial root locations and
multiplicities that can be obtained from its Sturm sequence. The roots themselves are then found
by combining this information with numerical methods.

Together with the fundamental theorem of algebra – [71], we may use the knowledge ob-
tained from the Sturm sequence of a polynomial to create a table of guidelines for its solving. As
said in Chapter 7, the last polynomial of each sequence may be used to discover all the multiple
roots of the solved polynomial. The guidelines are presented in Table 8.1:

deg f (x) fm(x) real root multiplicity f (x) real root multiplicity
3 {2} {3}
3 {1} {2, 1}
3 none {1} or {1, 1, 1}
4 {3} {4}
4 {2} {3, 1}
4 {1, 1} {2, 2}
4 {1} {2} or {2, 1, 1}
4 none /0 or {1, 1} or {1, 1, 1, 1}

Table 8.1: Features of the polynomial depending on its Sturm sequence.

In this table, the first column determines the degree of the solved polynomial f (x), the sec-
ond column shows the multiplicities of the roots of the last polynomial in the Sturm sequence
constructed for the solved polynomial. The last column then shows all the possible root multi-
plicity configurations for the solved polynomial. For instance, if the polynomial f (x) is of the
third degree and the last polynomial in its Sturm sequence has one simple root, then f (x) has to
have one double root and no other roots of multiplicity greater than one. Furthermore, accord-
ing to the fundamental theorem of algebra, number of complex roots of a polynomial must be
either even or zero. And because only one root is left to recognize, this remaining root must be
real, leaving f (x) with only one possible root configuration - one double real root and one single
real root, as shown in the second row of Table 8.1. Examples of all possible root configurations
of a polynomial of the third degree without the corresponding Sturm sequences are shown in
Table 8.2.

Using the aforementioned knowledge, we were able to formulate a hybrid algorithm for solv-
ing the polynomial equations. Its simplified form, Sturm3 algorithm, is shown in Alg. 4. This
simplified form describes the approach we use for solving polynomials of the third degree, solv-
ing polynomials of higher degrees uses the exact same principle, but the number of possible
polynomial root configurations grows with increasing degree of the polynomial being solved.

The Sturm sequence of the given polynomial c(t) (i.e., the certificate function) is constructed
and used to obtain two important pieces of information – the total amount of roots and all the
multiple roots of this polynomial (as we stated in Chapter 4, both the exact locations and the
multiplicities of the multiple roots may be obtained in this fashion). If any multiple roots exist,
we divide c(t) by the polynomial (t − t1)r1 · (t − t2)r2 · . . . · (t − tn)rn where t1, t2, . . . , tn are the
multiple roots with mulitplicities r1,r2, . . . ,rn. If c(t) does not have any multiple roots, it is left
unmodified. Together with the fundamental theorem of algebra, we are now able to solve c(t) by
using either the analytical formulas if the degree of the resulting polynomial is equal to one or

67



CHAPTER 8. HYBRID METHOD FOR MANAGING KINETIC DELAUNAY
TRIANGULATION

Figure 8.2: Examples of all possible root configurations of a polynomial of the third degree.

two, or suitable numerical methods if the degree of c(t) is greater. For the numeric part of the
approach, we use the method of bisection for the initial root position estimation and Newton’s
method to enhance the precision of this estimation to the required value. We have chosen these
methods because of their simplicity in the case of bisection and because of their extremely easy
implementation and excellent expected performance in the case of Newton’s method. We have
also tried solving the lower degree polynomials numerically, but the results were no more precise
than those obtained by the analytical approach and the analytical approach is very easy to use
and fast since the analytical solutions are well known for the linear and quadratic functions.

Note: The Sturm3 algorithm, as described in Alg. 4, contains a check for empty set of roots (see
lines 3–6). According to the fundamental theorem of algebra, it is not possible for a poly-
nomial of non-even degree to have zero real roots. This part of the algorithm is mentioned
solely for illustrational purposes here and will be used when solving polynomials of even
degree.

68



CHAPTER 8. HYBRID METHOD FOR MANAGING KINETIC DELAUNAY
TRIANGULATION

Algorithm 4: Sturm3 Algorithm.
Input:
• c(t) = ∑

3
i=0 ai· t i = 0 - a polynomial of the third degree.

Output:
• A set {ti}r

i=1 of real roots of c(t) = 0, r ≤ 3.
• Or an empty set, if no real roots exist.

Auxiliary:
• Sturm sequence f1(t), ..., fm(t) of the polynomial c(t).
• Rm = {rmi}rmult

i=1 - a set of all the multiple roots of c(t).

– Each multiple root rmi is contained mi−1 times, where mi is its multiplicity.
– Rm = /0⇔ c(t) has no multiple roots.

1 f1(t), ..., fm(t)← Sturm sequence of c(t)
2 r← (V (−∞)−V (∞))
3 if r = 0 then
4 Return empty set of roots
5 end
6 Rm← set of rmult roots of fm(t)
7 if ‖Rm‖= 2 then
8 Return {rm1,rm1,rm1}// One triple root

9 else if ‖Rm‖= 1 then
10 rs← the only single root of c(t)

(t−rm1)2 = 0

11 Return {rm1,rm1,rs}// A double and a single root

12 else
13 Return {r1,r2,r3} // Set of three distinctive roots

14 end

8.3 Redundant Event Reduction

As shown in Chapter 7, some of the topologic events that are computed will be descheduled
before their execution and the runtime spent on their computation is wasted – we call these
events redundant. Our research shows that the redundant events represent roughly 50% of all the
events that are computed during the application runtime as shown in the graph in Fig. 8.3.

The graph in Fig. 8.3 shows the total amount of scheduled topologic events for various per-
centages of moving points in the generator set. The test was concluded on a set of 100 points that
were randomly placed in a square-shaped area and a certain subset of these points was assigned
a random velocity vectors. After ten seconds of KDT management, we were able to determine
that the total number of succesfully processed topologic events is nearly equal to the number of
the discarded events which means that approximately half of the time spent on the event compu-
tation is lost. Furthermore, as we can see in the graph in Fig. 8.4, the runtime spent on the event
computation represents over 90% of the total time needed for the KDT manegement if at least
40% of the points are moving.

As shown in the previous text, topologic event computed for two adjacent triangles at time
te will become redundant if at least one of the two triangles is removed from the triangulation at
any time tr < te (such a removal will usually occur as a result of an edge swap). With a relativelly
little effort, this knowledge may be used to reduce the number of computed events by assigning

69



CHAPTER 8. HYBRID METHOD FOR MANAGING KINETIC DELAUNAY
TRIANGULATION

a time of the next event scheduled for that triangle to each triangle in KDT or an infinite value if
no event is scheduled for the triangle as illustrated in Fig. 8.5.

0

200

400

600

800

1000

1200

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

E
v

e
n

t 
co

u
n

t 
[-

]

Moving point percentage [%]

Executed topologic events Discarded topologic events

Figure 8.3: Total amount of scheduled and discarded topologic events.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

R
u

n
ti

m
e

 p
e

rc
e

n
ta

g
e

 [
%

]

Moving point percentage [%]

4th Degree 3rd Degree Insertion Initialization Event Execution

Figure 8.4: Distribution of runtime consumption during KDT management.

Let us first consider the initialization step as shown in Alg. 3 (presented in Chapter 4). At the
beginning of this step, we have a Delaunay triangulation and no computed topologic events. We
now assign an infinite value to each triangle as a time of the next topologic event that will alter
this triangle – see Fig. 8.5(a). Following the aforementioned algorithm, we now choose pairs of
adjacent triangles and try to compute the first topologic event that will occur for the two chosen
triangles. If such an event exists and will occur at the time t1, we push it into the priority queue
and assign the value t1 to these two triangles as shown in Fig. 8.5(b) (the triangles are marked
by grey color in the figure). Later on, we may try to compute a topologic event for a triangle
pair which contains a triangle with a non-infinite time value as shown in Fig. 8.5(c). Let us say
such an event exists and will occur at the time t2. We will then assign the value of min{t1, t2}
to each of the two triangles in the currently handled triangle pair, where t1 is the original time
value assigned to the triangle. In this case, the redundant topologic event is not computed and it
is thus necessary to combine this approach with such a computation method which allows us to
compute the topologic events separately for given time intervals.

70



CHAPTER 8. HYBRID METHOD FOR MANAGING KINETIC DELAUNAY
TRIANGULATION

The situation during the iteration step is very similar – when we handle a topologic event,
we need to compute new event times for the newly created triangles and their neighbours. We
proceed in a very similar fashion, i.e., we are only interested in the events that will occur before
the time given by the minimum value assigned to the currently considered triangle pairs (in this
case, the triangles newly created by the edge swapping are assigned an infinite value).

(a) Start of the initialization step. (b) First event computed. (c) Redundant event detected.

Figure 8.5: Initialization step with redundant event reduction.

The graph shown in Fig. 8.6 demonstrates the changes in the number of computed redundant
topologic events if we use this method. As we can see, the number of redundant topologic events
drops approximately to one half of the original number. We may see that only one third of the
computed topologic events is now being discarded as redundant events (in other words, we are
able to detect approximately 30% of the redundant events before they are computed).

0

200

400

600

800

1000

1200

1400

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

E
v

e
n

t 
co

u
n

t 
[-

]

Moving point percentage [%]

Executed topologic events Discarded topologic events

Figure 8.6: Total amount of scheduled and discarded topologic events when using redundant
event reduction.

As this process leads to the reduction of the amount of the most time consuming tasks in the
management of KDT, we may expect a significant reduction in the runtime consumption. On the
other hand, the drawback of this approach is a slightly increased numerical instability which may
lead to missing some of the non-redundant topologic events.

71



Chapter 9

Video Representation based on
Kinetic Delaunay Triangulation

As a part of our research, together with Petr Puncman, we have developed a method for video
representation based on kinetic Delaunay triangulations. The triangulation is constructed over a
collection of samples from selected intra-coded frames, point movement vectors are determined
by precomputed optical flow vectors gained by block matching algorithm in inter-coded frames
and decoding data from samples by means of barycentric interpolation and feature based warping.
The results of our research have been been published in [96].

9.1 Introduction

The way of the digital video representation plays a crucial role when determining the intended
quality, compression ratio or even the target application of such a video record. The most recent
techniques in this area often use not only a reduction of the spatial redundancy but they also
try to reduce the temporal one by using a wide variety of techniques, including both the loss
and lossless compression of the video frames, conversion to the frequency domain and back
and others. The frames of a video record may be seen as a set of unconnected images or the
similarity of the consecutive frames may be exploited by some methods. Our work investigates
a possibility of using the kinetic data structures, namely the kinetic Delaunay triangulation, in
connection with a method for a spatial redundancy reduction. These structures retain some of
their special properties despite the point movement and thus enable us, when used together with
techniques for motion compensation, to track relevant points in order to compensate differences
between consequent frames and thus maximize quality at low bitrates.

9.2 State of the Art

9.2.1 Video Compression

The most widely used present algorithms for lossy video compression concentrate either on
the intra-coded frame modifications in frequency domain such as the discrete cosine transform
(MPEG1-2, DV, MJPEG, H261-4) and the discrete wavelet transform (MJPEG 2000, Intel Indeo

72



CHAPTER 9. VIDEO REPRESENTATION BASED ON KINETIC DELAUNAY
TRIANGULATION

5) or on the vector quantization (Cinepak, Sorenson Video). Inter-coding, if there is any, is often
handled by the block matching algorithm (BMA). It presents the simplest way of obtaining the
motion vectors of the corresponding macroblocks (16×16 pixels group of four 8×8 pixel blocks
- a basic element for video compression) over the whole frame (e.g., in Fig. 9.1 on the right side
we can see a block B which has been found to be similar to the block B̂ in the same window in the
next frame). The resulting video is then partitioned into picture groups containing intra-coded
I-frames, inter-coded P-frames and optional bidirectionally inter-coded B-frames retaining their
mutual relations (see Fig. 9.1 on the left).

Figure 9.1: Typical compression scheme (left). Block matching principle (right).

The principle of the abovementioned intra coding is that each frame is considered to be a
standalone image and is processed accordingly. Thus each I-frame is encoded without using any
information from the previous (or the following) frames in the video sequence. On the opposite,
the inter-coded and bidirectionaly inter-coded P-frames and B-frames use their similarity to the
surrounding frames (in one or both directions) for the encoding. In most cases, simply put, BMA
searches for such movement vectors for each macroblock that, if applied to the macroblock in
question, describes the following frame with minimal error.

The most common problems connected with classic video compresion schemes are the ap-
pearance of new block elements between two frames and a serious loss of detail at low bitrates.
Also handling these video representations is a bit impractical, when there is a need to trans-
form or interpolate a videosequence. The corresponding frames have to be decompressed and
all their pixels processed. These drawbacks may be solved, in our case, by using an alternative
triangulation-based video representation. Present solutions on this topic deal with the movement
of 2D and 3D triangulations that represent synthetic objects in the video (see [1,103]). Other ap-
proaches include the construction and movement of adaptive triangulations over the whole scene
(see [83, 102]). The last group of approaches considers the videosequence to be a 3D object
which is then tetrahedronised (see [89]).

9.3 Video Processing by Kinetic Delaunay Triangulation

In our approach, we focus on the combination of the methods mentioned in [1,103] and [83,102]
together with the abilities of KDT. That means that we perform both sampling of the pixels of the
original image in coder and interpolation or warping of the full scene by using KDT. The idea of
video representation by KDT is based on a creation and successive movement of a triangulation.

73



CHAPTER 9. VIDEO REPRESENTATION BASED ON KINETIC DELAUNAY
TRIANGULATION

In the first step, the relevant points and some random points have to be obtained from a frame
which is considered to be intra-coded. These points then define the KDT until a new picture
group is formed, starting with the next intra-coded frame. The second step means processing
frames between the two following I-frames to form inter-coded frames by moving the points in
the triangulation and reconstructing the frames from the current state of the triangulation. The
movement of the points in KDT is defined by the vectors obtained during motion estimation. So
the whole process may be described as follows (components of this process will be described in
the following two sections):

Important point selection: A set of important points is selected from the input image. KDT is
created from these points.

Motion estimation: Corresponding blocks centered around each vertex are found in consecutive
frames. Their positions are then used to define motion vectors.

Movement of KDT: The movement is initialized transforming the current frame into the fol-
lowing one.

Topologic events: Topologic events are computed and handled.

Stability improvements: Means for improving stability are introduced.

Video decoding: A frame is reconstructed from the data stored in the KDT.

The use of DT is crucial for our method if we want to obtain usable compression ratio. It is
vital to note that for every other type of triangulation we have to store not only the coordinates
and color of each vertex but also an information on the surrounding topology. On the other
hand in DT we may be sure that if no four points in the triangulation are cocircular, we will
always reconstruct the same triangulation (independently of the algorithm used) without storing
any additional topology data. As we have shown (see [68]) the compression may be expected to
be meaningful (considering a method without any stored topology information) with up to 20%
inserted points if we use a trivial compression method and up to 30% inserted points if a more
sophisticated method, which exploits delta coding, is used.

9.3.1 Selecting the Points of Interest

To obtain valuable samples from the input frame, we mix edge points with random points at
the ratio of 1:1 (the best ratio value was obtained from the performed ratio tests). Starting with
an already given point count, we select the most suitable points from the frame by the methods
of discrete convolution, selective thresholding and randomized selection. The resulting set of
pixels then in the ideal case contains a predefined amount of points. These points include dense
pixels on the edges, sparse pixels on the homogenous surfaces and uniformly distributed pixels
everywhere else. For details on selecting the points see [68] as it is beyond the scope of this text.
Finally, KDT is created by incremental point insertion from the selected points.

9.3.2 Motion Estimation

Although the block matching algorithm often deals with macroblocks covering the whole frame,
in our case we had to find which block in the next frame makes the best match for the block

74



CHAPTER 9. VIDEO REPRESENTATION BASED ON KINETIC DELAUNAY
TRIANGULATION

centered around each KDT point in the current frame. Each examined point then grows into
a suitable search region W (see Fig. 9.1) which is intensively inspected. For an evaluation of
the differences between the blocks B and B̂ we have used three different metrics: Mean Square
Difference (MSD), Mean Absolute Difference (MAD) and Pel Difference Classification (PDC)
- see [30]. These metrics allow us to recognize the corresponding blocks and thus obtain the
needed motion vectors. Once all the vectors in a frame are known, velocities of their points in
KDT are set (see Fig. 9.2).

9.3.3 Video Decoding

The previous steps provided us with the most important points in each frame and their inter-frame
correspondency thus allowing us to compute the motion vectors for these points. By inserting the
points obtained in each key frame into a KDT and moving them along the motion vectors we get
a sequence of triangulation states that represent each frame between two keyframes. From these
triangulations we must now decode the approximation of the original frame.

Figure 9.2: From the left: the original KDT, motion vectors, compensation of KDT.

In the case of the intra-coded frames, we have to use an interpolation algorithm. At first we
have to obtain a raster representation of the edges e1,e2,e3 belonging to each triangle p j pk pl (see
Fig. 9.3). For this purpose we use an implementation of Bresenham algorithm [13].

Figure 9.3: (a) vertices with associated intensities, (b) edges by Bresenham algorithm, (c) scan-
line fill and triangle interpolation, [13].

Successive computation consists of (among other equations) solving Eq. (9.1) for all three
triangle vertices. By solving this system of equations, we obtain the coefficients a,b,c which are
then used to compute the intensities of general points inside the triangle.

75



CHAPTER 9. VIDEO REPRESENTATION BASED ON KINETIC DELAUNAY
TRIANGULATION

 xi yi 1
x j y j 1
xk yk 1

 a
b
c

=

 zi

z j

zk

 (9.1)

where [xi,yi] , [x j,y j] , [xk,yk] are the coordinates of the vertices of a triangle and zi,z j,zk are the
intensities of the corresponding pixels.

In the case of inter-coded frames, we move KDT as described in Section 9.3. After then,
either the aforementioned interpolation or feature based warping (see Fig. 9.4) may be applied.

Figure 9.4: Triangle warping, [57].

In our case, the warping process takes the edges of a triangle in the current frame and cor-
responding transformed edges in the previous frame. The triangle can change significantly from
frame to frame and the task is to compute the intensities of the pixels within the transformed
triangle. As we have a relatively accurate approximation of the intensities of all the pixels in
the last intra coded frame, we perform the warping process for all the consecutive inter-coded
frames after that frame. An incremental computation is also possible but it leads to notable loss
of accuracy. We adopted the warping process for more line pairs as described in [69] gaining X ′

original pixel coordinates. The positions of the three points X ′i are then passed to weight func-
tion (9.2) with the weights wi being proportional to the pixel-edge distance in order to produce
more accurate pixel position X .

X =
∑

n
i=1 wiX ′i
∑

n
i=1 wi

(9.2)

9.4 Managing the Kinetic Delaunay Triangulation

In our experiments we use the kinetic Delaunay triangulation as described in the previous text,
but the specific environment of rasterized image data imposes very special qualities on the tri-
angulated data. Because of the fact that the triangulated points exist within a regular grid and
it is quite common for multiple points to be cocirular within the grid, the triangulation is bound
to become locally singular very often. These local singularities represent a potential numerical
stability issue during the computation of kinetic events and have to be addressed.

76



CHAPTER 9. VIDEO REPRESENTATION BASED ON KINETIC DELAUNAY
TRIANGULATION

KDT Stability Improvements

Due to the fact that all the points inserted into the triangulation are representation of pixels in a
grid and their velocities reflect their movement in this grid, we may easily encounter unwanted
singular cases which become the source of various stability issues. These singularities may
include for instance collisions of two moving points or number of points becoming cocircular at
the same moment. Illustration of these singularities is given in Fig. 9.5.

(a) Six cocircular points. (b) Point collision.

Figure 9.5: Singular cases for grid point movement.

Our experiments show that there are two reasonably simple ways of removing these singu-
larities. We may either add a small random number to the velocities or to the initial coordinates
of the points (or even to both of them). Only the moving points or all of the points in the tri-
angulation may be altered in this fashion. These numbers must be of course small enough to be
later eliminated by the rounding process without moving the points into wrong cells in the grid.
We have tested both the mentioned types of randomization and various random values and fi-
nally we managed to determine the ideal combination - we used only velocity vector components
randomization with uniform distribution of the random part and 10−3 maximum absolute value
of the random addition. This effectively prevents the points from colliding as well as becoming
cocircular in large numbers.

9.5 Experiments and Results

The test application was implemented in C# and its purpose was to provide the results we needed
for algorithm efficiency evaluation and for comparison with existing solutions. We wanted to
test the main properties of our algorithm, such as the quality of the video which is indicated by
PSNR, bitrate in bytes per frame and the overall performance of each step.

The tests were performed on three videosequences with the length of 100 frames, resolution
of 176× 144px and the length of the picture group set to 6. The sequence with the dynamic
camera contains a lot of synchronized movement, the synthetic sequence contains a very large
percentage of untextured and simplified surfaces and the talking head is mainly static. The quality
criterion is controlled by the PSNR metric - see Eqn. (9.4).

77



CHAPTER 9. VIDEO REPRESENTATION BASED ON KINETIC DELAUNAY
TRIANGULATION

MSE =
1

M ·N

M−1

∑
i=0

N−1

∑
j=0
‖ℑ(i, j)−ℑ

′(i, j)‖2 (9.3)

PSNR = 10log 10

(
2552

MSE

)
(9.4)

where M×N is the dimension of the image, ℑ is the original image and ℑ′ is the decoded
approximation of the original image.

Figure 9.6: Dependency of PSNR on inserted points count.

In order to examine the quality of intra coding we studied an influence of mixed (50:50
edge:random) point selection against to solely random point selection. The set of chosen edge
operators (random, Sobel, Laplace, Roberts, Robinson and Prewitt - for detailed information on
these operators, see [50]) - see Fig. 9.6 - provides noticably better results than a random generator
at the whole range of inserted points percentage. Note that acceptable PSNR value starts at 30dB.

The second comparison we made (see Fig. 9.7) shows the bitrate achieved in each frame of
all the three test sequences. The size of an inter-coded frame is derived from the amount of the
motion in the scene. At these bitrates we were able to provide compression ratio of around 20:1.

In the third test (see Fig. 9.8), we compared the quality of our solution with XviD for the same
coded output size. The initial amount of inserted points was 5% and the length of the pictures
group was set to 6. The intra-coded frames provided quality nearly as good as XviD did, but
inside the inter-frames quality dropped rapidly. Both techniques of decoding (interpolation and
warping) were measured to be nearly equivalent, however, subjective comparison often prefers
the warping prior to the interpolation because of triangular artifacts which may appear as a result
of the interpolation.

78



CHAPTER 9. VIDEO REPRESENTATION BASED ON KINETIC DELAUNAY
TRIANGULATION

Figure 9.7: A Detailed Bitrate Behavior of Intra + Inter Coding for 5% Points.

Figure 9.8: Intra + Inter Coding vs. XviD Quality Comparison.

The tests showed that if we use intra coding for the video frames only, all the used operators
behave in a similar fashion and their quality response is in all the measured cases logarithmic
(measured in PSNR). However, the best results were received for video sequences that contained
large percentage of homogenous areas, such as rendered videos and talking head videos, because
these types of video sequences are very suitable for coding and motion blur occurs very rarely, if
at all.

79



CHAPTER 9. VIDEO REPRESENTATION BASED ON KINETIC DELAUNAY
TRIANGULATION

9.6 Conclusion

Various requirements are often set for a new video representation method. These may include
the ability to perform morphologic changes on the triangulation and receive the corresponding
changes in the image matrix of the video, minimization of the bitrate and maximization of the
quality. With these possible requirements in mind, we have designed and implemented a new
method that allows us to encode the frames into a geometric form according to the primarily
requested feature.

Inter-coding showed its major advantage in very low bitrates and good compression ratio. For
5 - 30% inserted points, we were able to achieve compression ratio from 20:1 to 4.5:1. Detailed
tests and their results may be found in [68].

From the point of view of the kinetic Delaunay triangulation, the most important drawbacks
(the lack of stability and the occurence of singular cases) of the application were succesfully re-
moved by introducing the randomization of the velocity vectors of the moving points. However
some performance issues are still left to be solved, especially in the area of computing the topo-
logical events, of which is a large percentage computed but not executed. Introducing some kind
of nonlinear movement may also pose some advantage in this kind of application (for instance
the movement along elliptic trajectories).

80



Chapter 10

Early Warning System for
Air Traffic Control

In cooperation with CS Soft Group [17] we have explored the possibility of using kinetic Delau-
nay triangulation as a base for an early warning system to be used by the air traffic control. The
problem basically represents a collision detection with the feature that the upcoming collisions
have to be detected with sufficient advance so the aircrafts may take some kind of evasive ma-
neuver to leave the collision course. The application is similar to the one presented in [35] for
marine environment but poses several key differences which we used to test several theoretical
expectations of the KDT behavior. The research has been published in [90].

10.1 Introduction

In the field of air traffic control it is vitaly important to be able to detect potentially dangerous
situations in such an advance that the upcoming danger can be avoided. Currently the air traf-
fic is monitored and controlled mostly by human operators. Each of these operators obtains a
certain small subset of the air traffic data provided by various tracking devices such as radars,
etc. Our approach provides a global perspective of the problem. By analyzing the whole set of
aircrafts detected by the radar at once, we are able to detect potential threats before any other
postprocessing is applied to this set and to detect such situations when two aircrafts are on a
crash course.

In order to detect these cases, we exploit the KDT as described in the previous text. Among
the various features of the DT, we use namely the fact that all the points in DT are connected
with their nearest neighbors. Combined with the movement of the points, it provides us with an
efficient collision detection system, see [31]. The KDT was already used by Gold and Condal for
similar purpose in a marine environment, see [33]. However, the use in the aeronautical applica-
tions differs in some key features. Furthermore, during the implementation of our application we
tested several theoretical expectations of the KDT behavior.

Even though our method represents a global view on the problem and thus is not suitable for
use in the current air traffic control, it shows a possible way of development in this field. Should
the currently used approach be replaced by some kind of a global control system, our application
would represent one of the candidates for the new system.

81



CHAPTER 10. EARLY WARNING SYSTEM FOR AIR TRAFFIC CONTROL

10.2 Air Traffic Control Systems

10.2.1 Current Methods and Conventions

According to [17], the operators who control the movement of the aircrafts in certain portion
of the air space are each assigned only a small portion of the nearby traffic. Thus each human
operator is responsible only for approximately ten aircrafts. When an aircraft lands or leaves the
space assigned to a certain operator, that operator’s control over this aircraft is lost or transferred
to some other operator respectively.

Furthermore, the aircrafts may (except some special cases) only move through strictly defined
corridors called routes, which are defined differently for different kinds of aircrafts (e.g., heli-
copter routes may differ from international flight routes). The routes also differ in accessibility –
certain routes are only available for some heights, specific visibility conditions, etc.

The predefined heights on which the aircrafts travel along the routes are called flight levels.
The flight levels, even though they are defined precisely, vary with changing atmospheric pres-
sure. This effect is caused by the definition of the flight levels. The flight level is a level of
constant atmospheric pressure which causes the aircrafts to flight in different heights for differ-
ent atmospheric conditions even though the aircrafts are located on the same flight level. Further
information on the routes, flight levels and other air traffic rules may be obtained in [4].

10.2.2 Air Traffic Data Sets

The data set we used in our application were provided by the Air Navigation Services of the
Czech Republic. It was generated from a record obtained by logging real radar entries during
standard traffic. Upon detection, the radar data were processed by a tracker device which supplied
them (among others) with aircraft-unique identifiers thus ensuring that when a single aircraft
appears more than once in the record, it will be uniquely identifiable each time it reappears.

The data in the set are only sorted timewise – the records are logged as the radar detects
them. Each record contains the location, height, heading and velocity information about one
plane. Note that the data set only contains information about the current whereabouts of a given
aircraft. We do not know anything about the overall aircraft trajectory, whether it is currently
flying forward or is in the middle of some kind of aerial maneuver, etc. This fact is a consequence
of the means of obtaining the data and although it may seem restricting, it correlates very well
with the data structure we use, because our implementation of KDT only allows linear trajectories
of the moving points.

10.3 Geometric Features of the Problem

10.3.1 Problem Overview

Let us briefly summarize how we handle the given problem with our application. As we may see
in Fig. 10.1, the application may be divided into four steps. In the first step the radar provides
us with aircraft data; these data are then projected into the Euclidean plane (step 2), a kinetic
Delaunay triangulation is constructed over the projection (step 3) and used for detecting possible
collisions (step 4). The following text describes steps 2 and 3.

82



CHAPTER 10. EARLY WARNING SYSTEM FOR AIR TRAFFIC CONTROL

1

ϕ (longitude)
λ

 (
la

ti
tu

d
e

)

Aircraft data Ε2 3
Collision

Detection

2

4

Figure 10.1: Block scheme of early warning system for air traffic control.

10.3.2 Aircraft Movement Mapping to 2D

Due to the restrictions forced upon the aircraft movement (the flight levels and routes), the prob-
lem of aircraft navigation is in fact (simply put) only a 2.5D problem. As such, it may be managed
by exploiting a planar triangulation with height values assigned to each of the planes. The trian-
gulation will only use the latitude and longitude coordinates of the planes to check for collisions.
If a collision is then detected in the 2D projection, the relevant planes will be checked in full 3D
and the collision warning will be proposed further only if the collision will really occur.

For the purposes of our application, we used a simple planar projection using WGS84 model
of the Earth for the coordinate transformation (see [62]). WGS84 is the most commonly used
model in the field of air traffic control. Another problem related with the aircraft mapping to
2D is that the aircrafts do not fly along linear trajectories (especially when waiting above an
airport, the aircraft may be flying in circles for a prolonged period of time). Using the newest
available data from the radar readings for each aircraft and one of the mentioned Earth models,
we predict the next position of the aircrafts by using a simple linear extrapolation. Fig. 10.2
shows the difference between the actual path of an aircraft (solid black line, denoted pact) – with
marked positions when the aircraft is located by the radar – and the path predicted using the
linear extrapolation (dashed gray line and filled gray circles, denoted ppred).

p

radar readings

prediction

p

act

pred

Figure 10.2: The difference between the real path of an aircraft (black line, empty circles) and
the extrapolated path with some position tolerance (gray dashed line, filled circles).

83



CHAPTER 10. EARLY WARNING SYSTEM FOR AIR TRAFFIC CONTROL

10.3.3 Kinetic Delaunay Triangulation Modifications

Besides the topologic events, the topology of the triangulation will also need to be changed when
a new information about an aircraft is obtained from the tracker. This will happen every time
when the newly obtained position pq(t +∆t) differs from the position precomputed by extrapo-
lation pq(t)+vq ·∆t (see Fig. 10.2) by more than a given tolerance τ ≥ 0 as shown in Eq. (10.1).

‖pq(t +∆t)− (pq(t)+vq ·∆t)‖
‖pq(t +∆t)‖

≤ τ (10.1)

If the condition in Eq. (10.1) is satisfied, we modify the point pq(t +∆t) so that its velocity
vector remains unchanged (i.e., we use the newest information obtained from the radar at ti+1)
and its position is set to pq(t)+vq ·∆t (i.e., the position predicted at time ti). The error generated
by this approach may increase with each iteration but it will be corrected as soon as it reaches
the value given by τ . To do so, we remove the point from the triangulation by using a removal
algorithm similar to, e.g., [21] and reinsert it back on the correct position.

The fact that the information about each plane gets periodically updated may be used together
with the polynomial solving method mentioned in the earlier chapters. Since we expect the
information to be slightly incorrect by the time the update is received and the velocity or position
of the plane will need to be updated, we may limit the computation of future events by the value
of time of the next update on the aircraft position.

10.4 Results

As said before, the triangulation behavior will be different if we allow some small inaccuracy τ

of the position of the aircrafts. Our experiments show that τ should be several percent at most
– this will allow us to only update the velocity vectors of the aircrafts as new radar readings
are obtained by the application thus increasing the performance of the application as shown in
Fig. 10.3.

10

100

1000

10000

10 60 110 160 210 260 310 360 410 460

T
im

e
 s

p
e

n
t 

o
n

 u
p

d
a

ti
n

g
 t

h
e

 

a
ir

cr
a

ft
 d

a
ta

 (
m

s)

Total application runtime - including updates - (s)

Figure 10.3: Comparison of the performance for various values of τ .

We may see that introducing τ > 0 reduces the time consumed by updating the aircraft po-
sitions to about 15% of the time for τ = 0. This will become important for larger datasets (e.g.,
thousands of planes).

84



CHAPTER 10. EARLY WARNING SYSTEM FOR AIR TRAFFIC CONTROL

10

100

1000

10000

100000

0 50 100 150 200 250 300 350 400

E
v
e
n
ts
(-
)

t(s)

Topologic events (-) Topologic events with time limitation (-)

Figure 10.4: Length of the priority queue with and without the time threshold.

Due to the fact that the radar antena is rotating, we may omit those events which will happen
after one rotation because by then, we will have obtained new aircraft data and use them to
compute new events. The graph in Fig. 10.4 shows us the difference in queue lengths with
the thresholding on the event computation on and off – we may clearly see that the event time
thresholding reduces the length of the priority queue to approximately 1% of its original size.

10.5 Conclusion

In the given scale of the air traffic over the Czech Republic, our algorithm is stable and very fast.
If used for larger datasets (more intense air traffic) we anticipate it to be usable even for situations
where the number of the currently monitored aircrafts increases dramatically. Our method shows
a possible way of future enhancement in the field of air traffic control as it provides a global point
of view and is able to detect potentially dangerous situation automatically.

85



Chapter 11

Corridor Selection for
Virtual Pedestrian Navigation

As mentioned earlier in Chapter 5, the agent-based simulation methods manage the crowd by
navigating each pedestrian individually which is a task that (generally speaking) consists of two
sub-tasks. First, a coarse path (also called a corridor) of each individual pedestrian has to be
found, thus obtaining the general route that pedestrian will take in order to reach the desired des-
tination from its current position. Second, the pedestrians are iterated through the precomputed
corridors using a local navigation method such as a social-force model as needed by the simula-
tion. As a part of our research with Jakub Szkandera, we explored and compared several ways
of obtaining the corridors with the aim to obtain as natural corridor for each given pedestrian
as possible. The result of our work was an unpublished manuscript, currently available online,
see [97].

11.1 State of the Art

The schema of the whole corridor search process is shown in Fig. 11.1. The process consists of
several steps which may differ slightly depending on the actual algorithm used. On the input,
there are two main sets of data – the environment and the pedestrians. The environment part of
the input is a composition of the environment geometry and areas of preference. The environment
geometry describes the simulation area itself, e.g., the terrain relief, boundaries of the area and
the shape of the unmoving obstacles. The areas of preference are used for further customization
by describing which areas are prefered by which pedestrians. The pedestrian data provide the
pedestrian information such as their starting locations and destinations. These input data are then
used by the corridor searching algorithm which provides the pedestrian corridors on its output.

As far as the methods of corridor searching are concerned, the problem of finding the path
leading from each agent’s starting position towards its destination is principially equal to the
problem of finding a path in an undirected weighted graph. Therefore, either heuristic meth-
ods, such as variations of the A* algorithm [41, 55] or precise methods, such as Dijkstra’s path
searching [85], are most commonly used.

86



CHAPTER 11. CORRIDOR SELECTION FOR VIRTUAL PEDESTRIAN NAVIGATION

EnvironmentEnvironment 
Geometry

Environment 
Preprocessing

Areas of 
Preference

Pedestrian 
Data

Corridor 
Searching

Pedestrian 
Corridors

Figure 11.1: Schema of the corridor searching.

Grid-Based Spatial Subdivision

Perhaps the most straightforward method of environment representation is grid-based spatial
division, especially in the field of computer games. However, in the context of corridor searching,
this type of environment representation is not very common since its properties are best used by
different types of crowd simulation that does not use corridors at all [15, 77, 87].

Waypoint Maps and Corridor Maps

Waypoint map (sometimes also called roadmaps) is a graph which describes the accessibility of
different parts of the environment by the virtual pedestrians. Its vertices are called waypoints
and represent special locations in the environment such as road crossings and the edges connect
those waypoints that are mutualy reachable. A corridor map represents a system of collision-free
corridors for the static obstacles in a given environment [32, 63].

Ways of constructing a waypoint map include e.g., visibility graphs [46], space partitioning
structures such as octtrees or Delaunay triangulation [55], medial axis of the free space in the
environment construction methods [88] or they may be entirely user defined.

Navigation Meshes

The idea behind navigation meshes is basically the same as the idea behind corridor maps –
the navigation meshes also represent an extension of waypoint maps but instead of creating a
centerline of the environment and assigning each of its points a radius, the environment is divided
into a mesh (triangular, quadrilateral, or otherwise) [55, 70].

Cell and Portal Graph

Cell and portal graphs (CPG) introduced in [86] is a graph composed of two basic elements – the
cells which represent the disjoint areas and the portals which provide the connectivity information
among the cells.

87



CHAPTER 11. CORRIDOR SELECTION FOR VIRTUAL PEDESTRIAN NAVIGATION

11.2 Corridor Search

City Environment & Pedestrians

The complete environment for the corridor searching is composed of two parts – geometry of
the city and the areas of preferences. The geometry information is used to create the navigation
structures which are used for the corridor searching and the areas of preference provide the
weighting information for the path-planning algorithms according to the pedestrian preferences.
For the sake of simplicity, the preferences of a pedestrian to walk through each of the areas in the
environment are expressed as real numbers in interval [−1;1] where −1 means that the character
is absolutely unwilling to walk through the area and 1 means that the character will prefer to
spend as much time within the area as possible on the way towards the destination.

For our experiments, we used two different examples of urban geometry. The first of them
is an artificial city structure, generated by an urban simulation and was provided to us by Prof.
Bedřich Beneš from Purdue University in West Lafayette, IN. The other virtual environment is
the center of Pilsen constructed from data downloaded from the Open Street Map Project [42]
(OSM).The areas of preference were generated manually ad-hoc.

Corridor Searching Algorithms

Corridor search algorithms may be generally divided into two groups: the direct computation ap-
proach contains algorithms that compute the corridors during the runtime, when they are needed
by the pedestrians and the preprocessing approach contains such algorithms that compute all the
corridors that may be needed before the simulation is started. The most commonly used is the
A* algorithm – a representant of the direct approach. A typical example of the preprocessing
approach algorithm is the Floyd-Warshall algorithm (FW) [28].

Test Cases

For our tests we used one of the two area maps displayed in Fig. 11.2(a) and Fig. 11.2(b) together
with a city geometry shown in Fig. 11.2(c) which was obtained by the EcoSim software developed
by us for this purpose. The first distribution of areas of preference (AoP) displays a center-based
setting which may represent e.g., a city center surrounded by different types of neighborhood.
The center is marked as the area 0, the surrounding neighborhoods are marked 1 through 4. The
second distribution is a border-based example – the environment is divided into two parts by the
center border area and the pedestrians have to cross the border in order to get from the top side
of the environment to the bottom (and vice-versa). The dividing border area is marked as 4 in the
figure, the environments are marked 0 through 3.

The pedestrians in the tests were distributed to five groups each with a different set of pref-
erences for the mentioned areas. The preferences towards certain areas vary greatly among the
groups of pedestrians. The two different environments and areas of preferences settings were
used for testing the similarities and differences of two different corridor searching algorithm (A*
and Floyd-Warshall) and three different navigation data structures (navigation mesh, CPG and
corridor map).

88



CHAPTER 11. CORRIDOR SELECTION FOR VIRTUAL PEDESTRIAN NAVIGATION

(a) AoP: Center-based distribution. (b) AoP: Border-based distribution. (c) City geometry.

Figure 11.2: City geometry and areas of preference.

11.3 Results

The result shown in Fig. 11.3 is composed of the border-shaped distribution of areas of interest
as shown in Fig. 11.2(a). Three different corridor searches are then performed – A* with a
navigation mesh, FW with CPG and FW with a corridor map. We can see that the results provided
by the FW algorithm are almost independent of the data structure used for the corridor search
and they are not very different from the A* algorithm.

(a) A* with navigation mesh. (b) FW with CPG. (c) FW with corridor map.

Figure 11.3: Three different solutions of the border test case.

In Fig. 11.4 we can see the comparison of three different approaches for solving a test case
composed of the center-based distribution of areas of preferences as shown in Fig. 11.2(a). We
can see that the two approaches that use Floyd-Warshall algorithm provide us with exactly the
same results while the A* algorithm gives a slightly different output. Perhaps the most significant
difference between the two shown results is in the behavior of the pedestrian 2 (blue color): when
using the A* algorithm, the pedestrians completely avoid the central area of the map which she
dislikes and chooses a detour through areas 3 (top left) and 2 (bottom left) which she prefers; on
the other hand, when the FW algorithm is used, the blue pedestrian chooses to cross the center of
the map using the shortest path possible therefore maximizing the length of his route that crosses
the areas 1 (top right) and 2 (bottom left). Some difference may be also observed in the behavior
of the other pedestrians – pedestrian 1 (green color) chooses noticeably longer path through the
center area, when the A* algorithm is used, even though she prefers the top right area more than
the center area. We ascribe this behavior to the fact that the A* algorithm is a heuristic and the
length of the path overweights the unwilingness to walk through the central area.

89



CHAPTER 11. CORRIDOR SELECTION FOR VIRTUAL PEDESTRIAN NAVIGATION

(a) A* with navigation mesh. (b) FW with CPG. (c) FW with corridor map.

Figure 11.4: Three different solutions of the city center test case.

The results of our test show that the Floyd-Warshall algorithm is basically independent of
the type of used data structure, the resulting corridors are very similar. This is probably because
of the fact that the algorithm is exact and not a heuristic such as A* that sometimes provides us
with significantly different results. In general, the consequence of this difference between the
tested algorithms may be expressed as the willingness to enter the area which are not preferred
by the pedestrians – being a heuristic method, the A* algorithm tends to find corridors that avoid
the unliked areas more rigorously, especially when the corridor has to avoid (or cross) quite a
large area that is not preferred by the pedestrian. In this case, the FW algorithm tends to find the
narrowest place of such an area and cross in this place. The A* algorithm is more likely to avoid
the area entirely if that is possible. We think that the behavior of the A* algorithm reflects reality
better in this case – if we consider an example of a lone pedestrian having to get to the other side
of an unlit park at night, it is more likely for them to walk around the area rather than crossing it.

11.4 Conclusion

We have shown that the algorithms commonly used for corridor search may be easily adjusted by
the principle of the areas of preference in such a way that they take into account the wilingness
of the pedestrians to visit or avoid certain areas within on their route towards their destination.
The discussed algorithms and data structures often provide very similar corridors as results with
only minor differences most of the time. However, we can say that the A* algorithm generally
provides us with more natural corridors – e.g., the pedestrian walks around an area that it would
likely avoid when its destination is on the other side of that area without even stepping to that
area, on the other hand the FW algorithm usually tends to cross this area (choosing the shortest
possible crossing path).

90



Chapter 12

Conclusion

This thesis presents a compact overview of kinetic data structures, mainly the kinetic Delaunay
triangulation and locally minimal triangulation with special focus on the analysis of the events
in these data structures. In the first part, several possible construction algorithms for Delaunay
triangulation were discussed with respect to the usability for further kinetization as well as certain
auxiliary algorithms such as sublinear point location using the walk-based approach.

Further, the process of the ordinary static data structures kinetization, together with the algo-
rithm for general management of the resulting kinetic data structures were described. Evaluation
of the kinetic data structures requires us to asses their general properties, which were also out-
lined using the concept of certificate functions and certificate failures both in general and with
special respect paid to the aforementioned kinetic triangulations. Also the most important prob-
lem in the field of kinetic data structures is discussed in detail – the computation of and the
statistical analysis using advanced combinatorial methods to estimate the bounds on the number
of processed kinetic events.

The practicality of kinetic data structures is illustrated by demonstrating several representants
of the applications that use kinetic Delaunay or regular triangulations. We may see a wide variety
of applications that benefit from using this data structure ranging from collision detection through
various types early warning systems for different environments, navigation of pedestrians in ar-
tificial crowds, to mathematical simulations of fluid dynamics. The kinetic data structures have
also been extensively compared with the kinetic data structures and this work presents the results
of these comparisons.

The second part of this thesis focuses on applying the previously introduced analytical meth-
ods on kinetic Delaunay triangulation and kinetic locally minimal triangulation and their mutual
comparison. The computation of the kinetic events is also analyzed, general categorization of
the available methods is shown, together with the most commonly used methods for polynomial
equation solving as the certificate functions are most commonly polynomial functions. The con-
cept of redundant and obsolete events was also introduced here as the research shows that large
amount of the computed events is never executed. Even though the kinetic locally minimal trian-
gulation is explored theoretically, its practical evaluation represents an open problem and should
be focused on in the following research.

The focus of the third and last part of this thesis are the contributions, first of which is a
modified algorithm for planar kinetic Delaunay triangulation management using the previously
introduced methods for event redundancy reduction. By implementing these advanced methods,

91



CHAPTER 12. CONCLUSION

the number of never-executed events was reduced to approximately 30%. This implementation
was used in the other applications – as a geometic means of image representation in a video
compression application and in the early warning system for the air traffic. The last chapter of this
part described a comparison of different algorithms for large-scale pedestrian navigation which
we intended to use together with kinetic Delaunay triangulation to develop a crowd simulation
method.

92



Appendix A

Activities

A.1 Publications in Impacted Journals

[91] Tomáš Vomáčka, Ivana Kolingerová, and Martin Maňák. Kinetic locally minimal trian-
gulation: theoretical evaluation and combinatorial analysis. The Visual Computer, May
2019

A.2 Publications on Web of Science and Scopus Conferences

[54] Ivana Kolingerová, Tomáš Vomáčka, Martin Maňák, and Andrej Ferko. Neighbourhood
graphs and locally minimal triangulations. In Transactions on Computational Science
XXXIII, pages 115–127. Springer Berlin Heidelberg, Berlin, Heidelberg, 2018

[53] Ivana Kolingerová, Andrej Ferko, Tomáš Vomáčka, and Martin Maňák. Nearest neighbour
graph and locally minimal triangulation. In Computational Science and Its Applications
– ICCSA 2017: 17th International Conference, Trieste, Italy, July 3-6, 2017, Proceedings,
Part II, pages 455–464. Springer International Publishing, Cham, 2017

[90] Tomáš Vomáčka and Ivana Kolingerová. Early warning system for air traffic control us-
ing kinetic delaunay triangulation. In Leonard Bolc, Ryszard Tadeusiewicz, Leszek J.
Chmielewski, and Konrad Wojciechowski, editors, Computer Vision and Graphics, pages
350–356, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg

[96] Tomáš Vomáčka and Petr Puncman. A novel video compression scheme based on kinetic
delaunay triangulation. In Algoritmy 2009 : 18th Conference on Scientific Computing,
pages 372–381, Bratislava, 2009. Slovak University of Technology

A.3 Other Publications

[95] Tomáš Vomáčka and Ivana Kolingerová. On root classification in kinetic data structures.
In ADVCOMP 2011 The Fifth International Conference on Advanced Engineering Com-
puting and Applications in Sciences, pages 32–35, 2011

93



APPENDIX A. ACTIVITIES

[82] Roman Soukal, Martina Málková, Tomáš Vomáčka, and Ivana Kolingerová. Hybrid walk-
ing point location algorithm. In ADVCOMP 2011 The Fifth International Conference on
Advanced Engineering Computing and Applications in Sciences, pages 7–11, 2011

[94] Tomáš Vomáčka and Ivana Kolingerová. Computation of topologic events in kinetic delau-
nay triangulation using sturm sequences of polynomials. In SIGRAD 2008, pages 57–64,
Linköping, 2008. University Electronic Press

[92] Tomáš Vomáčka. Delaunay triangulation of moving points. In Proceedings of the 12th
Central European Seminar on Computer Graphics, pages 67–74, 2008

A.4 Unpublished Manuscripts

[97] Tomáš Vomáčka, Jakub Szkandera, and Ivana Kolingerová. Comparison of the corridor
selection methods for virtual pedestrian navigation. Available online: http://bit.ly/
CorridorComparison, 2013. Unpublished manuscript

A.5 Related Talks

• Terrain Representation for Artificial Human Navigation. Center of Computer Graphics
and Data Visualization, University of West Bohemia, Czech Republic, March 2010.

• Triangulating the Kinetic Data. Center of Computer Graphics and Data Visualization,
University of West Bohemia, Czech Republic, April 2009.

• Delaunay Triangulation of Moving Points. University of Maribor, Slovenia, November
2008.

A.6 Participations in Scientific Projects

• GA17-07690S: Methods of Identification and Visualization of Tunnels for Flexible Ligands
in Dynamic Proteins, Czech Science Foundation, 2017–2019.

• SGS-2016-013: Advanced Graphical and Computing Systems, University of West Bo-
hemia, 2016–2018.

• SGS-2010-028: Advanced Computer and Information Systems, University of West Bo-
hemia, 2013–2015.

• LH11006: INGEM – Interactive Geometric Models for Simulation of Natural Phenomena
and Crowds, The Ministry of Education, Youth and Sports of the Czech Republic, 2011–
2013.

• 201/09/0097: Triangulated Models for Haptic and Virtual Reality, Czech Science Founda-
tion, 2009–2011.

• KJB101470701: Alternative Representation of Image Information Using Triangulations,
junior research project, Czech Science Foundation, 2007–2009.

94

http://bit.ly/CorridorComparison
http://bit.ly/CorridorComparison


APPENDIX A. ACTIVITIES

• LC 06008: CPG - Center of Computer Graphics - National Network of Fundamental
Research Centers, The Ministry of Education, Youth and Sports of the Czech Republic,
2006–2011.

95



Bibliography

[1] Coding of audio, video, multimedia and hypermedia information. Standard ISO/IEC 14496-2:2001,
International Organization for Standardization, Geneva, CH, December 2001.

[2] Milton Abramowitz and Irene A. Stegun. Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables. Dover, New York, ninth dover printing, tenth gpo printing
edition, 1964.

[3] P. K. Agarwal, J. Basch, M. de Berg, L. J. Guibas, and J. Hershberger. Lower bounds for kinetic
planar subdivisions. Discrete & Computational Geometry, 24(4):721–733, Jan 2000.

[4] Air Navigation Services of the Czech Republic, Aeronautical Information Service. Various docu-
ments. Available online - http://lis.rlp.cz.

[5] Gerhard Albers, Leonidas J. Guibas, Joseph S. B. Mitchell, and Thomas Roos. Voronoi diagrams of
moving points. International Journal of Computational Geometry and Applications, 8(3):365–380,
1998.

[6] Mikhail Atallah. Some dynamic computational geometry problems. Computers & Mathematics
with Applications, 11:1171–1181, 12 1985.

[7] C. Bradford Barber, David P. Dobkin, and Hannu Huhdanpaa. The quickhull algorithm for convex
hulls. ACM Trans. Math. Softw., 22(4):469–483, 1996.

[8] Julien Basch. Kinetic Data Structures. PhD thesis, Stanford University, 1999.

[9] Julien Basch, Leonidas J. Guibas, and John Hershberger. Data structures for mobile data. Journal
of Algorithms, 31(1):1–28, 1999.

[10] Julien Basch, Leonidas J. Guibas, Craig D. Silverstein, and Li Zhang. A practical evaluation of
kinetic data structures. In In Proc. 13th Annu. ACM Sympos. Comput. Geom, pages 388–390. ACM
Press, 1997.

[11] Leila Hashemi Beni. Development of a 3D Kinetic Data Structure Adapted for a 3D Spatial Dy-
namic Field Simulation. PhD thesis, Université Laval, Québec, 2009.

[12] Jon L. Bentley, Kenneth L. Clarkson, and David B. Levine. Fast linear expected-time algorithms
for computing maxima and convex hulls. Algorithmica, 9(2):168–183, Feb 1993.

[13] J. E. Bresenham. Algorithm for computer control of a digital plotter. IBM Systems Journal, 4(1):25–
30, 1965.

[14] V. Carette, M.A. Mostafavi, and R. Devillers. Towards marine geographic information systems:
Multidimensional representation of fish aggregations and their spatiotemporal evolutions. pages 1
–10, sept. 2008.

[15] Dan Chen, Lizhe Wang, Xiaomin Wu, Jingying Chen, Samee U. Khan, Joanna Kołodziej, Mingwei
Tian, Fang Huang, and Wangyang Liu. Hybrid modelling and simulation of huge crowd over a
hierarchical grid architecture. Future Generation Computer Systems, (0):–, 2012.

[16] Paolo Cignoni, Claudio Montani, and Roberto Scopigno. Dewall: A fast divide and conquer De-
launay triangulation algorithm in Ed . Computer-Aided Design, 30(5):333–341, 1998.

96



BIBLIOGRAPHY

[17] CS SOFT, ATM Systems & Software Development. https://www.cs-soft.cz/, 2019.

[18] Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Schwarzkopf. Computational ge-
ometry, algorithms and applications. Berlin Heidelberg: Springer, 1997.

[19] Boris N. Delaunay. Sur la sphère vide. Bulletin of Academy of Sciences of the USSR, (6):793–800,
1934.

[20] Olivier Devillers. Improved incremental randomized delaunay triangulation. In SCG ’98: Proceed-
ings of the fourteenth annual symposium on Computational geometry, pages 106–115, New York,
NY, USA, 1998. ACM.

[21] Olivier Devillers. On deletion in delaunay triangulations. In Symposium on Computational Geom-
etry, pages 181–188, 1999.

[22] Olivier Devillers and Olivier Devillers. Improved incremental randomized delaunay triangulation,
1997.

[23] Olivier Devillers, Sylvain Pion, and Monique Teillaud. Walking in a triangulation. In SCG ’01:
Proceedings of the seventeenth annual symposium on Computational geometry, pages 106–114,
New York, NY, USA, 2001. ACM.

[24] Herbert Edelsbrunner and Raimund Seidel. Voronoi diagrams and arrangements. In SCG ’85:
Proceedings of the first annual symposium on Computational geometry, pages 251–262, New York,
NY, USA, 1985. ACM.

[25] K. W. Ellenberger. Algorithm 30: numerical solution of the polynomial equation. Commun. ACM,
3(12):643, 1960.

[26] Jeff Erickson, Leonidas J. Guibas, Jorge Stolfi, and Li Zhang. Separation-sensitive collision de-
tection for convex objects. In SODA ’99: Proceedings of the tenth annual ACM-SIAM symposium
on Discrete algorithms, pages 327–336, Philadelphia, PA, USA, 1999. Society for Industrial and
Applied Mathematics.

[27] Jean-Albert Ferrez. Dynamic Triangulations for Efficient 3D Simulation of Granular Materials.
PhD thesis, École Polytechnique Fédérale De Lausanne, 2001.

[28] Robert W. Floyd. Algorithm 97: Shortest path. Commun. ACM, 5(6):345–, June 1962.

[29] Steven Fortune. A sweepline algorithm for voronoi diagrams. Algorithmica, 2:153–174, 1987.

[30] Borivoje Furht and Borko Furht. Motion Estimation Algorithms for Video Compression. Kluwer
Academic Publishers, Norwell, MA, USA, 1996.

[31] Marina Gavrilova, Jon Rokne, and Dmitri Gavrilov. Dynamic collision detection in computational
geometry. In 12th European Workshop on Computational Geometry, pages 103–106, Munster,
Germany, 1996.

[32] R. Geraerts and M. H. Overmars. The corridor map method: a general framework for real-time
high-quality path planning: Research articles. Comput. Animat. Virtual Worlds, 18(2):107–119,
2007.

[33] Christopher M. Gold and Alfonso R. Condal. A spatial data structure integrating GIS and simulation
in a marine environment. Marine Geodesy, 18:213–228, 1995.

[34] S. Goldenstein, M. I. Karavelas, D. N. Metaxas, L. J. Guibas, E. Aaron, and A. Goswami. Scalable
nonlinear dynamical systems for agent steering and crowd simulation. Computers & Graphics,
25(6):983–998, 2001.

[35] Ignacy R. Goralski and Christopher M. Gold. Maintaining the spatial relationships of marine vessels
using the kinetic voronoi diagram. In ISVD ’07: Proceedings of the 4th International Symposium on
Voronoi Diagrams in Science and Engineering, pages 84–90, Washington, DC, USA, 2007. IEEE
Computer Society.

97

https://www.cs-soft.cz/


BIBLIOGRAPHY

[36] Leonidas Guibas and Daniel Russel. An empirical comparison of techniques for updating Delaunay
triangulations. In SCG ’04: Proceedings of the twentieth annual symposium on Computational
geometry, pages 170–179, New York, NY, USA, 2004. ACM.

[37] Leonidas J. Guibas. Kinetic data structures: a state of the art report. In WAFR ’98: Proceedings
of the third workshop on the algorithmic foundations of robotics on Robotics : the algorithmic
perspective, pages 191–209, Natick, MA, USA, 1998. A. K. Peters, Ltd.

[38] Leonidas J. Guibas and Menelaos I. Karavelas. Interval methods for kinetic simulations. In SCG
’99: Proceedings of the fifteenth annual symposium on Computational geometry, pages 255–264,
New York, NY, USA, 1999. ACM.

[39] Leonidas J. Guibas, Joseph S. B. Mitchell, and Thomas Roos. Voronoi diagrams of moving points
in the plane. In Gunther Schmidt and Rudolf Berghammer, editors, Graph-Theoretic Concepts in
Computer Science, pages 113–125, Berlin, Heidelberg, 1992. Springer Berlin Heidelberg.

[40] Leonidas J. Guibas, Feng Xie, and Li Zhang. Kinetic collision detection: Algorithms and experi-
ments. In ICRA, pages 2903–2910, 2001.

[41] Stephen J. Guy, Jatin Chhugani, Sean Curtis, Pradeep Dubey, Ming Lin, and Dinesh Manocha.
Pledestrians: a least-effort approach to crowd simulation. In Proceedings of the 2010 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, SCA ’10, pages 119–128, Aire-la-
Ville, Switzerland, Switzerland, 2010. Eurographics Association.

[42] Mordechai (Muki) Haklay and Patrick Weber. Openstreetmap: User-generated street maps. IEEE
Pervasive Computing, 7(4):12–18, October 2008.

[43] Laure Heigeas, Annie Luciani, Joëlle Thollot, and Nicolas Castagné. A physically-based particle
model of emergent crowd behaviors. In Graphicon, 2003.

[44] Holly P. Hirst and Wade T. Macey. Bounding the roots of polynomials. The College Mathematics
Journal, 28(4):292–295, 1997.

[45] Øyvind Hjelle and Morten Dæhlen. Triangulations and Applications. Berlin Heidelberg: Springer,
2006.

[46] H. Huang and S. Chung. Dynamic visibility graph for path planning. In Intelligent Robots and
Systems, 2004. (IROS 2004). Proceedings. 2004 IEEE/RSJ International Conference on, volume 3,
pages 2813–2818 vol.3, Sept.-2 Oct. 2004.

[47] A. Kamphuis and M. H. Overmars. Finding paths for coherent groups using clearance. In SCA
’04: Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation,
pages 19–28, Aire-la-Ville, Switzerland, Switzerland, 2004. Eurographics Association.

[48] Josef Kohout. Parallel Delaunay triangulation in 2D and 3D, Diplomová práce. University of
West Bohemia, Pilsen, Czech Republic, 2002.

[49] Josef Kohout. Delaunay triangulation in parallel and distributed environment. PhD thesis, PhD
thesis, University of West Bohemia, Pilsen, Czech Republic, 2005.

[50] Josef Kohout. Alternative representation of image information. Technical Report DCSE/TR-2009-
11, University of West Bohemia, Pilsen, Czech Republic, 2009.

[51] Ivana Kolingerová. A small improvement in the walking algorithm for point location in a triangu-
lation. In 22nd European Workshop on Computational Geometry, pages 221–224, March 2006.

[52] Ivana Kolingerová. Selected algorithmic metods lectures. Online resources for Selected Algorith-
mic Metods. http://afrodita.zcu.cz/ kolinger/vyukaZCU.html, 2019.

[53] Ivana Kolingerová, Andrej Ferko, Tomáš Vomáčka, and Martin Maňák. Nearest neighbour graph
and locally minimal triangulation. In Computational Science and Its Applications – ICCSA 2017:
17th International Conference, Trieste, Italy, July 3-6, 2017, Proceedings, Part II, pages 455–464.
Springer International Publishing, Cham, 2017.

98



BIBLIOGRAPHY

[54] Ivana Kolingerová, Tomáš Vomáčka, Martin Maňák, and Andrej Ferko. Neighbourhood graphs and
locally minimal triangulations. In Transactions on Computational Science XXXIII, pages 115–127.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2018.

[55] Fabrice Lamarche and Stéphane Donikian. Crowd of virtual humans: a new approach for real
time navigation in complex and structured environments. Computer Graphics Forum, 23:509–518,
2004.

[56] H. Ledoux and C. M. Gold. Modelling three-dimensional geoscientific fields with the voronoi
diagram and its dual. Int. J. Geogr. Inf. Sci., 22(5):547–574, 2008.

[57] GWENAELLE MARQUANT. Representation par maillage adaptatif deformable pour la manipu-
lation et la communication d’objets video. PhD thesis, 2000. Thèse de doctorat dirigée par Labit,
Claude Traitement du signal et télécommunications Rennes 1 2000.

[58] P. McMullen. The maximum numbers of faces of a convex polytope. Mathematika, 17(2):179–184,
1970.

[59] Mir Abolfazl Mostafavi, Christopher Gold, and Maciej Dakowicz. Delete and insert operations in
Voronoi/Delaunay methods and applications. Comput. Geosci., 29(4):523–530, 2003.

[60] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University Press,
Cambridge; NY, 1995.

[61] Ernst P. Mücke, Isaac Saias, and Binhai Zhu. Fast randomized point location without preprocessing
in two- and three-dimensional delaunay triangulations. In SCG ’96: Proceedings of the twelfth
annual symposium on Computational geometry, pages 274–283, New York, NY, USA, 1996. ACM.

[62] National Imagery and Mapping Agency, DoD. World geodetic system 1984, its definition and rela-
tionship with local geodetic systems, technical report 8350.2. Technical report, 1997. http://earth-
info.nga.mil/GandG/publications/tr8350.2/wgs84fin.pdf.

[63] D. Nieuwenhuisen, A. Kamphuis, and M. H. Overmars. High quality navigation in computer games.
Sci. Comput. Program., 67(1):91–104, 2007.

[64] A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu. Spatial tessellations: Concepts and applications
of Voronoi diagrams. Probability and Statistics. Wiley, NYC, 2nd edition, 2000.

[65] M. Overmars. Practical algorithms for path planning and crowd simulation. In Proceedings of the
25th European Workshop on Computational Geometry (EuroCG), page 263, Brussels, Belgium,
March 2009. Invited speech.

[66] Victor Y. Pan. Solving a polynomial equation: Some history and recent progress. SIAM Review,
39(2):187–220, 1997.

[67] William Press, Brian Flannery, Saul Teukolsky, and William Vetterling. Numerical Recipes in C:
The Art of Scientific Computing. Cambridge University Press, 1992.

[68] Petr Puncman. Použití triangulací pro reprezentaci videa, Diplomová práce. University of West
Bohemia, Pilsen, Czech Republic, 2008.

[69] Jiří Žára, Bedřich Beneš, Jiří Sochor, and Petr Felkel. Moderní počítačová grafika. Computer Press,
Praha, 2. edition, 2005.

[70] S. Rabin. AI Game Programming Wisdom. Charles River Media, inc., 2002.

[71] Anthony Ralston. A First Course in Numerical Analysis. McGraw-Hill, Inc.: New York, 1965.

[72] Fabrice Rouillier and Paul Zimmermann. Efficient isolation of polynomial’s real roots. J. Comput.
Appl. Math., 162(1):33–50, 2004.

[73] Natan Rubin. On topological changes in the delaunay triangulation of moving points. Discrete &
Computational Geometry, 49(4):710–746, Jun 2013.

99



BIBLIOGRAPHY

[74] Daniel Russel. Kinetic data structures in practice. PhD thesis, Stanford, CA, USA, 2007. Adviser-
Guibas, Leonidas.

[75] J.-R. Sack and J. Urrutia, editors. Handbook of Computational Geometry. North-Holland Publish-
ing Co., Amsterdam, The Netherlands, The Netherlands, 2000.

[76] Raimund Seidel. The upper bound theorem for polytopes: an easy proof of its asymptotic version.
Computational Geometry, 5(2):115 – 116, 1995.

[77] Jason Sewall, David Wilkie, and Ming C. Lin. Interactive hybrid simulation of large-scale traffic.
In Proceedings of the 2011 SIGGRAPH Asia Conference, SA ’11, pages 135:1–135:12, New York,
NY, USA, 2011. ACM.

[78] Micha Sharir and Pankaj K. Agarwal. Davenport-Schinzel sequences and their geometric applica-
tions. Cambridge University Press, 1995.

[79] Jonathan Richard Shewchuk. Sweep algorithms for constructing higher-dimensional constrained
delaunay triangulations. In SCG ’00: Proceedings of the sixteenth annual symposium on Compu-
tational geometry, pages 350–359, New York, NY, USA, 2000. ACM.

[80] Jiří Skála. Algorithms for manipulation with large geometric and graphic data. Technical Report
DCSE/TR-2009-02, University of West Bohemia in Pilsen, 2009.

[81] Roman Soukal. Aplikace algoritmu procházky v počítačové grafice, Diplomová práce. University
of West Bohemia, Pilsen, Czech Republic, 2008.

[82] Roman Soukal, Martina Málková, Tomáš Vomáčka, and Ivana Kolingerová. Hybrid walking point
location algorithm. In ADVCOMP 2011 The Fifth International Conference on Advanced Engi-
neering Computing and Applications in Sciences, pages 7–11, 2011.

[83] R. Srikanth and A. G. Ramakrishnan. Contextual encoding in uniform and adaptive mesh-based
lossless compression of mr images. IEEE Transactions on Medical Imaging, 24(9):1199–1206,
Sep. 2005.

[84] A. Sud, E. Andersen, S. Curtis, M. Lin, and D. Manocha. Real-time path planning for virtual agents
in dynamic environments. In SIGGRAPH ’08: ACM SIGGRAPH 2008 classes, pages 1–9, New
York, NY, USA, 2008. ACM.

[85] Mankyu Sung, Lucas Kovar, and Michael Gleicher. Fast and accurate goal-directed motion synthe-
sis for crowds. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Com-
puter animation, SCA ’05, pages 291–300, New York, NY, USA, 2005. ACM.

[86] Seth J Teller. Visibility computations in densely occluded polyhedral environments. Technical
report, Berkeley, CA, USA, 1992.

[87] A. Treuille, S. Cooper, and Z. Popović. Continuum crowds. In SIGGRAPH ’06: ACM SIGGRAPH
2006 Papers, pages 1160–1168, New York, NY, USA, 2006. ACM.

[88] J. van den Berg and M. Overmars. Kinodynamic motion planning on roadmaps in dynamic environ-
ments. In Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ International Conference
on, pages 4253–4258, 29 2007-Nov. 2 2007.

[89] Martin Varga. Využití tetrahedralizace jako alternativy k objemovým datům, Diplomová práce.
Charles University, Prague, Czech Republic, 2007.

[90] Tomáš Vomáčka and Ivana Kolingerová. Early warning system for air traffic control using kinetic
delaunay triangulation. In Leonard Bolc, Ryszard Tadeusiewicz, Leszek J. Chmielewski, and Kon-
rad Wojciechowski, editors, Computer Vision and Graphics, pages 350–356, Berlin, Heidelberg,
2010. Springer Berlin Heidelberg.

[91] Tomáš Vomáčka, Ivana Kolingerová, and Martin Maňák. Kinetic locally minimal triangulation:
theoretical evaluation and combinatorial analysis. The Visual Computer, May 2019.

100



BIBLIOGRAPHY

[92] Tomáš Vomáčka. Delaunay triangulation of moving points. In Proceedings of the 12th Central
European Seminar on Computer Graphics, pages 67–74, 2008.

[93] Tomáš Vomáčka. Delaunay triangulation of moving points in a plane. Master’s thesis, University
of West Bohemia, Univerzitní 22, Pilsen, Czech Republic, 2008.

[94] Tomáš Vomáčka and Ivana Kolingerová. Computation of topologic events in kinetic delaunay
triangulation using sturm sequences of polynomials. In SIGRAD 2008, pages 57–64, Linköping,
2008. University Electronic Press.

[95] Tomáš Vomáčka and Ivana Kolingerová. On root classification in kinetic data structures. In ADV-
COMP 2011 The Fifth International Conference on Advanced Engineering Computing and Appli-
cations in Sciences, pages 32–35, 2011.

[96] Tomáš Vomáčka and Petr Puncman. A novel video compression scheme based on kinetic delau-
nay triangulation. In Algoritmy 2009 : 18th Conference on Scientific Computing, pages 372–381,
Bratislava, 2009. Slovak University of Technology.

[97] Tomáš Vomáčka, Jakub Szkandera, and Ivana Kolingerová. Comparison of the corridor
selection methods for virtual pedestrian navigation. Available online: http://bit.ly/

CorridorComparison, 2013. Unpublished manuscript.

[98] Borut Žalik and Ivana Kolingerová. An incremental construction algorithm for Delaunay triangu-
lation using the nearest-point paradigm. Int.J. Geographical Information Science, 17(2):119–138,
2003.

[99] Eric W. Weisstein. Cubic equation. From MathWorld - A Wolfram Web Resource.
http://mathworld.wolfram.com/CubicEquation.html, 2004.

[100] Eric W. Weisstein. Fundamental theorem of algebra. From MathWorld - A Wolfram Web Resource.
http://mathworld.wolfram.com/QuarticEquation.html, 2004.

[101] Eric W. Weisstein. Quartic equation. From MathWorld - A Wolfram Web Resource.
http://mathworld.wolfram.com/QuarticEquation.html, 2004.

[102] Yan Yaoping and Wu Chengke. A novel video coding scheme using delaunay triangulation. J. Vis.
Comun. Image Represent., 9(1):80–86, March 1998.

[103] Ya-Qin Zhang and Chang Wen Chen. Visual Information Representation, Communication, and
Image Processing. Marcel Dekker, Inc., New York, NY, USA, 1999.

[104] Yuanfeng Zhou, Feng Sun, Wenping Wang, Jiaye Wang, and Caiming Zhang. Fast Updating of
Delaunay Triangulation of Moving Points by Bi-cell Filtering. Computer Graphics Forum, 2010.

101

http://bit.ly/CorridorComparison
http://bit.ly/CorridorComparison

	Introduction
	Problem Definition
	Summary of Contributions
	Organization of the Thesis

	I State of the Art and Examples
	Spatial Data Structures
	Voronoi Diagram
	Delaunay Triangulation
	Properties of Delaunay Triangulation
	Incircle Test

	Locally Minimal Triangulation
	Properties of Locally Minimal Triangulation


	Construction Algorithms
	Construction Method Properties
	Construction Methods Overview
	Incremental Insertion Algorithm Details
	Overall Functionality
	Initial Triangle Construction
	Point Location
	Point Insertion and Edge Legalization


	Kinetic Data Structures
	Kinetic Data Structure
	Kinetic & Dynamic Approach
	Kinetic Data Structure Cornerstones
	Predicates and Certificates
	Point Movement Description
	Certificate Functions
	Kinetic Events

	Kinetic Data Structures General Properties
	Combinatorial Analysis of Kinetic Data Structures
	Sweeping Algorithm
	Arangement of Curves
	Kinetic Data Structure Events Analysis
	Kinetic Data Structure Lifecycle


	Examples of Kinetic Data Structures Applications
	Collision Detection
	Simulation of Crowds
	Mathematical Simulations
	Motion Interpolation


	II Theoretical Research
	Analysis of Selected Kinetic Data Structures
	General Arrangements
	Kinetic Delaunay Triangulation
	Events in Kinetic Delaunay Triangulation
	General Properties of Kinetic Delaunay Triangulation
	Bounds on the Number of Events in Kinetic Delaunay Triangulation

	Kinetic Locally Minimal Triangulation
	Events in Kinetic Locally Minimal Triangulation
	General Properties of Kinetic Locally Minimal Triangulation

	Comparison of Kinetic Delaunay Triangulation and Locally Minimal Triangulation

	Event Time Computation
	Introduction
	Event Computation Equations
	Event Computation Methods Overview
	Polynomial Solving

	Analytical Methods for Solving Polynomials
	Introduction
	Analytical Formulas

	Numerical Methods for Solving Polynomials
	General Methods for Solving Nonlinear Equations
	Specialized Methods for Solving Polynomials
	Sturm Sequences of Polynomials

	Event Classification and Redundancy
	Insignificant Polynomial Roots
	Redundant and Obsolete Events



	III Applications of Kinetic Data Structures
	Hybrid Method for Managing Kinetic Delaunay Triangulation
	Basic Preliminaries
	Event Computation
	Redundant Event Reduction

	Video Representation based on Kinetic Delaunay Triangulation
	Introduction
	State of the Art
	Video Compression

	Video Processing by Kinetic Delaunay Triangulation
	Selecting the Points of Interest
	Motion Estimation
	Video Decoding

	Managing the Kinetic Delaunay Triangulation
	Experiments and Results
	Conclusion

	Early Warning System for Air Traffic Control
	Introduction
	Air Traffic Control Systems
	Current Methods and Conventions
	Air Traffic Data Sets

	Geometric Features of the Problem
	Problem Overview
	Aircraft Movement Mapping to 2D
	Kinetic Delaunay Triangulation Modifications

	Results
	Conclusion

	Corridor Selection for Virtual Pedestrian Navigation
	State of the Art
	Corridor Search
	Results
	Conclusion

	Conclusion
	Activities
	Publications in Impacted Journals
	Publications on Web of Science and Scopus Conferences
	Other Publications
	Unpublished Manuscripts
	Related Talks
	Participations in Scientific Projects

	Bibliography


