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Abstract

Vector fields or flow fields are results of numerical simulations or real measurements. The data
size is very large especially for 3D vector fields. This thesis focuses on vector fields approxi-
mation and compression using meshless techniques. The approximation of vector fields focuses
mostly on maintaining the most important characteristic of the vector field, i.e. critical points
and global character of the vector field. During the research, several techniques that use Radial
basis functions and different approaches for vector field approximation and compression, were
developed.

This thesis provides a survey for the collection of 12 most important commented research
papers which were written by the author of this thesis with coauthors during the author’s doctoral
study. The author has published 6 journal papers, has submitted additional 2 journal papers into
impacted journals, and has published 22 conference papers.

In the last chapter are summarized the results achieved in this thesis and are discussed the
possible directions of the future research in the field of vector field approximation.

This dissertation thesis was supported by the following projects:

• GA17-05534S – Meshless methods for large scattered spatio-temporal vector data visualization
The Czech Science Foundation

• LH12181 – Development of Algorithms for Computer Graphics and CAD/CAM systems
Czech Ministry of Education, Youth and Sports (MEYS)

• LG13047 – EURO: Activities within Eurographics Association
Czech Ministry of Education, Youth and Sports (MEYS)

• SGS-2019-016 – Synthesis and Analysis of Geometric and Computing Models
University of West Bohemia (UWB)

• SGS-2016-013 – Advanced Graphics and Computational Systems
University of West Bohemia (UWB)

• SGS-2013-029 – Advanced Computing and Information Systems
University of West Bohemia (UWB)

Copyright © 2019 University of West Bohemia, Czech Republic
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Abstrakt

Vektorové pole nebo pole proudění jsou výsledkem numerických simulací nebo reálných mě-
ření. Objem těchto dat je veliký, zvláště pro případ 3D vektorových dat. Tato disertační práce
se zaměřuje na aproximaci a kompresi vektorových dat pomocí bez-meshových technik. Aproxi-
mace vektorových dat se z největší části zaměřuje na zachování nejvíce důležitých charakteristik
vektorového pole, tj. kritické body a globální charakter vektorového pole. Během výzkumu bylo
vyvinuto několik technik používajících Radiální bázové funkce a různé přístupy pro aproximaci
a kompresi vektorových dat.

Tato práce zprostředkovává přehled o 12 nejvíce důležitých komentovaných publikacích,
které byly napsány autorem a jeho spoluautory během doktorských studií autora. Autor publi-
koval 6 časopiseckých publikací, zaslal k recenzím do impaktovaných časopisů další 2 články a
dále publikoval 22 konferenčních příspěvků.

V poslední kapitole jsou shrnuty výsledky dosažené v této práci a jsou diskutovány možné
další směry budoucího výzkumu v oblasti aproximace vektorových dat.

Tato disertační práce byla podporována následujícími projekty:

• GA17-05534S – Meshless metody pro vizualizaci velkých časově-prostorových vektorových dat
Grantová agentura České republiky

• LH12181 – NECPA - Vývoj algoritmů počítačové grafiky a pro CAD/CAM systémy
Ministerstvo školství, mládeže a tělovýchovy (MŠMT)

• LG13047 – EURO - Aktivity v rámci Eurographics Association
Ministerstvo školství, mládeže a tělovýchovy (MŠMT)

• SGS-2019-016 – Syntéza a analýza geometrických a výpočetních modelů
Západočeská univerzita v Plzni (ZČU)

• SGS-2016-013 – Pokročilé grafické a výpočetní systémy
Západočeská univerzita v Plzni (ZČU)

• SGS-2013-029 – Pokročilé výpočetní a informační systémy
Západočeská univerzita v Plzni (ZČU)

Copyright © 2019 Západočeská univerzita v Plzni, Česká republika
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1. Introduction

The concept of flow plays an important role in many fields of science. Classical application fields
are, for example, the automotive and aerospace industry, where the investigation of the air flow
around vehicles is an important task. However, the same concepts are used in the simulation and
analysis of water flow in turbines of power plants, of blood flow in vessels, the propagation of
smoke in buildings, and weather simulations, to mention just a few. The visualization of data
gained from the simulation/measurement of such processes is relevant for the domain users as
visualization has the potential to ease the understanding of such complex flow phenomena. In
this context, topological flow visualization methods have been developed, with the aim to give
insight into the overall behaviour of the flow. A characteristic of this class of methods is the
segmentation of the flow domain into regions of substantially different flow behaviour, providing
a topology of the flow domain.

The theory of dynamical systems goes back to the 19th century work of Henri Poincare. An
introduction to dynamical systems can be found for example in Katokand and Hasselblatt [Ka-
tok and Hasselblatt, 1995]. In the context of this thesis, the case of deterministic, continuous
and autonomous dynamical systems is most interesting, because such systems can be used to
formulate velocity fields of a steady fluid flow. Many patterns in a flow can be described and
analysed by concepts from dynamical systems theory, such as critical points, separatrices and
periodic orbits. Perry and Chong [Perry and Chong, 1987] give a comprehensive overview of
such 2D and 3D flow patterns. Helman and Hesselink introduced these methods to the scientific
visualization community, and used them under the notion of vector field topology for the visual-
ization of computed and measured velocity fields, first in 2D [Helman and Hesselink, 1989] and
later in 3D [Helman and Hesselink, 1991]. Vector field topology was further popularized both by
Asimov’s excellent tutorial [Asimov, 1993] and by Globus et al.’s TOPO module [Globus et al.,
1991] for NASA’s FAST visualization software.

Mesh methods are standard tools for the simulation of flow problems, they enable efficient
and reliable approximations of the differential equations in fluid flow. However, in certain appli-
cations, for example in the presence of large geometric deformations of the boundary or rotating
and moving obstacles, i.e. situations which may frequently occur in the context of fluid with
structure interaction problems, the maintenance of a conforming mesh may be almost impossible.
Different techniques have been developed to deal with these problems in the mesh based context;
the fictitious domain and fictitious boundary methods, techniques employing overlapping grids,
sliding mesh, level set methods, or standard arbitrary Lagrangian Eulerian formulations with
frequent re-meshing.

A different way to handle complex flow problems is to employ a comparably new and inno-
vative class of methods, which enables the approximation of partial differential equations based
on a set of nodes, without the need for an additional mesh. In recent years meshless/meshfree
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CHAPTER 1. INTRODUCTION

methods have gained considerable attention in engineering and applied mathematics. The vari-
ety of problems that are now being addressed by these techniques continues to expand and the
quality of the obtained results demonstrates the effectiveness of many of the methods currently
available. These meshfree methods are generally able to solve problems where meshes bring up
difficulties. However, they are comparably time consuming, which limits their usefulness in the
simulation of challenging real-life problems.

1.1 Objectives of the thesis

The main focus of this thesis is on meshless approximation of vector fields in 2D and 3D. Vector
fields are often very large and very complex data sets. Such data came from numerical simula-
tions or experimental measurements and need to be stored for further use. However, the data size
is very large and thus some compression techniques are needed.

The compression can be lossy, while the important features of the vector field remains un-
changed and the less important parts can be slightly modified during the approximation of the
vector field.

The Radial basis functions (RBF) are used for the vector field approximation, which is a
meshless technique used for scattered data approximation. The RBF with different modifications
and different approaches are used to approximate and compress vector fields in this thesis. More-
over, the RBF approximation results in an analytical description of the vector field, which can be
used for further processing.

This thesis is composed of two main parts. The first on is the introduction part with the
basic definitions and the state of the art. The second one is the composition of several individual
journal or conference articles with short description of each one.
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2. Theory

2.1 Vector field

The term vector field or flow denotes an abstract concept adopted in many application fields.
Fluid dynamics, for instance, is concerned with the study of fluid flows, i.e. the motion of fluids:
typical examples include the motion of water in a pump or a turbine, the stream of air around
a car or an airplane, blood in a vessel, oil or gas in a pipe, and many other. Flow visualization
usually deals with data generated via measurements, simulations or modeling, and the results are
commonly expressed as vector fields.

A vector field is a function that assigns to each point a vector. Vector fields come mostly
from numerical simulations, i.e. Computational Fluid Dynamics (CFD) [Kansa, 1990a], [Kansa,
1990b], [Blazek, 2015] and Finite Element Method (FEM) [Molina-Aiz et al., 2010], [Chung
et al., 2015].

Vector fields can be described for general vectors in En, i.e. Euclidean space in n dimensions,
but for our purposes it is sufficient to consider E2 or E3. A vector field in E3 is a map that for
each point x= [x,y,z]T in a domain assigns a vector

v (x(t), t) = [vx (x(t), t) ,vy (x(t), t) ,vz (x(t), t)]
T , (2.1)

where each of the function vx or vy or vz is a scalar field and is dependent on the position and
time, i.e. v is time dependent vector field, or does not depend on time, i.e. v is time independent
vector field.

A field line is a line that is everywhere tangent to a given vector field at a particular time, see
Figure 2.1. That is, every point on the line has a tangent that coincides with the vector at that
location in the vector field. It can be constructed by tracing a path in the direction of the vector
field while keeping time fixed. Field lines defines the direction of the vector field.

Let x(t) be a field line with parameter t representing the time. The field line is then given by
a system of ordinary differential equations, which can be written as

x(t)

dt
= v (x(t)) x(0) = xstart , (2.2)

where xstart is an initial point. When numerical integration is used to solve the system of equa-
tions for visualization purposes, the point x0 is often referred to as a seed point. In terms of
differential equations, the visualization of the field lines of a vector field correspond to phase
portraits of solutions of the system (2.2). This will be an important concept in the discussion of
classification of critical points later.
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CHAPTER 2. THEORY

Figure 2.1: Example of linear vector fields with oriented field lines and vector field arrows located
in a regular grid.

2.1.1 Linearization of vector field

In this section we discuss how to locally approximate a system by its linearization. These ap-
proximations are used at studying the local behavior of a system, where the nonlinear effects are
expected to be small. The Taylor series expansion must be utilized locally to find the relation
between v and position x, supposing the flow v to be sufficiently smooth and differentiable. In
such case, the expansion of v around some point x0 is

v(x) = v(x0)+
∂v

∂x
(x−x0) . (2.3)

This equation can be rewritten using the matrix notation as

[

vx

vy

]

=

[

x0

y0

]

+







∂vx

∂x

∂vx

∂y
∂vy

∂x

∂vy

∂y







[

x− x0

y− y0

]

(2.4)

for the case of 2D vector field. In the case of 3D vector field, the equation (2.3) can be rewritten
using the matrix notation as





vx

vy

vz



=





x0

y0

z0



+















∂vx

∂x

∂vx

∂y

∂vx

∂ z
∂vy

∂x

∂vy

∂y

∂vy

∂ z
∂vz

∂x

∂vz

∂y

∂vz

∂ z



















x− x0

y− y0

z− z0



 . (2.5)

If we consider an inverted pendulum whose open loop dynamics are given by the following
equation

dx

dt
=

[

y

sinx− γy

]

, (2.6)

where a coefficient of viscous friction is γ , x is the angle and y is the angular rate. One of the
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CHAPTER 2. THEORY

critical points is the point x0 = [π,0]T (see section 2.1.2 for definition of critical point). The
linearization of the dynamical system at this point is according to (2.3) equal to

[

vx

vy

]

=

[

0 1
−1 −γ

][

x−π

y

]

. (2.7)

We call the system (2.9) the linear approximation of the original nonlinear system or the lin-
earization at the point x0. The phase portrait of this linear approximation and original nonlinear
phase portrait can be seen in Figure 2.2 (value of viscous friction was selected as γ = 1).

(a) Nonlinear system (b) Linear approximation

Figure 2.2: Comparison between the phase portraits for the full nonlinear system (a) and its linear
approximation around the critical point at x0 = [π,0]T (b). Notice that near the critical point at
the center of the plots, the phase portraits are almost identical, i.e. the dynamics in both phase
portraits are almost identical.

2.1.2 Critical points

Critical point, singular point, null point, neutral point or equilibrium point (x0) of the vector field
is a point at which the magnitude of the vector vanishes

dx

dt
= v (x) = 0, (2.8)

i.e. all components are equal to zero







dx

dt
dy

dt






=

[

0
0

]

or













dx

dt
dy

dt
dz

dt













=





0
0
0



 . (2.9)

A critical point is said to be isolated, or simple, if the vector field is non vanishing in an open
neighborhood around the critical point. Thus for all surrounding points xε of the critical point
x0 the equation (2.8) does not apply, i.e.

dxε

dt
6= 0. (2.10)
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CHAPTER 2. THEORY

Critical points can be of different order, where the order of the critical point is identical to
the topological degree of the critical point, see Figure 2.3. For a closed curve τ(x0) surrounding
a single critical point x0 in a continuous 2D vector field, the topological degree of x0 is defined
as the following curve integral

I(x0) =
1

2π

∫

τ(x0)
dθ (2.11)

and for 3D vector field is the topological degree defined as the following surface integral

I(x0) =
1

4π

∫

τ(x0)
dθ , (2.12)

where θ is the angle of vector field at location x. The value of I(x0) is always an integer, and
the order of the critical point is the absolute value of this integer. A curve, resp. surface, τ(x0)
enclosing a region which does not contain a critical point has a topological degree of zero.

(a) First order critical point (b) Second order critical point

Figure 2.3: Example of critical points with different topological degree.

2.1.2.1 Classification of critical points

In the study of steady flow/autonomous dynamical systems certain features such as critical points,
separatrices and closed orbits play an important role. In 1989, Helman and Hesselink introduced
these concepts to the visualization community under the name of vector field topology [Helman
and Hesselink, 1989].

There exist a finite set of fundamentally different critical points, defined by the number of
inflow and outflow directions, spiraling structures etc., and combinations of these. Since the set
is finite, each critical point can be classified. Such a classification defines the field completely
in a close neighborhood around the critical point. By knowing the location and classification of
critical points in a vector field, the topology of the field is known in small areas around these.

The fact that a linear model can be used to study the behavior of a nonlinear system near
a critical point is a powerful one. We can perform the Taylor series expansion at the critical
point x0

v(x) = v(x0)+
∂v

∂x
(x−x0) . (2.13)

14



CHAPTER 2. THEORY

However, the first term of (2.13) is equal to zero vector, as magnitude of the vector field vanishes
at the critical point. Thus linear approximation is of the form

v(x) =
∂v

∂x
(x−x0) = J (x−x0) , (2.14)

where J is the Jacobian matrix. The critical points are classified based on the vector field around
them. This vector field is described using the Jacobian matrix. The eigenvalues and eigenvectors
of Jacobian matrix are very important for vector field classification and description. For the
eigenvalues and eigenvectors the following equation applies

Ju= λu, (2.15)

where λ is the eigenvalue and u is the corresponding eigenvector. To compute the eigenvalues,
we have to solve

(J −λI)u= 0, (2.16)

where I is the identity matrix. Knowing Cramer’s rule, a linear system of equations has nontrivial
solution if the determinant vanishes, so the solutions of equation (2.16) are given by

det(J −λI) = 0. (2.17)

A real eigenvector of the Jacobian matrix defines a direction such that if we move slightly
from the critical point in that direction, the field is parallel to the direction we moved. Thus, at
the critical point, the real eigenvectors are tangent to the trajectories that end on the point. The
sign of the corresponding eigenvalue determines whether the trajectory is outgoing (repelling) or
incoming (attracting) at the critical point. The imaginary part of an eigenvalue denotes circulation
about the point.

Now suppose that we have a point x on a line determined by an eigenvector u (for an eigen-
value λ ). That is, x= tu for some scalar t. Then

v(x) = Jx= J(tu) = tJu= tλu. (2.18)

This direction vector v(x) is a multiple of u and thus the eigenvectors determine the main tangent
trajectories of the vector field around the critical point x0, see Figure 2.4.

Classification of first order critical points can be done using eigenvalues of Jacobian matrix.
We have 6 types of first order critical points in 2D (see Figure 2.5) and 8 types of first order
critical points in 3D (see Figure 2.6).

2.1.2.2 Location of critical points

Location of critical points is important step in flow field visualization and feature extraction.
There exist several approaches for extracting isolated zeros of scalar, vector and tensor fields
[Ben-Israel, 1966], [Gjøystdal, 2004], [Greene, 1992], [Mann and Rockwood, 2002], [Press et al.,
1989], [Wang et al., ], [Garth et al., 2004]. Combinatorial methods become particularly attractive,
as they are not sensitive to numerical instabilities or the details of a particular implementation.
The paper [Bhatia et al., 2014] introduced a robust method for detecting singularities in vector
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CHAPTER 2. THEORY

(a) (b)

Figure 2.4: Example of a vector field. Eigenvectors of J (a). Example source vector field with
eigenvectors and solutions (b).

Figure 2.5: Classification of 2D first order critical points. R1, R2 denote the real parts of the
eigenvalues of the Jacobian matrix while I1, I2 denote their imaginary parts.

Figure 2.6: Classification of 3D first order critical points.

fields. They establish, in combinatorial terms, necessary and sufficient conditions for the exis-
tence of a critical point in a cell of a simplified mesh for a large class of interpolation functions.
These conditions are entirely local and lead to a provably consistent and practical algorithm to
identify cells containing singularities. Other selected algorithms for critical points location are
presented in the following paragraphs.
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CHAPTER 2. THEORY

Newton-Raphson method

We will discuss the simplest multidimensional root finding method, Newton-Raphson [Ben-
Israel, 1966], [Press et al., 1989]. This method gives a very efficient means of converging to
a root, if we have a sufficiently good initial guess. It can also spectacularly fail to converge,
indicating (though not proving) that our putative root does not exist nearby.

Let p0 be a good estimate of critical point x0 and let x0 = p0 +h. Since the true critical
point is x0, and h = x0−p0, the vector h measures how far the estimate p0 is from the truth
critical point.

In the neighborhood of p0 each of the functions v = [vx,vy]
T can be expanded in a Taylor

series

v(p) = v(p0)+
∂v

∂x
(p−p0), (2.19)

where

J =
∂v

∂x
, (2.20)

and J is the Jacobian matrix. By setting v(p) = 0, we obtain a set of linear equations for the
corrections h= (p−p0) that move each function closer to zero simultaneously, namely

Jh=−v(p0). (2.21)

This equation can be solved by the well known LU decomposition [Van Loan and Golub, 1983].
The corrections are then added to the solution vector

pnew = pold +h (2.22)

and the process is iterated to convergence. In general it is a good to check the degree to which
both functions and variables have converged.

Analytic method

The paper [Gjøystdal, 2004] describes an analytical method for location of critical points.
The 3D vector field can be divided into small cells and interpolated using trilinear interpolation
with the following definition

vx(x,y,z) = a1 +b1x+ c1y+d1z+ e1xy+ f1xz+g1yz+h1xyz

vy(x,y,z) = a2 +b2x+ c2y+d2z+ e2xy+ f2xz+g2yz+h2xyz

vz(x,y,z) = a3 +b3x+ c3y+d3z+ e3xy+ f3xz+g3yz+h3xyz.

(2.23)

When finding a critical point, the three equations must fulfill the following equations

vx(x,y,z) = 0

vy(x,y,z) = 0

vz(x,y,z) = 0.

(2.24)
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CHAPTER 2. THEORY

This system of equations can be solved using an analytic method. The strategy is as follows:
First the interpolation coefficients (a1,a2,a3,b1, . . . ,h3) must be computed. Variable z is then
eliminated from the first equation in (2.23) and is inserted into the two other equations in (2.23)
giving two new functions ξ (x,y) and Φ(x,y). For a given x there must be a common value y that
solves both equations

ξ (x,y) = 0

Φ(x,y) = 0.
(2.25)

To determine this common factor, if any, one possibility is to use the determinant of the Sylvester
matrix to find a polynomial which can be solved for x, see [Gardiner et al., 1992].

When the roots of the polynomial are determined using the numerical method, the next step
is to determine which roots are the candidates for the x component of the critical points. The
candidates are the values that are real and inside the closed unit interval. The candidate values of
x are inserted into ξ (x,y) and Φ(x,y) to see if there is at least one common root for y. For each
pair (x,y) that solves both equations, we need to find the corresponding z value.

Not all values (x,y,z) that are computed correspond to true critical points in the cell. Every
candidate point is therefore forwarded to a validation step to test if it is a true critical point or
not.

Octree and topological degree method

According to [Greene, 1992], [Mann and Rockwood, 2002], [Max and Weinkauf, 2009] the
space is subdivided into several cubes in a regular grid. If the index of a cube is nonzero, then a
critical point was found, or perhaps a collection of critical points inside the cube. Then the cube
has to be subdivided and thus create an octree structure. The subdivision step takes place until
the cube has nonzero index and the size of cube is smaller than some defined smallest resolution.
At this point a center of the cube is said to be the critical point.

Some of the critical points can be miss as the topological degree of critical points is additive.
When two critical points with topological degree +1 and −1 are in the same cube, then the
resulting topological degree of the cube is 0.

2.2 Radial Basis Functions

Radial basis function (RBF) is a technique for scattered data interpolation [Pan and Skala, 2011]
and approximation [Fasshauer, 2007], [Skala, 2015]. The RBF interpolation and approximation
is computationally more expensive compared to interpolation and approximation methods that
use an information about mesh connectivity, because input data are not ordered and there is
no known relation between them, i.e. tessellation is not made. Although RBF has a higher
computational cost, it can be used for d-dimensional problem solution in many applications,
e.g. solution of partial differential equations [Larsson and Fornberg, 2003], [Zhang et al., 2000],
image reconstruction [Uhlir and Skala, 2005], neural networks [Karim and Adeli, 2003], [Ghosh-
Dastidar et al., 2008], [Yingwei et al., 1998], GIS systems [Majdisova and Skala, 2017a], [Pan
and Skala, 2012], optics [Prakash et al., 2012] etc. It should be noted that it does not require
any triangulation or tessellation mesh in general. There is no need to know any connectivity
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of interpolation points, all points are tied up only with distances of each other. Using all these
distances we can form the interpolation or approximation matrix, which will be shown later.

The RBF is a function whose value depends only on the distance from its center point. Due
to the use of distance functions, the RBFs can be easily implemented to reconstruct the surface
using scattered data in 2D, 3D or higher dimensional spaces. It should be noted that the RBF
interpolation and approximation is not separable by dimension.

Radial function interpolants have a helpful property of being invariant under all Euclidean
transformations, i.e. translations, rotations and reflections. It does not matter whether we first
compute the RBF interpolation function and then apply a Euclidean transformation, or if we first
transform all the data and then compute the radial function interpolants. This is a result of the fact
that Euclidean transformations are characterized by orthonormal transformation matrices and are
therefore two-norm invariant.

Radial basis functions can be divided into two groups according to their influence. The
first group are "global" RBFs [Schagen, 1979]. Application of global RBFs usually leads to ill-
conditioned system, especially in the case of large data sets with a large span [Majdisova and
Skala, 2017b], [Skala, 2017]. Typical examples of global RBFs are

Thin Plate Spline (TPS) ϕ(r) = r2 logr

Gauss function ϕ(r) = e−(εr)2

Inverse Quadric (IQ) ϕ(r) =
1

1+(εr)2

Inverse Multiquadric (IMQ) ϕ(r) =
1

√

1+(εr)2

Multiquadric (MQ) ϕ(r) =
√

1+(εr)2

(2.26)

The "local" RBFs were introduced in [Wendland, 1995], [Wendland, 2006] as compactly
supported RBF (CSRBF) and satisfy the following condition:

ϕ(r) = (1− r)q
+P(r)

=

{

(1− r)qP(r) 0≤ r ≤ 1

0 r > 1

(2.27)

where P(r) is a polynomial function, r is the distance of two points and q is a parameter. The
subscript in (1− r)q

+ means:

(1− r)+ =

{

(1− r) (1− r)≥ 0

0 (1− r)< 0
(2.28)
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Typical examples of local RBFs are

ϕ(r) = (1− r)+

ϕ(r) = (1− r)3
+(3r+1)

ϕ(r) = (1− r)5
+(8r2 +5r+1)

ϕ(r) = (1− r)2
+

ϕ(r) = (1− r)4
+(4r+1)

ϕ(r) = (1− r)6
+(35r2 +18r+3)

ϕ(r) = (1− r)8
+(32r3 +25r2 +8r+1)

(2.29)

2.2.1 Radial Basis Function Approximation

RBF interpolation was originally introduced by [Hardy, 1971] and is based on computing the
distance of two points in any k-dimensional space. The interpolated value, and approximated
value as well, is determined as (see [Skala, 2013]):

h(x) =
M

∑
j=1

λ jϕ(
∥

∥x−ξ j

∥

∥) (2.30)

where λ j are weights of the RBFs, M is the number of the radial basis functions, ϕ is the radial
basis function and ξ j are centers of radial basis functions. For a given dataset of points with
associated values, i.e. in the case of scalar values {xi,hi}

N
1 , where N≫M, the following over-

determined linear system of equations is obtained:

hi = h(xi) =
M

∑
j=1

λ jϕ(
∥

∥xi−ξ j

∥

∥)

for ∀i ∈ {1, . . . ,N} (2.31)

where λ j are weights to be computed; see Figure 2.7 for a visual interpretation of (2.30) or (2.31)
for a 2 1

2 D function. Point in 2 1
2 D is a 2D point associated with a scalar value. The same also

applies to 3D point associated with a scalar value, thus 3 1
2 D point.

Equation (2.31) can be rewritten in a matrix form as

Aλ= h, (2.32)

where Ai j = ϕ(
∥

∥xi−ξ j

∥

∥) is the entry of the matrix in the i−th row and j−th column, the num-
ber of rows N≫M, M is the number of unknown weights λ = [λ1, . . . ,λM]T , i.e. a number of
reference points, and h = [h1, . . . ,hN ]

T is a vector of values in the given points. The presented
system is over-determined, i.e. the number of equations N is higher than the number of variables
M. This linear system of equations can be solved by the least squares method (LSE) as

ATAλ=ATh, (2.33)

where the matrix ATA is symmetrical. Another way to solve the over-determined system of
linear equations is to use a QR decomposition algorithm. The idea of the QR algorithm is to
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transform matrix A into product of two matrices Q and R [Lawson and Hanson, 1995], [Heath,
2018]. Then the equation (2.32) can be expressed as

QRλ= h, (2.34)

where Q is an orthonormal N×N matrix and R is upper triangular N×M matrix. Since for
orthonormal matrices is Q−1 =QT , the equation can be modified as

Rλ=QTh. (2.35)

After this it is easy to inverse the upper triangular matrix R and get the final solution

λ=R−1 (QTh
)

. (2.36)

Figure 2.7: Data values, the RBF collocation functions, the resulting interpolant.

The RBF approximation can be done using "global" or "local" functions. When using "global"
radial basis functions, the matrix A will be full, but when using "local" radial basis functions,
the matrix A might be sparse, which can be beneficial when solving the over-determined system
of linear equations Aλ= h.

In the case of the vector data, i.e. {xi,hi}
N
1 values hi are actually vectors, the RBF is to be

performed for each coordinate of the vector hi.
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3. Related work

There exist many related publications in the area of vector fields approximation, simplification
and compression. The selected most relevant papers are shortly described in the following chap-
ters.

3.1 Vector field simplification

The paper [Tricoche et al., 2000] presents a new approach for turbulent vector fields simplifica-
tion. Critical points are clustered based on the distance measurements and each cluster is replaced
with only one higher order critical point. The vector field in each cluster is then replaced with
a piece-wise linear vector field. When using different maximal distance between critical points
in a cluster, one can obtain hierarchy of simplified vector fields. An extension of this work is
presented in [Tricoche et al., 2002]. This approach enables to perform the simplification on any
irregular grid, instead of previous work dealing only with structured grids.

The paper [Tricoche et al., 2001] removes pairs of critical points from the vector field. The
removed pair of critical must not change the topological degree of the vector field, thus they
remove critical points of opposite index (a saddle point with either a source or sink). Moreover,
the removed critical points must be linked by a separatrix. The simplification does not change the
grid of vector field data in any way, only small local changes of the vector field are performed.

An other approach for vector field simplification is presented in [Skraba et al., 2015], which
is the extension of the approach described in [Skraba et al., 2014]. The simplification scheme is
derived from the topological notion of robustness, i.e. a notion related to persistence [Edelsbrun-
ner et al., 2000], [Reininghaus et al., 2011a] is used to represent the stability of critical points
and evaluate their significance with respect to perturbations of the vector field. The proposed
approach creates a hierarchical simplification scheme and then computes a piece-wise linear ap-
proximation of the vector field. This approach is also usable for unsteady, i.e. time-varying,
vector fields. An extension for 3D vector field is presented in [Skraba et al., 2016]. It does
not need to compute the entire 3D vector field topology, which can be hard to compute in some
cases. Furthermore, the algorithm can remove critical points in any sub-region of the domain
whose degree is zero and handle complex boundary configurations.

The constrution and topological simplification of combinatorial vector fields on 2D manifolds
is presented in [Reininghaus and Hotz, 2011]. Using Forman’s combinatorial Morse theory for
vector fields [Forman, 1998] they extract the topological skeleton including all periodic orbits
and use it for simplification of vector field. The algorithm is able to process noisy data and
creates multi-scale simplification of the vector field. The extension of this work is presented
in [Reininghaus et al., 2011b]. This paper presents an approximation algorithm for combinatorial

22



CHAPTER 3. RELATED WORK

vector field topology with a significantly lower complexity than [Reininghaus and Hotz, 2011].
Due to its simplicity it can be easily parallelized to improve the runtime even more.

The paper [Weinkauf et al., 2005] extracts and classifies higher order critical points of 3D

vector fields. The paper presents the equivalence between classification of 3D critical points and
the 2D vector field on the surface around that critical point. First order critical points can be
grouped and then according the 2D vector field on the surface around them replaced with only
one higher order critical point [Weinkauf et al., 2004]. This approach was developed especially
for the visualization purpose as it leads to expressive visualizations of topologically complex 3D

vector fields.

The Morse decomposition technique [Chen et al., 2008], [Szymczak and Zhang, 2012],
[Szymczak, 2013] is used to simplify the vector field in [Sipeki and Szymczak, 2014]. This
paper describes a method to simplify the Morse decomposition by iteratively merging pairs of
Morse sets that are adjacent in the Morse connection graph. The result of this approach is a
hierarchy of Morse decompositions based on flexible, user-specified criteria. Another approach
that uses the Morse decomposition technique is [Gyulassy and Natarajan, 2005] and [Gyulassy
et al., 2006]. Critical points paired by the Morse-Smale complex [Gyulassy et al., 2007] identify
topological features and their importance. The simplification procedure leaves important critical
points untouched, and is therefore useful for extracting desirable features.

Delaunay triangulation is used to simplify the vector field dataset in [Dey et al., 2007]. The
authors reduce the mesh, where the vector field is defined, to simplify the vector field. Vertices
are iteratively removed from the mesh while areas around critical points are untouched and for
each removed vertex is computed local error metric of the vector field. The simplification algo-
rithm can create a simplified vector field with some maximal error bound. Very similar approach
for simplification of vector fields over tetrahedral meshes is presented in [Platis and Theoharis,
2004]. This approach uses half-edge colapses to reduce the tetrahedral mesh. Another approach
using the Delaunay triangulation is [Cao et al., 2015]. The vertices are removed and also the po-
sitions of vertices are updated based on the Hessian matrix and thus create optimal triangulation
for specific vector field.

3.2 Vector field approximation & compression

Nowadays the computational power of supercomputers increases and researchers are able to pro-
duce from numerical simulations more and more detailed vector fields. This vector fields are so
large, that it is needed to approximate and compress the vector field for backup storage.

The paper [Koch et al., 2016] presents a vector field approximation algorithm. The vector
field is divided into several segments, where the vector field inside each segment is approxi-
mated using an affine linear function [Koch et al., 2013]. The number of segments is as small
as possible and the approximation must preserves the original vector field topology. The vector
field approximation error is below some threshold value selected by user and each point has the
minimal approximation error. To find the optimal solution of this problem is computationally
demanding, thus the authors proposed a greedy solution of this problem.

Only some samples of the vector field are selected in [Agranovsky et al., 2015] for vector field
compression. The selection of subsamples is done in three different ways. The first one is the
random selection of subsamples, next the selection at regular locations corresponding to multi-
resolution reduction and finally the last one is is a greedy selection technique. This subsamples
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are selected according to the properties of the flow, the algorithm targets areas with turbulence
and rotation, where the subsampling is more detailed.

The Radial basis function approximation of vector field is used in [Cabrera et al., 2013]. This
paper does research in the performance of RBF approximation of vector fields. There are com-
pared the local and global RBFs, where the local RBFs are computationally less demanding than
the global RBFs, which produce more smooth results. More precisely, they compare the local
Hermite interpolation technique [Jumarhon et al., 2000] using inverse multiquadrics against the
non-symmetric collocation method of Kansa [Kansa, 1990a], [Kansa, 1990b]. The results indi-
cate that unlike global method, local technique and in particular the local Hermite RBF may solve
problems of great scale since the system of equations has a sparse matrix with corresponding
low condition number. On the other hand, they observed that for Dirichlet–Neumann boundary
conditions the Hermite method produces results which are less accurate than those from global
collocation schemes.

Topological symplification and topology preserving compression of vector fields are com-
bined in [Theisel et al., 2003a]. The important features of the vector field should be preserved,
i.e. critical points and separatrices, while unimportant features can be changed. In the firs step
of the algorithm is computed the complete topological skeleton of the vector field. Next are
computed and assigned weights to critical points and separatrix. This weights are used to distin-
guish between important and unimportant features. In the final step, i.e. the approximation, are
preserved only the selected important topological features.

The 2D vector field defined on a triagular mesh can be approximated using the algorithm
in [Theisel et al., 2003b]. This approach preserves the complete topology, i.e. the critical points
and the connectivity of the separatrices. The approximation is done iteratively through collapsing
edges, while authors present the approach how to detect if this local change will change the
global topology or not. This decision is made only by a local analysis whether or not the global
topology is preserved. This approach focuses only on preserving the topology, however, it does
not minimizes the the vector field approximation error.

The compresion of time varying vector field is presented in [Yuan et al., 2019]. This approach
compress difference between two frames in time. This difference vector field is simplified us-
ing octree subdivision technique, where important features are preserved, i.e. including small
turbulence areas.

The constrained clustering is used in [Lodha et al., 2000] in a vector field approximation
algorithm. This algorithm is similar to [Telea and Van Wijk, 1999]. The vector field is sampled
on a 2D grid with associated vector at each node. The cluster is a set of nodes, where each node
has assigned one vector and thus also all the sub-nodes have assigned this vector. The decision
if merge two nodes in the cluster is made based on a cost function. This cost function computes
the error criteria based on global error metrics (to preserve the topology), local magnitude error,
angular error and node importance error. The extension of this work is presented in [Lodha
et al., 2003]. This work uses two different refinement techniques. The first technique uses binary
tree subdivision and linear interpolation. The second algorithm is driven by triangular quadtree
subdivision with Coons patch quadratic interpolation.

The multi-level approximation of vector field is presented in [de Leeuw and van Liere, 2000].
Only the important critical points are presented at each level of detail. For the reduction of critical
points is used an algorithm for critical points cancellation [Čomić and De Floriani, 2008], [Skraba
et al., 2016], [Wang et al., 2013]. After building a hierarchy of vector field with its critical points,
the authors end-up with a compressed representation of a vector field. Another similar approach
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for generating a multi-resolution representation of the vector field is presented in [Heckel et al.,
1999].
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4. Overview of contributions

I published many papers during the doctoral studies. Only some of them are directly related to
the topic of this dissertation thesis. The selected important publications that are directly related
to the topic of this dissertation thesis are summarized in the following chapters and at the same
time the full text of the published research papers is attached.

4.1 Vector field Radial basis function approximation

The vector fields are often very complex and large as well. The paper [Smolik et al., 2018]
presents an approach for vector field approximation and simplification. The important properties
of the vector field are preserved in the final approximation. This paper propose an algorithm to
determine if a critical point is important, i.e. the critical point has a global character and large
influence. Critical points with only local influence can be omitted in the final approximation and
thus removed from the vector field.

For the vector field approximation are used the Radial basis functions. To preserve the impor-
tant critical points in the final approximation, the Lagrange multipliers are used for this purpose.
The radial basis functions are placed at the important locations in the vector field, i.e. position of
critical points and extremes of either vx or vy component of the vector field.

The final RBF approximation preserves all the important details and preserves the global
character of the vector field, while keeping low vector field approximation error and high com-
pression ratio.

Citation:

• Michal Smolik, Vaclav Skala, and Zuzana Majdisova. Vector field radial basis func-
tion approximation. Advances in Engineering Software, 123(1):117–129, 2018.
(IF = 4.194)
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A B S T R A C T

Vector field simplification aims to reduce the complexity of the flow by removing features according to their

relevance and importance. Our goal is to preserve only the important critical points in the vector field and thus

simplify the vector field for the visualization purposes. We use Radial Basis Functions (RBF) approximation with

Lagrange multipliers for vector field approximation. The proposed method was experimentally verified on

synthetic and real weather forecast data sets. The results proved the quality of the proposed approximation

method compared to other existing approaches. A significant contribution of the proposed method is an ana-

lytical form of the vector field which can be used in further processing.

1. Introduction

Interpolation and approximation are probably the most frequent

operations used in computational techniques [1]. Several techniques

have been developed for data interpolation and approximation, but

they require some kind of data “ordering”, e.g. structured mesh, rec-

tangular mesh, unstructured mesh etc. A typical example is a solution of

partial differential equations (PDE), where derivatives are replaced by

differences and rectangular or hexagonal meshes are used in the vast

majority of cases. However, in many engineering problems, data are not

ordered and they are scattered in k-dimensional space, in general. The

k-dimensional space is sometimes not only spatial but also contains a

time dimension or a dimension relating to age or temperature or other

environmental conditions. Usually, in technical applications the scat-

tered data are tessellated using triangulation, but this approach is quite

prohibitive for the case of k-dimensional data interpolation or ap-

proximation because of the computational cost [2].

The technique for visualizing topological information in fluid flows

is well known [3]. However, when the technique is used in complex and

information-rich data sets, the result will be a cluttered image which is

difficult to interpret. The paper [4] presents a simplification approach

that removes pairs of critical points from the dataset, based on re-

levance measures. The approach does no grid changes since the whole

method uses small local changes of the vector values defining the vector

field. A simplification of vector field can be achieved by merging

critical points within a prescribed radius into higher order critical

points [5]. After building clusters containing the singularities to merge,

the method generates a piecewise linear representation of the vector

field in each cluster containing only one higher order singularity. Paper

[6] presents a method to segment regions around a higher order critical

point into areas of different 3D flow behavior. This method can be

applied to any area of interest, e.g. around clusters of critical points.

This can be used for a topological simplification tool by replacing the

topological skeleton inside the area of interest. Combination of topo-

logical simplification technique and topology preserving compression

for 2D vector fields is presented in [7]. A vector field is compressed in

such way that its important topological features are preserved while its

unimportant features are allowed to collapse and disappear. Dey et al.

[8] present a Delaunay based algorithm for simplifying vector fields.

The algorithm controls a local metric during removing vertices from

Delaunay triangulation and maintains regions near critical points to

prevent topological changes. The paper [9] uses a filtering technique

based on the vorticity of the vector field to eliminate the less interesting

critical points. The magnitude of the curl of the scalar field provides a

basis to control the boundary thresholds as well as the number of cri-

tical points to include in the vector field. The paper [10] presents a

technique for the visualization of multi-level topology in flow data sets.

It provides the user with a mechanism to visualize the topology without

excessive cluttering while maintaining the global structure of the flow.

Skraba et al. [11,12] enable the pruning of sets of critical points

https://doi.org/10.1016/j.advengsoft.2018.06.013

Received 25 April 2018; Received in revised form 13 June 2018; Accepted 24 June 2018

☆ The research was supported by projects Czech Science Foundation (GACR) No. 17-05534S and partially by SGS 2016-013.
⁎ Corresponding author.

E-mail address: smolik@kiv.zcu.cz (M. Smolik).

Advances in Engineering Software 123 (2018) 117–129

Available online 21 July 20180965-9978/ © 2018 Elsevier Ltd. All rights reserved.

T

27



according to a quantitative measure of their stability, that is, the

minimum amount of vector field perturbation required to remove them.

This leads to a hierarchical simplification scheme that encodes flow

magnitude in its perturbation metric. A topological denoising technique

based on a global energy optimization is proposed in [13], which allows

the topology-controlled denoising of scalar fields. It allows processing

small patches of the domain independently while still avoiding the in-

troduction of new critical points. In the paper [14], they performed a

numerical investigation of the differences between RBF global and local

methods, in order to investigate the possible advantage of using local

methods for the approximation of vector fields. The paper [15] presents

a vector field approximation for two-dimensional vector fields that

preserves their topology and significantly reduces the memory foot-

print. This approximation is based on a segmentation. The flow within

each segmentation region is approximated by an affine linear function.

2. Vector field

Vector fields on surfaces are important objects, which appear fre-

quently in scientific simulation in CFD (Computational Fluid Dynamics)

[16,17] or modeling by FEM (Finite Element Method) [18,19]. To be

visualized, such vector fields are usually linearly approximated for the

sake of simplicity and performance considerations.

The vector field can be easily analyzed when having an approx-

imation of the vector field near some location point. The important

places to be analyzed are so called critical points [20]. Analyzing the

vector field behavior near these points gives us the information about

the characteristic of the vector field.

Critical points x0 of the vector field are points at which the mag-

nitude of the vector vanishes

= =x
v x 0

d

dt
( ) ,

(1)

i.e. all components are equal to zero

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥ = ⎡

⎣⎢
⎤
⎦⎥
0
0
.

dx

dt

dy

dt (2)

A critical point is said to be isolated, or simple, if the vector field is

non vanishing in an open neighborhood around the critical point. Thus

for all surrounding points x
ϵ
of the critical point x0 the equation (1)

does not apply, i.e.

≠x
0

d

dt
,ϵ

(3)

At critical points, the direction of the field line is indeterminate, and

they are the only points in the vector field where field lines can inter-

sect (asymptotically). The terms singular point, null point, neutral point

or equilibrium point are also frequently used to describe critical points.

These points are important because together with the nearby sur-

rounding vectors, they have more information encoded in them than

any such group in the vector field, regarding the total behavior of the

field. The critical points are classified based on the vector field around

these points, see Fig. 1.

3. Radial basis functions

Radial basis function (RBF) is a technique for scattered data inter-

polation [21] and approximation [22,23]. The RBF interpolation and

approximation is computationally more expensive compared to inter-

polation and approximation methods that use an information about

mesh connectivity, because input data are not ordered and there is no

known relation between them, i.e. tessellation is not made. Although

RBF has a higher computational cost, it can be used for d-dimensional

problem solution in many applications, e.g. solution of partial differ-

ential equations [24,25], image reconstruction [26], neural networks

[27–29], GIS systems [30,31], optics [32] etc. It should be noted that it

does not require any triangulation or tessellation mesh in general.

There is no need to know any connectivity of interpolation points, all

points are tied up only with distances of each other. Using all these

distances we can form the interpolation or approximation matrix,

which will be shown later.

The RBF is a function whose value depends only on the distance

from its center point. Due to the use of distance functions, the RBFs can

be easily implemented to reconstruct the surface using scattered data in

2D, 3D or higher dimensional spaces. It should be noted that the RBF

interpolation and approximation is not separable by dimension.

Radial function interpolants have a helpful property of being in-

variant under all Euclidean transformations, i.e. translations, rotations

and reflections. It does not matter whether we first compute the RBF

interpolation function and then apply a Euclidean transformation, or if

we first transform all the data and then compute the radial function

interpolants. This is a result of the fact that Euclidean transformations

are characterized by orthonormal transformation matrices and are

therefore two-norm invariant. Radial basis functions can be divided

into two groups according to their influence. The first group are

“global” RBFs [33]. Application of global RBFs usually leads to ill-

conditioned system, especially in the case of large data sets with a large

span [34,35].

The “local” RBFs were introduced in [36] as compactly supported

RBF (CSRBF) and satisfy the following condition:

= −
= ⎧

⎨⎩
− ≤ ≤

>

+φ r r P r

r P r r

r

( ) (1 ) ( )

(1 ) ( ) 0 1

0 1

q

q

(4)

where P(r) is a polynomial function, r is the distance of two points and q

is a parameter. The subscript in − +r(1 )q means:

− = ⎧
⎨⎩

− − ≥
− <+r

r r

r
(1 )

(1 ) (1 ) 0

0 (1 ) 0 (5)

3.1. Radial basis function approximation

RBF interpolation was originally introduced by Hardy [37] and is

based on computing the distance of two points in any k-dimensional

space. The interpolated value, and approximated value as well, is de-

termined as (see [38]):

∑= −
=

x x ξh λ φ( ) ( )
j

M

j j
1 (6)

where λj are weights of the RBFs, M is the number of the radial basis

functions, φ is the radial basis function and ξj are centers of radial basis

functions. For a given dataset of points with associated values, i.e. in

the case of scalar values x h{ , } ,i i
N
1 where N≫M, the following over-

determined linear system of equations is obtained:

∑= = −
∀ ∈ …

=
x x ξh h λ φ

i N

( ) ( )

for {1, , }

i i

j

M

j i j
1

(7)

where λj are weights to be computed; see Fig. 2 for a visual inter-

pretation of (6) or (7) for a D2
1

2
function. Point in D2

1

2
is a 2D point

associated with a scalar value. The same also applies to 3D point as-

sociated with a scalar value, thus D3
1

2
point.

Eq. (7) can be rewritten in a matrix form as

=A hλ , (8)

where = −x ξA φ ( )ij i j is the entry of the matrix in the ith row and jth

column, the number of rows N≫M, M is the number of unknown

weights = …λ λ λ[ , , ] ,M
T

1 i.e. a number of reference points, and

= …h h h[ , , ]N
T

1 is a vector of values in the given points. The presented
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system is overdetermined, i.e. the number of equations N is higher than

the number of variables M. This linear system of equations can be

solved by the least squares method (LSE) as

=A A A hλ ,T T (9)

where the matrix A
T
A is symmetrical.

The RBF approximation can be done using “global” or “local”

functions. When using “global” radial basis functions, the matrix A will

be full, but when using “local” radial basis functions, the matrix A

might be sparse, which can be beneficial when solving the over-

determined system of linear equations =A hλ .

In the case of the vector data, i.e. x h{ , }i i
N
1 values hi are actually

vectors, the RBF is to be performed for each coordinate of the vector hi.

3.2. RBF approximation with Lagrange multiplier

We want to minimize a multivariate function f(x, y) subject to a

constraint =g x y( , ) 0. The method of Lagrange multipliers relies on the

intuition that at a minimum, f(x, y) cannot be decreasing in the direc-

tion of any neighboring point where =g x y( , ) 0. Thus, the gradient of f

(x, y) is perpendicular to the constraint =g x y( , ) 0 and thus the gra-

dients of f and g are parallel, see Fig. 3, i.e.

∇ = ∇f x y η g x y( , ) ( , ), (10)

where η represents some constant.

The method of Lagrange multipliers is a powerful tool for solving

this class of problems without the need to explicitly solve the conditions

and use them to eliminate extra variables. Lagrange presented a special

Fig. 1. Classification of 2D first order critical points. R1, R2 denote the real parts of the eigenvalues of the Jacobian matrix while I1, I2 denote their imaginary parts

[20].

Fig. 2. Data values, the RBF collocation functions, the resulting interpolant.
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Fig. 3. The red line shows the constraint =g x y( , ) 0. The blue dotted lines are contours of f(x, y). The point where the red line tangentially touches a blue contour is

the maximum of f(x, y). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Vector fields with almost parallel zero iso-lines. All the vector fields have the same global character.

Fig. 5. Vector fields with one short zero iso-lines. Both the vector fields have the same global character.
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new function which takes in all the same input variables as f and g,

along with η, thought of now as a variable called Lagrange multiplier.

The Lagrange function is [39–41]

= +F x y η f x y ηg x y( , , ) ( , ) ( , ). (11)

To find a minimum of (11) we need to set the gradient of (11) equal to

zero

∂
∂ =
∂
∂ =
x

0
F

F

η
0,

(12)

where =x x y[ , ]T .

We will use Lagrange multipliers together with RBF approximation.

The RBF approximation function is

∑= −
=

x x ξh λ φ( ) ( ),
j

M

j j
1 (13)

where ξj are centers of radial basis functions, λj are weights of radial

basis functions and φ is a radial basis function. We want to minimize

∑ ∑= ⎛
⎝⎜

− − ⎞
⎠⎟= =

λ x ξf λ φ h( ) ( ) ,
i

N

j

M

j i j i

1 1

2

(14)

where N is the number of input points for approximation and hi are

associated function values at xi. The constrain for some points
= …x x x[ , , ]0 0 0

N
( ) ( )

1
( )

c that the RBF function is equal to zero is

Fig. 6. Vector fields with one short zero iso-lines. Both the vector fields have the same global character.

Fig. 7. Examples of zero iso-line approximation. The black line is the zero iso-line approximation at the critical point. The red and green curves are zero iso-lines. (For

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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∑= − =
∀ ∈ …

=
x x ξg λ φ

c N

( ) ( ) 0

for {1, , },

0 0
c

j

M

j c j

c

( )

1

( )

(15)

where Nc is the number of constrains.

Using (14) as f(x, y) in (11) and (15) as g(x, y) in (11) we form the

Lagrange function

∑ ∑

∑ ∑

= ⎛
⎝⎜

− − ⎞
⎠⎟

+ ⎛
⎝⎜

− ⎞
⎠⎟

= =

= =

λ η x ξ

x ξ

F λ φ h

η λ φ

( , ) ( )

( ) .0

i

N

j

M

j i j i

c

N

c
j

M

j c j

1 1

2

1 1

( )

c

(16)

This formula can be rewritten in a matrix form as

= − +
= − + +

λ η A h λ R η

λ A Aλ h Aλ h h λ R η

F λ( , ) ( )

2 ,

T T

T T T T T T

2

(17)

where = −x ξA φ ( )ij i j is the entry of the matrix A in the i-th row and

the j-th column, = −x ξR φ ( )0
cj c j

( ) is the entry of the matrix R,

= …λ λ λ[ , , ] ,M
T

1 = …h h h[ , , ]N
T

1 and = …η η η[ , , ]N
T

1 c
. To find the

minimum of (17) we need to compute the partial derivatives of (17)

∂
∂ = + −
λ

A Aλ R η A h
F

2 2T T T

(18)

and

∂
∂ =
η

Rλ
F

.
(19)

To find the minimum, both partial derivatives (18), (19) must be equal

zero

∂
∂ = ⇒ + − =
∂
∂ = ⇒ =
λ

0 A Aλ R η A h 0

η
0 Rλ 0

F

F

2 2 ,

.

T T T

(20)

Using (20), we can form the system of linear equations for RBF

approximation with Lagrange multipliers

(21)

Solving those equations and finding λ, we made the RBF approximation

and can compute the function values using (13).

4. Proposed approach

Importance measure for minima and maxima of 2D scalar fields

called scale space persistence is introduced in [42]. This method is

based on the mathematical concepts scale space, homological

Fig. 8. Visualization of the input data set. The vector field (a) and the zero iso-lines with all critical points (b).
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persistence, discrete Morse theory, and combinatorial feature flow

fields. The combination of these powerful approaches to data analysis

results in an importance measure that can deal with noisy data con-

taining outliers. Robustness, a notion related to persistence, is used to

represent the stability of critical points and evaluate their significance

with respect to perturbations of the vector field. Intuitively, the ro-

bustness of a critical point is the minimum amount of perturbation that

is required to cancel this critical point within a local neighborhood.

The proposed algorithm aims to reduce critical points in the vector

field and thus simplify it. Critical points are located on places where the

zero iso-lines of vx and vy intersect. The importance of the critical point

is based on how the two zero iso-lines of vx and vy intersect and how

long are these iso-lines.

If two iso-lines are almost parallel at a critical point, then this cri-

tical point does not have high importance as can be seen in the syn-

thetic example in Fig. 4. The two zero iso-lines have two intersections

(Fig. 4a), thus the vector field has two critical points at that locations. If

we change the vector field in Fig. 4a so that the vector field has only

one critical point and both the vx and vy zero iso-lines touches at one

point, i.e. at critical point, see Fig. 4b. If we change the vector field

Fig. 4a even more, we can end up with the vector field Fig. 4c, which

has no critical point. All the vector fields Fig. 4a–c have the same global

character and differ only in the number of critical points. Due to in-

accuracy in measurement or numerical simulation or vector field data

noise, there may be confusion between the individual cases in Fig. 4a–c.

Some non existing critical points can occur in the data set and are

disturbing for visualization purposes.

If two iso-lines have an intersection, where one iso-line is a rela-

tively short closed curve, the influence of the critical point is only local

and has almost no global influence for the vector field. Examples are

visualized in Figs. 5 and 6. We can change the vector field Fig. 5 (left)

that the vy component of the vector field is always greater than zero, i.e.

there is no zero iso-line, see Fig. 5 (right). However this modified vector

field has no critical point, the global character of the vector field re-

mains the same as in Fig. 5 (left). The same implies for vector field in

Fig. 6 as well. Critical points created with a relatively short closed curve

have the influence proportional to the size of the zero iso-line.

It can be seen that for the both cases mentioned above, i.e. almost

parallel iso-lines in Fig. 4 and relatively short closed curve in Figs. 5 and

6, the vector fields have the same global character with the critical

points as without them. In the following text we will show how to

detect critical points affecting only local behavior of the vector field.

4.1. Critical points reduction

The first step of the proposed method is the critical points detection.

Critical points in the vector field can be located using several methods

[43–45]. Critical points of the 2D vector field are places, where the two

Fig. 9. First (a) and second (b) step of critical points reduction algorithm.
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zero iso-lines of vx and vy component intersect. Our goal is to trace both

zero iso-lines in both directions from the critical point and compute the

approximated zero iso-lines.

For the vx zero iso-line approximation we need to compute inter-

sections with the input data grid. From these intersections, we find

some number of the closest ones to the critical point x0. In the testing

we used 6 closest intersection points …x x{ , , }c c
(1) (6) . This points need to

be interlaced with an implicit line. For this purpose we use the method

of total least square error computation in E2 taken from [46]. This

method computes implicit line

+ + =a x b y d 0,x x x( ) ( ) ( ) (22)

where a(x), b(x) and d(x) are parameters of implicit line for vx, similarly

a(y), b(y) and d(y) for vy. This line has a normal vector

=n a b[ , ] ,x x x T( ) ( ) ( ) (23)

and thus the direction vector of the implicit line is

= −u b a[ , ] .x x x T( ) ( ) ( ) (24)

The direction vector is a smooth approximation of the zero iso-line, see

Fig. 7. For the vy zero iso-line smooth approximation, we compute u
(y)

using the same approach like for u(x).

If two zero iso-lines are almost parallel (as in Fig. 4), the two cor-

responding direction vectors u
(x) and u

(y) computed using (24) are al-

most parallel as well. The angle θ between this two vectors is computed

using

⎜ ⎟= ⎛
⎝

⎞
⎠

u u

u u
θ acos

·
.

x y

x y

( ) ( )

( ) ( ) (25)

To distinguish cases, when vectors are almost parallel and when not, we

can compute only the argument of function acos in (25)

= u u

u u
ν

·
.

x y

x y

( ) ( )

( ) ( ) (26)

The two vectors u(x) and u
(y) are almost parallel, when

⟶ν 1. (27)

In our approach we are going to remove all critical points for which

the condition (27) is true for some small ϵ in

≥ −ν 1 ϵ. (28)

This critical points have only local character and are not important for

the global character of the vector field.

The next type of critical points that have only local character is

described in Figs. 5 and 6. To detect this type of critical points, we need

to trace the zero iso-line of vx and vy and compute how long this zero

iso-lines are. If one zero iso-line is shorter than some threshold, then the

critical point have only local character and can be removed. The

threshold length needs to be determined experimentally relatively to

the size of input data set.

Fig. 10. Original and RBF approximated components of vector field.
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4.2. Vector field RBF approximation

Now, we know the critical points that can be removed from the

vector field as they change the vector field only locally and thus have no

importance for the global character of the vector field. The remaining

critical points need to be preserved in the approximated vector field.

The vector field will be approximated using the RBF with Lagrange

multipliers as described in Section 3.2, so that the important critical

points will be preserved in the approximated vector field. For the RBF

approximation, we need to determine the centers of radial basis func-

tions.

Centers of the RBF approximation need to be located in the positions

of the important critical points. The additional centers of RBF need to

be located at the extremes of vx, resp. vy. The number of extremes will

be too high for real data due to noise, measurement inaccuracies and

calculation. Therefore, the vx, resp. vy, component of the vector field is

smoothed using Gaussian low-pass filter before computing extremes.

Now, we can compute the RBF approximation with Lagrange multiplier

as described in Section 3.2. The conditions for Lagrange multiplier are

the zero values at critical points locations.

After computing RBF approximation, we have an analytical de-

scription of the vector field. This approximated vector field can be used

for visualization purposes as the global character of the vector field

remains the same and only small local changes are neglected.

5. Results

In this section, we show the results of our proposed approach. This

approach for vector field approximation using radial basis functions is

especially convenient for visualization purposes, data understanding

and data compression. For testing purposes, we used a numerical

forecast wind data set taken from1 [47]. This data set consists of

2.2 · 104 sampled points with associated vectors of wind flow, see

Fig. 8a. The vector field contains 69 critical points as can be seen in

Fig. 8b, but only few of them are important and have the global char-

acter.

We need to select only the important critical points and eliminate

the others. First set of critical points, that can be eliminated, are critical

points laying on a relatively short iso-lines. For processing only critical

points with longer iso-lines length are considered. The threshold of zero

iso-line length was experimentally selected as half of the minimum of x

and y axis range, i.e.

min range range{ , }

2
.

x y

(29)

Fig. 11. Original vector field (a) and approximated vector field using the proposed approach (b).

1Data set of wind flow at a height of 10m over the surface of the Czech

Republic courtesy of the Institute of Computer Science of the Czech Academy of

Sciences.
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After ignoring this short zero iso-lines, we obtain reduced set of critical

points, see Fig. 9a. To eliminate the second group of critical points, we

need to compute (26) and compare it to some threshold value ϵ in (28).

Experimentally, we selected the value of =ϵ 0.06, which is relevant to

an angle equal 20°, i.e. − =− ∘cos (1 ϵ) 201 . As the result we end up with

only 12 critical points, this means that we eliminated 57 critical points,

see Fig. 9b.

Both the vector field components vx and vy were approximated by

RBF using the Lagrange multiplier. The result of approximation is vi-

sualized at Fig. 10. It can be seen that both approximations have more

smoothed course of the function compared to the original functions.

This property is beneficial for the visualization purposes as the final

vector field does not contain small fluctuations.

Having approximation of both vector field components vx and vy, we

can visualize the approximated vector field, see Figs. 11b and 12. It can

be seen that the approximated vector field has visually the same global

Fig. 12. Approximated vector field with its all critical points (a) and zero iso-lines of the approximated vector field (b).

Fig. 13. Fourier transform of the original data set. Figure (a) represents the frequency portrait and (b) represents the phase offset (both images are rotated 90

counterclockwise).
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character as the original vector field.

5.1. Comparison with existing approach

The proposed approach for vector field approximation using RBF

needs to be compared to a different competing approach. We selected

an approach which uses the discrete Fourier transform (DFT) to ap-

proximate a vector field and a second approach which uses the discrete

Cosine transform (DCT) to approximate a vector field.

The discrete Fourier transform computes for both components vx
and vy of the vector field the Fourier transform using the formula

∫ ∫= −∞
∞

−∞
∞ − +F α β v x y e dxdy( , ) ( , ) ,πi xα yβ2 ( )

(30)

where α and β are frequencies that represent the original data set after

the Fourier transform, see Fig. 13. The inverse Fourier transform is

computed using the formula

∫ ∫= −∞
∞

−∞
∞ +v x y F α β e dαdβ( , ) ( , ) .πi xα yβ2 ( )

(31)

The vector field can be approximated using the Fourier transform.

We used the discrete Fourier transform in our experiments. Then we

used only some number of low frequency coefficients, thereby re-

moving the high frequencies from the input data set and simplifying the

vector field. This simplified vector field can be compared with our

proposed approach for vector field RBF approximation.

The discrete Cosine transform computes for both components vx and

vy of the vector field the Cosine transform using the formula

∫ ∫= ⎡
⎣ ⎛⎝ + ⎞⎠ ⎤

⎦
⎡
⎣ ⎛⎝ + ⎞⎠ ⎤

⎦−∞
∞

−∞
∞

F α β v x y π x α π y β dxdy( , ) ( , )cos
1

2
cos

1

2
,

(32)

where α and β are frequencies that represent the original data set after

the Cosine transform, see Fig. 14. The inverse Cosine transform is

computed using the formula

∫ ∫= ⎡
⎣ ⎛⎝ + ⎞⎠ ⎤

⎦
⎡
⎣ ⎛⎝ + ⎞⎠ ⎤

⎦−∞
∞

−∞
∞

v x y F x y π x α π y β dαdβ( , ) ( , )cos
1

2
cos

1

2
.

(33)

The vector field can be approximated using the Cosine transform.

We used the discrete Cosine transform in our experiments. Then we

used only some number of low frequency coefficients, thereby

Fig. 14. Frequency portrait of the Cosine transform of the original data set.

Fig. 15. Comparison of approximation error for the proposed RBF vector field approximation with the DFT vector field approximation and the DCT vector field

approximation for different compression ratios. The total number of input points for vector field approximation is around 2.2 · 104; for approximation with com-

pression ratio 8: 1 are used 2.8 · 103 reference points; and for compression ratio 512: 1 only 43 reference points are used.

Fig. 16. Comparison of the number of critical points for the proposed RBF

vector field approximation and the DFT and the DCT vector field approximation

for different compression ratios. The total number of critical points in the input

data set is 69.
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removing the high frequencies from the input data set and simplifying

the vector field. This simplified vector field can be compared with our

proposed approach for vector field RBF approximation.

The approximation error can be measured using different formulas.

The first way is to compute the average difference of the approximated

vector field and the original vector field. The average difference is

computed using

= ∑ −= v v
Err

N
,i

N
i i1

(34)

where vi is the approximated vector, vi is the original vector and N is the

number of the original samples. The approximation error for different

compression ratios is visualized in Fig. 15a. The total number of input

points for vector field approximation is around 2.2 · 104; the average

vector length, i.e. average speed, is 2.21 m/s.

Next, we can measure the average vector length error, i.e. the

average speed error. This error is computed using

= ∑ −
∑

=
=

v v

v
Err .i

N
i i

i

N
i

1

1 (35)

The average vector length error is divided by the average vector length

of the original data set, i.e. this error is relative and the result for dif-

ferent compression ratios is visualized in Fig. 15b. As the data set

contains critical points (zero points), standard relative error computa-

tion using the following formula cannot be applied, as there will be a

division by zero and thus infinitely large relative error.

∑= −
=

v v

v
Err

N

1
.

i

N
i i

i1 (36)

Last, we can measure the average angular displacement error using

∑ ⎜ ⎟= ⎛
⎝

⎞
⎠=

v v

v v
Err

N
acos

1 ·
.

i

N
i i

1 (37)

It can be seen that our proposed method have lower approximation

Fig. 17. The histograms of vector field average difference approximation error for compression ratio 115: 1.

Fig. 18. The difference histogram of vector field average difference approximation error (“RBF” - “DFT”) (a) and (“RBF” - “DCT”) (b), see Fig. 17, for compression

ratio 115: 1.
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error in all the three cases mentioned before.

As the next step we tested the number of critical points in the ap-

proximated vector fields. Our aim is to reduce the number of critical

points and preserve only the important critical points. However, if we

are reducing the critical points even more we are still able to preserve

more critical points in the approximated vector field than the DFT and

the DCT approximation, see Fig. 16.

In spite of the fact that we know the distribution of approximation

errors, it is hard to compare the two histograms of approximation errors

in Fig. 17. Therefore we computed the difference histogram, see Fig. 18.

It can be seen that the proposed RBF approximation method has

more smaller approximation errors and fewer higher approximation

errors than the discrete Fourier approximation as well as the discrete

cosine transform approximation, which means that the proposed

method is significantly more accurate while preserving the same com-

pression ratio and important features of the vector field.

6. Conclusion

We presented a new approach for simplification and approximation

of a vector field using radial basis functions. Important critical points

are preserved in the approximated vector field. The algorithm proved

its simplicity and ability to approximate a complex vector field. The

proposed algorithm was compared with the standard Fourier approx-

imation algorithm and the Cosine approximation algorithm. It proved

its capability of high compression while maintaining a low approx-

imation error. The proposed method also leads to an analytical RBF

form of the vector field which can be used for further processing. This is

a significant advantage over other methods.

In the future the proposed approach will be extended to approx-

imate 3D vector fields, as the visualization of complex and noisy vector

fields can be confusing.
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CHAPTER 4. OVERVIEW OF CONTRIBUTIONS

4.2 3D vector field approximation and critical points reduction us-

ing Radial basis functions

The paper [Smolik et al., 2019] is an extension of the journal paper [Smolik et al., 2018] and
proposes an approach for 3D vector field approximation. The proposed approach was especially
designed to simplify and compress tornado data sets. This kind of vector fields have one main
feature, which is the rotation around the vertical axis. Such vector field can be cut in 2D hori-
zontal slices. In each cut are lots of vortices, some of them are important and some of them can
be discarded as they have only small local influence in the vector field.

We used the algorithm [Smolik et al., 2018] to select the important critical points that should
be preserved in the final approximation of vector field. Due to this approach it is possible to
reduce the number of critical points in the whole 3D vector field. After this selection is performed
the RBF approximation with specific location of radial basis functions is computed.

The result of this approach is a simplified 3D vector field, which has similar behavior as the
original one. Moreover, we achieved very high compression ratio (7 ·103 : 1), while maintaining
low approximation error.
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3D Vector Field Approximation and Critical Points
Reduction Using Radial Basis Functions

Michal Smolik, Vaclav Skala and Zuzana Majdisova

Abstract—Vector field simplification aims to reduce the complex-
ity of the flow by removing features according to their relevance
and importance. However, the important features as critical points
with a large range of influence should be preserved. We present
a new approach for vector field simplification and approximation
using Radial basis functions. The experiments proved the ability to
approximate complex 3D tornado data set. In addition, a significant
contribution of the proposed method is also an analytical form of the
vector field which can be used in further processing. The abstract
goes here.

Keywords—Vector field, Radial basis functions, critical point, tor-
nado, simplification, approximation, data compression, visualization.

I. INTRODUCTION

THE vector fields are often very large and complex data
set. To process and visualize such kind of data, the

approximation and simplification techniques are used. The
summary of topology based flow visualization techniques is
presented in [1]. Most of this techniques tries to simplify
the vector topology, either by removing or collapsing critical
points, or by smoothing the vector field to remove small
unimportant changes in the flow [2], [3], or by simplifying
the topological skeleton of the vector field [4], [5].

The paper [6] simplifies the topology of vector field by
collapsing critical points. The algorithm processes vector fields
defined on a triangulation of the flow domain, i.e. planar vector
fields. During the simplification, there are no topological
changes in the triangulation. During the simplification are
iteratively selected pairs of critical points that can be collapsed.
The critical points can be collapsed into one higher order
critical point or they can reset each other, i.e. both critical
points have opposite Poincare index. Another approach is
presented in [7]. There is defined some maximal distance of
two critical points to collapse them. All critical points inside
the selected radius are collapsed into one higher order critical
point. The paper [8] focuses on visualization of complex
3D vector fields. The authors prove that vector field inside
some area can be described with the 2D vector field on the
surface around this area. Using this knowledge, they create
symbols and visualization based on different behavior of the
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vector field inside some area with many critical points. The
paper [9] presents an approach for simplification of vector
field topology, while preserving important features of the
vector field, i.e. critical points and separatrices. Each topology
feature gets computed a weight that means the importance.
According this weights is then simplified the vector field
topology. The vertex deletion from the Delaunay triangulation
is used in [10] to simplify the vector field. Based on some
metrics is determined if a vertex can be removed from the
Delaunay triangulation, so that the vector field will not change
significantly. The authors prove that this can be determined
using only local neighbors and there is no need to compute
this change for the whole vector field. The paper [11] filters
out the less important and sometimes even sporadic critical
points. The filtering is based on the vector field vorticity and
is best suited for regional climate modeling and simulation.

Many approaches for vector field approximation use the
Radial basis function (RBF) method [12], [13], [14]. The paper
[15] presents an approach for large scattered 3D vector field
approximation. It uses the space subdivision to process and
speed-up the approximation. The comparision of vector field
approximation with local radial basis functions and global
radial basis functions is presented in [16]. The paper [17] uses
the RBF interpolation in numerical simulation of divergence-
free vector fields. Another approaches use the second order
derive to describe features of the vector field [18], [19].

II. PROPOSED APPROACH

The 3D vector field data sets come usually from numerical
simulations and are very large. Such vector fields can be
approximated for the visualization purposes or to minimize
the data set size. In our proposed approach, we use modified
algorithm described in [20] to approximate the 3D vector
fields. In this paper, we will especially focus on approximation
of the EF5 tornado data set (from [21])1.

The 3D data set is divided into 2D horizontal slices, as
the main swirl plane is horizontal. Each 2D vector field slice
contains high number of critical points that we want to reduce.
We will use the algorithm described in [20] to determine the
important critical points. The important critical points should
be presented in the final approximated vector field, while the
unimportant critical points should be removed from the vector
field. The important critical points will be the centers for radial
basis functions (RBF) [22]. The radial basis functions should

1Data set of EF5 tornado courtesy of Leigh Orf from Cooperative Institute
for Meteorological Satellite Studies, University of Wisconsin, Madison, WI,
USA.
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be also placed at the extremes of vx, vy , resp. vz . However the
number of extremes is too high and thus this extremes need
to be reduced. For this purpose, we use the Gaussian low-pass
filter to determine only the important extremes and to discard
the small local extremes. The last additional centers of RBF
are located at the data set bounding box vertices. The vector
field is then approximated using RBF as

v(x) =
M
∑

j=1

λjϕ(‖x− ξj‖) (1)

where λj are weights of the RBFs, M is the number of the
radial basis functions, ϕ is the radial basis function and ξj are
centers of radial basis functions. It is similar as in the potential
field case [23]. For a given vector field data set {xi,vi}

N
1 ,

where N≫M , the following overdetermined linear system of
equations is obtained:

vi = v(xi) =
M
∑

j=1

λjϕ(‖xi − ξj‖)

for ∀i ∈ {1, . . . , N}. (2)

The result of the RBF approximation is an analytical
description of the 3D vector field. This is the advantage
over other existing methods that use the triangulation, resp.
tetrahedronization. The analytical description can be used for
further processing of the vector field.

III. EXPERIMENTAL RESULTS

We tested the proposed approach using the EF5 tornado data
set from [21]. For the testing purposes, we selected the central
part of the data set, where the tornado is located. The size of
the vector field data set for approximation is 8 ·106 points (see
Fig. 4a).

First step of the proposed approach is the reduction of
critical points in horizontal slices of the vector field. The
input data set contains 28 902 critical points (see Fig. 1a)
and after reduction using algorithm [20], we end up with only
490 critical points (see Fig. 1b).

The centers of the RBFs are located at critical points and
at the extremes of vx, vy , resp. vz . After smoothing using
Gaussian low-pass filter, we located 666 extremes. The total
number of centers for radial basis functions is thus 1164 points
(see Fig. 2).

The data set is very large for RBF approximation, thus we
need to use the local RBF [24], [25], [26] to reduce needed
memory (see [20] for selection of RBF). The RBF used for
vector field approximation is

ϕ(r) = (1− r)4+(4r + 1) (3)

as it gives the best approximation results based on experimen-
tal results and is C2 continuous, which is appropriate when
computing derivatives of the vector field.

After the RBF approximation of the input vector field data
set, we visualized the results. The 2D vector field horizontal
slices are visualized in Fig. 3. It can be seen, that the global
character of the vector field remains the same. There are
only local differences as the approximated vector field is

(a) All critical points.

(b) Reduced critical points.

Fig. 1. Visualization of 2D critical points located at horizontal slices of
vector field data set (28 902 points (a) and 490 points (b)).

Fig. 2. Visualization of centers of radial basis functions (1164 points).

smoother. There can be seen some small differences in the
global direction of the flow, however the compression ratio is
about 7 · 103 : 1 which is very high.

Fig. 4 presents the visualization of 3D approximated vector
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(a) (b)

(c) (d)

(e) (f)

Fig. 3. Visualization of 2D vector field horizontal slices. Left column
represents the original vector field and the right column represents the RBF
approximated vector field.

field. It can be seen that the main vortex of the tornado has
similar shape to the original one. The original one contains
just many tiny details. However this is again due to very high
compression ratio (7 · 103 : 1).

The approximation error can be measured using different
formulas. The first way is to compute the average difference
of the approximated vector field and the original vector field.
The average difference is computed using

Err =

∑N
i=1 ‖vi − v̄i‖

N
, (4)

where vi is the approximated vector, v̄i is the original vector
and N is the number of the original samples. The approxima-
tion error is visualized in Fig. 5a.

Next, we can measure the average vector length error, i.e.
the average speed error. This error is computed using

Err = |‖vi‖ − ‖v̄i‖| . (5)

(a) Original vector field.

(b) Approximated vector field.

Fig. 4. Visualization of the 3D tornado vector field data set. Red central
part represents the shape of tornado vortex and the yellow color on faces
represents the speed of vector field.

The computed speed error is visualized in Fig. 5b. The speed
error of vector field approximation is 3.8 ms−1 and the
average speed of the vector field is 18.7 ms−1.

IV. CONCLUSION

We presented a new approach for simplification and approx-
imation of complex and large 3D vector fields using RBF.
The proposed approach preserves during the simplification
and approximation the important critical points and thus it
preserves the global character of the 3D vector field as well.
As the result, we end up with an analytical description of
the approximated vector field, which can be used for further
processing of the simplified vector field.

In the future, the proposed approach will be modified to
reduce the critical points already in 3D instead of in 2D vector
field slices.
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(a) Approximation error.

(b) Speed error.

Fig. 5. Visualization of vector field approximation error (a) and visualization
of speed error of approximated vector field (b).
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CHAPTER 4. OVERVIEW OF CONTRIBUTIONS

4.3 Large scattered data interpolation with Radial basis functions

and space subdivision

Interpolation of scattered data using Radial basis functions leads to a solution of linear systems.
With increasing the size of the input data, the memory requirements are increasing even more, as
mainly the memory requirements for RBF interpolation are O(N2). Because of that, there is no
possibility to perform the basic RBF interpolation on data sets containing millions of points, or
even more. The paper [Smolik and Skala, 2018] proposes an approach for interpolation of such
large data sets using RBF.

To speed-up the RBF interpolation and mainly to make it even possible to calculate the RBF
interpolation of a large scattered data set on a standard computer, the proposed approach uses the
space subdivision. The data set is divided into several overlapping cells. Each cell is interpolated
using the RBF with a local radial basis function. Then those interpolations are blended together
with the proposed blending schema. After blending, there are no patterns formed by blending
and the final result is the correct interpolation of the whole input data set, i.e. the interpolation
function goes through all the input points.

The proposed approach offers very significant speed-up of the RBF interpolation compared
to the standard RBF interpolation, i.e. for subdivision into 256 overlapping 2D cells the expected
speed-up is around (104 : 1). Moreover, the memory requirements are much lower as well.

Citation:
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Abstract. We propose a new approach for the radial basis function (RBF) interpolation of large scattered data sets. It uses the
space subdivision technique into independent cells allowing processing of large data sets with low memory requirements and
offering high computation speed, together with the possibility of parallel processing as each cell can be processed independently.
The proposed RBF interpolation was tested on both synthetic and real data sets. It proved its simplicity, robustness and the ability
to handle large data sets together with significant speed-up. In the case of parallel processing, speed-up was experimentally
proved when 2 and 4 threads were used.
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1. Introduction

Interpolation and approximation are probably the
most frequent operations used in computational tech-
niques [1]. Several techniques have been developed for
data interpolation, but they require some kind of data
“ordering”, e.g. structured mesh, rectangular mesh, un-
structured mesh etc. A typical example is a solution of
partial differential equations (PDE), where derivatives
are replaced by differences and rectangular or hexago-
nal meshes are used in the vast majority of cases. How-
ever, in many engineering problems, data are not or-
dered and they are scattered in k-dimensional space,
in general. The k-dimensional space is sometimes not
only spatial but also contains a time dimension or a
dimension relating to age or temperature or other en-
vironmental conditions. Usually, in technical applica-
tions the scattered data are tessellated using triangu-
lation, but this approach is quite prohibitive for the
case of k-dimensional data interpolation because of the
computational cost [2].

∗Corresponding author: Michal Smolik, Department of Computer
Science and Engineering, Faculty of Applied Sciences, University of
West Bohemia, Plzen, Czech Republic. E-mail: smolik@kiv.zcu.cz.
URL: http://www.VaclavSkala.eu.

There exist some techniques using space subdivision
to compute a radial basis function (RBF) interpolation.
Data point division into sub-domains using an adap-
tive octree subdivision method and then blending these
local functions together with partition of unity is used
in [3]. This work is an extension of well-known [4],
which uses the multi-level partition of unity to con-
struct surface models from very large sets of points.
Spatial down sampling to construct a coarse-to-fine hi-
erarchy of point sets is used in [5]. They interpolate
the sets starting from the coarsest level and then they
interpolate a point set of the hierarchy, as an offsetting
of the interpolating function computed at the previous
level. [6] proposed a highly parallel algorithm for RBF
interpolation with the time complexity of O(N). The
algorithm uses a generalized minimal residual method
(GMRES) iterative solver [7] with a restricted addi-
tive Schwarz method [8]. The algorithm [9] relies on
PetRBF [6]. It improves PetRBF for surface recon-
struction and graphics processing unit (GPU) accel-
eration. It shows how to make a suitable choice of
the algorithm parameters for accurate reconstruction
from synthetic, real or incomplete datasets. The algo-
rithm uses domain decomposition to acquire high par-
allelization. The solution of the original system is built
up by solving set of smaller subproblems that interact

ISSN 1069-2509/18/$35.00 c© 2018 – IOS Press and the author(s). All rights reserved
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through their interfaces. [10] optimizes the positions
and the weights of the RBF centers and then combines
them with a hierarchical domain decomposition tech-
nique for the RBF approximation. Other approaches
using domain decomposition for the RBF interpolation
are [11] which focuses on the parallelization of RBF
interpolation with its application for mesh deforma-
tion, [12] performs RBF interpolation on divided in-
put points and then iteratively updates all RBF coeffi-
cients to create final interpolation, [13] uses multiscale
collocation and preconditioners to decrease the condi-
tion number of the interpolation matrix, [14] combines
the RBF method and the least squares approximation
cardinal basis functions (ACBF) preconditioning tech-
nique with the domain decomposition method.

All these approaches use space subdivision to com-
pute the RBF interpolation or approximation, but their
joining phase is usually not easy to implement. One
has many independent interpolations and needs to join
them together. These interpolations usually have some
overlapping parts and to join them together we need to
solve additional systems of equations or iteratively up-
date the resulting interpolation. Our aim is to improve
this joining phase and speed-up the calculation of the
RBF interpolation as well.

Another approach using virtual points for approxi-
mation is used in [15,16]. Of course, there are other
meshless techniques than RBF, such as discrete smooth
interpolation (DSI) [17], which avoids explicitly com-
puting a function defined everywhere and produces
values only at the grid points instead. [18,19] is based
on statistical models that include autocorrelation. The
scattered data interpolation method described in [20]
exploits the topological structure and unsupervised
learning algorithm of a 2D self-organizing feature map
(SOFM) to iteratively create a polygonal surface mesh
that takes a general shape of the underlying object. [21]
describes a subdivision surface fitting method based on
parameter correction to achieve better error measure-
ment. For each given data point, the closest point on
the surface is found. This point is expressed as a linear
function of the control mesh vertices via basis func-
tions. This function is then defined in a least squares
sense as the summation of the squared distances be-
tween the data points and the surface points. Another
technique, that can be used for meshless interpola-
tion is function-point clustering method (FPCM) [22]
which defines a function having a property of being
greater in regions where the density of points is higher
and being minimal where the density of data points
is lower. Multiresolution analysis and wavelets pro-

vide useful and efficient tools for representing func-
tions at multiple levels of detail [23]. Multiresolution
analysis [24] offers a simple, unified, and theoretically
sound approach to deal with the problem of extreme
complexity of meshes. The method is based on the ap-
proximation of an arbitrary initial mesh by a mesh that
has subdivision connectivity and is guaranteed to be
within a specified tolerance.

Our goal is to propose a new simple method for in-
terpolation of scattered data points. In many applica-
tions, it is necessary to process and interpolate a large
amount of data, thus our method has to be able to pro-
cess such large datasets. There are other interpolation
methods, but they are usually quite hard to implement.

Our method is to be easy to implement and it must
achieve the same quality of interpolation like other
methods. Furthermore, the condition of small memory
requirements and low time requirements must be met
as well.

2. Radial basis functions

Radial basis function (RBF) is a technique for scat-
tered data interpolation [25] and approximation [26,
27]. The RBF interpolation and approximation is com-
putationally more expensive compared to interpolation
and approximation methods that use an information
about mesh connectivity, because input data are not or-
dered and there is no known relation between them, i.e.
tessellation is not made. Although RBF has a higher
computational cost, it can be used for k-dimensional
problem solution in many applications, e.g. solution
of partial differential equations [28,29], image recon-
struction [30], neural networks [31–33], fuzzy sys-
tems [34–36], GIS systems [37], optics [38] etc. It
should be noted that it does not require any triangu-
lation or tessellation meshing in general. There is no
need to know any connectivity of interpolated points,
all points are tied up only with distances of each other.
Using all these distances we can form the interpolation
matrix, which will be shown later.

The RBF is a function whose value depends only
on the distance from its center point. Due to the use
of distance functions, the RBFs can be easily imple-
mented to reconstruct the surface using scattered data
in 2D, 3D or higher dimensional spaces. It should be
noted that the RBF interpolation is not separable by a
dimension.

Radial function interpolants have a helpful property
of being invariant under all Euclidean transformations,
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i.e. translations, rotations and reflections. It does not
matter whether we first compute the RBF interpolation
function and then apply a Euclidean transformation, or
if we first transform all the data and then compute the
radial function interpolants. This is a result of the fact
that Euclidean transformations are characterized by or-
thonormal transformation matrices and are therefore
two-norm invariant. Radial basis functions can be di-
vided into two groups according to their influence. The
first group are “global” RBFs [39], for example:

Thin Plate Spline ϕ(r) = r2 log r

Gauss function ϕ(r) = e−(ǫr)2

Inverse Quadric ϕ(r) =
1

1 + (ǫr)2
(1)

Inverse Multiquadric ϕ(r) =
1

√

1 + (ǫr)2

Multiquadric ϕ(r) =
√

1 + (ǫr)2

where ǫ is the shape parameter of the radial basis func-
tion [40]. Application of global RBFs usually leads to
ill-conditioned system, especially in the case of large
data sets with a large span [41,42].

The “local” RBFs were introduced in [43] as com-
pactly supported RBF (CSRBF) and satisfy the follow-
ing condition:

ϕ(r) = (1− r)q+P (r)

=

{

(1− r)qP (r) 0 6 r 6 1

0 r > 1
(2)

where P (r) is a polynomial function and q is a param-
eter. The subscript in (1− r)q+ means:

(1− r)+ =

{

(1− r) (1− r) > 0

0 (1− r) < 0
(3)

Typical examples of CSRBF are

ϕ1(r) = (1− r̂)+

ϕ2(r) = (1− r̂)3+(3r̂ + 1)

ϕ3(r) = (1− r̂)5+(8r̂
2 + 5r̂ + 1)

ϕ4(r) = (1− r̂)2+

ϕ5(r) = (1− r̂)4+(4r̂ + 1)

ϕ6(r) = (1− r̂)6+(35r̂
2 + 18r̂ + 3) (4)

Fig. 1. Examples of CSRBF from Eq. (4).

ϕ7(r) = (1− r̂)8+(32r̂
3 + 25r̂2 + 8r̂ + 1)

ϕ8(r) = (1− r̂)3+

ϕ9(r) = (1− r̂)3+(5r̂ + 1)

ϕ10(r) = (1− r̂)7+(16r̂
2 + 7r̂ + 1)

where r̂ = ǫr and ǫ is the shape parameter of the radial
basis function, see Fig. 1 for a visualization of Eq. (4).

2.1. Radial basis function interpolation

RBF interpolation was originally introduced by [44]
and is based on computing of the distance of two points
in any k-dimensional space. It is defined by the func-
tion

f(x) =
M
∑

j=1

λjϕ(‖x− xj‖) (5)

where λj are weights of the RBFs, M is the number
of the radial basis functions, i.e. the number of inter-
polation points, and ϕ is the radial basis function. For
a given dataset of points with associated values, i.e. in
the case of scalar values {xi, hi}

M
1 , the following lin-

ear system of equations is obtained:

hi = f(xi) =
M
∑

j=1

λjϕ(‖xi − xj‖)

for ∀i ∈ {1, . . . ,M} (6)

where λj are weights to be computed; see Fig. 2 for a
visual interpretation of Eqs (5) or (6) for a 2 1

2D func-
tion. Point in 2 1

2D is a 2D point associated with a
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Fig. 2. Data values, the RBF collocation functions, the resulting interpolant.

scalar value. The same also applies to 3D point asso-
ciated with a scalar value, thus 3 1

2D point.
Equation (6) can be rewritten in a matrix form as

Aλ = h. (7)

As ϕ(‖xi − xj‖) = ϕ(‖xj − xi‖) the matrix A is
symmetrical.

The RBF interpolation can use “global” or “local”
functions. When using “global” radial basis functions,
the matrix A will be full, but when using “local” radial
basis functions, the matrix A might be sparse, which
can be beneficial when solving the system of linear
equations Aλ = h.

In the case of the vector data, i.e. {xi,hi}
M
1 values

hi are actually vectors, the RBF is to be performed for
each coordinate of the vector hi.

3. Proposed approach

In this section we describe our new proposed ap-
proach for large data sets RBF interpolation. The pro-
posed interpolation uses space subdivision to speed-up
the computation and to significantly reduce high mem-
ory requirements [15,37]. The algorithm consists of
three main steps. The first one is the space subdivision,
the second one is the RBF interpolation and the last one
is the joining procedure of interpolated cells (“blend-
ing”) to create the final interpolation. The pseudo-code
of the proposed approach is in Algorithms 1 and 2.
We show the speed-up of the proposed algorithm com-
pared to the standard one for RBF interpolation as well.

3.1. Space subdivision

The approach proposed is based on a divide and co-

Algorithm 1 Pseudocode of the proposed RBF inter-
polation method.

1: procedure RBF(Points P ) ⊲ Pi = {xi, hi}
2: for all cells in grid do

3: Enlarge cell by 1/ǫ ⊲ where ǫ is the shape
4: parameter
5: p← Points in enlarged cell
6: Compute RBF interpolation of p

Algorithm 2 Pseudocode of interpolated value calcu-
lation using the proposed RBF interpolation method.

1: procedure RBF(Point p) ⊲ p = {x, y}
2: Find neighboring cells
3: Compute distances to cells
4: Compute interpolated RBF values for all cells
5: Blend RBF values together ⊲ using distances
6: to cells

nquer (D&C) strategy, and therefore input data set is
split into several subsets. In our case, we will use a
rectangular grid of the size n × m domains for 2 1

2D
input data, resp. n × m × l domains for 3 1

2D input
data. The grid does not have to be necessarily regular
and we can adjust it according to the properties of the
input data set. We will use an orthogonal regular grid of
domains for simplicity of explanation of the proposed
approach.

The input points need to be divided into some cells
according to the created grid for the space subdivision.
Every domain of the grid needs to be enlarged to a cell
and contains a few more points from the neighborhood,
see Fig. 3. We will present the reason for this later in
this paper.

The input points need to be divided into some num-
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Fig. 3. 2D regular orthogonal grid with one cell visualized. Each cell
contains points from the grid domain plus points from the overlap-
ping parts with neighborhood domains.

ber of cells. This number can be estimated according
to the memory available. The RBF interpolation matrix
for n points in the cell has the size n × n elements,
which are usually stored as double precision numbers.
The size of the matrix in bytes is given as

size = sizeof (double) · n2 = 8n2 (Byte). (8)

Using this formula we can easily find out the maxi-
mal average number of points in cells, see Fig. 4, and
set up easily the size of the grid needed for the subdi-
vision.

Data points are generally scattered, so it might be
further possible in the extreme case that nearly all
points lie within one cell. In this case it would be nec-
essary to split this cell again. Another possible case is
when no point lie inside a cell. In this case, the shape
parameter and grid size for RBF interpolation is inap-
propriately selected and must be changed in the sense
that the influencing of the basis function is greater and
sufficient for the data interpolation [41].

3.2. Cells RBF interpolation

Now, we have all input points divided into overlap-
ping cells and thus can do the RBF interpolation. Ra-
dial basis functions have one parameter, which is the
shape parameter ǫ. In the proposed approach, we use
the “local” radial basis functions (CSRBFs), as they
have the restricted maximal distance for the influence
of the RBF interpolation. The shape parameter should
be chosen so, that 1

ǫ
is equal to the size r of the overlap-

ping of each domain (Fig. 3), resp. vice versa. Points
on the border of a cell are exactly r away from the grid
domain and RBF center points with a larger distance
than r will not have any influence on the interpolated
value inside a domain of the grid.

Points inside a cell need to be interpolated using the
RBF interpolation with CSRBF. This interpolation is

Fig. 4. The size of the RBF interpolation matrix for different num-
ber of interpolated points. The matrix is stored in double precision
and its size is in MB if full matrix structure is used. The memory
requirements are O(N2), where N is the number of points.

done using the standard calculation of the linear sys-
tem of Eq. (6). Each cell is interpolated as an indepen-
dent cell and thus the calculation can be done totally in
parallel. This parallel calculation will increase the per-
formance and speed-up the RBF computation for each
cell. The only problem that can arise is the memory
consumption, as we need to store multiple interpola-
tion matrices at once, so this should be kept in mind
when computing the size of a grid for space subdivi-
sion.

For each cell we get one set of weighting values of
the RBF interpolation λ = [λ1, λ2, . . . , λn]

T . These
values have to be stored for later use. The matrix used
for their calculation, i.e. the RBF interpolation matrix,
can be discarded.

3.3. Blending of cells and reconstruction function

The interpolated cells computed in the previous step
are overlapping each other. In this section, we show
how to join, i.e. blend, them together to create a fi-
nal continuous interpolation function that covers all the
cells and thus all the input points for the interpolation
as well.

The total width of overlapping parts is 2r. To blend
all the neighborhood cells together, we will do some
kind of bilinear interpolation (“blending”) between
them. The computed value from each cell needs to be
multiplied with a coefficient α. The coefficients αi are
computed as

α′ = min

(

1,
distance from the border

2r

)

, (9)

where distance from the border is the shortest dis-
tance from the location to the border and it is cal-
culated using the Euclidean metric. However, for the
axes-aligned grid, the distance can be calculated using
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Fig. 5. Bilinear interpolation between cells for the overlapped areas.
Red part of color represents the coefficient for the main cell value,
green part of color represents the coefficient for the down cell value
and blue part of color represents the coefficient for the right cell
value. The value for the corner cell is calculated as 1−(red + green

+ blue).

Chebychev metric, which is defined as

distance(P,Q) = max
i

(|pi − qi|), (10)

where P = [p1, . . . , pk]
T and Q = [q1, . . . , qk]

T are
two points in k-dimensional space.

The final coefficients αi are computed using Eq. (9)
as

αi =
αi

′

2k
∑

j=1

αj
′

, (11)

where k is the dimension, i.e. k = 2 for 2 1
2D or k = 3

for 3 1
2D input data. The visual representation of coef-

ficients is shown in Fig. 5.
Knowing all the coefficients αi and all function val-

ues from the RBF interpolations of cells, we can com-
pute the final value of the proposed radial basis func-
tion interpolation algorithm for large scattered data in-
terpolation .

f(x) =
2k
∑

i=1

αi





Mi
∑

j=1

λjϕ
(∥

∥

∥x− x
(i)
j

∥

∥

∥

)



, (12)

where k is the dimension, i.e. k = 2 or k = 3, Mi is the
number of points in the i-th cell, αi is the coefficient

Fig. 6. Visualization of a grid.

from Eq. (11) and x
(i)
j are interpolation points in a cell.

During the blending phase we perform the interpo-
lation between the interpolations of cells. The result of
the blending phase is thus again the interpolation of all
input points, as the resulting function passes through
all input points.

3.4. Speed-up of the proposed approach

(interpolation)

The proposed approach uses space subdivision to
speed-up the calculation of radial basis function inter-
polation and to reduce the needed memory as well. In
the following, we will use the notation shown in Fig. 6.

The value g is equal to the number of divisions in
each dimension, k is the dimension, ∆ is the size of
one domain, r is the size of the overlap for each cell
and is equal to the radius of the RBF.

The number of points n in the area ω can be esti-
mated in the case of uniform distribution as

n =
N

gk
, (13)

where N is the total number of points for the interpo-
lation and g is equal to the number of divisions in each
dimension. Every domain ω is enlarged by the over-
lap r, see Fig. 3, at every side of the domain; thus the
enlargement of the domain is equal to

ξ =
∆+ 2r

∆
= 1 +

2r

∆
. (14)

The average number of points in the enlarged cell Ω
is equal to

m =
N

gk
ξk. (15)

When computing the RBF interpolation, we need to
solve a system of linear equations (LSE). Let us as-
sume that solving an LSE of size N ×N has the time
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Fig. 7. Expected speed-up of the proposed algorithm according to
Eq. (17) for different numbers g, i.e. resolution of the grid, for
∆ = 1 and the overlap r = 0.2.

complexity O(N3). The time complexity of our pro-
posed interpolation for one enlarged cell ω, i.e. the cell
Ω, is

O

(

(

N

gk
ξk
)3
)

. (16)

Therefore, the expected speed-up of the proposed al-
gorithm compared to the standard one is

ν =
O
(

N3
)

O

(

gk
(

N
gk ξk

)3
) = O







N3

gk
(

N
gk ξk

)3







= O

(

(

g2

ξ3

)k
)

, (17)

where ν ≫ 1 for the most grid resolutions, as can be
seen in Fig. 7, which was generated for ∆ = 1 and
the overlap r = 0.2, i.e. 20% overlap at each side of
every domain. It should be noted, that the axis for ν is
in logarithmic scaling.

The time complexity of our proposed approach for
the RBF interpolation is

O

(

gk
(

N

gk
ξk
)3
)

= O

(

N

n

(

nξk
)3
)

, (18)

where n and ξ can be constants. Then the only vari-
able in Eq. (18) is N . Thus, the time complexity of the
proposed approach is O(N), but only in cases when
the data points are uniformly distributed. Otherwise
the worst time complexity of the proposed approach is
O(N3).

3.5. Speed-up of the proposed approach (function

evaluation)

The proposed approach does not speed-up only the
RBF interpolation calculation, but it also speed-up the

Fig. 8. Expected speed-up of function evaluation using the proposed
algorithm according to Eq. (21) for different numbers g, i.e. resolu-
tion of the grid, for ∆ = 1 and the overlap r = 0.2.

evaluation of the interpolation function as well. The
time complexity of the function evaluation for the stan-
dard RBF is

O(N). (19)

The time complexity of the function evaluation for
our proposed approach for the RBF interpolation is

O

(

2k
N

gk
ξk
)

. (20)

Using Eqs (19) and (20), we can compute the speed-
up of our proposed algorithm when computing one
function value of the RBF interpolation:

η =
O (N)

O
(

2k N
gk ξk

) = O

(

N

2k N
gk ξk

)

= O

(

(

g

2ξ

)k
)

. (21)

For most grid resolutions the speed-up η ≫ 1, as
can be seen in Fig. 8, which was generated for ∆ = 1
and the overlap r = 0.2, i.e. 20% overlap at each side
of every domain. It should be noted that the axis for η
is in logarithmic scaling.

4. Results

In this section we show the results of our proposed
approach. This approach for RBF interpolation is espe-
cially convenient for large data set interpolation. How-
ever, in the first sub-section we test it for the case of its
simplicity only with small synthetically generated data
sets to show some basic results of the proposed method
for RBF interpolation.
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Fig. 9. 104 input points were used to test the proposed RBF interpo-
lation.

In the second sub-section we tested our approach
with real data sets. The second example is a data set
containing more than 6 × 106 points, which is much
more than the standard RBF interpolation is able to
handle and compute on an ordinary computer.

Any of the CSRBFs in Eq. (4) can be used for the
proposed RBF interpolation. However, in the tests we
present results for one basis function, namely

ϕ5(r) = (1− ǫr)4+(4ǫr + 1). (22)

We tested the proposed approach also with global ra-
dial basis functions, specifically with thin plate spline
(TPS) and Gauss function. The results for global RBFs
are very similar to those when using CSRBFs.

The implementation of the RBF interpolation was
performed in MATLAB and tested on a PC with the
following configuration:

– CPU: Intel R© CoreTM i7-920
(4 × 2.67 GHz + hyper-threading),

– memory: 22 GB RAM,
– operation system: Microsoft Windows 8 64 bit.

4.1. 2 1
2D synthetic data

We first tested the proposed RBF interpolation on a
synthetic data set of points using the function

f(x, y) = sin(x) + cos(y). (23)

We sampled the function at 104 random positions
with a Halton distribution (A.1 in [26]) where x ∈
[−2; 2] and y ∈ [−1; 1], see Fig. 9a. We used a grid
of the size 2 × 1 and ǫ = 5 and 10% of overlapping.
The result of the proposed interpolation can be seen in
Fig. 9b. The result is continuous.

We measured the difference of function values of
the two RBF interpolations of two cells on their com-
mon border before the blending phase, see Fig. 9a. We
should note that for this test, we did not blend these two

Fig. 10. Absolute difference in function values along the common
border between the RBF interpolations of two cells without the
blending phase, i.e. without the linear interpolation between cells.

Fig. 11. Difference of function values along the common border be-
tween the interpolation of each cell without the blending phase, i.e.
without the linear interpolation between cells, and the original func-
tion Eq. (23).

Fig. 12. Difference in function values between the proposed RBF
interpolation and the original function Eq. (23).

RBF interpolations. The absolute difference between
those two cells along the border is visualized in Fig. 10.

We measured the difference of function values be-
tween each cell RBF interpolation and the original
function Eq. (23) on the common border before the
blending phase. The difference between each cell and
the original function is visualized in Fig. 11. We should
note that for this test, we did not blend these two inter-
polations in any way.

Two cells are interpolated using RBF interpolation
independently and then blend together. We measured
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Fig. 13. Difference in function value between the proposed RBF in-
terpolation with blending phase and the original function Eq. (23).

Fig. 14. Absolute difference in function values along the common
border between interpolations of the two cells for different sizes of
overlapping parts (for 100% error = 0).

the interpolation error between blended cells and the
original function Eq. (23). The results are visualized
in Fig. 12. The proposed interpolation is continuous,
without any disparity between domains.

We measured the interpolation error between the
proposed RBF interpolation and the original function
Eq. (23) on the common border. The error is visualized
in Fig. 13. It can be seen that the error has a behavior
similar to that represented in Fig. 12.

The same measurement as in Fig. 10 was done for a
different percentage of cells overlapping, see Fig. 14. It
can be seen that the error decreases and for 100% over-
lapping this error is 0, as both the RBF interpolations
use all points for the interpolation of their cell. It means
that the proposed RBF interpolation is continuous, i.e.
waterproof.

However, we need also to measure the quality of this
RBF interpolation. For this purpose we compare our
proposed method using the space subdivision with the
standard RBF interpolation method (2.2 in [26]) using
2×104 randomly sampled points with the uniform dis-
tribution of the function [26]:

f(x, y) = 3(1− x)2e(−x2−(y+1)2)

− 10
(x

5
− x3 − y5

)

e(−x2−y2)

−
1

3
e(−(x+1)2−y2), (24)

Table 1
Average interpolation error of the proposed approach and the stan-
dard RBF interpolation. The interpolation error difference between
both measured methods is only 0.03%

Proposed approach Standard RBF
interpolation

Mean absolute error 3.1371 · 10−4 3.1362 · 10−4

Fig. 15. The result of RBF interpolation using the proposed method
with space subdivision.

where x ∈ [−3; 3] and y ∈ [−3; 3].
We used a grid of size 4 × 4 and the shape param-

eter with the size 20% of the domain edge length. The
result of this interpolation is presented in Fig. 15. The
standard RBF interpolation used the same points, the
same basis function and the same shape parameter for
interpolation.

To evaluate the quality of the interpolation we gen-
erated 1.5× 105 randomly sampled points with Halton
distribution where x ∈ [−3; 3] and y ∈ [−3; 3]. Then
we computed function values of both the interpolations
and evaluate the absolute error of each interpolation.
For each point Pi = [xi, yi]

T we compute absolute
error

Erri = ‖RBF(Pi)− f(xi, yi)‖2 , (25)

where RBF(Pi) is the interpolated value at point
Pi using standard RBF interpolation on the whole
dataset and RBF interpolation of the proposed ap-
proach, f(xi, yi) is the function value of Eq. (24). The
Fig. 16 presents distribution histograms of the interpo-
lation errors.

As both histograms in Fig. 16 are visually identical,
we created a difference histogram between the two his-
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Fig. 16. Histograms of interpolation errors.

tograms. In Fig. 17 it can be seen that the interpolation
errors distribution is almost identical. The difference in
both histograms differs only slightly, see Fig. 17. Thus
both interpolations have almost the same quality.

We also computed the average interpolation error for
each RBF interpolation. The result is in Table 1. We
can see that both average interpolation errors are al-
most the same, there is only a difference of 0.03%.
Knowing all results from quality measurements we can
say that our proposed RBF interpolation has almost
identical quality as the standard RBF interpolation.

4.2. Real data set

The proposed approach is mainly suited for large
data interpolation. For this reason we chose to use a
real data set. The LiDAR data of Mount Saint Helens1

1http://www.liblas.org/samples/.

Fig. 17. Difference of histograms in Fig. 16. Positive values mean
that the standard RBF interpolation has more errors with the specific
absolute value of interpolation error and the negative values mean
the same for the proposed method for RBF interpolation.

Fig. 18. Visualization of the interpolated terrain produced only as a
visualization of each domain separately. The orthogonal grid used
for the space subdivision with resolution of 29× 46 is visualized on
the terrain as well.

in Skamania County, Washington, contains scanned
height data. The data set consists of 6,743,176 2D
points with associated heights, i.e. 2 1

2D data.
We chose to divide the input data set into a regular

grid in a way such that the inside of a domain is go-
ing to be on average 5,000 points. To make square do-
mains, we created a grid of the size 29 × 46, as the
data range is around 2.1 · 104 ft × 3.3 · 104 ft, i.e.
6.4 · 103 m× 1.0 · 104 m, in x and y coordinates. The
visualization of the created grid domains is in Fig. 18.

To perform the RBF interpolation, we needed to
choose the shape parameter ǫ of the CSRBF. We tested
different values of the shape parameter and selected the
best shape parameter which has the size of 20% of the
domain edge length. Each cell will therefore contain
approximately

5,000× (1 + 2 · 0.2)2 = 9,800 (26)

points. The number of points inside the cell is almost
double times more than number of points inside the do-
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Table 2
Parallel speed-up of the proposed method compared to the serial ver-
sion of this method

Number of threads 1 2 4

Speed-up 1 1.791 3.172

Fig. 19. Visualization of the final result of the proposed method for
large scattered data interpolation with the RBF and space subdivi-
sion.

main, but the final speed-up will still be very high. For
clarity we can estimate the speed-up of the proposed
algorithm compared to the standard one as:

speed-up =
6,743,1763

29× 46× 9,8003
≈ 2.4×105. (27)

It can be seen that the speed-up is significant and we
save a lot of calculations. The expected speed-up of the
function evaluation is

speed-up =
6,743,176

22 × 9,800
≈ 172. (28)

This means that each RBF function computation for
a given x is approximately 172 times faster.

Moreover, the standard algorithm for RBF interpola-
tion would require around 330 TB to save the full inter-
polation matrix to the memory when double precision
is used.

The data set divided into cells was interpolated one
cell after another. We used one RBF interpolated cell
to reconstruct the terrain inside one domain of the grid
without blending step. The result can be seen together
with the grid of domains in Fig. 18.

Figure 19 presents the result of the proposed RBF
interpolation method. We used Eq. (12) to compute in-
terpolation of the height values of the terrain for the vi-
sualization. This terrain does not have any discontinu-
ity because of the proposed blending procedure.

The proposed algorithm can be easily parallelized as
the RBF interpolation of each cell of the grid can be
done separately and thus in parallel. We measured the
running time of the interpolation when using 1 or 2 or

Fig. 20. Visualization of the interpolated terrain produced only as a
visualization of each domain separately. The orthogonal grid used
for the space subdivision with resolution of 6 × 6 is visualized on
the terrain as well.

4 threads. The resulting speed-up in MATLAB is in the
Table 2. It can be seen that the speed-up is high because
the threads do not have to wait for any synchronization
and are independent of each other.

We tested our proposed approach with another data
set too. We chose a model of the terrain2 which con-
tains 131,044 points with associated heights, i.e. 2 1

2D
data.

We divided the input data set to a regular grid so that
a domain contains 3,000 points in average. We created
a grid of the size 6 × 6, with the data range is around
0.2172 miles × 0.2172 miles in x and y coordinates.
The visualization of the created grid of domains is in
Fig. 20.

For the shape parameter, we used the size of 20% of
the domain edge length. Therefore, each cell contains
around

3,000× (1 + 2 · 0.2)2 = 5,880 (29)

points. It is almost double times more, but the final
speed-up will still be very high. We can estimate the
speed-up of the proposed algorithm compared to the
standard one:

speed-up =
131,0443

6× 6× 5,8803
≈ 3× 102. (30)

It can be seen that the speed-up is significant and
will save us a lot of calculations. The speed-up of in-
terpolating function evaluation is

speed-up =
131,044

22 × 5,880
≈ 5.6. (31)

2http://www.badking.com.au/site/shop/environment/mountain-
terrain/.
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Fig. 21. Visualization of the final result of the proposed method for
large scattered data interpolation with the RBF and space subdivi-
sion.

Moreover, the standard algorithm for the RBF inter-
polation needs around 128 GB to save the full interpo-
lation matrix to the memory when double precision is
used.

The data set divided into cells was interpolated one
cell after another. We did a visualization of this RBF
interpolation without doing any blending procedure.
We used one RBF interpolated cell to reconstruct the
terrain inside each domain of the grid. The result can
be seen in Fig. 20, together with a visualization of the
grid.

Figure 21 presents the result of the proposed RBF
interpolation method. We used Eq. (12) to compute the
height values of the terrain for the visualization. This
terrain is continuous and does not have any discontinu-
ity because of the proposed blending procedure.

If CSRBF is used, many elements in the interpola-
tion matrix are equal to zero, as the matrix is sparse in
general. To decrease the memory requirements and be
able to solve large interpolation matrices we can use
a sparse matrix data structure. There are several exist-
ing sparse matrix representations. e.g. [37,45,46]. The
main difference among existing storage formats is the
sparsity pattern, or the structure of nonzero elements,
for they are best suited. In our implementation, the co-
ordinate format is used, which is briefly described in
the following.

The coordinate (COO) format [47] is the simplest
storage scheme. The sparse matrix is represented by
three arrays: data, where the nonzero values are stored,
row, where the row index of each nonzero element is
kept, and col, where the column indices of the nonzero
values are stored. The benefit of this format is its gener-
ality, i.e. an arbitrary sparse matrix can be represented
by the COO format and the required storage is always
proportional to the number of nonzero values. The dis-
advantage of the COO format is that both row and col-

Table 3
Speed-up of the proposed approach for large scattered data inter-
poloation compared to the standard RBF interpolation. Both meth-
ods are using sparse matrix with COO format and kd-tree structure

Grid resolution 4 × 4 6 × 6 8 × 8 10 × 10 12 × 12

Speed-up 1.69 1.83 2.06 2.28 2.57

Table 4
Memory requirements for our proposed method and for the standard
RBF interpolation method. The proposed method was tested with
full matrix data structure and also using sparse matrix with COO
format together with kd-tree structure. The standard algorithm for
RBF interpolation uses sparse matrix with COO format together with
kd-tree structure

Proposed method Standard method
Grid size kd-tree and Full matrix kd-tree and

sparse matrix sparse matrix

4 × 4 590 MB 6,900 MB
6 × 6 290 MB 2,300 MB
8 × 8 180 MB 1,000 MB 8,800 MB

10 × 10 125 MB 500 MB
12 × 12 95 MB 400 MB

umn indices are stored explicitly, which reduces the ef-
ficiency of memory transactions (e.g. read operations).

Moreover, note that the elements in the interpolation
matrix are zero for far away points, when CSRBFs are
used. Therefore, we do not need to compute the ele-
ments for all pairs of points, so the kd-tree (A.2 in [26])
is used for computing the interpolation matrix.

As the proposed approach also needs to be compared
with the standard one for RBF interpolation; we used
the dataset in Fig. 21 which contains 131,044 points for
interpolation. For the shape parameter for RBF inter-
polation we used the size of 1/30 of the data range. We
measured the running times of our algorithm running
in sequential version for different grid resolutions and
computed the speed-up compared to the standard algo-
rithm for RBF interpolation, see Table 3. Both methods
are using sparse matrix with COO format and kd-tree
structure. We also measured the memory requirements
and the results are in Table 4.

According to the results in Table 3, the proposed al-
gorithm is faster than the standard one and the speed-
up is increasing with increasing of the grid resolution;
both methods used the COO sparse matrix structure.
We could not compute the speed-up when using the
full matrix data structure as we were unable to fit such
large data into the available memory for the standard
algorithm.

According to the results in Table 4, the proposed ap-
proach has much lower memory requirements than the
standard one. Therefore our approach enables to com-
pute the RBF interpolation for very large datasets even
on computers with standard memory size.
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5. Conclusion

We presented a new approach for radial basis func-
tion interpolation of scattered data. It computes the in-
terpolation on partly overlapping cells and then blends
these interpolations together to create the final interpo-
lation of the whole data set. This approach is especially
efficient for large scattered data interpolation, as it re-
duces the memory required. It significantly speeds up
computation of the interpolated value. The proposed
approach is suitable for parallelization and it was tested
on synthetic and large real data sets. It proved its ro-
bustness and high performance.

In future the proposed approach will be used for
vector fields interpolation of large data sets based
on [48,49] and considering also vector field charac-
teristics. We plan to modify the proposed method for
3D scattered data interpolation and approximation. In
the case of 3D, point data will be split into overlap-
ping cubes according to the grid. The joining phase,
i.e. blending, will be almost the same as when blending
2D cells.
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CHAPTER 4. OVERVIEW OF CONTRIBUTIONS

4.4 Efficient simple large scattered 3D vector fields Radial basis func-

tions approximation using space subdivision

Vector field data sets can be very large and the standard techniques for approximation may not
be able to process such large data sets. The paper [Smolik and Skala, 2019] focuses on ap-
proximation of vector fields using Radial Basis Functions. Standard RBF technique is able to
approximate a few millions of vectors, which is for example a vector field on a grid of Full HD
resolution. However, the 3D vector fields are mostly much larger than a few millions of vectors.

This paper presents a new approach for approximation of large scattered 3D vector fields.
This approach is an extension of [Smolik and Skala, 2018] and it uses the space subdivision
technique to reduce the memory requirements and the computational complexity, too. The 3D

vector field is divided into several overlapping 3D cells. Each cell is approximated using RBF,
where the radial basis functions are placed according to the properties of the vector field. All the
RBF approximations are then blended together to obtain a final approximated vector field.

The proposed approach was tested on a large 3D vector field representing an EF5 tornado
with around 5.5 ·108 vectors. The resulting approximated vector field proved low approximation
error, while maintaining high compression ratio. Moreover, the proposed approach is capable to
process even much larger data sets than the testing data set.

Citation:

• Michal Smolik and Vaclav Skala. Efficient simple large scattered 3D vector fields
radial basis functions approximation using space subdivision. In Computational

Science and Its Applications – ICCSA 2019, pages 337–350. Springer, 2019.
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Abstract. The Radial basis function (RBF) approximation is an effi-
cient method for scattered scalar and vector data fields. However its
application is very difficult in the case of large scattered data. This paper
presents RBF approximation together with space subdivision technique
for large vector fields.

For large scattered data sets a space subdivision technique with over-
lapping 3D cells is used. Blending of overlapped 3D cells is used to
obtain continuity and smoothness. The proposed method is applicable
for scalar and vector data sets as well. Experiments proved applicability
of this approach and results with the tornado large vector field data set
are presented.

Keywords: Vector field · Radial Basis Functions · Critical point ·
Tornado · Simplification · Approximation · Space subdivision ·
Data compression · Visualization

1 Introduction

Interpolation or approximation methods of scattered 3D vector field data mostly
use tessellation of the given domain, i.e. triangulation or tetrahedralization, etc.
Space subdivision techniques are often used to increase speed-up and decrease
memory requirements in combination of adaptive hierarchical methods, i.e.
quadtree, octree etc. However, the Radial Basis Functions (RBF) is not a sep-
arable (by dimension) approximation. In general, the meshless methods mostly
based on RBF.

Data are split into subdomains, processed and blended together with parti-
tion of unity in [28]. The contribution [28] is an extension of well-known method
[16], which construct surface model from large data sets using multi-level parti-
tion of unity. Downsampling [17] leads to a coarse-fine hierarchy, where points
in each hierarchy level are used incrementally for better approximation. Parallel

The research was supported by projects Czech Science Foundation (GACR)
No. GA17-05534S and partially by SGS 2019-016.
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version of this approach [29] claims O(N) computational complexity using gener-
alized minimal residual method (GMRE) with the Schwartz iterative method [3].
Optimization of centers and weights of RBF methods was explored in [25] with
combination of hierarchical decomposition. There are many other related mod-
ifications of RBF approximation with a specific focus available, e.g. parallelism
of [7] for mesh deformation, incremental RBF interpolation [1], computation
of RBF with Least square error [12] with preconditioning aspects and domain
decomposition.

The method for topological information visualization for vector fields is well
known [11]. The vector fields are very complex data sets and the topological
skeleton represents a compact visualization. The vector field topology can be
simplified using [26]. This approach computes clusters of critical points, where
the distance is represented by the weight of merging critical points. The critical
points in one cluster are merged together and can create a higher order critical
point or cancel each other. The method generates the piece-wise linear represen-
tation after building clusters containing singularities. The paper [27] presents an
approach for simplified visualization of vector fields. The authors prove that the
3D vector field inside some closed region can be represented by the 2D vector
field on the surface over this region. The vector filed that uses the Delaunay
triangulation is described in [4]. It removes vertices from the Delaunay triangu-
lation close to critical points and prevents topological changes using local metric
while removing some vertices. Numerical comparison between global and local
RBF methods was explored in [2] to find out the advantages and disadvantages
of local RBF methods use for 3D vector field approximation. The classification of
critical points using Hessian matrix is presented in [21]. Vector field approxima-
tion for the 2D case preserving topology and memory reduction was presented
in [10]. It is based on segmentation and flow in a separate region is approxi-
mated by a linear function. The paper [23,24] proposes an approach for RBF
approximation of vector field and selection of important critical points. Robust
detection of critical points is described in [20].

We propose a new simple and robust approach for large scattered 3D vector
fields data approximation using space subdivision. Usually, the whole data set
needs to be processed at once [13,14]. Other relevant methods are not easy to
implement. Using the space subdivision methods with respecting the continuity
of the resulting approximation, the proposed approach enables to process large
data vector fields.

2 Proposed Approach

The 3D vector field data sets come usually from numerical simulations and are
very large. Such vector fields can be approximated for the visualization purposes
or to minimize the data set size. In our proposed approach for approximation
of 3D vector fields we use modified algorithm described in [22], which computes
2D interpolation of height data sets.

In the following part we introduce a new approach for large 3D vector field
data approximation using RBF and space subdivision respecting continuity of

62



3D Vector Fields RBF Approximation Using Space Subdivision 339

the final approximation result. Space subdivision application leads to significant
computational speed-up, decrease of memory requirements and better robustness
of computation, too.

There are three main steps of the algorithm: space subdivision, data approx-
imation of each cell and blending, i.e. joining approximations over overlapping
cells. The Algorithms 1 and 2 present relevant pseudocodes.

Algorithm 1. Pseudocode of the proposed approach for RBF approximation.

1: procedure RBF(Points P ) ⊲ Pi = {xi, vi}
2: for all cells in grid do

3: Enlarge cell for approximation by Ψ

4: p ← Points in enlarged cell
5: ξ ← RBF centers in enlarged cell
6: Compute RBF approximation of p

Algorithm 2. Pseudocode of approximated value calculation using the proposed
RBF approximation method.

1: procedure RBF(Point p) ⊲ p = {x, y, z}
2: Find neighboring cells
3: Determine distances to cells
4: Compute approximated RBF values for all cells
5: Blend RBF approximated values together ⊲ using distances to cells

2.1 Space Subdivision

The divide and conquer (D&C) strategy is used in the proposed algorithm. The
input data set is divided into several domains. In this paper for simplicity of
explanation, we use a rectangular grid for divide and conquer strategy, where
the grid size for 3D data set is n×m× l. We can use any kind of space division,
however the proposed approach is easy to explain sung the regular orthogonal
grid and thus it was used in the presented experiments for its simplicity.

The given data need to be splitted into overlapping cells respecting the cre-
ated grid for application of the space subdivision. Each domain of the grid is
enlarged to a cell which includes some neighboring points from the neighborhood
domains (it will be explained latter on), see Fig. 1.

2.2 Cells RBF Approximation

In the proposed approach, we use the “global” Thin Plate Spline (TPS) radial
basis function, which is shape parameter free and minimizes the tension of the
final approximation [5]. The TPS has the following formula

ϕ(r) = r2 log r =
1

2
r2 log r2 (1)
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Fig. 1. 3D regular orthogonal grid (2D analogy) of one cell. Each cell has points that
are inside the domain plus pints from the overlapping parts (grey color).

Now, the given points are splited into overlapping 3D cells. The RBF approx-
imation needs the centers of radial basis functions. The RBF centers have the
Halton distribution [8] and are placed inside the enlarged cell. The number of
centers for RBF approximation of each cell can be selected according to the
required quality of approximation.

Points inside of a cell are approximated using the RBF approximation with
the TPS function. This approximation uses the standard solution of the linear
system of equations (2). Each cell is approximated independently and therefore
the computation can be done totally in parallel, which increases the performance
and speed-up, too. However, the memory requirements would be higher as mul-
tiple RBF matrices need to be stored simultaneously. This should be considered
when determining the size of a grid for space subdivision.

vi = v(xi) =
M
∑

j=1

λjϕ(‖xi − ξj‖),

for ∀i ∈ {1, . . . , N} (2)

where vi = [v
(x)
i , v

(y)
i , v

(z)
i ], M is the number of the RBF centers. Solution of

the linear system of equations is a vector λ = [λ1,λ2, . . . ,λM ]T , where λi =
[λx

i , λ
y
i , λ

z
i ]

T . These values will be used later. However, the matrix for the RBF
computation can be discarded as it will not be needed any more.

2.3 Reconstruction Function and Cells Blending

The already computed approximated cells overlap. To get the final continuous
representation of the 3D vector field, we need to join the RBF approximations
of cells.

The RBF approximation usually has problems with a precision on a border
[15,19] and thus we cannot use the whole enlarged cell for blending. The over-
lapping part of each border is Ψ . For the blending phase we will use only half
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of the overlapping part, see the blue part in Fig. 2, Therefore the size of this
overlapping part is ψ, i.e. (2ψ = Ψ).

Fig. 2. Visualization of the overlap part used for blending (blue color). (Color figure
online)

To blend all the neighborhood cell together, we use modified trilinear inter-
polation (“blending”) of those neighborhood cells. The computed value obtained
for each cell is to be weighted by a coefficient α. The coefficients α are determined
as

α′ =

[

1−min

(

1,
distance from the border

ψ

)]2

, (3)

where distance from the border is the shortest distance from the location to
the border using the Euclidean metric. The final blending coefficients αi are
computed using Eq. (3) as

αi =
αi

′

2k
∑

j=1

αj
′

, (4)

where i = {1, . . . , 2k} and k is the dimension, i.e. k = 3 for 3D vector field data
set. The visualization of blending functions for blending of two approximations
can be seen in Fig. 3. The initial and the final phase of blending function is more
attracted to value 0, resp. 1, thus the final approximation is more smooth.

After computing the proposed RBF approximation with space subdivision
and blending, we end up with an analytical form of the approximated vector field.
This vector field is the simplified representation of the original data set. Moreover
the analytical formula of the vector field can be used for further processing and
visualization.

2.4 Speed-Up of the Proposed Approach (Approximation)

The RBF approximation has actually two parts. First, the RBF coefficients com-
putation. And second, computation of the function value for the given position x.
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Fig. 3. Blending functions for blending of two approximations.

The space subdivision is used to speed-up the computation of vector field
radial basis function approximation, i.e. computation of λ values, and reduces
memory requirements, too.

The asymptotic time complexity of solving overdetermined system of linear
equations with QR decomposition [6] and Householder matrix transformation
[9] is

O

(

2NM2 − 2

3
M3

)

, (5)

where N is the total number of input points, M is the number of centers for
RBF and N > M .

Let us assume that the input vector field data set has an uniform distribution
of points and the input vector field is divided into G cells. The best size of over-
lapping part was experimentally selected as Ψ = 30%, i.e. ψ = 15%. The smaller
overlapping part can result in non-smooth blending and larger overlapping part
will result in higher computation costs while the approximation quality will not
increase much more.

The number of points inside the enlarged cell is different depending on the
location of the cell. In Fig. 4 are visualized 3 different type of cells, when the

Fig. 4. Visualization of different type of cells according to the number of points inside
the enlarged cell.
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cells with the same color have the same number of points inside the enlarged
cell. There is one more group of cells, that has the same number of points inside
the enlarged cell. This group of cells is inside the cube visualized in Fig. 4. In
our computations of time complexity, we will assume, that the number of points
inside each enlarged cell is the same and is equal to

n = (1 + 2Ψ)
3 N

G
, (6)

where G is the total number of cells and n is the number of points inside the
enlarged cell. The constant Ψ is the size of overlapping parts.

The proposed RBF approximation method time complexity can be estimated
as:

O

(

G

(

2nm2 − 2

3
m3

))

, (7)

where m is the number of centers for RBF approximation. The value of m is
calculated as

m = n
M

N
. (8)

The speed-up of the proposed algorithm for vector field RBF approximation
compared to the standard RBF approximation is

ν =
O
(

2NM2 − 2
3M

3
)

O
(

G
(

2nm2 − 2
3m

3
)) =

G3(1− 3N)

(1 + 2Ψ)
9
(

G− 3N (1 + 2Ψ)
3
) , (9)

where Ψ is the size of overlapping parts. For large values of N , i.e. N > 106, the
expected speed-up is given as Eq. (10) and the visualization of speed-up is in
Fig. 5.

ν ≈ G3

(1 + 2Ψ)
12 . (10)
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Fig. 5. Expected speed-up of the proposed approach of vector field RBF approximation
compared to the standard one (note that the axes are logarithmic).
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An example of the speed-up for the size of overlapping 30% is as the following

ν ≈ G3

(1 + 2 · 0.3)12
=

G3

1.612
≈ G3

281
. (11)

2.5 Speed-Up of the Function Evaluation

In this part we present how the function evaluation speed-up the vector field
RBF approximation computation. Moreover, it also speed-up the evaluation of
the approximation function as well. For the standard RBF function evaluation,
the time complexity can be estimated as:

O (M) . (12)

In the case of the proposed algorithm, the time of RBF evaluation can be
estimated as:

O
(

23m
)

, (13)

where the maximum number of blended approximations is 23, i.e. 8. Using
Eqs. (12) and (13), we can determine the theoretical speed-up of the proposed
method for evaluation of one function value of the vector field RBF approxima-
tion:

η =
O (M)

O (23m)
= O

(

G

23 (1 + 2Ψ)
3

)

, (14)

where Ψ is the size of overlapping parts. For most grid resolutions, i.e. number of
cells, the speed-up η ≫ 1, is shown in Fig. 6. Note that the η axis, i.e. speed-up,
is in logarithmic scaling.

3 Experimental Results

In this part we present experimental results. The proposed 3D vector field RBF
approximation is especially convenient for large vector field data set approxima-
tion. Firstly we test the algorithm using small synthetic data sets to present and
prove properties of the proposed approximation method.
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total number of cells

Fig. 6. Expected speed-up of function evaluation of the proposed approach for vec-
tor field RBF approximation compared to the standard one (note that the axes are
logarithmic).
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Secondly, the experimental results with real data sets containing 5.5 · 108
points are presented. Experiments proved that the proposed method is capable
to process significantly larger data on a desktop computer.

3.1 Synthetic Data Set

Firstly, we tested the blending of two 11
2D simple functions together to verify

expected properties of the proposed approach. We used two blending functions
from Fig. 3 and performed the blending on two functions that are visualized
in Fig. 7. The two functions are blended in interval [0.4; 0.6] and the result is
visualized in Fig. 7.

Fig. 7. Blending of two functions (red) and the result after blending (black). (Color
figure online)

Secondly, we tested the blending of two 21
2D functions together. The result of

blending two 21
2D functions together at different locations is visualized at Fig. 8.

It can be seen that the blending result is continuous and smooth, as expected.

3.2 Real Data Set

In these experiments, we used the EF5 tornado data set (from [18])1, see Fig. 9a.
The data set contains 5.5 · 108 3D points with associated 3D vector.

1 Data set of EF5 tornado courtesy of Leigh Orf from Cooperative Institute for Mete-
orological Satellite Studies, University of Wisconsin, Madison, WI, USA.
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Fig. 8. Blending of two 2 1

2
D functions together. Visualization of blending for different

“cut” of 2 1

2
D function (a–d), see (e) for “cut” location.

We computed the vector field approximation using the proposed approach
with different number of centers for radial basis functions. The vector field RBF
approximation when using only 0.1% of the number of input points as the number
of RBF centers is visualized in Fig. 9b. It means, that the vector field approx-
imation is visually almost identical with the original vector field data set even
thought a high compression ratio (1 : 103) is achieved. Visualization of 2D slices
is visualized in Fig. 10. Again, the approximated vector field is almost identical
with the original vector field.

The approximation error for different number of centers for radial basis func-
tions is visualized in Fig. 11. The approximation error is computed using the
formula

Err =

∑N
i=1 ‖vi − v̄i‖
∑N

i=1 ‖v̄i‖
, (15)

where v̄i is the original vector, vi is the approximated vector and N is the
number of vectors.

This experiments also proved expected precision depending on the number
of centers of the RBF approximation.
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Fig. 9. Visualization of the 3D tornado vector field data set. Red central part represents
the shape of tornado vortex and the yellow color on faces represents the speed of vector
field. The original vector field (top) and the RBF approximated vector field (bottom).
(Color figure online)
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Fig. 10. Visualization of three 2D vector field slices. The top row represents the original
vector field (a–c) and the bottom row represents the approximated vector field (d–f).
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Fig. 11. The approximation error for different number of RBF centers.

4 Conclusion

We presented a new approach for large scale 3D vector field meshless approx-
imation using RBF. The method significantly speeds-up the RBF parameters
calculation, i.e. λ values, and the final RBF evaluation as well.
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The proposed approximation method is based on partially overlapping cells.
These overlapping cells are continuously blended together in order to obtain
approximation of the whole large data set. Due to the space subdivision, the app-
roach decreases memory and computational requirements. The proposed algo-
rithm can be parallelized easily as well.

Experiments made on synthetic and real data proved high performance and
computational robustness. The result of the proposed is an analytical description
of simplified 3D vector field. This is very useful in further processing of the vector
field and visualization as well.
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CHAPTER 4. OVERVIEW OF CONTRIBUTIONS

4.5 Vector Field Radial Basis Functions Approximation with Stream-

lines Curvature

During the RBF vector field approximation, the approximation error occurs. The paper [Smolik
and Skala, ttedb] proposes an approach for decreasing the approximation error at important lo-
cations of the vector field. The important places of the vector fields are where the streamlines
change their direction the most. According to the amount of streamlines directions change can
be determined the importance of vectors.

The amount of streamlines directions change can be expressed by computing the streamlines
curvature. This curvature is then used for placing of radial basis functions. This functions are
mostly placed at locations with high streamlines curvature, i.e. the density of spacing of the
radial basis functions is proportional to the curvature. Moreover, during the approximation of
vector fields, some vectors have higher importance and some have lower importance. This paper
proposes a solution for weighted RBF approximation of the vector field, where the weights are
determined based on the streamlines curvature.

The result of this proposed approach is an RBF approximation of a vector field, which pre-
serves the important behavior of the vector field. This approach controls the amount of allowed
approximation error in different locations of vector field.

Citation:

• Michal Smolik and Vaclav Skala. Vector field radial basis functions approximation
with streamlines curvature. Advances in Engineering Software, 2019. (IF = 4.194)
(submitted)
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Vector Field Radial Basis Functions Approximation with
Streamlines Curvature

Michal Smolik · Vaclav Skala

Abstract Vector fields are usually very large and com-
plex data sets. In order to reduce the size of vector

field data sets, approximation methods are used. In this
paper we propose a new approach for vector field ap-
proximation with radial basis functions (RBF). This

approach computes the streamlines curvature and uses
it for optimal distribution of radial basis functions and
for computing the weighted approximation of the vector
field. The proposed approach is tested on 2D and 3D

vector fields with different complexity of the flow. The
results proved the precise vector field approximation
compared to other methods and, moreover, the result-

ing RBF approximation is in the form of an analytic
function, which can be used for further processing of
the vector field.

Keywords Vector field · Streamlines curvature ·
Weighted approximation · Radial basis functions ·
Compression · RBF approximation · Visualization

1 Introduction

Vector fields data are originated mostly from numeri-
cal simulations, i.e. from computation fluid dynamics
(CFD) [2], [24] and finite element methods (FEM) [20],
[4]. Nowadays, the resulting vector fields are very large

data sets that are difficult to process and visualize. Ap-
proximation [6], [25] is usually used to compress the

M. Smolik
Department of Computer Science and Engineering, Faculty of
Applied Sciences, University of West Bohemia, Plzen, Czech
Republic

V. Skala
Department of Computer Science and Engineering, Faculty of
Applied Sciences, University of West Bohemia, Plzen, Czech
Republic

vector field. Many techniques for vector field approx-
imation are used to compress and simplify the vector

field.

The papers [34] and [35] describe continuous sim-

plification of the topology of planar vector fields and
thus creation of a compressed vector field. The method
does not change the grid while simplifying the vector

field by removing pairs of critical points. Higher or-
der critical points are extracted in [38] and the topol-
ogy of a 3D vector field is simplified. A convex sur-
face is placed around the area of interest, i.e. on area

with a lot of critical points, and then is this area sim-
plified. This method is mostly used to find a simpli-
fied visual representation of clusters of critical points

in complex 3D vector fields. The paper [37] performs
topology-based smoothing of 2D scalar fields with C1-
continuity. The method allows filtering out spurious

features that arise due to noise. To do that, the fea-
ture significance is rated according to topological per-
sistence. The paper [33] combines two approaches, i.e. a
topological simplification technique and topology pre-

serving compression. The important features are pre-
served during the compression, while the unimportant
features are allowed to collapse and disappear. The ap-

proach is able to significantly decrease the mesh size of
a vector field and thus increase the compression ratio.
The paper [18] presents a technique for visualization of
multi-level topology of vector fields. For each level of

details a set of critical points is selected, that defines
the global character of the flow and approximates the
vector field. A detailed state of the art [17] describes

the topology-based visualization. When extracting the
topology of the vector field, we end up with a com-
pact representation of the flow and can use it as an ap-
proximation or data compression. The papers [26] and
[27] present a robust vector field simplification method.
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The approach tries to remove pairs of critical points
based on robustness measurement. The removal pro-
cess creates a hierarchical simplification scheme, so the
user can select the required compression. The paper

[12] performs scalar field denoising based on global en-
ergy optimization. This approach preserves extremes of
the scalar field while smoothing the rest of the data

set. Vector field approximation based on segmentation
is presented in [15]. Each segmentation region of a vec-
tor field is approximated using an affine linear function

which is presented in [36] and the final approximation
has defined some maximal error below the user-defined
value. The paper [16] discusses the impact of vector
field approximation on visualization techniques using

the example of Finite-Time Lyapunov Exponent com-
putations. The paper [39] presents a filtering technique
based on rotation of the vector fields to eliminate the

less interesting and sometimes sporadic critical points.
The Delaunay triangulation is used in [7] to simplify
the vector field. From the Delaunay triangulation, some
vortices are removed based on a local error metric and

the final approximated vector field is reconstructed us-
ing piece-wise linear approximation.

Vector fields can be approximated using Radial ba-
sis functions (RBF) [3]. The global RBF collocation
methods are mostly used due to smoothness; however,

the paper [3] performs a numerical comparison between
global and local RBFs for vector field approximation
and shows that local RBFs are suitable for vector field

approximation as well. The paper [23] performs easy
and simple RBF approximation, which is suitable for
parallelism. The paper [31] presents an algorithm for

critical points reduction. Critical points are removed
from the vector field based on the critical point influ-
ence. Only the important critical points are preserved
in the final RBF approximation of the vector field. This

technique is also used in [30] to approximate 3D vec-
tor fields. Vector field on sphere approximation using
RBF is presented in [28]. The paper presents experi-

mental results and recommends the setting for vector
field RBF approximation on a sphere.

2 Proposed Approach

We propose a new approach for 2D and 3D vector field
approximation using Radial basis functions. The pro-
posed approach uses the streamlines curvature to de-

termine the location of centers for RBF approximation
and it is used for weighting the RBF approximation
as well. The places, where the streamlines curvature is

high, are important, as in those locations there are crit-
ical points or the vector field changes significantly.

First, we propose the formulas for 2D and 3D

streamlines curvature calculation. Next, we define the
weighted RBF approximation of a vector field and fi-
nally, we select the best centers of radial basis functions.

2.1 Streamlines Curvature

Curvature formulas for implicit curves and surfaces are

derived from the classical curvature formulas in Dif-
ferential Geometry for parametric curves and surfaces
[11], [1]. For 2D implicit planar curves F (x, y) = 0, the
curvature depends only on the gradient ∇F and the

hessian H(F ). The gradient ∇F is computed as

∇F =

[

∂F

∂x
,
∂F

∂y

]

= [Fx, Fy] , (1)

where Fx and Fy of vector field streamlines have the

following meaning:

Fx = vy

Fy = −vx,
(2)

as the tangential vector v = [vx, vy] is orthogonal to
the vector [Fx, Fy]. The hessian H(F ) is computed as

H(F ) =

[

∂2F
∂x2

∂2F
∂x∂y

∂2F
∂y∂x

∂2F
∂y2

]

=

[

−∂vy

∂x

−∂vy

∂y
∂vx
∂x

∂vx
∂y

]

. (3)

The curvature of vector field streamlines is com-
puted using the following equation:

k = −v ·H(F ) · vT

‖v‖3
. (4)

Substituting (1), (2) and (3) into (4), we get the follow-
ing equation:

k = −
[vx, vy] ·

[

−∂vy

∂x

−∂vy

∂y
∂vx

∂x
∂vx

∂y

]

· [vx, vy]T

(

v2x + v2y
)

3
2

. (5)

In some cases, there can be some numerical prob-
lems. If ‖v‖ = 0, then there would be a division by
zero. In this case, we can replace the curvature k with

a value of infinity. Another problem that can arise is
when v ·H(F ) · vT = 0. In this case, the curvature is
zero, but for further processing we need to replace it

with some ǫ value that is close to zero.

Streamlines curvature in 3D can be computed in a
a way similar to that used in 2D. There is no implicit

formula for description of a line in 3D, thus we need
to derive the curvature from a parametric curve, i.e. a
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streamline. At each point the streamline has a direc-
tional vector

v = [vx, vy, vz] . (6)

To compute the curvature of streamlines in 3D, we need

to compute the following formula:

k =
‖(v · ∇v)× v‖

‖v‖
3 , (7)

where ∇v is the gradient of v computed as

∇v =







∂vx
∂x

∂vy

∂x
∂vz

∂x
∂vx
∂y

∂vy

∂y
∂vz

∂y
∂vx
∂z

∂vy

∂z
∂vz

∂z






. (8)

Substituting (6), (8) into (7), we get the following
formula for the curvature of 3D streamlines:

k =

∥

∥

∥

∥

∥

∥

∥






[vx, vy, vz]







∂vx

∂x

∂vy

∂x
∂vz
∂x

∂vx

∂y

∂vy

∂y
∂vz
∂y

∂vx

∂z

∂vy

∂z
∂vz
∂z












× [vx, vy, vz]

∥

∥

∥

∥

∥

∥

∥

(

v2x + v2y + v2z
)

3
2

. (9)

The same numerical problems as when computing the
curvature of 2D streamlines can arise. However, those
problems are solved in the same way as for 2D stream-

lines curvature calculation.

2.2 Vector Field Approximation

Vector field in 2D and 3D can be approximated using
Radial basis functions [31], [28]. The proposed approach

focuses on maintaining the important details of the vec-
tor field, where the curvature of streamlines is high. It
is necessary to reformulate the approximation scheme

to give some places higher importance than to others.
When computing the standard RBF approximation, the
final solution has the following formula:

v(x) = [vx(x), vy(x), vz(x)] =
M
∑

j=1

λjφ (‖x− ξj‖),

(10)

where ξj are centers of RBF, M is the number of RBF

centers, λj = [λ
(x)
j , λ

(y)
j , λ

(z)
j ] are weights of RBF and

φ(r) is the radial basis function. There are many RBFs;
however, in our experiments we used the Thin plate
spline (TPS) function

φ(r) = r2 log r. (11)

The TPS is shape parameter free function, which has a
great advantage over other radial basis functions.

To solve the RBF approximation, we need to solve

the following over-determined system of linear equa-
tions:

vi =
M
∑

j=1

λjφ (‖xi − ξj‖), for ∀i ∈ {1, . . . , N},

(12)

where {xi,vi}
N
i=0 is the input data set.

We can rewrite RBF approximation (12) using the

matrix notation

Aλ = v. (13)

The system of linear equations (13) is over-
determined. Each one linear equation has the same

weight in the system of linear equations. If we mul-
tiply the i-th line in matrix A and the corresponding
elements in v by some number k, the solution of (13)
will give more importance to the i-th linear equation.

The reason for this is simple. If we minimize the square
root of

err =
[

(Aλx − vx)
2
, (Aλy − vy)

2
, (Aλz − vz)

2
]

(14)

and elements in the i-th row of A and v are multiplied
by some number k, then the error for the i-th row will

be higher by k2. To minimize the square root error, the
solution must attract the final approximation closer to
the i-th condition given by the i-th linear equation and

thus give the i-th condition higher importance.

In the proposed approach, we want to approxi-
mate the vector field more precisely in locations where
streamlines have high curvature. This can be achieved

by multiplying all linear equations with some positive
values that depend on the curvature. For locations with
high curvature, we want to multiply the linear equations
with some high positive values and for locations with

low curvature, we want to multiply the linear equations
with some lower positive values. We can compute cur-
vature at all input points, i.e. we get a set of curvatures

k = {|ki|}
N
i=1 . (15)

We need to crop the maximal and minimal values.
We find k10min as 10% of k are smaller than k10min and

k10max as 10% of k are larger than k10max. The set k

can contain numbers close to zero as well as numbers
much larger than 1, i.e. even larger than 105. This kind
of value cannot be directly used to multiply the rows of

matrices A and v. We transform this set to a new one
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using the logarithm of curvature [10], [41]. The result
is as the following:

k = 1 + 4
{log (ki)}Ni=1

log (k10max)− log (k10min)
− log (k10min),

(16)

where the coefficients 1 and 4 are selected because the

set of weights k =
{

ki
}N

i=1
needs to be cropped to the

interval [1; 5]. This interval was experimentally selected
as the most appropriate for all data sets that we tested.
The final vector of weights k for the system of linear

equations is

ki =











1 ki < 1

ki ki ∈ [1; 5]

5 ki > 5

for ∀i ∈ {1, . . . , N}.

(17)

Now, the final over-determined weighted system of
linear equations has the following form:

kivi = ki

M
∑

j=1

λjφ (‖xi − ξj‖), for ∀i ∈ {1, . . . , N},

(18)

where ki are elements of k.

We can rewrite the RBF approximation (18) using
the matrix notation as

Aλ = v, (19)

where rows in A and v are multiplied by elements from
k, as explained in (18).

The important locations for RBF approximation are
centers of radial basis functions. These centers should
be mostly located in the locations with high curvature

of streamlines, as we want the approximated vector field
more precisely at those locations.

The initial locations of RBF centers are randomly
generated points with Halton distribution (A.1 in [9],
[40]). To put more points in the locations with high
curvature and fewer points in the locations with low

curvature, we need to move all the points in the gradient
direction of the curvature. The amount of how much to
move the points was experimentally selected as 12.5% of

the gradient path to the local extreme of the curvature.

The proposed approach for vector field approxima-
tion can be used for 2D as well as 3D vector fields. The

only difference between 2D and 3D is the calculation
of streamlines curvature.

3 Experimental Results

In this section we verify the proposed approach for vec-
tor field approximation. We test the proposed approach

with different types of vector fields: from a simple and
smooth synthetic 2D vector field up to a large and com-
plex real 3D vector field. The results of the proposed

vector field approximation are also compared with a
different approach for vector field approximation.

The first example of a vector field for testing our

proposed approach is a synthetic vector field (see Fig. 1)
described by the following formula:

vx =
1

2

[

x
(

x2 + 1
)

− y (2x− (y − 2) y − 1)
]

vy =
1

2

[

x2y − x
(

y2 − 2y + 1
)

+ y − 2
]

,

(20)

(a) (b)

Fig. 1 The original vector field computed from (20) (a) and
the approximated vector field using the proposed approach
(b). The number of centers for RBF approximation is 256.

After computing the streamlines curvature, we can
create two visualizations, see Fig. 2. It can be seen

that the highest absolute value of curvature is located
around critical points and below the most left critical
point, where the vector field changes its direction about

90➦. On the other hand, the lowest value of k (16) is
as expected at locations where streamlines are straight
lines or the direction of flow does not change signifi-

cantly.

The centers for RBF approximation are mostly ran-
domly distributed over the approximated domain. How-

ever, in our case, we distribute these points according
to the streamlines curvature, see Fig. 3. It can be seen
that the RBF centers are located with higher density

at locations with higher streamlines curvature. On the
other hand, the RBF centers are located with low den-
sity at locations with low streamlines curvature.

The final result of the proposed weighted RBF ap-
proximation of vector field (20) is visualized in Fig. 1b.
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(a) (b)

Fig. 2 Iso-contours of vector field curvature with highlighted
(red color) value for curvature zero iso-line (a). Logarithm of
absolute value of curvature visualized as a color plot (the
value k is cropped to the interval [1; 5], see (16)) (b).

(a) (b)

Fig. 3 The location of 256 centers for RBF approximation.
Centers with Halton distribution (a) and centers distributed
according to the streamlines curvature (b).

We can see that both vector fields in Fig. 1 are almost
identical, i.e. the approximation preserves all the im-
portant details of the vector field.

Another example of a dynamical system is a chemo-
stat [21], [14]. A chemostat is a bioreactor to which a
fresh medium is continuously added, while culture liq-

uid containing leftover nutrients, metabolic end prod-
ucts and microorganisms are continuously removed at
the same rate to keep the culture volume constant. An
example description of a chemostat dynamical system
is

vx = 1− x− ay

vy = −y + ay,
(21)

where x is the concentration of the nutrient solution in
the growth chamber, y is the density of culture popu-

lation and a is [21], [14]

a =
x

1
16 + x

4 + x2
. (22)

Visualization of the dynamical system described by (21)
is in Fig. 4.

(a) (b)

Fig. 4 The original vector field computed from (21) (a) and
the approximated vector field using the proposed approach
(b). The number of centers for RBF approximation is 256.

The visualization of streamlines curvature can be

seen in Fig. 5. The vector field is more complex than
(20) and thus the streamlines curvature is more vari-
able.

(a) (b)

Fig. 5 Iso-contours of vector field curvature with highlighted
(red color) value for curvature zero iso-line (a). Logarithm of
absolute value of curvature visualized as a color plot (the
value k is cropped to the interval [1; 5], see (16)) (b).

We can use the streamlines curvature to distribute

the centers for RBF approximation as proposed in this
approach. Again, it can be seen that the centers for
RBF are distributed according to the streamlines cur-
vature, see Fig. 6. The final proposed RBF approxima-

tion of the vector field (21) is presented in Fig. 4b.
The proposed approach needs to be tested with a

real data set as well. We selected a numerical forecast

wind data set1 taken from [5]. This vector field data set
contains 2.2 · 104 points with associated vector values
and is visualized in Fig. 7a. The vector field is much

more complex than the first two synthetic examples
generated from (20) and (21).

1 Data set of wind flow at a height of 10m over the surface
of the Czech Republic, courtesy of the Institute of Computer
Science of the Czech Academy of Sciences.
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(a) (b)

Fig. 6 The location of 256 centers for RBF approximation.
Centers with Halton distribution (a) and centers distributed
according to the streamlines curvature (b).

(a) (b)

Fig. 7 The original vector field (a) and the approximated
vector field using the proposed approach with the compres-
sion ratio 55.5 : 1(b).

When computing the streamlines curvature, we end-
up with the visualization in Fig. 8b. It can be seen that

the highest streamlines curvature is at locations, where
critical points occur and thus the flow direction is sig-
nificantly changing the most at those locations. When

computing the proposed vector field RBF approxima-
tion, we need to distribute RBF centers according to the
streamlines curvature. The resulting location of those
centers is visualized in Fig. 8a.

The result of the proposed approach for the forecast

data set vector field approximation using streamlines
curvature is visualized in Fig. 7b. It can be seen that the
approximation preserves all the details of the original

data set, while achieving a very high compression ratio
(55.5 : 1).

(a) (b)

Fig. 8 The location of 400 centers for RBF approximation
that are distributed according to the streamlines curvature
(a). Logarithm of absolute value of curvature visualized as a
color plot (the value k is cropped to the interval [1; 5], see
(16)) (b).

In the last example we use the EF5 tornado data
set2 (from [22]), see Fig. 9a. This data set contains
around 5.5 · 108 3D points with associated 3D vectors.

According to the visualization in Fig. 9b, it can be
seen that the highest streamlines curvature is around
the main swirl of the tornado and at the top part of

the data set. The highest density of RBF centers will be
at these locations. When computing the final weighted
RBF approximation, we need to use the approach pro-
posed in [29], [30] for approximation of large vector

fields using the space subdivision. The resulting approx-
imation of the vector field is visualized in Fig. 9a and
is almost identical with the original one. In this case,

compression ratio 103 : 1 was reached.

3.1 Comparison with Existing Approaches

The proposed approach needs to be compared with dif-
ferent approaches for vector field approximation. The

first one for comparison and the most similar one is the
standard RBF approximation.

v(x) =
M
∑

j=1

λjφ (‖x− ξj‖), (23)

where ξj are randomly distributed centers of RBF (with

Halton distribution (A.1 in [9], [40])), M is the number

2 Data set of an EF5 tornado courtesy of Leigh Orf from
Cooperative Institute for Meteorological Satellite Studies,
University of Wisconsin, Madison, WI, USA.
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(a)

(b)

Fig. 9 The approximated vector field using the proposed
approach with the compression ratio 103 : 1 (a). Logarithm
of absolute value of curvature visualized as a color plot (the
value k is cropped to the interval [1; 5], see (16)) (b).

of RBF centers, λj are weights of RBF and φ(r) is the
radial basis function [19], [32]. The radial basis function
that is used for the standard RBF approximation is the
same as the radial basis function used in the proposed

approach, i.e. the following one:

φ(r) = r2 log r. (24)

The second approach for comparison is the Fourier
transform approximation of a vector field [8], [13]. The
vector field is transformed using the Fourier transform
of the form

F (α, β) =

∫ ∞

−∞

∫ ∞

−∞

v(x, y)e−2πi(xα+yβ)dxdy, (25)

where α and β are frequencies of the vector field. To
approximate the vector field we need to discard high

frequencies and keep only some (according to the re-
quired compression ratio) low frequencies. The approx-

imated vector field can then be reconstructed using the
following inverse Fourier transform:

v(x, y) =
1

(2π)
2

∫ ∞

−∞

∫ ∞

−∞

F (α, β)e2πi(xα+yβ)dαdβ.

(26)

To measure the quality of the approximation, we can
compute the approximation error using the following

formula:

Err =

∑N
i=1 ‖vi − v̄i‖
∑N

i=1 ‖v̄i‖
, (27)

where v is the approximated vector field and v̄ is the
original vector field. This formula computes the rela-

tive difference in vector size. The approximation errors
of vector fields Fig. 1b, Fig. 4b, Fig. 7b and Fig. 9a are
summarized in the Table 1. Each data set was approx-
imated with all three approximation approaches with

the same compression ratio, i.e. the approximation er-
rors are comparable.

Table 1 Vector field approximation error for different data
sets and different approximation methods.

Proposed

RBF

Standard

RBF

Fourier

transform

Fig. 1 2.34% 3.16% 3.07%
Fig. 4 3.38% 4.59% 4.46%
Fig. 7 4.42% 6.24% 5.93%
Fig. 9 10.71% 15.37% 14.18%

It can be seen that the proposed approach for vector
field approximation gives the best results for all tested

2D and 3D data sets. The proposed approach has about
35%−40% lower approximation error than the standard
RBF vector field approximation and about 31%− 34%
lower approximation error than the Fourier transform

approximation.

4 Conclusion

We propose a new approach for vector field approxima-

tion with radial basis functions. This approach com-
putes the curvature of vector field streamlines and
uses it for optimal placing of reference points and for
computing the weighted RBF approximation. This ap-

proach is convenient for both 2D and 3D vector fields.
The approximation results proved, this to be the better
approximation of vector fields compared to the stan-

dard RBF approximation and to the Fourier transform
approximation.
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In future research, we plan to compare different ra-
dial basis functions with variable shape parameters.
The optimal shape parameter for each radial basis func-
tion should be computed according to the streamlines

curvature and data distribution.
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CHAPTER 4. OVERVIEW OF CONTRIBUTIONS

4.6 Radial Basis Function and Multi-level 2D Vector Field Approx-

imation

In many areas of visualization is very useful the technique called level of details. This technique,
as well as the proposed approach in [Smolik and Skala, tteda], can be used to increase the trans-
ferred amount of data between data servers and visualization devices, or to give user a simplified
visualization without small details.

The paper [Smolik and Skala, tteda] presents an approach for multi-level vector field approx-
imation. The proposed approach uses the Radial basis functions to simplify and to approximate
the vector field. The initial level of details approximation represents only the main global charac-
ter of the vector filed. The next level of details is represented as the offset to the previous level of
details vector field approximation. This representation helps to increase the compression ratio.

The proposed approach proved its ability to a high compression ratio. It is especially conve-
nient for visualization on mobile devices, as only some first level of details are downloaded and
thus it is reduced the necessary data transfer.

Citation:

• Michal Smolik and Vaclav Skala. Radial basis function and multi-level 2D vector
field approximation. Mathematics and Computers in Simulation, 2019. (IF = 1.409)
(submitted)
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Radial Basis Function and Multi-level 2D Vector Field

Approximation

Michal Smolika and Vaclav Skalaa
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ABSTRACT
We propose a new approach for meshless multi-level radial basis function (ML-RBF)
approximation which offers data sensitive compression and progressive details visu-
alization. It leads to an analytical description of compressed vector fields, too. The
proposed approach approximates the vector field in multiple levels of details. The
low level approximation removes minor flow patterns while the global character of
the flow remains unchanged. And conversely, the higher level approximation contains
all small details of the vector field. The ML-RBF has been tested with a numerical
forecast data set to prove its ability to handle data with complex topology. Com-
parison with the Fourier vector field approximation has been made and significant
advantages, i.e. high compression ratio, accuracy, extensibility to a higher dimension
etc., of the proposed ML-RBF were proved.

KEYWORDS
Radial basis functions; adaptive shape parameter; vector field; approximation;
Gaussian low-pass filter; Fourier transform

1. Introduction

In applied sciences, interpolation and approximation are very often used methods [8].
This paper propose a new approach for meshless multi-level radial basis function (ML-
RBF) approximation which offers data sensitive compression, progressive details visu-
alization and leads to analytical description of compressed vector fields. It is capable
to handle vector data fields with complex topology as well.

A vector field is a function that assigns to each point a vector. Vector fields come
mostly from numerical simulations, i.e. Computational Fluid Dynamics (CFD) [20],
[21], [1], [15], [10] and Finite Element Method (FEM) [31], [6]. The analysys of the
vector field can be done at any location of the vector field [18], [42], [44]. However the
most important places of the vector field are so-called critical points [18].

Topology-based flow visualization is well known technique [25]. However, the result
can be a cluttered image which is difficult to interpret, when the topology-based tech-
nique is used in complex and information-rich data sets. One solution of this problem
is described in the paper [48], which optimizes the topology. The Multi-level topology
visualization of vector field data sets is presented in [9]. The algorithm visualizes the
topology without excessive cluttering while maintaining the global structure of the
flow. Another approach [4] uses fully adaptive multiresolution schemes for strongly

The research was supported by projects Czech Science Foundation (GACR) No. 17-05534S and partially by

SGS 2019-016.
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degenerate parabolic equations with discontinuous flux. The paper [51] uses a multi-
scale model for solute transport in a wavy-waled channnel. This approach concerns
steady flow and identifies conditions under which is the approximation uniformly valid
in a full channel flow. The paper [40] simplifies the vector field using the reduction of
critical points according to their stability measurement, which is computed as the min-
imum amount of vector field perturbation that is required to remove the critical point.
Afther this, critical points can be hierarchicaly removed. The global energy change
during simplification of topology is computed in [17]. This energy is optimized during
the denoising of the vector field. The algorithm for topology-controlled denoising of
scalar fields, which processes small patches of the domain independently, is presented
in [17]. It is based on a global energy optimization and avoids the introduction of new
critical points. The paper [5] describes a numerical comparison between RBF local
and global methods and highlights the possible advantage of using local methods for
the approximation of vector fields. The vector field approximation for two-dimensional
vector fields that preserves their topology and significantly reduces the memory foot-
print is presented in [24]. This approximation is based on a segmentation and the flow
within each segmentation region is approximated by an affine linear function. The pa-
per [27] reduces the size degree of the complexity of density variations. This approach
is compared with a phase-field method [23].

The Fourier transform decomposes a function into the frequencies that make it
up. It can be used for vector field analysis and approximation or simplification. The
Clifford Fourier transform in [11] allows a frequency analysis of vector fields and the
behavior of vector-valued filters. In frequency space, vectors are transformed into gen-
eral multivectors of the Clifford Algebra. Many basic vector-valued patterns, such as
source, sink, saddle points, and potential vortices, can be described by a few multivec-
tors in frequency space. A two-dimensional filtering operation, involving both curl and
divergence, is applied in [30] to the 2D Clifford Fourier Transform in order to simul-
taneously enhance important features of a 2D vector field, such as vortices and pairs
of sources and sinks. The approach [34] defines convolution operators on vector fields
using geometric algebra. This includes a corresponding Clifford Fourier transform of a
spatial vector or multivector data. This approach is used for the analysis of the fluid
flow. There are also different approaches to transforming vector-valued data using a
Fourier transform [3], [19] and [12].

The proposed (ML-RBF) vector field approximation method has variety of uses.
The vector field data sets come mostly from the numerical simulations and contains
very large number of sample points, i.e. the data set is very large. This data sets need
to be stored for future use and backup. Thus, the approximation techniques are used
to compress the vector field data sets. For this reason, we propose a new technique
for vector field ML-RBF approximation. The ML-RBF technique is suitable for fast
preview of the vector field data set as visualization can be done using only first level
of details or few first levels of details. This is also useful for mobile devices as the
data set does not need to be transferred whole at once and the data transfer can be
reduced to only first level of details. The additional levels of details can be transferred
additionally; one by one when they are needed. Another use of the proposed ML-RBF
vector field approximation is the exploration and the insight of the vector field as
the vector field is visualized without excessive cluttering while maintaining the global
structure of the vector field. Next, the compressed vector field is in the form of an
analytical description which can be used for further vector field analysis and symbolic
manipulation.
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2. Radial Basis Functions

Radial basis function (RBF) is a real-valued function whose value depends only on
some distances. i.e. the RBF interpolation [32] and approximation [13], [47] of scattered
data is invariant under all Euclidean transformations. The RBF interpolation and
approximation is widely used in many scientific disciplines, e.g. for solution of partial
differential equations [26], [53], image reconstruction [49], neural networks [22], [16],
[52], GIS systems [28], optics [33], vector fields approximation [46], [45], [41], [43], etc.

The RBF interpolation or approximation leads to a system of linear equationsAx =
b which is to be solved. It should be noted, that if the RBF is used for interpolation or
approximation of data with large span, additional numerical problems can be expected
[37], [39], [38].

There exist two groups of radial basis functions according to their influence. The
first group are “global” RBFs [36]. The second group are “local” RBFs. The global
RBF function application leads to ill-conditioned linear system of equations, in general,
especially in the case of large data sets with a large span [29], [39]. The following global
RBFs will be used in our experiments:

Thin Plate Spline (TPS) ϕ1(r) = r2 log r

Gauss function ϕ2(r) = e−(ǫr)2

Inverse Quadric (IQ) ϕ3(r) =
1

1 + (ǫr)2

Inverse Multiquadric (IMQ) ϕ4(r) =
1

√

1 + (ǫr)2

Multiquadric (MQ) ϕ5(r) =
√

1 + (ǫr)2

(1)

“Local” RBFs were introduced in [50] as compactly supported RBF (CSRBF). They
satisfy the following condition:

ϕ(r) = (1− r)q+P (r)

=

{

(1− r)qP (r) 0 ≤ r ≤ 1

0 r > 1

(2)

where P (r) is a polynomial function and q is a parameter. The following local RBFs
will be used in our experiments:

ϕ6(r) = (1− r)+

ϕ7(r) = (1− r)3+(3r + 1)

ϕ8(r) = (1− r)5+(8r
2 + 5r + 1)

ϕ9(r) = (1− r)2+

ϕ10(r) = (1− r)4+(4r + 1)

ϕ11(r) = (1− r)6+(35r
2 + 18r + 3)

ϕ12(r) = (1− r)8+(32r
3 + 25r2 + 8r + 1)

(3)
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3. Proposed approach

In this section we describe our new proposed approach for multi-level vector field
approximation using radial basis functions. The algorithm is composed by three main
steps. The first step is the calculation of approximation error, the second one is the
use of a Gaussian low-pass filter and the last one is the approximation using RBF. The
pseudo-code of the proposed approach is in Algorithm 1. The algorithm is iterative
and runs until the maximum level of details is computed.

In the following, we describe the proposed method on a 2D vector field. However,
this algorithm is easy to extend to higher dimensions.

Algorithm 1 The multi-level RBF approximation of vector field.

1: vectorF ield v = [vx,vy] = [0,0] ⊲ Initialization
2: σ = initial value ⊲ Standard deviation
3: procedure Multi-levelRBF(Flow v̄ = [v̄x, v̄y])
4: for i← 1, LevelCount do
5: Err = v̄ − v; ⊲ Error estimation
6: Err = Gauss(Err, σ) ⊲ Gaussian low-pass filter
7: e = Find extrema of Err

8: x0 = Find critical points of Err + v

9: RBF = RBF approximation (e, x0, Err)
10: v += RBF ⊲ Update vector field
11: σ /= 2 ⊲ Decrease σ

12: end for

The first step of the proposed method is the error estimation. We need to compute
the error for both components of a vector field

Errx = v̄x − vx,

Erry = v̄y − vy,
(4)

where Errx and Erry are error vectors, v̄x and v̄y are the x and y components of
input flow field vectors, vx and vy are the x and y components of actual flow field
approximation vectors. For the 0 (zero) level vector field approximation, vx = 0 and
vy = 0.

Vector fields can be very complex data sets with very large number of critical points.
The multi-level RBF vector field approximation aims to approximate vector field in
several levels of details. The lowest level of details should describe only the main global
character of the flow. Each additional level of details should add some more details
into the approximation. Thus with higher levels of details, the approximated vector
field will contain more and more critical points and smaller flow details as well.

The next step of the proposed multi-level RBF vector field approximation is filtering
the data set to obtain a simplified one. In our case, we filter the 21

2D error data from
(4), i.e. 2D function with associated errors. The low-pass Gaussian filter is used to
filter the 21

2D data. The Gaussian filter can have different scope and thus filter either
small perturbations of the flow or large changes of the flow. The Gaussian filter has
the formula

G(x, y) =
1

2πσ2
g(x, y), (5)

4

89



where x and y are the location coordinates, σ is the standard deviation of the Gaussian
distribution and g(x, y) is defined as

g(x, y) = e−
x2+y2

2σ2 . (6)

Figure 1. The right column represents Errx of a vector field for different levels of details, i.e. from top

to bottom: σ = 10, 5, 2.5, 1.25 and 0.625. The left column represents the vx component of a vector field for

different levels of details, i.e. vx is the sum of Errx from the previous levels of details.

For each level of approximation, a different value of σ is to be chosen. For the first
level of approximation we need to set up the initial value of σ. The value of σ in every
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following level will always be half of the value σ from the previous level. The initial
value of standard deviation, i.e. σ1, can be selected as

σ1 = sσ ·MIN(xmin − xmax, ymin − ymax), (7)

where xmin, xmax, ymin, ymax are minimal and maximal values of x and y coordinates,
and sσ is a constant reflecting the data size and sampling density. A pragmatical choice
is sσ = 1

10 . If this value sσ is smaller, then the first level vector field approximation will
be even more simplified, and conversely. An example of an application of a Gaussian
low-pass filter on a vector field data set1 [7] is in Figure 1.

The next step of the proposed method is the RBF approximation, for which we
need the locations of radial basis functions, i.e. the centers. The centers need to be in
the location of critical points, i.e.

x0 = Find critical points(Err + v). (8)

Moreover at the extremes of vx, resp. vy, are located the additional centers of radial
basis functions. The number of extremes will increase with increasing the level of
approximation.

The radial basis function used for the RBF approximation is ϕ10(r) and it was used
to demonstrate the proposed approach. It was selected due to continuity properties,
computational complexity and it is the most adequate radial basis function according
the tests in chapter 5.1. The RBF function ϕ10(r) is defined as

ϕ(r)10 = (1− ǫr)4+(4ǫr + 1), (9)

where ǫ is the shape parameter of the radial basis function. The shape parameter is
different for every level of approximation to capture different levels of details of the
vector field. The shape parameter should be selected in a way that (9) has a similar
shape as the Gaussian filter (6), i.e. the absolute difference of these two functions
is minimal. We performed tests to select the best shape parameter, see Figure 6 in
“Results” section. For different standard deviations σ in (6), the best shape parameter
is

ǫ =
0.2694

σ
. (10)

Now,the RBF approximation is to be computed for each x and y component sepa-
rately. To approximate Errx, the centers of radial basis functions will be locations of
critical points from (8) and extremes of Errx, similarly for Erry.

After the RBF approximation, we need to update the actual level vector field

vx = vx +RBFx,

vy = vy +RBFy,
(11)

The algorithm is repeated until the required number of levels of details is reached.

1Data set of wind flow at a height of 10m over the surface of the Czech Republic courtesy of the Institute of

Computer Science of the Czech Academy of Sciences.
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Figure 2. Approximation errors for different shape parameters.

With every additional level of details, the vector field RBF approximation is more
accurate.

In the following chapter experimental results of the proposed multi-level RBF
method are presented.

4. Results

The multi-level RBF (ML-RMB) vector field approximation is especially convenient
for visualization purposes and vector field data understanding. The numerical forecast
data set taken from [7] was used to prove the multi-level RBF approximation properties
and for comparison with approximation based on the Fourier transform. The data set
consists of around 2.2 · 104 points.

4.1. Selection of the RBF

One of the most important and critical part in the RBF approximation is the selection
of the most adequate radial basis function [35], [29]. We tested the radial basis func-
tions in (1) and (3). We selected around 275 centers of RBF, so that the compression
ratio of the RBF approximation is 80 : 1. For each RBF in (1) and (3) we tested
the approximation error for different shape parameters. The approximation error is
computed using (16) and the results are presented in Figure 2. It can be seen that the
“local” RBFs have all similar behavior and the approximation error is low when using
lower values of shape parameter. In our case, we select a local RBF function, as the
approximation matrix will be sparse and better conditioned. Also we will be able to
approximate larger data sets compared to the case, when using “global” RBFs which
leads to ill-conditioned full matrices, in general. The best choice according to the re-
sults in Figure 2 is the radial basis function ϕ10(r) as it has the lowest approximation
error and is C2 continuous.

We also compared the selected RBF ϕ10(r) with other RBFs and computed the dif-
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Figure 3. Difference histograms of approximation errors. All difference histograms are blended over each
other.

ference histogram of approximation error, see Figure 3. The test was performed always
for the best shape parameter for each RBF. The positive values for small approxima-
tion errors mean that the approximation with the selected RBF has much more smaller
approximation errors. The negative values for larger approximation errors mean that
the approximation with the selected RBF has much less larger approximation errors.
This test clearly confirmed the selection of ϕ10(r) as the most adequate RBF for our
proposed approach.

4.2. Multi-level RBF Approximation

To compute the RBF approximation, we need to find the centers of radial basis func-
tions for every level of details. We tested the number of centers and summarized this
in Table 1.

Table 1. The number of centers for RBF approximation at every added level of details.

Level number σ
# of extreme
points in vx

# of extreme
points in vy

# of critical
points

1 10 28 27 2
2 5 58 54 2
3 2.5 161 176 10
4 1.25 517 539 25
5 0.625 1238 1249 49

It can be seen that even when computation is done until the last level of details,
we need for x and y components of the vector field approximately 2.1 · 103 centers
of radial basis functions. This is approximately 9.5% of the input data set and the
resulting vector field approximation is very similar to the original one.

At each level of RBF approximation, we approximate the 21
2D functions Errx and

Erry, see Figure 4a,d,g,j,m for Errx and Figure 5a,d,g,j,m for Erry. To find the
location of radial basis functions, we use a Gauss filter for smoothing and then locate
extremes of the resulting 21

2D function, see Figure 4b,e,h,k,n for Errx smoothing

and Figure 5b,e,h,k,n for Erry smoothing. These 21
2D functions have the same global

character as the original 21
2D functions Errx and Erry, but they do not contain tiny

details.
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(a) 1st level Errx. (b) Errx after
Gauss filter with

σ = 10.

(c) RBF approxi-
mation of Errx.

(d) 2nd level Errx. (e) Errx after

Gauss filter with
σ = 5.

(f) RBF approxi-

mation of Errx.

(g) 3rd level Errx. (h) Errx after
Gauss filter with

σ = 2.5.

(i) RBF approxima-
tion of Errx.

(j) 4th level Errx. (k) Errx after

Gauss filter with
σ = 1.25.

(l) RBF approxima-

tion of Errx.

(m) 5th level Errx. (n) Errx after
Gauss filter with

σ = 0.625.

(o) RBF approxi-
mation of Errx.

Figure 4. Errx function for each level of details, filtered Errx functions and the RBF approximation of

Errx.

The shape parameter is different for every level of approximation to capture different
levels of details of the vector field. The shape parameter should be selected in a way
that (9) has a similar shape as the Gaussian filter (6), i.e. the absolute difference of
these two functions is minimal. We performed tests to select the best shape parameter.
The results in Figure 6 are for a Gaussian filter with σ = 1.

The best shape parameter is ǫ = 0.2694, see Figure 6. For different standard devia-
tions σ, the best shape parameter is

ǫ =
0.2694

σ
. (12)
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(a) 1st level Erry . (b) Erry after
Gauss filter with

σ = 10.

(c) RBF approxi-
mation of Erry .

(d) 2nd level Erry . (e) Erry after

Gauss filter with
σ = 5.

(f) RBF approxi-

mation of Erry .

(g) 3rd level Erry . (h) Erry after
Gauss filter with

σ = 2.5.

(i) RBF approxima-
tion of Erry .

(j) 4th level Erry . (k) Erry after

Gauss filter with
σ = 1.25.

(l) RBF approxima-

tion of Erry .

(m) 5th level Erry . (n) Erry after
Gauss filter with

σ = 0.625.

(o) RBF approxi-
mation of Erry .

Figure 5. Erry function for each level of details, filtered Erry functions and the RBF approximation of

Erry .

The RBF approximations of Errx are in Figure 4c,f,i,l,o and approximations of
Erry are in Figure 5c,f,i,l,o. The RBF approximations of Errx and Erry are very
close to the filtered 21

2D functions of Errx and Erry, as the placement of radial
basis function centers and the shape parameter of radial basis functions are very well
chosen.

The resulting multi-level RBF approximation of the vector field is visualized in
Figure 7. It can be seen that with every additional level of details the approximated
vector field is closer to the original one. Even the first level approximation has the
same global characteristics as the original vector field.
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Figure 6. The average absolute difference of (5) with σ = 1 and (9) for different values of shape parameter

ǫ and r ∈ [0; 1/ǫ).

To measure the quality of the vector field approximation, we compute the approxi-
mation error at every point of the vector field using the following formula

error(i) =

√

(

v
(i)
x − v̄

(i)
x

)2
+
(

v
(i)
y − v̄

(i)
y

)2
, (13)

where v
(i)
x and v

(i)
y are approximated values, v̄

(i)
x and v̄

(i)
y are the original values of the

vector field and error(i) is the approximation error at the ith point. The approximation
error is color-coded in Figure 8. It can be seen that the approximation error is lower
with every additional level of details.

4.3. Comparison with Existing Approach

The proposed method needs to be compared with an other existing approach. We
selected the mostly used Fourier transform [14], [2]. The vector field is approximated
with the Fourier transform using the following formula

F (α, β) =

∫ ∞

−∞

∫ ∞

−∞
v(x, y)e−2πi(xα+yβ)dxdy, (14)

where α and β are frequencies (see Figure 9). According to the required accuracy, only
some of the most important frequencies are selected to approximate the vector field.
This approximated vector field represented by a list o frequencies can be transformed
back to the vector field using the following inverse Fourier transform

v(x, y) =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
F (α, β)e2πi(xα+yβ)dαdβ. (15)

To compare the proposed approach for multi-level vector field approximation with
the Fourier transform vector field approximation, we need to compute and compare
the vector field approximation errors. We can compute the average difference approx-
imation error using the following formula
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(a) 1st level, σmin = 10. (b) 2nd level, σmin = 5. (c) 3rd level, σmin = 2.5.

(d) 4th level, σmin = 1.25. (e) 5th level, σmin = 0.625. (f) Original vector field.

Figure 7. The vector field approximation for different levels of details (a-e) and the original vector field (f).

Err =

∑N
i=1 ‖vi − v̄i‖

N
, (16)

where vi is the approximated vector, v̄i is the original vector and N is the number
of points with associated vectors in the original dataset. This error shows how much
the approximated vector field differs from the original one. The resulting error has the
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(a) 1st level. (b) 2nd level. (c) 3rd level.

(d) 4th level. (e) 5th level.

Figure 8. The vector field approximation error for different levels of details. The approximation error is

computed using (13). All color bars have the same error range for better comparison.

(a) Frequency portrait. (b) Phase offset.

Figure 9. Approximation of the vector field using Fourier transform.

same units as the vector field. Next, we can compute another kind of approximation
error. We can compute the average vector length error using the following formula

Err =

∑N
i=1 | ‖vi‖ − ‖v̄i‖ |
∑N

i=1 ‖v̄i‖
. (17)
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(a) The average difference approximation error.

0

10

20

30

40

8:1 16:1 32:1 64:1 128:1 256:1 512:1

v
ec

to
r 

le
n
g
th

 e
rr

o
r 

[%
]

compression ratio

Fourier MultiRBF

(b) The average vector length error.
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(c) The average angular displacement error.

Figure 10. Visualization of approximation errors for different compression ratios.

This formula computes some kind of relative vector length error. The standard formula
for relative vector length error is

Err =
1

N

N
∑

i=1

| ‖vi‖ − ‖v̄i‖ |
‖v̄i‖

. (18)

However, using this formula will give us incorrect result because of division by numbers
close to zero or even equal to zero. For this reason we use (17) instead of the standard
(18).
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(a) Multilevel RBF approximation.

(b) Fourier approximation.

Figure 11. Histograms of vector field approximation error for compression ratio 80 : 1.

Last we will compute one more kind of approximation error, namely, the average
angular displacement error. This error is computed using the following formula

Err =

∑N
i=1 acos

(

vi·v̄i

‖v‖‖v̄‖

)

N
. (19)

We compared our proposed method with the Fourier method using three types
of approximation errors for different compression ratios. Computed approximation
errors for our proposed multi-level vector field approximation and for the Fourier
vector field approximation are visualized in Figure 10. It can be seen, that for all three
approximation errors computations, the proposed method has lover approximation
error for all compression ratios. To analyze the approximation error more closely, we
selected compression ratio 80 : 1 and computed histograms of approximation error
using (13), see Figure 11. It can be seen that most approximation errors are low and
only a few errors are high.

Moreover to compare the two methods for vector field approximation, we computed
the difference histogram, see Figure 12. It can be seen, that the proposed method
has much more lower approximation errors and much less higher approximation errors
than the Fourier approximation method. The experiments made also proved similar
behavior for other compression ratios.
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Figure 12. Difference histograms of approximation errors (“Multilevel RBF” - “Fourier”), see Figure 11, for
compression ratio 80 : 1.

5. Conclusion

We proposed a new approach for multi-level vector field approximation. The vector
field is approximated in several levels of details, where each level of details adds some
additional information and refine the vector field approximation. The approach uses
Radial basis function for approximation of vector field. The centers of radial basis
functions are placed according to the distribution of approximation error of the pre-
vious level of detail vector field approximation. The proposed approach is especially
convenient for approximation and visualization of large and complex data sets, i.e.
only needed levels of details of the vector field can be transferred and visualized on
the devices (mobile phone, web browser, etc.) with high compression ratio. Another
advantage over existing approaches is the final analytical description of the approxi-
mated vector field, which can be used for further processing.

In the feature, the proposed approach for multi-level vector field approximation will
be extended to approximate the 3D vector fields as well. This extension should be
straightforward and easy to implement.
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CHAPTER 4. OVERVIEW OF CONTRIBUTIONS

4.7 Classification of critical points using a second order derivative

The vector field classification is usually made using the Jacobian matrix, i.e. there are distin-
guished saddle points, sinks, sources, etc. However, the classification of critical points can be
done even more precisely. The paper [Smolik and Skala, 2017a] presents an approach for classi-
fication of critical points using the second order derivative.

The second order derivative approximation can be represented using the Hessian matrix. This
matrix can be further use to determine the curvature of the main exes of critical points. It can be
used to determine the shape of the vector field and to classify it more closely.

Citation:

• Michal Smolik and Vaclav Skala. Classification of critical points using a second
order derivative.Procedia Computer Science, 108:2373–2377, 2017.
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Abstract 

This article presents a new method for classification of critical points. A vector field is usually 

classified using only a Jacobian matrix of the approximated vector field.  This work shows how 

an approximation using a second order derivative can be used for more detailed classification. 

An algorithm for calculation of the curvature of main axes is also presented. 
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1 Introduction 

The visualization of vector field topology is a problem that arises naturally when studying the 

qualitative structure of flows. The knowledge of the data at a single point would be of little help when 

the goal is to obtain knowledge and understanding of the whole vector field. The individual numbers 

can be of little interest. It is the connection between them which is important. 

Helman and Hesselink [1] introduced the concept of the topology of a planar vector field to the 

visualization community. They extracted critical points and classified them into sources, sinks and 

saddles, and integrated certain stream lines called separatrices from the saddles in the directions of the 

eigenvectors of the Jacobian matrix. Later, topological methods have been extended to higher order 

critical points [6], boundary switch points [3], and closed separatrices [14]. In addition, topological 

methods using classification have been applied to simplify [7], smooth and compress [2] vector fields. 

Theisel [10] presents a summary of vector field curvatures. Weinkauf and Theisel [12] present the 

theory of curvature measures of 3𝐷 vector fields. The curvature measurements are used to measure the 

distance between streamlines in vector fields [4].  

All of the published research uses for classification of critical points and vector field description 

only linear approximation of the vector field. None of it uses an approximation with second order 

partial derivatives, i.e. a Hessian matrix. This approximation gives a more detailed description of the 

vector field around a critical point and can be used for a more detailed classification. Use of an 

approximation with a Hessian matrix will be described in this paper.  
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2 Approximation Using a Hessian Matrix 

Vector fields are approximated using only linear approximation to determine the local behavior of 

the vector field [1]. However, linearization gives us only a basic classification of the critical points and 

basic information about the flow around them; the approximation using second order derivatives will 

give us some more information. 

An approximation of the vector field around a critical point using a second order derivative must be 

written for each vector component (𝑣𝑥 and 𝑣𝑦) separately; see the following equation for 𝑣𝑥: 

𝑣𝑥 = [  
 𝜕𝑣𝑥𝜕𝑥𝜕𝑣𝑥𝜕𝑦 ]  

 𝑇 ∙ [∆𝑥∆𝑦] + 12 [∆𝑥∆𝑦]𝑇 ∙ [   
 𝜕2𝑣𝑥𝜕𝑥2 𝜕2𝑣𝑥𝜕𝑥𝜕𝑦𝜕2𝑣𝑥𝜕𝑦𝜕𝑥 𝜕2𝑣𝑥𝜕𝑦2 ]   

 ∙ [∆𝑥∆𝑦] = 𝑱𝑥 ∙ ∆𝒙 + 12 ∆𝒙𝑇 ∙ 𝑯𝑥 ∙ ∆𝒙  

where ∆𝑥 = 𝑥 − 𝑥0, ∆𝑦 = 𝑦 − 𝑦0, ∆𝒙 = [∆𝑥, ∆𝑦]𝑇, 𝑯𝑥 is Hessian matrix, 𝑱𝑥 is the first row of a 

Jacobian matrix. Equation for 𝑣𝑦 is similar as for 𝑣𝑥. 

A Hessian matrix is a square matrix of second-order partial derivatives of a scalar-valued function, 

or scalar field. It describes the local curvature of a function of many variables. 

An approximation of a vector field using  is a bit more computationally expensive than the 

standard linear approximation, but gives us a more detailed description than a linear approximation of a 

vector field, see Fig. 2. The approximation in Fig. 2 (𝑡 ≠ 0) gives us the same information as in Fig. 2 

(𝑡 = 0), although we can see the curvature of the two main axes for the saddle.  

3 Curvature of a Vector Field 

An approximated vector field using  is not only linear but contains the Hessian matrices that 

describe the local curvature of the vector field. In this section, an approach for computing the local 

curvature of a vector field that is approximated with Jacobian and Hessian matrices is introduced.  

Using an approximation of the vector field with second order derivatives gives us the opportunity to 

compute a Jacobian matrix 𝑱𝜀  in the neighborhood of a critical point from approximated vector field : 

 𝑱𝜀 = [  
  𝜕𝑣𝑥𝜕𝑥 |𝒙0+𝜺 𝜕𝑣𝑥𝜕𝑦 |𝒙0+𝜺𝜕𝑣𝑦𝜕𝑥 |𝒙0+𝜺 𝜕𝑣𝑦𝜕𝑦 |𝒙0+𝜺]  

   ,  

where 𝜺 = [𝑒𝑥, 𝑒𝑦]𝑇 is an arbitrary direction vector pointing from the critical point 𝒙0. The matrix 𝑱𝜺 (2 × 2) in  can be rewritten using elements of 𝑱, 𝑯𝑥  and 𝑯𝑦 as: 

[  
   
 𝜕𝑣𝑥𝜕𝑥 |𝒙0 + 𝜕2𝑣𝑥𝜕𝑥2 |𝒙0 𝜀𝑥 + 12(𝜕2𝑣𝑥𝜕𝑥𝜕𝑦|𝒙0 + 𝜕2𝑣𝑥𝜕𝑦𝜕𝑥|𝒙0) 𝜀𝑦     
𝜕𝑣𝑦𝜕𝑥 |𝒙0 + 𝜕2𝑣𝑦𝜕𝑥2 |𝒙0 𝜀𝑥 + 12(𝜕2𝑣𝑦𝜕𝑥𝜕𝑦|𝒙0 + 𝜕2𝑣𝑦𝜕𝑦𝜕𝑥|𝒙0) 𝜀𝑦     

  𝜕𝑣𝑥𝜕𝑦 |𝒙0 + 𝜕2𝑣𝑥𝜕𝑦2 |𝒙0 𝜀𝑥 + 12(𝜕2𝑣𝑥𝜕𝑥𝜕𝑦|𝒙0 + 𝜕2𝑣𝑥𝜕𝑦𝜕𝑥|𝒙0) 𝜀𝑥
 𝜕𝑣𝑦𝜕𝑦 |𝒙0 + 𝜕2𝑣𝑦𝜕𝑦2 |𝒙0 𝜀𝑥 + 12(𝜕2𝑣𝑦𝜕𝑥𝜕𝑦|𝒙0 + 𝜕2𝑣𝑦𝜕𝑦𝜕𝑥|𝒙0) 𝜀𝑥 ]  

   
  .  

Assuming that 𝒗 has continuous second partial derivatives at any given point, the mixed derivatives of 𝑣𝑥 and 𝑣𝑦 in the Hessian matrix are commutative. Equation  can be simplified and rewritten as 
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 𝑱𝜀 = [  
  𝜕𝑣𝑥𝜕𝑥 |𝒙0

𝜕𝑣𝑥𝜕𝑦 |𝒙0𝜕𝑣𝑦𝜕𝑥 |𝒙0
𝜕𝑣𝑦𝜕𝑦 |𝒙0]  

  + [  
  𝜕2𝑣𝑥𝜕𝑥2 |𝒙0

𝜕2𝑣𝑥𝜕𝑥𝜕𝑦|𝒙0𝜕2𝑣𝑦𝜕𝑥2 |𝒙0
𝜕2𝑣𝑦𝜕𝑥𝜕𝑦|𝒙0]  

  𝜀𝑥 + [  
  𝜕2𝑣𝑥𝜕𝑥𝜕𝑦|𝒙0

𝜕2𝑣𝑥𝜕𝑦2 |𝒙0𝜕2𝑣𝑦𝜕𝑥𝜕𝑦|𝒙0
𝜕2𝑣𝑦𝜕𝑦2 |𝒙0]  

  𝜀𝑦  

Elements of 𝑱, 𝑯𝑥  and 𝑯𝑦 are all elements used to calculate 𝑱𝜀 in  and , so there is no need to 

compute any additional derivatives than those in . Note that the Jacobian matrix 𝑱𝜀 is for 𝜺 = [0,0]𝑇 

equal to Jacobian matrix 𝑱. The Jacobian matrix 𝑱𝜀 can be computed for any point (𝒙𝟎 + 𝜺). Therefore, 

we start by computing the eigenvectors of Jacobian matrix 𝑱 in a critical point 𝒙0.  

There are two eigenvectors (𝒖1 and 𝒖2) for a Jacobian matrix in 2𝐷. In the case that the vector field 

is circular around the critical point, we will use only the real part of the eigenvectors, i.e. 

  𝑅𝑒(𝑎 + 𝑏𝑖) = 𝑎𝐼𝑚(𝑎 + 𝑏𝑖) = 𝑏          𝑎, 𝑏 ∈ ℝ .  

To calculate the curvature of the vector field we need to compute the eigenvectors in the near 

surroundings of the critical point as will be explained later. First, we need to compute vectors pointing 

from 𝒙0 in the direction of the main axes of the vector field, i.e. 𝜺1𝐿 = − 𝑅𝑒(𝒖1)‖𝑅𝑒(𝒖1)‖ ℎ 𝜺2𝐿 = − 𝑅𝑒(𝒖2)‖𝑅𝑒(𝒖2)‖ ℎ 𝜺1𝑅 = 𝑅𝑒(𝒖1)‖𝑅𝑒(𝒖1)‖ ℎ   𝜺2𝑅 = 𝑅𝑒(𝒖2)‖𝑅𝑒(𝒖2)‖ ℎ , 

where ℎ is some small number (e.g. ℎ = 10−3 for the vector field in Fig. 2).  

In the next step, we calculate Jacobian matrix 𝑱𝜀 for all vectors computed in , i.e. the Jacobian 

matrix at points (𝒙0 + 𝜺∗∗): 𝑱1𝐿 = 𝑱𝜀(𝜺1𝐿) 𝑱2𝐿 = 𝑱𝜀(𝜺2𝐿) 𝑱1𝑅 = 𝑱𝜀(𝜺1𝑅)   𝑱2𝑅 = 𝑱𝜀(𝜺2𝑅) . 

For each Jacobian matrix in  we need to calculate the real parts of both eigenvectors and 

determine which one is pointing in almost the same direction as the original eigenvector 𝑅𝑒(𝒖1) for 𝑱1𝐿 

and 𝑱1𝑅 and determine 𝒖1𝐿 and 𝒖1𝑅, respectively; similarly eigenvector 𝑅𝑒(𝒖2) for 𝑱2𝐿 and 𝑱2𝑅 and 

determine 𝒖2𝐿 and 𝒖2𝑅. This test can be done using the dot product between original eigenvector 𝑅𝑒(𝒖𝑖), where 𝑖 = {1, 2}, and both real parts of eigenvectors for Jacobian matrix 𝑱𝑖∗ in . The closest 

two vectors, i.e. vectors with a minimal angle between them, have the greatest dot product. Therefore, 

for each directional vector in  we get one vector, thus four vectors 𝒖1𝐿, 𝒖1𝑅, 𝒖2𝐿 and 𝒖2𝑅, i.e., for 

example, 𝒖1𝐿 is computed as the following procedure: { 𝝃 1 1𝐿 , 𝝃 2 1𝐿} = 𝑅𝑒(𝑒𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟𝑠(𝑱1𝐿))  𝒖1𝐿 = { 𝝃 1 1𝐿 𝝃 1 1𝐿 ∙ 𝑅𝑒(𝒖1) > 𝝃 2 1𝐿 ∙ 𝑅𝑒(𝒖1)𝝃 2 1𝐿 𝝃 1 1𝐿 ∙ 𝑅𝑒(𝒖1) > 𝝃 2 1𝐿 ∙ 𝑅𝑒(𝒖1) . 

The curvature vectors of a vector field are computed as follows: 𝒄1 = 12ℎ ( 𝒖1𝑅‖𝒖1𝑅‖ − 𝒖1𝐿‖𝒖1𝐿‖) 𝒄2 = 12ℎ ( 𝒖2𝑅‖𝒖2𝑅‖ − 𝒖2𝐿‖𝒖2𝐿‖) . 

This is a discrete formula for curvature calculation using the difference between two unit vectors. The 

important property of the curvature vectors in  is the perpendicularity to 𝑅𝑒(𝒖1), resp. 𝑅𝑒(𝒖2), i.e. 𝒄1 ∙ 𝑅𝑒(𝒖1) = 0 𝒄2 ∙ 𝑅𝑒(𝒖2) = 0 . 

The length of the curvature vectors in  is a number that characterizes how much each of the main 

axes of the vector field is curved. In the case that both curvatures are equal to zero, then matrices 𝑯𝑥 

and 𝑯𝑦 must be zero matrices; otherwise at least one of the curvatures is nonzero.  
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4 Example of Vector Field Curvature 

The vector field around a critical point can be classified as one of the vector types [1]. This section 

presents examples of how the vector field approximated with the same Jacobian matrix changes when 

changing the Hessian matrices used to approximate the vector field around a critical point. 

An example of the vector field around a saddle point can be characterized with the following 

approximation: 𝑣𝑥 = [1.21.4]𝑇 ∙ [∆𝑥∆𝑦] + 12 𝑡 [∆𝑥∆𝑦]𝑇 ∙ [ 1.2 0.840.84 1.2 ] ∙ [∆𝑥∆𝑦]   𝑣𝑦 = [ 0.7−0.9]𝑇 ∙ [∆𝑥∆𝑦] + 12 𝑡 [∆𝑥∆𝑦]𝑇 ∙ [−2 0.60.6 2 ] ∙ [∆𝑥∆𝑦] , 

where 𝑡 ∈ ℝ is a parameter. If we continuously change the parameter 𝑡, the vector field will change 

continuously as well, i.e. there will be no discontinuity. 

 As an example, the parameter 𝑡 ∈ 〈−1; 1〉 was changed and both curvatures of the main axes 

of the vector field were calculated. It can be seen that both the curvatures change continuously (see 

results in Fig. 1). For parameter 𝑡 = 0, the vector field is approximated only with the Jacobian matrix 

part of , i.e.  𝑣𝑥 = [1.2 1.4] ∙ [∆𝑥 ∆𝑦]𝑇  𝑣𝑦 = [0.7 −0.9] ∙ [∆𝑥 ∆𝑦]𝑇 

and both the curvatures are thus equal to 0.  

 

Fig. 1. Progress of both curvatures when changing parameter 𝑡 ∈ 〈−1; 1〉 in . One curvature grows faster with a greater 

absolute value of 𝑡. This means that one main axis is more curved than the other. 

The approximated vector field represented by  can be seen for different values of parameter 𝑡 in 

Fig. 2. It can be seen that the vector field has a different phase portrait for different values 𝑡; however, 

all of them have the same description using a linear approximation of the vector field around a critical 

point.  

 𝑡 = 0 
 𝑡 = 0.33 

 𝑡 = 0.66 
 𝑡 = 1 

Fig. 2. Vector fields and their curvatures for different parameters 𝑡 in . The orange lines visualize the main axes of vector 
fields obtained from the linear part of the approximation. The black lines visualize vectors of the curvature of the main axes 

(note that they are perpendicular to the main orange axes). 
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5 Conclusion 

A new and easy algorithm for calculating the curvature of vector fields has been presented. It uses 

second order partial derivatives for an approximation of a vector field around a critical point. This 

approximation gives us a more detailed description of the vector field close to the critical point than the 

standardly used linear approximation.  

The algorithm was presented for 2𝐷 flow fields because of their simplicity and clarity, but it can in 

general be used with no modifications for 𝑁 dimensional vector flow fields. 
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CHAPTER 4. OVERVIEW OF CONTRIBUTIONS

4.8 Vector field second order derivative approximation and geomet-

rical characteristics

The paper [Smolik and Skala, 2017a] proposed a description of a vector field using the second
order derivative. This second order derivative description, i.e. the Hessian matrix and Jacobian
matrix, has some geometrical characteristic. Using both matrices (Jacobian and Hessian matrix),
one can reformulate it into a different matrix. This matrix is a description of a conic section.

The paper [Smolik and Skala, 2017c] describes the relation between the conic sections and
different types of critical points. Moreover, the conic section can be used to locate additional
critical points in the vector field, as different types of conic sections can have different number
of intersections, where each intersection represents a critical point.

Citation:

• Michal Smolik and Vaclav Skala. Vector field second order derivative approxima-
tion and geometrical characteristics.In International Conference on Computational

Science and Its Applications, pages 148–158. Springer, 2017.
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Abstract. Vector field is mostly linearly approximated for the purpose of 

classification and description. This approximation gives us only basic 

information of the vector field. We will show how to approximate the vector 

field with second order derivatives, i.e. Hessian and Jacobian matrices. This 

approximation gives us much more detailed description of the vector field. 

Moreover, we will show the similarity of this approximation with conic section 

formula. 
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1 Introduction 

The visualization of vector field topology is a problem that arises naturally when 

studying the qualitative structure of flows that are tangential to some surface. The 

knowledge of the data in a single point would be of little help when the goal is to 

obtain knowledge and understanding of the whole vector field. The individual numbers 

can be of little interest. It is the connection between them, which is important. 

Helman and Hesselink [6] introduced the concept of the topology of a planar vector 

field to the visualization community. They extracted critical points and classified them 

into sources, sinks and saddles, and integrated certain stream lines called separatrices 

from the saddles in the directions of the eigenvectors of the Jacobian matrix. Later, 

topological methods have been extended to higher order critical points [14], boundary 

switch points [10], and closed separatrices [21]. In addition, topological methods using 

classification have been applied to simplify [16], [15], smooth [20], compress [1], [7], 

compare [11] and design vector fields. 

The published research methods use for classification of critical points and vector 

field description only linear approximation of the vector field. None of it uses an 

approximation with second order partial derivatives, i.e. Hessian matrix. This 

approximation gives a more detailed description of the vector field around a critical 

point and can be used for a more detailed classification. Use of the approximation with 

Hessian matrix will be described in this paper.  
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2 Vector Field Approximation 

Vector fields [18] on surfaces [17] are important objects, which appear frequently in 

scientific simulation in CFD (Computational Fluid Dynamics) [2], [12] or modelling 

by FEM (Finite Element Method). To be visualized [5], [8], such vector fields are 

usually linearly approximated for the sake of simplicity and performance 

considerations. Other possible approximations are [3], [4], [9]. 

The vector field can be easily analyzed when having an approximation of the vector 

field near some location point. The important places to be analyzed are so called 

critical points. Analyzing the vector field behavior near these points gives us the 

information about the characteristic of the vector field. 

2.1 Critical Point 

Critical points (𝒙0) of the vector field are points at which the magnitude of the 

vector vanishes 

 𝑑𝒙𝑑𝑡 = 𝒗(𝒙) = 𝟎 , 

i.e. all components are equal to zero 

 [𝑑𝑥𝑑𝑡𝑑𝑦𝑑𝑡] = [00] . 

A critical point is said to be isolated, or simple, if the vector field is non-vanishing 

in an open neighborhood around the critical point. Thus for all surrounding points 𝒙𝜀 

of the critical point 𝒙0 the equation  does not apply, i.e. 

 𝑑𝒙𝜀𝑑𝑡 ≠ 𝟎 . 

At critical points, the direction of the field line is indeterminate, and they are the 

only points in the vector field where field lines can intersect (asymptotically). The 

terms singular point, null point, neutral point or equilibrium point are also frequently 

used to describe critical points. 

These points are important because together with the nearby surrounding vectors, 

they have more information encoded in them than any such group in the vector field, 

regarding the total behavior of the field. 

2.2 Linearization of Vector Field 

Critical points can be characterized according to the behavior of nearby tangent 

curves. We can use a particular set of these curves to define a skeleton that 

characterizes the global behavior of all other tangent curves in the vector field. An 

important feature of differential equations is that it is often possible to determine the 

113



local stability of a critical point by approximating the system by a linear system. These 

approximations are aimed at studying the local behavior of a system, where the 

nonlinear effects are expected to be small. To locally approximate a system, the Taylor 

series expansion must be utilized locally to find the relation between 𝒗 and position 𝒙, 

supposing the flow 𝒗 to be sufficiently smooth and differentiable. In such case, the 

expansion of 𝒗 around the critical points 𝒙0 is  

 𝒗(𝒙) = 𝒗(𝒙0) + 𝜕𝒗𝜕𝒙 (𝒙 − 𝒙0) .  

As 𝒗(𝒙0) is according to  equal zero for critical points, we can rewrite equation 

 using matrix notation 

 [𝑣𝑥𝑣𝑦] = [   
 𝜕𝑣𝑥𝜕𝑥 𝜕𝑣𝑥𝜕𝑦𝜕𝑣𝑦𝜕𝑥 𝜕𝑣𝑦𝜕𝑦 ]   

 ∙ [𝑥 − 𝑥0𝑦 − 𝑦0]  

 𝒗 = 𝑱 ∙ (𝒙 − 𝒙0) , 

where 𝑱 is called Jacobian matrix and characterizes the vector field behavior around a 

critical point 𝒙0. 

2.3 Approximation Using Hessian Matrix 

Vector fields are approximated using only linear approximation to determine the 

local behavior of the vector field. However, linearization gives as basic classification 

of the critical points and about the flow around them, the approximation using second 

order derivatives will give us some more information. 

The approximation of vector field around a critical point using the second order 

derivative must be written for each vector component (𝑣𝑥 and 𝑣𝑦) separately, see the 

following equations 

𝑣𝑥 = [  
 𝜕𝑣𝑥𝜕𝑥𝜕𝑣𝑥𝜕𝑦 ]  

 𝑇 ∙ [∆𝑥∆𝑦] + 12 [∆𝑥∆𝑦]𝑇 ∙ [   
 𝜕2𝑣𝑥𝜕𝑥2 𝜕2𝑣𝑥𝜕𝑥𝜕𝑦𝜕2𝑣𝑥𝜕𝑦𝜕𝑥 𝜕2𝑣𝑥𝜕𝑦2 ]   

 ∙ [∆𝑥∆𝑦]   

𝑣𝑦 = [  
 𝜕𝑣𝑦𝜕𝑥𝜕𝑣𝑦𝜕𝑦 ]  

 𝑇 ∙ [∆𝑥∆𝑦] + 12 [∆𝑥∆𝑦]𝑇 ∙ [   
 𝜕2𝑣𝑦𝜕𝑥2 𝜕2𝑣𝑦𝜕𝑥𝜕𝑦𝜕2𝑣𝑦𝜕𝑦𝜕𝑥 𝜕2𝑣𝑦𝜕𝑦2 ]   

 ∙ [∆𝑥∆𝑦] , 

where ∆𝑥 = 𝑥 − 𝑥0 and ∆𝑦 = 𝑦 − 𝑦0. These two equations can be written in matrix 

notation as well 
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𝑣𝑥 = 𝑱𝑥 ∙ (𝒙 − 𝒙0) + 12 (𝒙 − 𝒙0)𝑇 ∙ 𝑯𝑥 ∙ (𝒙 − 𝒙0)   

𝑣𝑦 = 𝑱𝑦 ∙ (𝒙 − 𝒙0) + 12 (𝒙 − 𝒙0)𝑇 ∙ 𝑯𝑦 ∙ (𝒙 − 𝒙0) , 

where 𝑯𝑥 and 𝑯𝑦 are Hessian matrices, 𝑱𝑥 is the first row of Jacobian matrix and 𝑱𝑦 is 

the second row of Jacobian matrix. 

The Hessian matrix is a square matrix of second-order partial derivatives of a 

scalar-valued function, or scalar field. It describes the local curvature of a function of 

many variables. 

Approximation of vector field using  and  gives us more detailed description 

than approximation of vector field using , see Fig. 1. The approximation in Fig. 1 

(right) gives us the same information like in Fig. 1 (left), although we can see the 

curvature of the two main axis for the saddle.  

  

Fig. 1. Comparison between the phase portraits for the vector field approximated using linear 

approximation (left) and using second order derivative (right). 

Equations  and  can be rewritten in different formulas as follows 

𝑣𝑥 = 12 [∆𝑥 ∆𝑦 1] ∙
[  
   
 𝜕2𝑣𝑥𝜕𝑥2 𝜕2𝑣𝑥𝜕𝑥𝜕𝑦 𝜕𝑣𝑥𝜕𝑥𝜕2𝑣𝑥𝜕𝑦𝜕𝑥 𝜕2𝑣𝑥𝜕𝑦2 𝜕𝑣𝑥𝜕𝑦𝜕𝑣𝑥𝜕𝑥 𝜕𝑣𝑥𝜕𝑦 0 ]  

   
 
∙ [∆𝑥∆𝑦1 ] , 

115



𝑣𝑦 = 12 [∆𝑥 ∆𝑦 1] ∙
[  
   
 𝜕2𝑣𝑦𝜕𝑥2 𝜕2𝑣𝑦𝜕𝑥𝜕𝑦 𝜕𝑣𝑦𝜕𝑥𝜕2𝑣𝑦𝜕𝑦𝜕𝑥 𝜕2𝑣𝑦𝜕𝑦2 𝜕𝑣𝑦𝜕𝑦𝜕𝑣𝑦𝜕𝑥 𝜕𝑣𝑦𝜕𝑦 0 ]  

   
 
∙ [∆𝑥∆𝑦1 ] . 

These two equations have some geometrical background. When 𝑣𝑥 and 𝑣𝑦 are equal 

zero, each equation describes some conic section. 

Approximation of the vector field using Hessian matrix, i.e. using second order 

derivatives, is a bit more computationally expensive than the standard linear 

approximation but gives us more detailed description of the vector field as will be seen 

in the following chapters. 

Conic Section. 
A conic is the curve obtained as the intersection of a plane, called the cutting plane, 

with a double cone, see Fig. 2. Planes that pass through the vertex of the cone will 

intersect the cone in a point, a line or a pair of intersecting lines. These are called 

degenerate conics and some authors do not consider them to be conics at all.  

There are three types of non-degenerated conics, the ellipse, parabola, and 

hyperbola, see Fig. 2. The circle is a special kind of ellipse. The circle and the ellipse 

arise when the intersection of the cone and plane is a closed curve. The circle is 

obtained when the cutting plane is parallel to the plane of the generating circle of the 

cone, this means that the cutting plane is perpendicular to the symmetry axis of the 

cone. If the cutting plane is parallel to exactly one generating line of the cone, then 

the conic is unbounded and is called a parabola. In the remaining case, the figure is a 

hyperbola. In this case, the plane will intersect both halves of the cone, producing two 

separate unbounded curves. 

 

Fig. 2. Types of conic sections, i.e. parabola, circle and ellipse, and hyperbola. 
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A conic section is described by the following implicit equation [𝑥 𝑦 1] ∙ [𝑎11 𝑎12 𝑎13𝑎21 𝑎22 𝑎23𝑎31 𝑎32 𝑎33] ∙ [𝑥𝑦1] = 0 . 

where 𝑎𝑖𝑗  𝑖, 𝑗 ∈ {1, 2, 3} are coefficients of conic section. Depending on these values, 

we can classify the types of conic sections. To do that, we need to compute two 

determinants Ω = |𝑎11 𝑎12 𝑎13𝑎21 𝑎22 𝑎23𝑎31 𝑎32 𝑎33|   

ω = |𝑎11 𝑎12𝑎21 𝑎22|  . 

When knowing determinants Ω and ω we can easily classify the type of conic section 

using the following table 

Table 1: Classification of conic section. 

 ω ≠ 0 ω = 0 Ω ≠ 0 
ω > 0 ω < 0 

parabola 
ellipse hyperbola Ω = 0 pair of intersecting lines pair of parallel lines 

 

Equations  and  are the same as  when 𝑣𝑥 = 0 and 𝑣𝑦 = 0 and 

therefore they geometrically represent conic sections. 

3 Classification of Critical Points 

There exist a finite set of fundamentally different critical points, defined by the 

number of inflow and outflow directions, spiraling structures etc., and combinations of 

these. Since the set is finite, each critical point can be classified. Such a classification 

defines the field completely in a close neighborhood around the critical point. By 

knowing the location and classification of critical points in a vector field, the topology 

of the field is known in small areas around these. Assuming a smooth transition 

between these areas, one can construct a simplified model of the whole vector field. 

Such a simplified representation is useful, for instance, in compressing vector field 

data into simpler building blocks [13]. 

The critical points are classified based on the vector field around that point. The 

information derived from the classification of critical points aids the information 

selection process when it comes to visualizing the field. By choosing seed points for 

field lines based on the topology of critical points, field lines encoding important 

information is ensured. A more advanced approach is to connect critical points, and use 

the connecting lines and surfaces to separate areas of different flow topology [1], [19]. 
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3.1 Standard Classification Using a Linear Approximation 

The fact that a linear model can be used to study the behavior of a nonlinear system 

near a critical point is a powerful one [1]. We can use the Jacobian matrix to 

characterize the vector field and the behavior of nearby tangent curves, for 

nondegenerate critical point. 

The eigenvalues and eigenvectors of Jacobian matrix are very important for vector 

field classification and description (see Fig. 3). A real eigenvector of the Jacobian 

matrix defines a direction such that if we move slightly from the critical point in that 

direction, the field is parallel to the direction we moved. Thus, at the critical point, the 

real eigenvectors are tangent to the trajectories that end on the point. The sign of the 

corresponding eigenvalue determines whether the trajectory is outgoing (repelling) or 

incoming (attracting) at the critical point. The imaginary part of an eigenvalue denotes 

circulation about the point. 

 

Fig. 3. Classification of 2𝐷 first order critical points. 𝑅1, 𝑅2 denote the real parts of the eigenvalues of the 

Jacobian matrix while 𝐼1, 𝐼2 denote their imaginary parts (from [1]). 

3.2 Classification Using Description of Conic Sections 

Each vector field can be approximated at a critical point with the approximation 

that uses the second order derivatives, i.e. Hessian matrix. One such example of 

approximated vector field around a critical point 𝒙0 = [0, 0]𝑇 can be 𝑣𝑥 = 12 [∆𝑥 ∆𝑦 1] ∙ [−1 1 11 −1 21 2 0] ∙ [∆𝑥∆𝑦1 ] , 

 
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𝑣𝑦 = 12 [∆𝑥 ∆𝑦 1] ∙ [ 0 0 −10 0 1.5−1 1.5 0 ] ∙ [∆𝑥∆𝑦1 ] . 

Equation  represents for 𝑣𝑥 = 0 a parabola and  for 𝑣𝑦 = 0 a line. This 

approximated vector field can be seen in Fig. 4. 

Now, we showed conic sections that have only one intersection point at [0, 0]𝑇. 

Two conic sections can have up to four intersections. Each intersection defines a 

critical point. Therefore, we can approximate a vector field around one critical point 

and some more critical points in the neighborhood will be included in this 

approximation. 

 

Fig. 4. Vector field approximated as  and . The zero iso-lines are a line and a parabola. 

Vector fields around a focus critical point can be for some real vector field 

approximated for example as 𝑣𝑥 = 12 [∆𝑥  ∆𝑦  1] ∙ [ 1 −3 1−3 1 21 2 0] ∙ [∆𝑥∆𝑦1 ]     𝑣𝑦 = 12 [∆𝑥  ∆𝑦  1] ∙ [ 0 0 −10 0 1.5−1 1.5 0 ] ∙ [∆𝑥∆𝑦1 ] 


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𝑣𝑥 = 12 [∆𝑥  ∆𝑦  1] ∙ [−0.5 0.5 10.5 −0.5 21 2 0] ∙ [∆𝑥∆𝑦1 ]     𝑣𝑦 = 12 [∆𝑥  ∆𝑦  1] ∙ [−1 1 −11 −1 1.5−1 1.5 0 ] ∙ [∆𝑥∆𝑦1 ] 



This both approximations of vector fields describe behavior around a focus critical 

point at [0, 0]𝑇. Both of them contain one more critical point, which is a saddle 

critical point. These saddle critical points do not have to be real critical points of the 

approximated vector field, but they can be present in the vector field. Therefore, this 

approximation can give us some information about other possible critical points in the 

neighborhood of approximated critical point 𝒙0. When locating all critical points in 

the vector field, we can use this information to increase the probability of finding all 

critical points. 

   

Fig. 5. Vector field approximated as  (left) and  (right). The zero iso-lines are a line and a 
hyperbola (left), or two parabolas (right). 

The maximal number of two conic sections intersection points is four. In the next 

example, we will show it. Let us have a vector field, which can be approximated at 

point 𝒙0 for example as 𝑣𝑥 = 12 [∆𝑥  ∆𝑦  1] ∙ [−0.25 0 10 −1 21 2 0] ∙ [∆𝑥∆𝑦1 ]       𝑣𝑦 = 12 [∆𝑥  ∆𝑦  1] ∙ [−1 1 −11 −1 1.5−1 1.5 0 ] ∙ [∆𝑥∆𝑦1 ] 
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𝑣𝑥 = 12 [∆𝑥  ∆𝑦  1] ∙ [1 1 11 2 21 2 0] ∙ [∆𝑥∆𝑦1 ]     𝑣𝑦 = 12 [∆𝑥  ∆𝑦  1] ∙ [ 1 −1 −1−1 1.5 1.5−1 1.5 0 ] ∙ [∆𝑥∆𝑦1 ] 



   

Fig. 6. Vector field approximated as  (left) and  (right). The zero iso-lines are a parabola and an 
ellipse (left), or two ellipses (right). 

These two approximations  and  of vector fields are visualized in Fig. 6. It 

can be seen, that each approximation contains four critical points, i.e. one critical 

point where the vector field was approximated and three more critical points. 

4 Conclusion 

A new vector field critical points description using the second order derivatives 

approximation is described. The approximation can be rewritten in a matrix form of a 

conic section formula. We proved, that approximation using Hessian matrix, rather 

than only Jacobian matrix, gives us better representation of a vector field and it can 

help with localization of critical points in a vector field. 
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CHAPTER 4. OVERVIEW OF CONTRIBUTIONS

4.9 Vector field interpolation with Radial basis functions

The main vector field behavior can be described using critical points. The paper [Smolik and
Skala, 2016a] presents an approach for RBF vector field approximation. This approach selects
important locations and vectors in the vector field and use it for the RBF interpolation to represent
the approximation of the input vector field. The selected locations and vectors are located at the
position of critical points and then in the surrounding of those critical points.

The interpolation of only a few selected vectors results in a very high compression of the
vector field, while still preserving the main flow of the vector field.
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Abstract

This paper presents a new approach for the Radial Basis Function (RBF) interpolation of a vector field. Standard

approaches for interpolation randomly select points for interpolation. Our approach uses the knowledge of vector

field topology and selects points for interpolation according to the critical points location. We presents the results

of interpolation errors on a vector field generated from an analytical function.

Categories and Subject Descriptors (according to ACM CCS): G.1.1 [Numerical analysis]: Interpolation—
Interpolation formulas

1. Introduction

Interpolation is probably the most frequent operation used in
computational methods. Several methods have been devel-
oped for data interpolation, but they expect some kind of data
"ordering", e.g. structured mesh, rectangular mesh, unstruc-
tured mesh, etc. However, in many engineering problems,
data are not ordered and they are scattered in d−dimensional
space, in general. Usually, in technical applications, the scat-
tered data are tessellated using triangulation but this ap-
proach is quite prohibitive for the case of d−dimensional
data interpolation because of the computational cost.

Interpolating scattered vector data on a surface becomes
frequent in applied problem solutions. There are applications
for vector field decomposition [EJF09], for vector field de-
sign system for surfaces that allows the user to control the
number of singularities in the vector field and their place-
ment [ZMT06]. [MZT∗14] uses the vector field interpola-
tion for estimating robust point correspondences between
two sets of points.

2. Vector Field

Vector fields on surfaces are important objects, which ap-
pear frequently in scientific simulation in CFD (Computa-
tional Fluid Dynamics) or modeling by FEM (Finite Ele-
ment Method). To be visualized, such vector fields are usu-
ally linearly approximated for the sake of simplicity and per-
formance considerations.

The vector field can be easily analyzed when having an
approximation of the vector field near some location point.

The important places to be analyzed are so called critical
points. Analyzing the vector field behavior near these points
gives us the information about the characteristic of the vector
field.

2.1. Critical Point

Critical points xxx0 of the vector field are points at which the
magnitude of the vector vanishes

dxxx

dt
= vvv(xxx) = 000, (1)

i.e. all components are equal to zero
[

dx
dt

dy
dt

]

=

[

0

0

]

. (2)

A critical point is said to be isolated, or simple, if the vec-
tor field is non vanishing in an open neighborhood around
the critical point. Thus for all surrounding points xxxε of the
critical point xxx0 the equation (1) does not apply, i.e.

dxxxε

dt
6= 000, (3)

At critical points, the direction of the field line is indeter-
minate, and they are the only points in the vector field were
field lines can intersect (asymptotically). The terms singular
point, null point, neutral point or equilibrium point are also
frequently used to describe critical points.

These points are important because together with the
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nearby surrounding vectors, they have more information en-
coded in them than any such group in the vector field, re-
garding the total behavior of the field.

2.2. Linearization of Vector Field

Critical points can be characterized according to the behav-
ior of nearby tangent curves. We can use a particular set of
these curves to define a skeleton that characterizes the global
behavior of all other tangent curves in the vector field. An
important feature of differential equations is that it is often
possible to determine the local stability of a critical point
by approximating the system by a linear system. These ap-
proximations are aimed at studying the local behavior of a
system, where the nonlinear effects are expected to be small.
To locally approximate a system, the Taylor series expansion
must be utilized locally to find the relation between vvv and po-
sition xxx, supposing the flow vvv to be sufficiently smooth and
differentiable. In such case, the expansion of vvv around the
critical points xxx0 is

vvv(xxx) = vvv(xxx0)+
∂vvv

∂xxx
(xxx− xxx0). (4)

As vvv(xxx0) is according to (1) equal zero for critical points, we
can rewrite equation (4) using matrix notation

[

vx

vy

]

=





∂vx

∂x
∂vx

∂y

∂vy

∂x

∂vy

∂y





[

x− x0

y− y0

]

(5)

vvv = JJJ · (xxx− xxx0), (6)

where JJJ is called Jacobian matrix and characterizes the vec-
tor field behavior around a critical point xxx0.

2.3. Classification of Critical Points

There exist a finite set of fundamentally different critical
points, defined by the number of inflow and outflow direc-
tions, spiraling structures etc., and combinations of these.
Since the set is finite, each critical point can be classified.
Such a classification defines the field completely in a close
neighborhood around the critical point. By knowing the lo-
cation and classification of critical points in a vector field,
the topology of the field is known in small areas around
these. Assuming a smooth transition between these areas,
one can construct a simplified model of the whole vector
field. Such a simplified representation is useful, for instance,
in compressing vector field data into simpler building blocks
[PS97].

The critical points are classified based on the vector field
around these points. The information derived from the clas-
sification of critical points aids the information selection
process when it comes to visualizing the field. By choosing
seed points for field lines based on the topology of critical
points, field lines encoding important information is ensured.

Figure 1: Classification of 2D first order critical points. R1,
R2 denote the real parts of the eigenvalues of the Jaco-
bian matrix while I1, I2 denote their imaginary parts (from
[HH89]).

A more advanced approach is to connect critical points, and
use the connecting lines and surfaces to separate areas of
different flow topology [HH89], [WTS∗05].

The fact that a linear model can be used to study the be-
havior of a nonlinear system near a critical point is a pow-
erful one [HH89]. We can use the Jacobian matrix to char-
acterize the vector field and the behavior of nearby tangent
curves, for nondegenerate critical point.

The eigenvalues and the eigenvectors of Jacobian matrix
are very important for vector field classification and descrip-
tion, see Figure 1. A real eigenvector of the Jacobian ma-
trix defines a direction such that if we move slightly from
the critical point in that direction, the field is parallel to
the direction we moved. Thus, at the critical point, the real
eigenvectors are tangent to the trajectories that end on the
point. The sign of the corresponding eigenvalue determines
whether the trajectory is outgoing (repelling) or incoming
(attracting) at the critical point. The imaginary part of an
eigenvalue denotes circulation about the point.

3. Radial Basis Functions

The Radial basis functions (RBF) is a technique for scat-
tered data interpolation [PS11] and approximation [Fas07],
[Ska15]. The RBF interpolation and approximation is com-
putationally more expensive, because input data are not or-
dered and there is no known relation between them. Al-
though the RBF has higher computational cost, it can be
used for d-dimensional problem solution in many applica-
tions, e.g. solution of partial differential equations, image re-
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construction, neural networks, fuzzy systems, GIS systems,
optics etc.

The RBF is a function whose value depends only on the
distance from some center point. Due to the use of the dis-
tance functions, the RBFs can be easily implemented to re-
construct the surface using scattered data in 2D, 3D or higher
dimensional spaces. It should be noted that the RBF interpo-
lation is not separable.

Radial function interpolants have a nice property of be-
ing invariant under all Euclidean transformations, i.e. trans-
lations, rotations and reflections. It means that it does not
matter whether we first compute the RBF interpolation func-
tion and then apply a Euclidean transformation, or if we first
transform all the data and then compute the radial function
interpolants. This is result of the fact that Euclidean transfor-
mations are characterized by orthogonal transformation ma-
trices and are therefore 2 norm invariant. Radial basis func-
tions can be divided into two groups according to their influ-
ence. First group are "global" RBF [Sch79], for example:

Thin Plate Spline (TPS) ϕ(r) = r
2 logr

Gauss function ϕ(r) = e
−(εr)2

Inverse Quadric (IQ) ϕ(r) =
1

1+(εr)2

Inverse Multiquadric (IMQ) ϕ(r) =
1

√

1+(εr)2

Multiquadric (MQ) ϕ(r) =
√

1+(εr)2

(7)

where ε is the shape parameter of radial basis function
[FP08].

The "local" RBF were introduced by [Wen06] as Com-
pactly Supported RBF (CSRBF) and satisfy the following
condition

ϕ(r) = (1− r)
q
+P(r) =

{

(1− r)qP(r) 0 ≤ r ≤ 1

0 r > 1
(8)

where P(r) is a polynomial function and q is a parameter.
Typical examples of CSRBF are

ϕ1(r) = (1− εr)+

ϕ2(r) = (1− εr)3
+(3εr+1)

ϕ3(r) = (1− εr)5
+(8(εr)2 +5εr+1)

ϕ4(r) = (1− εr)2
+

ϕ5(r) = (1− εr)3
+(4εr+1)

ϕ6(r) = (1− εr)6
+(35(εr)2 +18εr+3)

ϕ7(r) = (1− εr)8
+(32(εr)3 +25(εr)2 +8εr+1)

ϕ8(r) = (1− εr)3
+

ϕ9(r) = (1− εr)3
+(5εr+1)

ϕ10(r) = (1− εr)7
+(16(εr)2 +7εr+1)

(9)

where ε is the shape parameter of radial basis function, see
Figure 2 for visualization of (9).

Figure 2: Examples of CSRBF (from [US04])

3.1. Radial Basis Function Interpolation

The RBF interpolation was originally introduced by [Har71]
and is based on computing the distance of two points in the
k-dimensional space and is defined by a function

f (xxx) =
M

∑
j=1

λ jϕ(
∥

∥xxx− xxx j

∥

∥) (10)

where λ j are weights of the RBFs, M is the number of the
radial basis functions, i.e. the number of interpolation points,
and ϕ is the radial basis function. For a given dataset of
points with associated values, i.e. in the case of scalar val-
ues {xxxi,hi}

M
1 , the following linear system of equations is ob-

tained

hi = f (xxxi) =
M

∑
j=1

λ jϕ(
∥

∥xxxi − xxx j

∥

∥)

for ∀i ∈ {1, . . . ,M} (11)

where λ j are weights to be computed, see Figure 3 for visual
interpretation of (10) or (11) for a 2 1

2 D function.

Equation (11) can be rewritten in a matrix form as

AAAλλλ = hhh (12)

where matrix AAA is symmetrical, as
∥

∥xxxi − xxx j

∥

∥=
∥

∥xxx j − xxxi

∥

∥.

The RBF interpolation can be done using "global" or "lo-
cal" functions. When using "global" radial basis functions
the matrix AAA will be full, but when using "local" radial basis
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(a) (b)

(c)

Figure 3: Data values {xxxi,hi}
M
1 (Figure 3a), the RBF collo-

cation functions (Figure 3b), the resulting interpolant (Fig-
ure 3c). (From [FW09]).

functions the matrix AAA will be sparse, which can be benefi-
cial when solving the system of linear equations AAAλλλ = hhh.

In the case of the vector data, i.e. {xxxi,hhhi}
M
1 values hhhi are

actually vectors, the RBF is to be performed for each coor-
dinate of hhhi.

4. Vector Field RBF Approximation

Vector fields are results of numerical simulations or data
measuring process. This kind of vector field data has dis-
crete representation, but an analytical formula describing the
vector filed is much more useful. We will show how to ap-
proximate a vector field using radial basis functions.

A very important future of a vector field are its critical
points. The interpolation must preserve positions and types
of all critical points. Thus, the RBF interpolation should in-
terpolate the vector field at all positions of critical points to
preserve their positions. To preserve their types, we should
include few more points in the neighborhood of each critical
point to the interpolation. The number of points in the neigh-
borhood was experimentally chosen to be 4, as more points
does not improve the interpolation in any significant way.
Points in the neighborhood of a critical point xxx0 = [x0,y0]

T

are chosen using the following formula




P
(k)
x

P
(k)
y



=

[

x0 + r sin(k π
2 )

y0 + r cos(k π
2 )

]

. (13)

where k ∈ {0,1,2,3} and r is a small number depending on

the distance of critical points, where the distance to the near-
est critical point should be ≫ r.

This set of critical points together with their neighborhood
points can be interpolated using RBF (11), note that each
component of vectors vvv = [vx,vy]

T is interpolated separately.
This interpolation will preserve the location of critical points
together with their types.

To get more accurate interpolation formula of a vector
field at points xxx ∈ [xmin,xmax]× [ymin,ymax] we can include
some more random points from this interval into the interpo-
lation. The improvement of quality depending on the number
of additionally included points will be shown in the follow-
ing chapter.

5. Results

The results will be demonstrated on an analytical vector
field, as we can measure the interpolation errors precisely.
The analytical vector field, that we choose as an example, is
described with the following equation

[

vx

vy

]

=

[

x( 1
2 x2 + 1

2 )+ y(−x+( 1
2 y−1)y+ 1

2 )

1
2 x2y+ x(− 1

2 y2 + y− 1
2 )+

1
2 y−1

]

(14)

this vector field (14) has three critical points xxx0

source location: xxx0 = [−1,1]T

source location: xxx0 = [1,1]T

saddle location: xxx0 = [0.543689,1.83929]T .

(15)

The vector field (14) will be interpolated and tested on
interval [−2,2]× [−1,3], as all important features will be
visible. The RBF function used for interpolation is a Gauss
radial basis function and the shape parameter ε was experi-
mentally selected as ε = 1.

Vector field (14) can be interpolated using 3 critical point
positions and 12 more neighborhood points, i.e. 4 neighbor-
hood points for each critical point. The neighborhood points
are computed with (13) and the parameter r = 0.1. The vx

component of the vector field is interpolated with one RBF
and the vy component of the vector field is interpolated with
one RBF as well. The phase portrait of original analytical
vector field (14) is visualized in Figure 4a and the phase por-
trait of RBF interpolated vector field is visualized in Fig-
ure 4b. It can be seen, that both phase portraits look very
similar and have the same vector field topology. Moreover,
the critical points location is identical, as the average length
of displacement error for all critical points is 7.0283 · 10−8,
which is only a numerical error of the critical points location
algorithm.

We computed the interpolation error for vx and vy and
visualized it in Figure 5. It can be seen that the interpo-
lation error is getting higher as the distance from critical
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(a)

(b)

Figure 4: Phase portrait of the vector field (14) (Figure 4a)
and phase portrait of a RBF interpolation using only 15 refer-
ence points (3 critical points plus three times 4 neighborhood
points) (Figure 4b).

points increases. The average error of vector length at in-
terval [−2,2]× [−1,3] is 1.7943 (the vector length varies
from 0 to 12.6194) and the average error of vector angular
displacement is 0.1966 [rad].

The vector field (14) was interpolated using 3 critical
points locations plus three times 4 neighborhood points.
We can include few more randomly distributed points into
the interpolation to reduce the distance error from (14).
We choose to generate additional 85 points from interval
[−2,2]× [−1,3], so the interpolation of vector field will con-
tain 102 points in total. This interpolation of vector field is

(a)

(b)

Figure 5: Interpolation error of RBF interpolation using only
15 reference points (3 critical points plus three times 4
neighborhood points). Interpolation error of vx (Figure 5a)
and interpolation error of vy (Figure 5b).

visualized in a phase portrait, see Figure 6 and Figure 4a for
comparison with original phase portrait.

We computed the interpolation error for vx and vy and vi-
sualized it in Figure 7. It can be seen that the interpolation
error is close to zero except for locations on the border. The
average error of vector length at interval [−2,2]× [−1,3] is
0.0549 (note that the vector length varies from 0 to 12.6194)
and the average error of vector angular displacement is
0.0065 [rad].

The average vector length error and the average vector an-
gular displacement error were measured for different num-
ber of interpolated points. A number of points k is used as
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Figure 6: Phase portrait of a vector field RBF interpolation of
(14) using 100 reference points (3 critical points plus three
times 4 neighborhood points plus 85 randomly distributed
points).

added points for the RBF interpolation, thus the RBF in-
terpolation uses (k + 3 + 3 · 4) points for interpolation of
vector field, i.e. k randomly distributed points from inter-
val [−2,2]× [−1,3] plus 3 critical points plus three times
4 neighborhood points. Number k was tested from 0 to 400
fifty times for each k with step ∆k = 1 and results are visu-
alized in Figure 8.

It can be seen that both errors in Figure 8 decrease with
increasing number k of added points for the interpolation of
vector field. According to the required accuracy of the inter-
polation, the user can select the minimal necessary number
of added points and perform the interpolation according to
the algorithm proposed.

6. Conclusions

We presented a new and easy to implement approach for
the vector field approximation using radial basis functions.
In general, it can be used in any d−dimensional space, al-
though the results were presented only for 2D vector field.
The proposed RBF interpolation proved the ability to ap-
proximate a vector field when preserving the location of crit-
ical points and the vector field topology as well.

The proposed approach offers not only analytical descrip-
tion of the discrete data of vector field, but also a signifi-
cant data compression. This might be a significant feature
for "progressive vector field visualization" approach.

In future, the proposed approach will be deeply explored
for t−varying data sets together with other aspects for very

(a)

(b)

Figure 7: Interpolation error of RBF interpolation using 100
reference points (3 critical points plus three times 4 neigh-
borhood points plus 85 randomly distributed points). Inter-
polation error of vx (Figure 7a) and interpolation error of vy

(Figure 7b).

large vector field data set interpolation. The more sophisti-
cated placement of interpolation points around critical points
will be deeply explored as well.
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Figure 8: Average errors of the RBF interpolation of vector field (14) using k added reference points, i.e. 3 critical points plus
three times 4 neighborhood points plus k randomly distributed points, where k ∈ {0, . . . ,400}. The vector field length error,
note that the vector length varies from 0 to 12.6194 (Figure 8a) and the vector field angular displacement error (Figure 8b).
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CHAPTER 4. OVERVIEW OF CONTRIBUTIONS

4.10 Vector field RBF interpolation on a sphere

The wind flow on the surface of the Earth is basically the flow on a sphere. Traditional methods
Radial basis functions interpolation or approximation on a sphere use the standard Euclidean
distance. However, the paper [Smolik and Skala, 2016b] propose a different approach. When
interpolating the vector field on a sphere, it is more accurate to use as the distance for radial basis
functions, the distance of the shortest path over the surface of the sphere.

The resulting vector field is interpolated more accurately when using the shortest distance
over the surface of a sphere compared to the standard Euclidean distance. Moreover, this ap-
proach is much more natural and correct.
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ABSTRACT 

This paper presents a new approach for Radial Basis Function (RBF) interpolation on a sphere. Standard approaches use 

the Euclidian metrics for the distance calculation of two points. However, for interpolation on a sphere, more naturally is 

computation of the distance as the shortest distance over the surface on a sphere, i.e. spherical distance of two points is 

more natural for interpolation on a sphere. We present the results on synthetic and real wind vector datasets on a globe.  

KEYWORDS 

Vector field, Radial Basis Functions, interpolation on sphere, visualization, spherical distance. 

1 INTRODUCTION 

Interpolation is probably the most frequent operation used in computational methods. Several methods have 

been developed for data interpolation, but they expect some kind of data “ordering”. Usually, in technical 

applications, the scattered data are tessellated using triangulation, but this approach is quite prohibitive for 

the case of 𝑘-dimensional data interpolation because of the computational cost. 

Interpolating scattered vector data on a surface becomes frequent in applied problem solutions [Turk, G., 

O'Brien, J.F., 2002]. When the underlying manifold is a sphere, there are applications to geodesy [Aguilar, F. 

J., et al, 2005], meteorology [Eldrandaly, K. A., Abu-Zaid, M. S., 2011], astrophysics, geophysics, 

geosciences [Flyer, N. et al, 2014], and other areas. Radial basis function interpolation on a sphere 

[Golitschek, M. V., Light, W. A., 2001], [Baxter, B. J., Hubbert, S., 2001] has the advantage of having a 

continuous interpolant all over the sphere, as there are no borders.  

2 RADIAL BASIS FUNCTIONS ON A SPHERE 

Radial basis functions (RBF) is a technique for scattered data interpolation [Pan, R. and Skala, V., 2011] and 

approximation [Fasshauer, G.E., 2007].  

Radial basis function interpolation can be computed on a sphere and has some advantages. There are no 

non-physical boundaries and there are no problems with interpolation on the poles, i.e. the sphere has no 

boundaries, and the vector field can be interpolated on the whole sphere surface at once. The other advantage 

is that there are no coordinate singularities and the maximal distance of any two points has an upper limit.  

The calculation of the distance 𝑟 between two points 𝒙1 and 𝒙2 on a sphere can be computed as the 

Euclidian distance between these two points  

 𝑟 = ‖𝒙1 − 𝒙2‖ = √(𝒙1 − 𝒙2)𝑇 ∙ (𝒙1 − 𝒙2) . (1) 

In cases where both points lie on a unit sphere, then 𝑟 ∈ 〈0; 2〉. 
Another possibility is to compute the distance as the shortest distance between two points 𝒙1 and 𝒙2 on 

the surface of a sphere, measured along the surface of the sphere. The distance is computed using  

 𝑟 = ‖𝒙1 − 𝒙2‖𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 = cos−1(𝒏1 ∙ 𝒏2) , (2) 

where 𝑟 ∈ 〈0; 𝜋〉 and 

 𝒏1 = 𝒙1‖𝒙1‖ 𝒏2 = 𝒙2‖𝒙2‖ . (3) 

The distance 𝑟 in (2) is measured in radians. When the sphere has a radius equal to one, the computed 

distance in radians is equal to the distance measured along the surface of the sphere. 

The RBF interpolation on a sphere is computed using the same formula as standard RBF. The only 

difference compared to the standard equation for RBF interpolation is when computing the distance between 

two points, as both of these approaches can be used.  

133



2.1 Example of Vector Field on Sphere on Synthetic data 

An example of a vector field on a sphere can be described analytically. This analytical description must 

fulfill one criteria, which is that this function is continuous all over the sphere. For this purpose, we can use 

goniometric functions that have a period equal to 2𝜋, i.e. 

 sin 𝛼 = sin(𝛼 + 𝑘 ∙ 2𝜋) cos 𝛼 = cos(𝛼 + 𝑘 ∙ 2𝜋) , (4) 

where 𝑘 is an integer, i.e. 𝑘 ∈ ℤ. 

The first example of a vector field on a sphere is described using the following equations: 

 [𝑢𝑣] = [sin 4𝛿cos 4𝜃]  [𝑢𝑣] = [sin 3𝛿 + cos 4𝛿 ∙ cos 3𝛿cos 4𝜃 − sin 4𝜃 ∙ sin 3𝛿] . (5) 

where 𝛿 is an azimuth angle, i.e. 𝛿 ∈ (−𝜋; 𝜋⟩ and 𝜃 is a zenith angle, i.e. 𝜃 ∈ 〈0; 𝜋〉. Data [𝑢, 𝑣]𝑇 represents 

the direction vector on the surface of the sphere at point [𝑃𝑥 , 𝑃𝑦 , 𝑃𝑧]𝑇
: 

  [𝑃𝑥 𝑃𝑦 𝑃𝑧]𝑇 = [sin 𝜃 cos 𝛿 sin 𝜃 sin 𝛿 cos 𝜃]𝑇
. (6) 

The vector fields (5) were discretized on uniformly distributed 10 000 points on the sphere and then 

interpolated using RBF on the sphere with CSRBF with a shape parameter equal to 1: 

 φ(𝑟) = (1 − 𝑟)+4 (4𝑟 + 1) . (7) 

The interpolation, when using (2) to compute the distance 𝑟 for basis function φ(𝑟), can be seen in Figure 

2(a, b). This visualization was created with ray-tracing and line integral convolution on the sphere. 

To measure the quality of the interpolation, we can compute the mean error of speed and the mean error 

of angular displacement of vectors. The mean errors were computed for 106 randomly generated positions on 

the sphere. The results for both equations (5) and both ways of calculating the distance between two points 

can be seen in Table 1. Note that both vectors [𝑢, 𝑣]𝑇 in (5) are computed in [𝑚𝑠−1]. 
Table 1. Errors of RBF interpolated vector fields (5) on a sphere for both ways of computing distance between two points 

  Speed error [𝑚𝑠−1] Angular displacement error [𝑟𝑎𝑑] 

Euclidian distance 
  vector field (5 left) 2.452 ∙ 10−4 4.233 ∙ 10−4 

  vector field (5 right) 1.884 ∙ 10−3 2.672 ∙ 10−3 

Spherical distance 
  vector field (5 left) 1.686 ∙ 10−4 3.074 ∙ 10−4 

  vector field (5 right) 1.379 ∙ 10−3 1.906 ∙ 10−3 
 

It can be seen that the RBF interpolation when using spherical distance gives better results for both vector 

fields, i.e. more accurate speed and more accurate orientation at every location on the sphere on average, see 

Table 1. The RBF interpolation is less accurate for the vector field (5 right) than for the vector field (5 left). 

The reason is that the vector field (5 right) is significantly more complicated than (5 left). The distribution of 

speed errors and angular displacement errors is visualized in Figure 1. Histograms were created from 106 

samples and data were grouped into 71 bins. 

2.2 Real Example of Vector Field on Sphere on Experiment Data 

Numerical forecasts can predict weather as well as wind velocity and direction. For this example, one 

such prediction of the wind vector field for the whole world [US GFS global weather model] was used. This 

data contains information about wind speed and wind direction every one degree in latitude and longitude. 

Therefore, the resolution of the numerically computed dataset is 360 × 180, which is 64 800 vectors in total. 

  

Figure 1. Histogram of speed error distribution (a) and displacement error distribution (b) for a vector field (5 left). 
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Some reduction of this dataset was done, as for the North or South Pole only one vector is needed and for 

locations near these two poles, the computed vectors can be reduced as well. After the reduction, there were 62 742 vectors. This wind data were interpolated using RBF with CSRBF (7) and shape parameter 𝜀 = 1. 

The RBF interpolation was used to create the visualization of wind vector field on the sphere, Figure 2(c, d). 

CONCLUSION 

Two approaches for interpolation on a sphere using Radial Basis Functions were presented. The new 

approach uses the spherical distance as the parameter for the radial basis function computation. The proposed 

approach gives better results for interpolation on a sphere in comparison to the original standard approach 

using the Euclidian distance. The proposed method was verified on synthetic analytical datasets and non-

trivial real wind datasets of a weather forecast [US GFS global weather model]. In future, the proposed 

approach will be explored more deeply for t-varying datasets together with aspects of implementation for 

very large dataset processing. 
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a) 

 
b) c) 

 
d) 

Figure 2. Visualization of examples of vector fields. All vector fields were interpolated using RBF and visualized as LIC 

images on a sphere. Equations (5 left) (a) and (5 right) (b). Sources, resp. sinks, and saddles are clearly seen in both 

images . Both images (a, b) are visually identical to the ones with an original analytical description. Visualization of an 

RBF interpolated wind vector field from numerical simulation (c, d).  
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CHAPTER 4. OVERVIEW OF CONTRIBUTIONS

4.11 Spherical RBF vector field interpolation – experimental study

The paper [Smolik and Skala, 2017b] is and extension of [Smolik and Skala, 2016b]. It compares
different approximation errors and the condition number of interpolation matrix while using dif-
ferent shape parameters for RBF interpolation on a unit sphere. The approach is tested using the
local RBF ϕ2,1, which is C2 continuous [Wendland, 1995].

When increasing the number of interpolation points by factor υ , one can increase the shape
parameter by factor

√
υ to maintain the same ratio between interpolation error and the condition

number of interpolation matrix. The optimal shape parameter for RBF interpolation depends
on the required accuracy of the interpolation and on the required condition number of the RBF
interpolation matrix. However, each point should be covered by some number of radial basis
functions, i.e. more than 50 radial basis functions for each point according to results in [Smolik
and Skala, 2017b].
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Abstract—The Radial Basis Function (RBF) interpolation is 

a common technique for scattered data interpolation. We 

present and test an approach of RBF interpolation on a 

sphere which uses the spherical distance on the surface of 

the sphere instead of the Euclidian distance. We show how 

the interpolation of vector field data depends on the value of 

shape parameter of RBF and find the optimal shape 

parameter for our experiments. 

Keywords—Radial basis functions; vector field; 

interpolation; spherical distance; shape parameter. 

I. INTRODUCTION 

Interpolation is frequently applied operation used in 

computational methods. Several methods have been developed 

for data interpolation, but they expect some kind of data 

“ordering”, e.g. structured mesh, rectangular mesh, unstructured 
mesh etc. However, in many engineering problems, data are not 

ordered and they are scattered in 𝑘-dimensional space, in 

general. Often, in technical applications, the scattered data are 

tessellated using triangulation but this approach is quite 

prohibitive for the case of 𝑘-dimensional data interpolation 

because of the computational cost, i.e. if data is large. 

Interpolating scattered vector data on a surface becomes 

frequent in applied problem solutions. When the underlying 

manifold is a sphere, there are applications to geodesy [1], 

meteorology [3], astrophysics, geophysics, geosciences [4] and 

other areas. The radial basis function interpolation on a sphere 

[5] has the advantage of continuous interpolant all over the 

sphere, as there are no borders. 

II. VECTOR FIELD 

Vector fields on surfaces are important objects which appear 

frequently in scientific simulation in CFD (Computational Fluid 

Dynamics) [10] or modelling by FEM (Finite Element Method). 

To be visualized [6], such vector fields are usually linearly 

approximated for the sake of simplicity and performance 

considerations.  

The vector field can be easily analyzed when having an 

approximation of the vector field near some location point. The 

important places to be analyzed are so called critical points. 

Analyzing the vector field behavior near these points gives us 

the information about the characteristic of the vector field. 

A. Critical Point 

Critical points (𝒙0) of the vector field are points where the 

magnitude of the vector vanishes 

 𝑑𝒙𝑑𝑡 = 𝒗(𝒙) = 𝟎 , 

i.e. all components are equal to zero 

 [𝑑𝑥𝑑𝑡𝑑𝑦𝑑𝑡 ] = [00] . 

A critical point is said to be isolated, or simple, if the vector 

field is non-vanishing in an open neighborhood around the 

critical point. Thus, for all surrounding points 𝒙𝜀 of the critical 

point 𝒙0 the equation  does not apply, i.e. 

 𝑑𝒙𝜀𝑑𝑡 ≠ 𝟎 . 

At critical points, the direction of the field line is indeterminate, 

and they are the only points in the vector field were field lines, 

e.g. stream lines in a CFD dataset, can intersect 

(asymptotically). The terms singular point, null point, neutral 

point or equilibrium point are also frequently used to describe 

critical points. 

Critical points deliver important information about the overall 

characteristics of a vector field because together with the nearby 

surrounding vectors, they have more information encoded in 

them than any such group in the vector field, regarding the total 

behavior of the field. 

III. VECTOR FIELD INTERPOLATION 

The RBF interpolation was originally introduced by [7] and is 

based on computing the distance of two points in the 𝑘-dimensional space and is defined by a function 

 𝑓(𝒙) = ∑ 𝜆𝑗 𝜑(‖𝒙 − 𝒙𝑗‖)𝑀
𝑗=1  , (4) 

where 𝜆𝑗  are weights of the RBF, 𝑀 is number of radial basis 

functions, i.e. number of reference points, and 𝜑 is the radial 

basis function. 

The radial basis function interpolation can be computed on a 

sphere and has some advantages [2], [8]. There are any 

unphysical boundaries and there are no problems with 

interpolation on the poles, i.e. the sphere has no boundaries, and 

the vector field can be interpolated on the whole sphere surface 

at once compared to using only spherical coordinates and 

interpolation in 2𝐷. The other advantage is that there are no 

coordinate singularities and the maximal distance of any two 

points has an upper bound and the RBF interpolation does not 

need any mesh, i.e. triangulation, for interpolation.  

The RBF interpolation interpolates scalar values on a sphere. 

However the vector field is not a scalar field, the RBF 
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interpolation can be used for vector fields as well. For each 

component of the vector, we need to compute one RBF 

interpolation separately but it should be noted that the 

interpolation matrices for all component of the vector are the 

same. 

The calculation of the distance 𝑟 between two points 𝒙1 and 𝒙2 

on a sphere can be computed as the Euclidian distance between 

this two points  

𝑟 = ‖𝒙1 − 𝒙2‖𝐸𝑢𝑐𝑙𝑖𝑑𝑖𝑎𝑛     = √(𝒙1 − 𝒙2)𝑇 ∙ (𝒙1 − 𝒙2) . (5) 

In the case that both points lie on a unit sphere then 𝑟 ∈ 〈0; 2〉. 
Or the distance can be computed as the shortest distance 

between two points 𝒙1 and 𝒙2 on the surface of a sphere, 

measured along the surface of the sphere. The distance is 

computed using  

 𝑟 = ‖𝒙1 − 𝒙2‖𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 = cos−1(𝒏1 ∙ 𝒏2) , (6) 

where 𝑟 ∈ 〈0; 𝜋〉 and 

 𝒏1 = 𝒙1‖𝒙1‖ 𝒏2 = 𝒙2‖𝒙2‖ (7) 

The distance 𝑟 in (6) is measured in radians. In the case that the 

sphere has radius equal to one, the computed distance in radians 

is equal to the distance measured along the surface of the 

sphere. 

The RBF interpolation performs slightly better interpolation 

results when using spherical distance (6) compared to the RBF 

with the Euclidian distance calculation (5). For this reason we 

use only the spherical distance calculation for all our tests. 

IV. RESULTS 

For experimental verification of the proposed approach an 

analytical function is used. 

An example of a vector field on a sphere can be described 

analytically. The analytical function has to fulfill a criterion 

which is that the function must be continuous all over the sphere 

including wrapping. For this purpose we can use goniometric 

functions that have periodicity equal to 2𝜋, i.e. for example a 

vector field with the following formula  

 [𝑢𝑣] = [sin 3𝛿 + cos 4𝛿 ∙ cos 3𝛿cos 4𝜃 − sin 4𝜃 ∙ sin 3𝛿] , (8) 

where 𝛿 is an azimuth angle, i.e. 𝛿 ∈ (−𝜋; 𝜋⟩ and 𝜃 is a zenith 

angle, i.e. 𝜃 ∈ 〈0; 𝜋〉. Vector [𝑢, 𝑣]𝑇 represents a directional  

vector in the spherical coordinates on the surface of a sphere at 

point 𝑷 = [𝑃𝑥, 𝑃𝑦 , 𝑃𝑧]𝑇
  

  [𝑃𝑥𝑃𝑦𝑃𝑧 ] = [sin 𝜃 cos 𝛿sin 𝜃 sin 𝛿cos 𝜃 ] . (9) 

The vector field (8) was discretized by 10 000 uniformly 

distributed points on a surface of a sphere and then interpolated 

using RBF on sphere with Compact-Support-RBFs (CSRBF) 

[9] 

 φ(𝑟) = {(1 − 𝜀𝑟) 4(4𝜀𝑟 + 1)      𝜀𝑟 ≤ 10      𝜀𝑟 > 1 , (10) 

where 𝜀 is a shape parameter and 𝑟 is the distance measured 

over the surface of a sphere.  

We computed the RBF interpolation on a sphere of the original 

vector field (8) using 103, 5 ∙ 103 and 104 sampling points for 

different shape parameters and measured the average vector 

length error and the average angular displacement error of 

interpolated vectors. The shape parameter 𝜀 cannot be less than 1 𝜋⁄ , as the CSRBF with 𝜀 = 1 𝜋⁄  covers the whole surface of a 

unit sphere, i.e. the CSRBF with shape parameter 𝜀 > 1 𝜋⁄   

covers only a part of the sphere surface. 

The vector length error is computed using the formula  

 𝑒𝑟𝑟𝑙 = ∑ |‖𝒗̃𝑖‖ − ‖𝒗𝑖‖|𝑁𝑖=1∑ ‖𝒗𝑖‖𝑁𝑖=1  , (11) 

where 𝒗̃𝑖 is the interpolated vector and 𝒗𝑖 is the vector 

computed from the analytical function (8). The vector length 

error is visualized in Figure 1. It can be seen that the average 

error is almost identical for shape parameter 𝜀 ∈ 〈1 𝜋⁄ ;  4〉 for 5 ∙ 103 and 104 sampling points and for larger shape parameters 

the error increases. The vector length error for 103 sampling 

points is slightly higher than for 5 ∙ 103 and 104 sampling 

points and starts distinctly increasing for shape parameter 𝜀 >2. 

 

 

Figure 1: Average error of vector lengths of the RBF 

interpolation on a sphere for different shape parameters and 

different numbers of interpolated points. 

The average angular displacement error is computed using the 

formula 

 𝑒𝑟𝑟𝜑 = ∑ cos−1(𝒗̃𝑖 ∙ 𝒗𝑖)𝑁𝑖=1 𝑁 ∙ 180𝜋  . (12) 

The results of the average angular displacement error are 

visualized in Figure 2. The progress of the error is similar to 

Figure 1 and, thus, the quality of the vector field interpolation is 

almost identical for shape parameters 𝜀 ∈ 〈1 𝜋⁄ ;  4〉 for 5 ∙ 103 

and 104 sampling points and for larger shape parameters the 

error increases. The angular displacement error for 103 
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sampling points is slightly higher than for 5 ∙ 103 and 104 

sampling points and starts distinctly increasing for shape 

parameter 𝜀 > 2. 

 

 

Figure 2: Average angular displacement error [°] of vectors of 

RBF interpolation on a sphere for different shape parameters 

and different numbers of interpolated points. 

The CSRBF (10) is a “local” radial basis function, therefore, the 

RBF interpolation matrix is sparse. We varied the shape 

parameter and measured the occupancy of the interpolation 

matrix. The results can be seen in Figure 4. When the shape 

parameter is  𝜀 > 2 𝜋⁄  then more than half of the elements in the RBF 

interpolation matrix are equal zero. 

 

Figure 4: Occupancy of the interpolation matrix for the RBF 

interpolation on a unit sphere for different shape parameters. 

The RBF interpolation matrix has different condition numbers 

for different shape parameters because the occupancy of the 

matrix changes for different shape parameters. The condition 

number of this matrix is visualized in Figure 5 and it can be 

seen that the matrix is better conditioned with increasing shape 

parameter. It is justified by the fact that the occupancy of the 

RBF interpolation matrix decreases for increasing shape 

parameter.  

 

Figure 5: Condition of the RBF interpolation matrix for 

different shape parameters and different numbers of 

interpolated points. 

We performed another series of tests with a different CSRBF 

function as well. The second CSRBF used for our tests is 

 φ(𝑟) = {(1 − 𝜀𝑟) 3(3𝜀𝑟 + 1)      𝜀𝑟 ≤ 10      𝜀𝑟 > 1 , (13) 

We performed the same tests as for (10). The results of average 

vector field length error are visualized in the following graph, 

i.e. Figure 6. 
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Figure 3: Line integral convolution visualization of the RBF 

interpolated vector field (8). 
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Figure 6: Average error of vector lengths of the RBF 

interpolation on a sphere for different shape parameters and 

different numbers of interpolated points. 

The results of average angular displacement error are visualized 

in the following graph, i.e. Figure 7.  

 

 

Figure 7: Average angular displacement error [°] of vectors of 

RBF interpolation on a sphere for different shape parameters 

and different numbers of interpolated points. 

It can be seen, that the results for both CSRBF used in our tests 

are very similar. The only difference is that the RBF 

interpolation on a sphere using (10) performs slightly better 

than using (13). 

Using all the previous results we can choose the best shape 

parameter to be  𝜀 = 4 for 5 ∙ 103 and 104 sampling points and 𝜀 = 2 for 103 sampling points. For this parameters the 

interpolation errors are the smallest, the RBF interpolation 

matrix is sparse and has a rather small condition number. For 𝜀 > 4, resp. 𝜀 > 2, will increase both interpolation errors and 

for 𝜀 < 4, resp. 𝜀 > 2, will increase the occupancy and the 

condition number of RBF interpolation matrix. 

The RBF interpolated vector field (8) on a unit sphere was 

visualized using the line integral convolution, see Figure 3. The 

important property of the interpolated vector field is that for all 

shape parameters 𝜀 < 4 it preserves the type of all critical 

points in the vector field (8). And the location of all critical 

points in the interpolated vector field is almost identical to the 

locations of the critical points in the vector field (8). Thus the 

RBF interpolated vector field has the same topology as the 

vector field (8). 

V. CONCLUSION 

We presented an approach for vector field interpolation using 

radial basis functions on a sphere. The distance between two 

points is computed over the surface, as it is more natural and the 

interpolation is more accurate. The presented experiments 

showed how the interpolation error, the matrix occupancy, and 

the condition number of the interpolation matrix depends on the 

value of the shape parameter of the RBF.  
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CHAPTER 4. OVERVIEW OF CONTRIBUTIONS

4.12 A comparative study of LOWESS and RBF approximations for

visualization

A similar method for data approximation as the RBF is the LOWESS approximation. The paper
[Smolik et al., 2016] compares this two approaches and gives recommendations when using each
one from this two approximation methods.

The LOWESS approximation is more appropriate for computing the approximation value in
only few locations. When using the RBF approximation in the same manner as the LOWESS,
the RBF approximation gives worse results. However, when computing the approximation value
in many locations, it is more useful to use the RBF approximation of all input points at once as
the final approximation has lower approximation error compared to the use of LOWESS.

Moreover, in higher dimensions is the time complexity of LOWESS approximation increased
by the time complexity of finding k−nearest neighbor points. Thus the RBF approximation is
more convenient in higher dimensions.

Citation:

• Michal Smolik, Vaclav Skala, and Ondrej Nedved. A comparative study of
LOWESS and RBF approximations for visualization. In International Conference

on Computational Science and Its Applications, pages 405–419. Springer, 2016.
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A Comparative Study of LOWESS and RBF 
Approximations for Visualization 

Michal Smolik1, Vaclav Skala1 and Ondrej Nedved1 

 

1 Faculty of Applied Sciences, University of West Bohemia,  

Univerzitni 8, CZ 30614 Plzen, Czech Republic 

Abstract. Approximation methods are widely used in many fields and many 

techniques have been published already. This comparative study presents a 

comparison of LOWESS (Locally weighted scatterplot smoothing) and RBF 

(Radial Basis Functions) approximation methods on noisy data as they use 

different approaches. The RBF approach is generally convenient for high 

dimensional scattered data sets. The LOWESS method needs finding a subset of 

nearest points if data are scattered. The experiments proved that LOWESS 

approximation gives slightly better results than RBF in the case of lower 

dimension, while in the higher dimensional case with scattered data the RBF 

method has lower computational complexity. 

Keywords: Radial Basis Functions, LOWESS, Approximation 

Notation used 𝐷: dimension 𝐾: 𝑘-nearest points 𝑀: number of radial basis functions for approximation 𝑁: number of all input points 𝑅: number of points at which the approximation is calculated 𝜉: point where to calculate the approximation 𝑑: degree of polynomial 𝑟: 𝑟 = 𝑑 + 2 𝑞: 𝑞 = 𝑑 + 1 

1 Introduction 

 Interpolation and approximation techniques are often used in data processing. 

Approximation methods of values 𝒚𝑖 in the given {〈𝒙𝑖 , 𝒚𝑖〉}1𝑁 data set lead to a smooth 

function which minimizes the difference between given data and the determined 

function [13]. It can be used for visualization of noisy data [1, 2], visualization of the 

basic shape of measured/calculated data [9], for prediction, and other purposes. Many 

methods have been described together with their properties. This paper describes 

LOWESS (Locally weighted scatterplot smoothing) and RBF (Radial basis functions) 

methods and their experimental comparison.  

142



2 LOWESS 

 The locally weighted scatterplot smoothing method (LOWESS) [3] is often used, 

especially in statistical applications. The value of an approximated function at a point 𝑥0 is calculated from the formula of a curve which minimizes a sum 𝑆 in the 𝑘-nearest 

neighborhood (KNN) points of the given point 𝜉. 

 𝑆 = ∑𝜔𝑖 ∙ (𝑦𝑖 − 𝑃(𝑑)(𝑥𝑖))2𝐾
𝑖=1 , (1) 

where 𝑃(𝑑)(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2+. . . +𝑎𝑑𝑥𝑑 is a 𝑑 degree of a polynomial function 

with unknown coefficients 𝒂 = [𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑑]𝑇 . We can rewrite the sum 𝑆  in a 

matrix form as: 

 𝑆 = (𝒃 − 𝑨𝒂)𝑇 ∙ 𝑾 ∙ (𝒃 − 𝑨𝒂), (2) 

where 𝒃 = [𝑦1, 𝑦2, … , 𝑦𝐾]𝑇 is a vector of function values, matrix 𝑨 is equal to:  

 𝑨 = [  
 1 𝑥11 𝑥2 ⋯ 𝑥1𝑑𝑥2𝑑⋮ ⋱ ⋮1 𝑥𝐾 ⋯ 𝑥𝐾𝑑]  

 
 (3) 

and matrix 𝑾 is a diagonal matrix: 

𝑾 = [𝜔(‖𝑥1 − 𝜉‖)   0 𝜔(‖𝑥2 − 𝜉‖)     ⋱  0   𝜔(‖𝑥𝐾 − 𝜉‖)] = [𝜔1   0 𝜔2     ⋱  0   𝜔𝐾] , (4) 

where 𝜔(𝑟) are weighting functions, which have to satisfy the following conditions 

defined as: ∀𝑎, 𝑏 ∈ [0; 1], 𝑎 < 𝑏 ∶ 𝜔(𝑎) ≥ 𝜔(𝑏)  ∧  𝜔(0) = 1 ∧ ∀𝑐 ≥ 1: 𝜔(𝑐) = 0. (5) 

One such example of a weighting function 𝜔 can be the tricube function: 

 𝜔(𝑟 = ‖𝑥𝑖 − 𝜉‖) = 𝜔𝑖 = {(1 − 𝑟3)3  𝑟 ∈ 〈0; 1〉0  𝑟 > 1 . (6) 

Equation (2) can be modified as: 

 
𝑆 = 𝒃𝑇𝑾𝒃 − 𝒃𝑇𝑾𝑨𝒂 − (𝑨𝒂)𝑇𝑾𝒃 + (𝑨𝒂)𝑇𝑾𝑨𝒂 = 𝒃𝑇𝑾𝒃 − 𝒃𝑇𝑾𝑨𝒂 − 𝒂𝑇𝑨𝑇𝑾𝒃 + 𝒂𝑇𝑨𝑇𝑾𝑨𝒂. (7) 

The sum 𝑆 is minimal if the partial derivative of 𝑆 with respect to 𝒂 is equal to zero: 

 
𝜕𝑆𝜕𝒂 = −(𝒃𝑇𝑾𝑨)𝑇 − 𝑨𝑇𝑾𝒃 + 2𝑨𝑇𝑾𝑨𝒂 = 𝟎 (8) 

as 𝑾 = 𝑾𝑇 and therefore: 
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𝑨𝑇𝑾𝑨𝒂 = 𝑨𝑇𝑾𝒃 𝒂 = (𝑨𝑇𝑾𝑨)−1𝑨𝑇𝑾𝒃. (9) 

 The numerical stability of calculations is influenced by the position of the interval 

of the 𝑘-nearest neighborhood points of the point 𝜉. The LOWESS approximation is 

“locally” based, as only 𝑘-nearest points are used and thus 𝑟 is actually computed as 𝑟 = ‖𝑥𝑖 − 𝜉‖ . To solve problems with the numerical stability of calculations and 

independence of absolute position, we have to use relative position of all the 𝑘-nearest 

neighborhood points of the point 𝜉 such that the matrix 𝑨 from (3) is defined as: 

 𝑨 = [  
 1 (𝑥1 − 𝜉)1 (𝑥2 − 𝜉) ⋯ (𝑥1 − 𝜉)𝑑(𝑥2 − 𝜉)𝑑       ⋮ ⋱ ⋮1 (𝑥𝐾 − 𝜉) ⋯ (𝑥𝐾 − 𝜉)𝑑]  

 
 (10) 

2.1 LOWESS with linear regression 

 Linear regression, i.e. choosing 𝑑 = 1, appears to strike a good balance between 

computational simplicity and the flexibility needed to reproduce patterns in the data. In 

such a case, we can rewrite (9) as: 

 𝒂 =
[  
   ∑𝜔𝑖𝐾

𝑖=1 ∑𝜔𝑖𝑥𝑖𝐾
𝑖=1∑𝜔𝑖𝑥𝑖𝐾

𝑖=1 ∑𝜔𝑖𝑥𝑖2𝐾
𝑖=1 ]  

   
−1

∙
[  
   ∑𝜔𝑖𝑦𝑖𝐾

𝑖=1∑𝜔𝑖𝑥𝑖𝑦𝑖𝐾
𝑖=1 ]  

    (11) 

and after some adjustments we can get a final formula for unknown coefficients 𝒂: [𝑎0𝑎1] = 1(∑ 𝜔𝑖𝐾𝑖=1 ) ∙ (∑ 𝜔𝑖𝑥𝑖2𝐾𝑖=1 ) − (∑ 𝜔𝑖𝑥𝑖𝐾𝑖=1 )2
∙
[  
   (∑𝜔𝑖𝑦𝑖𝐾

𝑖=1 )(∑𝜔𝑖𝑥𝑖2𝐾
𝑖=1 ) − (∑𝜔𝑖𝑥𝑖𝐾

𝑖=1 )(∑𝜔𝑖𝑥𝑖𝑦𝑖𝐾
𝑖=1 )

−(∑𝜔𝑖𝑦𝑖𝐾
𝑖=1 )(∑𝜔𝑖𝐾

𝑖=1 𝑥𝑖) + (∑𝜔𝑖𝐾
𝑖=1 )(∑𝜔𝑖𝑥𝑖𝑦𝑖𝐾

𝑖=1 )]  
    (12) 

2.2 LOWESS with constant regression 

 Constant regression, i.e. choosing 𝑑 = 0, is the most computationally simple, but 

from a practical point of view, an assumption of local linearity seems to serve far better 

than an assumption of local constancy because the tendency is to plot variables that are 

related to one another. Thus, the linear LOWESS regression produces better results than 
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the constant LOWESS regression, which is very simple. In this case, we can rewrite it 

from (9) as: 

 𝑎0 = ∑ 𝜔𝑖𝑦𝑖𝐾𝑖=1∑ 𝜔𝑖𝐾𝑖=1  . (13) 

 Comparing formulas from (13) and (12), it can be seen that LOWESS with constant 

regression is computationally much easier than LOWESS with linear regression. 

3 Radial Basis Functions 

 Radial basis functions (RBF) [4, 11, 12] is based on distances, generally in 𝐷-dimensional space. The value of an approximated function at a point 𝒙 is calculated 

from the formula: 

 𝑓(𝑥) = ∑𝜆𝑖𝛷(‖𝑥 − 𝜉𝑖‖) + 𝑃𝑑(𝑥)𝑀
𝑖=1  , (14) 

where 𝑃(𝑑)(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2+. . . +𝑎𝑑𝑥𝑑 is a 𝑑 degree polynomial function with 

unknown coefficients 𝒂 = [𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑑]𝑇 , 𝑀  is the number of radial basis 

functions, and 𝝀 = [𝜆1, … , 𝜆𝑀] are weights of radial basis functions 𝛷(‖𝑥 − 𝜉𝑖‖). The 

function 𝛷 is a real-valued function whose value depends only on the distance from 

some other point 𝜉𝑖, called a center, so that: 

 𝛷𝑖(𝑥) = 𝛷(‖𝑥 − 𝜉𝑖‖) . (15) 

 As the values 𝑓(𝑥𝑖) at a point 𝑥𝑖 are known, equation (14) represents a system of 

linear equations that has to be solved in order to determine coefficients 𝝀 and 𝒂, i.e. 

 𝑓(𝑥𝑗) = ∑ 𝜆𝑖𝛷(‖𝑥𝑗 − 𝜉𝑖‖) + 𝑃𝑑(𝑥𝑗)𝑀
𝑖=1  for ∀𝑗 ∈ {1, … , N} . (16) 

Using matrix notation we can rewrite (16) as: 

[𝛷(‖𝑥1 − 𝜉1‖) ⋯ 𝛷(‖𝑥1 − 𝜉𝑀‖) 1 𝑥1 ⋯ 𝑥1𝑑⋮    ⋮ ⋮ ⋮    ⋮𝛷(‖𝑥𝑁 − 𝜉1‖) ⋯ 𝛷(‖𝑥𝑁 − 𝜉𝑀‖) 1 𝑥𝑁 ⋯ 𝑥𝑁𝑑] ∙
[  
   
𝜆1⋮𝜆𝑀𝑎0⋮𝑎𝑑 ]  

   = [𝑓(𝑥1)⋮𝑓(𝑥𝑁)] . (17) 

 We can create a “simple” RBF formula, see (18), using (17) with only one radial 

basis function, i.e. 𝑀 = 1 . This formula can be used in the same manner as the 

LOWESS method for calculating approximated value at the point 𝜉, using only the 𝑘-nearest neighborhood points of the point 𝜉, which is the center of radial basis function 𝜙(‖𝑥 − 𝜉‖), too.  
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 [𝛷(‖𝑥1 − 𝜉‖) 1 𝑥1 ⋯ 𝑥1𝑑⋮ ⋮ ⋮    ⋮𝛷(‖𝑥𝐾 − 𝜉‖) 1 𝑥𝐾 ⋯ 𝑥𝐾𝑑] ∙ [𝜆1𝑎0⋮𝑎𝑑] = [𝑓(𝑥1)⋮𝑓(𝑥𝐾)] →  𝑨 ⋅ 𝝀 = 𝒇 . (18) 

The coefficients 𝜼 = [𝜆1, 𝒂𝑇]𝑇 in overdetermined system of linear equations (18) are 

computed by the least squares error method: 

 𝜼 = (𝑨𝑇𝑨)−1 ⋅ (𝑨𝑇𝒇) . (19) 

 As the numerical stability of calculations is influenced by the position of the interval 

of the 𝑘-nearest neighborhood points of the point 𝜉  and the RBF approximation is 

“locally” based, only 𝑘-nearest points are used. To solve problems with the numerical 

stability of calculations, we have to move all the 𝑘-nearest neighborhood points of the 

point 𝜉 such that the matrix 𝑨 from (18) is defined as:  

 𝑨 = [𝛷(‖𝑥1 − 𝜉‖) 1 (𝑥1 − 𝜉) ⋯ (𝑥1 − 𝜉)𝑑⋮ ⋮ ⋮    ⋮𝛷(‖𝑥𝐾 − 𝜉‖) 1 (𝑥𝐾 − 𝜉) ⋯ (𝑥𝐾 − 𝜉)𝑑] (20) 

and 𝑓(𝑥) is defined as: 

 𝑓(𝑥) = 𝜆1𝛷(‖𝑥 − 𝜉‖) + 𝑃𝑑(𝑥 − 𝜉) . (21) 

 For locally-based approximation, any compactly supported radial basis function 

(CSRBF) [8, 12] can be used. CSRBF is a function defined on 𝑟 ∈ 〈0; 1〉, is equal to 0 

for all 𝑟 > 1, and has to satisfy the conditions in (5). In the tests presented here, the 𝛷(𝑟) function was selected as: 

 𝛷(𝑟) = {(1 − 𝑟3)3  𝑟 ∈ 〈0; 1〉0  𝑟 > 1  , (22) 

which is exactly the same function as weighting function (6) for LOWESS 

approximation. 

3.1 Simplified RBF with a constant polynomial 

Choosing 𝑑 = 0, we will get a polynomial of zero degree which is only a constant, i.e.; 𝑃𝑑 = 𝑎0. 

 [𝛷(‖𝑥1 − 𝜉‖) 1⋮ ⋮𝛷(‖𝑥𝐾 − 𝜉‖) 1] ⋅ [𝜆1𝑎0] = [𝑓(𝑥1)⋮𝑓(𝑥𝐾)] → 𝑨 ⋅ 𝜼 = 𝒇 . (23) 

It leads to overdetermined system of linear equations. Using the method of least 

squares, we can calculate 𝜼: 

 𝜼 = (𝑨𝑇𝑨)−1 ⋅ (𝑨𝑇𝒇) , (24) 

where 𝜼 = [𝜆1, 𝑎0]𝑇.  
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[𝜆1𝑎0] =
[  
   ∑(𝛷(‖𝑥𝑖 − 𝜉‖))2𝐾
𝑖=1 ∑𝛷(‖𝑥𝑖 − 𝜉‖)𝐾

𝑖=1∑𝛷(‖𝑥𝑖 − 𝜉‖)𝐾
𝑖=1 ∑1𝐾

𝑖=1 ]  
   
−1

⋅
[  
   ∑𝛷(‖𝑥𝑖 − 𝜉‖) ⋅ 𝑓(𝑥𝑖)𝐾
𝑖=1 ∑ 𝑓(𝑥𝑖)𝐾

𝑖=1 ]  
    , (25) 

where ∑ 1𝐾𝑖=1 = 𝐾 and after adjustments: [𝜆1𝑎0] = 1(∑ (𝛷(‖𝑥𝑖 − 𝜉‖))2𝐾𝑖=1 ) ⋅ 𝐾 − (∑ 𝛷(‖𝑥𝑖 − 𝜉‖)𝐾𝑖=1 )2 

⋅
[  
   𝐾 −∑ 𝛷(‖𝑥𝑖 − 𝜉‖)𝐾

𝑖=1−∑ 𝛷(‖𝑥𝑖 − 𝜉‖)𝐾
𝑖=1 ∑(𝛷(‖𝑥𝑖 − 𝜉‖))2𝐾

𝑖=1 ]  
   ⋅

[  
   ∑ 𝛷(‖𝑥𝑖 − 𝜉‖) ⋅ 𝑓(𝑥𝑖)𝐾
𝑖=1 ∑𝑓(𝑥𝑖)𝐾

𝑖=1 ]  
    . (26) 

The value 𝑓(𝝃) is calculated as: 

 𝑓(𝜉) = 𝜆1𝛷(‖𝜉 − 𝜉‖) + 𝑎1 = 𝜆1𝛷(0) + 𝑎0 . (27) 

3.2 Simplified RBF without a polynomial  

In the case of using simplified RBF without polynomial 𝑃𝑑 , we get the following 

equation: 

 [𝛷(‖𝑥1 − 𝜉‖)⋮𝛷(‖𝑥𝐾 − 𝜉‖)] ⋅ [𝜆1] = [𝑓(𝑥1)⋮𝑓(𝑥𝐾)] → 𝑨 ⋅ 𝜆1 = 𝒇 , (28) 

where 𝑨  and 𝒇  are column vectors. Using the method of least squares, we can 

calculate 𝜆1: 

 𝜆1 = 𝑨𝑇 ⋅ 𝒇𝑨𝑇𝑨  . (29) 

Equation (29) can be rewritten as: 

 𝜆1 = ∑ 𝛷(‖𝑥𝑖 − 𝜉‖)𝐾𝑖=1 ⋅ 𝑓(𝑥𝑖)∑ (𝛷(‖𝑥𝑖 − 𝜉‖))2𝐾𝑖=1  . (30) 

The value 𝑓(𝜉) is calculated as: 

 𝑓(𝜉) = 𝜆1𝛷(‖𝜉 − 𝜉‖) = 𝜆1𝛷(0) . (31) 
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4 Comparison of Time Complexity  

 In the following, a comparison of LOWESS and RBF will be made. The main 

criteria for comparison are: 

 The computational complexity, which is critical if many points have to be 

approximated. 

 The quality of the final approximation (see section 5). 

4.1 LOWESS 

 The size of matrix 𝑨 is 𝑘 × 𝑞, where the number of used nearest points is 𝑘 and 𝑞 

is equal to the degree of the polynomial plus 1. The size of diagonal matrix 𝑾 is 𝑘 × 𝑘, 

the size of vector 𝒃 is 𝑘 × 1 and the size of vector x is 𝑘 × 1. The time complexity of 

LOWESS using equation (9) can be calculated in the following way: 

 

𝑨𝑇𝑾𝑨 → 𝑂(𝑞2𝑘 + 𝑞𝑘)(𝑨𝑇𝑾𝑨)−1 → 𝑂(𝑞2𝑘 + 𝑞𝑘 + 𝑞3)𝑨𝑇𝑾𝒃 → 𝑂(2𝑞𝑘)(𝑨𝑇𝑾𝑨)−1𝑨𝑇𝑾𝒃 → 𝑂(𝑘(𝑞2 + 3𝑞) + 𝑞3 + 𝑞2) (32) 

As the size 𝑘  of matrix 𝑨  is much larger than the size 𝑞  of matrix 𝑨 , the time 

complexity from (32) will become: 

 
𝑂(3𝑞𝑘) 𝑓𝑜𝑟 𝑞 = {1,2}𝑂(𝑞2𝑘) 𝑓𝑜𝑟 𝑞 ≥ 3  (33) 

The time complexity of LOWESS when calculating the approximation value in 𝑅 

points will become: 

 
𝑂(𝑁 log𝑁 + 𝑅 ∙ 3𝑞𝑘) 𝑓𝑜𝑟 𝑞 = {1,2}𝑂(𝑁 log𝑁 + 𝑅 ∙ 𝑞2𝑘) 𝑓𝑜𝑟 𝑞 ≥ 3  (34) 

where 𝑁 is the number of input points and 𝑂(𝑁 log𝑁) is the time complexity of the 

sorting algorithm for 1&½ dimensional data. In the case of higher dimensions 𝐷&½, 

i.e. 𝐷 > 1 , the total time complexity of selecting 𝑘 -nearest points from 𝑁  points 

increases (see section 7 for more details). 

4.2 Simplified RBF 

 The size of matrix 𝑨 is 𝑘 × 𝑟, where the number of used nearest points is 𝑘 and 𝑟 is 

equal to the degree of the polynomial plus 2. The size of vector 𝒇 is 𝑘 × 1 and the size 

of vector 𝜼 = [𝝀𝑇 , 𝒂𝑇]𝑇 is 𝑘 × 1. The time complexity of RBF using equation (24) can 

be calculated in the following way: 
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𝑨𝑇𝑨 → 𝑂(𝑟2𝑘)(𝑨𝑻𝑨)−1 → 𝑂(𝑟2𝑘 + 𝑟3)𝑨𝑇𝒇 → 𝑂(𝑟𝑘)(𝑨𝑇𝑨)−1(𝑨𝑇𝒇) → 𝑂(𝑘(𝑟2 + 𝑟) + 𝑟3 + 𝑟2) (35) 

As the size 𝑘  of matrix 𝑨  is much larger than the size 𝑟  of matrix 𝑨 , the time 

complexity from (35) will become: 

 𝑂(𝑟2𝑘) (36) 

The time complexity of simplified RBF when calculating the approximation value in 𝑅 

points can be estimated: 

 𝑂(𝑁 log𝑁 + 𝑅 ∙ 𝑟2𝑘) (37) 

where 𝑁 is the number of input points and 𝑂(𝑁 log𝑁) is the time complexity of the 

sorting algorithm for 1&½ dimensional data. 

5 Comparison of Measured Errors  

 For a demonstration of LOWESS and RBF approximation properties, the standard 

testing function, which is considered by Hickernell and Hon [5], has been selected:  

 τ(𝑥) = 𝑒[−15((𝑥−12)2)] + 12 𝑒[−20((𝑥−12)2)] − 34 𝑒[−8((𝑥+12)2)]
 (38) 

This function was sampled at 〈−1,1〉 . We added random noise with uniform 

distribution from interval 〈−0.1, 0.1〉  and used it as input for both methods. The 

following graphs present the behavior of the LOWESS and RBF approximations.  

 

Graph 1: Comparison of LOWESS with Simplified RBF. 100 nearest samples out of 2000 total 

were used as values for approximation; sampled interval: 〈−1,1〉. 
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Function values are on the vertical axis; values on the horizontal axis are sample 

indices. Since the function is sampled at 〈−1,1〉 and the number of samples is 2000, 

the sampling rate is 1000 samples per 1 unit. 

 

Graph 2: Comparison of LOWESS with Simplified RBF. 200 nearest samples out of 2000 total 

were used as values for approximation; sampled interval: 〈−1,1〉. 

 

Graph 3: Comparison of LOWESS with Simplified RBF. 500 nearest samples out of 2000 total 

were used as values for approximation; sampled interval: 〈−1,1〉. 
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Graph 4: Comparison of LOWESS with Simplified RBF. 1000 nearest samples out of 2000 total 

were used as values for approximation; sampled interval: 〈−1,1〉. 
 The error of approximation can be measured in different ways. The first one is to 

measure the change of the first derivative, which is the curvature of the resulting curve. 

If the first derivative changes too much, then the curve is jagged; on the contrary, if the 

first derivative does not change too much, then the curve is smooth. The absolute error 

can be calculated using the formula:  

 𝐸𝑐 = ∑‖𝑓′′(𝑥𝑖)‖𝑁
𝑖=1  , (39) 

where 𝑓′′(𝑥𝑖) is calculated using the formula: 

 𝑓′′(𝑥𝑖) = 𝑓(𝑥𝑖+1 − 2𝑥𝑖 + 𝑥𝑖−1)(𝑥𝑖+1 − 𝑥𝑖)(𝑥𝑖 − 𝑥𝑖−1) , (40) 

 Let 𝒑 = [𝑥, 𝑓(𝑥)]  be the approximated point in current space ( 2𝐷  for 1&½ 

dimensions) and 𝛋 = [𝑥, τ(𝑥)] be a point of the sampled function (38), which is a set Κ = {𝛋1, … , 𝛋N} = {[𝑥1, τ(𝑥1)], … , [𝑥𝑁 , τ(𝑥𝑁)]} , then the distance error from the 

original curve without noise can be calculated as: 

𝐸𝑑 = ∑‖𝒑𝑖 − 𝝃𝑗‖,𝑁
𝑖=1 where ‖𝒑𝑖 − 𝛋𝑗‖ is minimal ∀𝑗 ∈ {1, … , N} for given 𝑖 . (41) 

Let us note that the distance is not measured vertically to the curve but “orthogonally” 
to the curve. Using formulas (39) and (41), we can show the following table of 

calculated errors. 
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Tab. 1: Measured errors for graphs Graph 1 - Graph 4 (for 𝑁 = 2000). 

 𝐸𝑐 𝐸𝑑 𝑘-nearest 

samples 
LOWESS 

Simplified 

RBF 
LOWESS 

Simplified 

RBF 

100 0.0721 1.4585 7.2997 12.5647 

200 0.0212 0.7689 10.5378 14.7898 

500 0.0132 0.3103 15.6759 40.5985 

1 000 0.0091 0.1618 45.0717 70.8979 

 Some comparison results can be seen using (Tab. 1). The LOWESS approximation 

is always smoother (according to measured error 𝐸𝑐) and closer to the original data 

without noise (according to measured error 𝐸𝑑 ) when using the same 𝑘 -nearest 

samples. 

6 Global RBF Approximation 

 Global RBF approximation can be calculated using (14). In this case, the whole data 

set has to be processed at once. Compared to the simplified version of RBF 

approximation, we only get one 𝝀 vector for all input samples and thus we solve a linear 

system only once. Moreover, we do not need to sort the input points in any way, unlike 

LOWESS and simplified RBF approximations, which were presented in previous 

sections. The global RBF approximation is calculated using the following formula 

(from (17)): 

 𝑨𝝀 = 𝒇 → 𝝀 = (𝑨𝑇𝑨)−1 ⋅ (𝑨𝑇𝒇) (42) 

where the size of matrix 𝑨 is 𝑁 × (𝑀 + 𝑑 + 1), 𝑁 is the number of input points, 𝑀 is 

the number of radial basis functions, 𝑑 is the degree of the polynomial, the size of 

vector 𝒇 is 𝑁 × 1, the size of vector 𝝀 = [𝜆1, … , 𝜆𝑀, 𝑎0, … , 𝑎𝑑]𝑇  is (𝑀 + 𝑑 + 1) × 1. 

We can express the time complexity of the global RBF approximation calculation (42) 

as: 

 

𝑨𝑇𝑨 → 𝑂((𝑀 + 𝑑 + 1)2𝑁)(𝑨𝑇𝑨)−1 → 𝑂((𝑀 + 𝑑 + 1)2𝑁 + (𝑀 + 𝑑 + 1)3)𝑨𝑇𝒇 → 𝑂((𝑀 + 𝑑 + 1)𝑁)(𝑨𝑇𝑨)−1 ⋅ (𝑨𝑇𝒇) → 𝑂 (𝑁((𝑀 + 𝑑 + 1)2 + (𝑀 + 𝑑 + 1)) +     +(𝑀 + 𝑑 + 1)3  + (𝑀 + 𝑑 + 1)2) (43) 

and after leaving only the most complex part, the time complexity is: 

 𝑂(𝑀2𝑁) (44) 

 We sampled function (38), added random noise with uniform distribution from 

interval 〈−0.1, 0.1〉, and used that data as input for both methods mentioned in previous 

sections (LOWESS and simplified RBF) and for global RBF approximation as well. 

The following graph presents the behavior of the LOWESS, simplified RBF and global 

RBF approximations. Function values are on the vertical axis, values on the horizontal 
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axis are sample indices. Since the function is sampled at 〈−1,1〉 and the number of 

samples is 2000, the sampling rate is 1000 samples per 1 unit. 

 

Graph 5: Comparison of LOWESS and Simplified RBF with global RBF.  

100 nearest samples out of 2000 total were used as values for local approximation, which gives 

20 pivots (lambdas) for global RBF; sampled interval: 〈−1,1〉. 
 The following table presents calculated errors using formulas (39) and (41) (for 

Graph 5) for all approximation methods described in this paper. 

Tab. 2: Measured errors for Graph 5. 𝐸𝑐 𝐸𝑑 

LOWESS 
Simplified 

RBF 

Global 

RBF 
LOWESS 

Simplified 

RBF 

Global 

RBF 

0.0718 1.5266 0.0168 10.6785 16.0734 6.0123 

 It can be seen, that global RBF approximation is closer to the original data and 

smoother than simple RBF or even LOWESS approximation. For the situation in Graph 

5 and Tab. 2, the time complexity of global RBF is exactly the same as the time 

complexity of both other methods when calculating the approximation at all input 

points.  

7 Approximation in Higher Dimensions 

 Let as assume that a scattered data approximation [6, 7] in 2&½  or 3&½ 

dimensions, i.e. 𝐷&½ dimensions have to be made. In the following, we describe the 

expansion of LOWESS and RBF approximation algorithms into higher dimensions. 

 In higher than 1&½ dimensions, we have to deal with the fact that there is no 

ordering defined in general. Thus, we cannot sort all input points at once in the 

beginning and then choose 𝑘 -nearest points with 𝑂(1)  time complexity. The time 
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complexity of selecting 𝑘-nearest points from 𝑁 points is 𝑂(𝑁 log𝑁), and thus the 

time complexity of LOWESS or Simple RBF approximation can be estimated as: 

 𝑂 (𝑅 ∙ (𝑁 log𝑁 + {𝑂𝐿𝑂𝑊𝐸𝑆𝑆or𝑂𝑅𝐵𝐹 } )) , (45) 

where 𝑂𝐿𝑂𝑊𝐸𝑆𝑆  is the same time complexity as the time complexity of LOWESS 

approximation in 1&½ dimensions and 𝑂𝑅𝐵𝐹  is the same time complexity as the time 

complexity of Simple RBF approximation in 1&½ dimensions. 

7.1 LOWESS 

 In the case of 𝐷&½ dimensional approximation, we have to change the notation in 

(1) as 𝒙 is a 𝐷-dimensional position vector: 

 𝑆 = ∑𝜔𝑖 ∙ (ℎ𝑖 − 𝑃(𝐷)(𝒙𝒊))2𝑁
𝑖=1 , (46) 

where ℎ = 𝑃(𝐷)(𝒙)  is a 𝐷  dimensional hypersurface function with unknown 

coefficients 𝒂 = [𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑘]𝑇. For 𝐷 = 2, we can write 𝑃(𝐷)(𝒙), for example, 

like: 

 𝑃(2)(𝒙) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑦 + 𝑎3𝑥2 + 𝑎4𝑦2 + 𝑎5𝑥𝑦 , (47) 

where 𝒙 = [𝑥, 𝑦]𝑇. The matrix 𝑨 is then equal to:  

 𝑨 = [  
 1 𝑥1 𝑦1 𝑥12 𝑦12 𝑥1𝑦11 𝑥2 𝑦2 𝑥22 𝑦22 𝑥2𝑦2⋮ ⋮ ⋮ ⋮ ⋮ ⋮1 𝑥𝑁 𝑦𝑁 𝑥𝑁2 𝑦𝑁2 𝑥𝑁𝑦𝑁]  

 
 (48) 

We can omit some coefficients 𝑎𝑖 and corresponding columns in matrix 𝑨, where 𝑖 ∈{0, 1, … , 5}. All other computations remain the same.  

 The computation complexity will increase as the size of matrix 𝑨  increases. 

However, if we use a constant hypersurface function with only one coefficient 𝑎0, then 

the time complexity does not change with different dimensions 𝐷. 

7.2 Simplified RBF 

 The RBF approximation is formally independent from the dimension 𝐷. Therefore, 

all the computations remain the same as described above. The computation complexity 

increases slightly as the complexity of polynomial/hypersurface 𝑃(𝐷)(𝒙)  increases. 

However, if we use a constant hypersurface function with only one coefficient 𝑎0, then 

the time complexity will not change with different dimensions 𝐷 . The polynomial 𝑃(𝐷)(𝒙)  is actually a data approximation using a basic function and ∑ 𝜆𝑖𝛷𝑖(𝑟)𝑀𝑖=1  

controls the perturbation from 𝑃(𝐷)(𝒙). 
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8 Conclusion 

 We have introduced the LOWESS method of approximation and modified RBF 

approximation, which is comparable with LOWESS. Both methods use the same 

number of nearest samples for approximation and the time complexity of both these 

methods is the same. We calculated the distance of approximated noisy data to the 

original data. In all cases, for the same number of nearest samples for approximation, 

LOWESS gives better results. Another comparison of both methods is calculation of 

the smoothness. The LOWESS approximation gives us smoother results than the 

Simple RBF approximation. However, both these methods use a different approach for 

approximation than global RBF approximation; we compared them with global RBF 

approximation as well. Using global RBF approximation we can achieve better results 

(closer distance to original data and smoother approximation) when having the same 

time complexity of calculation. Moreover, we get one simple continuous formula and 

not only function values at discrete points. On the other hand, both methods can be used 

in higher dimensions, but the time complexity will increase for both of them compared 

to the situation in 1&½ dimensions. Due to this fact, in higher dimensions, global RBF 

approximation has lower time complexity than either LOWESS or Simple RBF 

approximation due to necessity of finding 𝑘-nearest neighbor points. Therefore, the 

global RBF approximation is recommendable for approximation of scattered data in 

higher dimensions, i.e. 2&½ dimensions and higher. 

 All methods for approximation compared in this paper were implemented and tested 

in MATLAB. 
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5. Conclusion

This thesis presented new approaches and methods in the field of meshless vector fields approx-
imation and compression that were researched and developed during the doctoral studies of the
author of this thesis.

The main research topic was the vector field approximation using Radial basis functions.
Many approaches were developed, where the focus always was to keep the important features of
the vector field. The important features are for example critical points, however, some of them
are not important and can be omitted as presented in one of the journal publications. Another
important feature that has been preserved in the approximated vector fields is the global character
of the vector field.

Some applications require small turbulence and small details to be preserved. The recently
submitted journal paper presents an approach that deals with this problem using streamlines
curvature and weighted RBF approximation.

The measured or numerically simulated vector fields are represent by very large data sets.
Several approaches were developed how to approximate such large data sets. The approaches
are using the space subdivision to speed-up the computation and to reduce the needed memory
for approximation of such large data sets, that could not be even approximated by conventional
meshless methods.

As the result of the vector field approximation is an analytical formula that can be used for
further processing of the vector field. This is the advantage over other existing methods that are
using the standard mesh approaches.

During the doctoral studies were also published many other publication that are not directly
related to the main topic of this dissertation. This publications are listed in the Appendix A.
Altogether there were published 6 journal papers and 22 conference papers.

5.1 Future work

Now, the solutions for topology-based unsteady flow remain incomplete, compared with the
level of research achieved for steady flows. Incremental extensions of methods that work well
for steady flows are proven not to be able to fully capture the behavior of time varying vector
fields. Therefore, new approaches and methods are needed to be investigated in this area as
well. Moreover, there needs to be thorough research of how to correctly solve the approximation
of time varying data using the Radial basis functions. When computing the distance parameter
for radial basis function, one needs to compute the distance in time and space, which has to be
computed physically correct.
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CHAPTER 5. CONCLUSION

Another direction of research can be the compression of “lambda” values for RBF value com-
putation. Those values are usually saved as double precision floating point numbers. However,
the accuracy of “lambda” values may be reduced, while maintaining the low approximation error
of RBF approximation.

The next, but not the last problem that can be solved is the selection of optimal centers for
radial basis functions as well as the optimal shape parameters for each radial basis function. This
problem is very hard to solve, as there exist many local optimal solutions. However, to compute
the global optimum, it would be very time consuming if all time realistic.
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