
University of West Bohemia
Faculty of Applied Sciences

Department of Computer Science and Engineering

Bachelor Thesis

Learning of Sentence
Encoding by Using

Duplicate Questions from
Stackoverflow

Pilsen 2020 Jan Pašek

Místo této strany bude
zadání práce.

Declaration

I hereby declare that this bachelor’s thesis is completely my own work and
that I used only the cited sources.

Pilsen, 6th May 2020

Jan Pašek

Acknowledgement

I would like to thank Ing. Miloslav Konopik, Ph.D. for valuable advice,
factual comments and helpfulness in consultation and elaboration of the
bachelor thesis.

The work was supported from European Regional Development Fund-
Project "CERIT Scientific Cloud" (No. CZ.02.1.01/0.0/0.0/16_013/000180
2).

Abstract
This bachelor thesis aims to create a neural network for natural language
understanding in expert domains. Our outcome can significantly improve
tasks such as information retrieval or code generation. The work proposes a
neural network architecture utilizing a code encoder in parallel with a com-
monly used text encoder. Furthermore, the architecture uses a not widely
known f1 loss, significantly improving results. An important outcome of
this work is a vector representation of text stored in hidden layers of the
network. We demonstrate our approach on Stackoverflow data utilizing du-
plicate questions to create a novel dataset, usable beyond the scope of this
work. Our architecture achieved f1 score of 74.1% , which is a 5.1% improve-
ment compared to a baseline model based on word embedding summation.

Abstrakt
Tato bakalářská práce se zabývá vývojem neuronové sítě pro porozumění
textu v odborném jazyce. Výstupy této práce mohou zlepšit výsledky úloh
jako je získávání informací či generování zdrojového kódu. Pro vyřešení této
úlohy představujeme novou architekturu neuronové sítě založenou na využití
enkodéru kódu společně s textovým enkodérem. Architektura dále využívá
nepříliš známou f1 loss, která významně zlepšuje dosažené výsledky. Důle-
žitým výstupem této práce je vektorová reprezentace vět, která se nalézá ve
skrytých vrstavách neuronové sítě. Navržený přístup je demonstrován na vy-
užití duplicitních otázek ze stránky Stackoverflow, ze kterých jsme připravili
nový dataset použitelný nad rámec této práce. Pomocí navržené architek-
tury bylo na datasetu dosaženo f1 score 74.1 %, což představuje zlepšení o
5.1 % v porovnání s výchozí architekturou založenou na sčítání reprezentací
slov.

Contents

1 Introduction 9

2 Neural Networks 10
2.1 Neural Network Architecture 10

2.1.1 Artificial Neuron . 11
2.1.2 Layer . 11
2.1.3 Model . 12

2.2 Activation Functions . 12
2.2.1 Sigmoid . 13
2.2.2 Hyperbolic Tangent (TanH) 13
2.2.3 Rectified Linear Unit (ReLU) 14
2.2.4 Softmax . 14

2.3 Classification Using a Neural Network 14
2.4 Loss/Cost Functions . 15

2.4.1 Mean Squared Error 15
2.4.2 Cross-Entropy . 15
2.4.3 F1 Loss . 16

2.5 Training a Neural Network Model 16
2.5.1 Optimizer . 17

2.6 Metrics . 18
2.6.1 Accuracy . 18
2.6.2 Precision, Recall and F1 score 18
2.6.3 Confusion Matrix . 19

2.7 Other Neural Network Concepts and Techniques 20
2.7.1 Siamese Neural Networks 21

3 Semantic Vector Representation of Text 22
3.1 Vector Representation of Words 23

3.1.1 Context-Free Word Representation 23
3.1.2 Contextual Word Representation 24
3.1.3 Subword Embedding 24

3.2 Vector Representation of Sentences 25
3.2.1 Combining Word Embeddings 25
3.2.2 Supervised Representation Learning 25
3.2.3 Unsupervised Representation Learning 26

3.3 Semantic Similarity Task . 26

6

3.3.1 Related Datasets . 27
3.3.2 Related Work . 28

4 Stackoverflow Data 32
4.1 Data Source . 32
4.2 Data Dump Structure . 33
4.3 Data Statistics . 34
4.4 Other Data Sources . 34

5 Analysis of the Problem 36
5.1 Assembling the Dataset . 36
5.2 Framework . 38
5.3 Feeding the Data into a Neural Network 38

5.3.1 Input Pipeline . 38
5.3.2 Preprocessing . 39

5.4 Approaches . 40
5.4.1 Word Embedding . 41

5.5 Architecture . 42
5.5.1 Common Features . 43
5.5.2 Word Summation . 45
5.5.3 BiLSTM Encoder . 45
5.5.4 BiLSTM Code Encoder 45

6 Results and Evaluation 50
6.1 Data Pipeline Construction 50

6.1.1 Indexing Data into Elasticsearch 50
6.1.2 Dataset Export . 51

6.2 Experimental Setup . 51
6.2.1 Embedding . 52
6.2.2 Word Summation Model 52
6.2.3 BiLSTM Encoder . 52
6.2.4 BiLSTM Code Encoder Model 53

6.3 Model Results Evaluation 54
6.3.1 Other experiments 55
6.3.2 Comparison to SNLI 56

6.4 Manual Analysis of Dataset and Errors 57
6.5 Results Discussion . 58

7 Conclusion 60

List of abbreviations 61

7

Bibliography 62

A Results of Manual Dataset Analysis 66
A.1 Duplicate questions . 66
A.2 Type I Error . 68
A.3 Type II Error . 69

B Script Documentation 70
B.1 Used Libraries . 70
B.2 Data . 70
B.3 Dataset . 71
B.4 Network . 72
B.5 Word2Vec . 73
B.6 Web . 74

C Elasticsearch and Kibana Examples 75

D Demonstration Application 77

8

1 Introduction

Natural language understanding is one of the fields of natural language
processing (NLP), which is under ongoing research. This work tries to bring
improvements into this field, targeting expert (scientific) domains which em-
ploy specific language. Appropriate examples of such domains can be found
among the 173 Stackexchange’s question and answer platforms. The topics
covered range from computer science to biology and chemistry to personal
finance. The individual domains require to target specific aspects of the
users’ language, which we demonstrate on the Stackoverflow page. However,
general principles shown in this work can be applied to other domains as
well.

The future usage of this work is to improve tasks such as information
retrieval or code generation, which is beyond the scope of this work. In
the case of the firstly mentioned, the vector representations of questions
obtained by proposed neural networks can be used to search for the same
questions already asked and answered. Therefore, it would be possible to
get the correct answer immediately after describing the problem. Our goal is
to outperform standard keyword-based approaches. Furthermore, our work
can also be used for automatic duplicate question detection on question and
answer platforms.

An approach in this work is to use marked duplicate questions from the
Stackoverflow to train a neural network to classify whether two questions
are duplicates (i.e., they are describing the same problem). Given this task,
hidden layers of the neural network are forced to generate vector represent-
ations of the input questions, which are the desired outcome. An essential
aspect of this work is to utilize the information contained in code snippets
present in the questions.

This bachelor thesis is structured as follows. In the first chapters, basic
concepts and techniques of neural networks and natural language processing
are briefly described. Later in the subsequent chapters, results and realiza-
tion of the given targets are going to be presented in detail.

9

2 Neural Networks

Neural networks can be defined as a subset of machine learning algorithms
and can be utilized for supervised, unsupervised, as well as reinforcement
learning tasks [1]. The neural networks use simple computational units (ar-
tificial neurons) organized into interconnected layers that form a computa-
tional graph. This concept, firstly introduced in the 1950s, is loosely inspired
by a human brain [2] and is often used for various tasks [3] such as:

• image classification

• speech recognition

• handwriting transcription

• machine translation

• autonomous driving

• natural language understanding

...

The utilization of the neural networks provides nearly human-level per-
formance for many of the tasks above. Moreover, there are already tasks
(e.g., playing a game called Go) where this kind of artificial intelligence
outperforms humans.

The following sections describe basic concepts and building blocks of the
neural networks. Mathematical details are often omitted due to their com-
plexity and good coverage by the referenced literature.

2.1 Neural Network Architecture
The architecture of a neural network can be divided into three levels of

abstraction. These are artificial neurons, layers and models, where each sub-
sequent part consists of the previous ones. The following sections describe
these building blocks of the most basic neural network type - a multilayer
perceptron. The multilayer perceptron consists of fully connected (dense)
layers organized in sequential order. The basic concepts introduced in this
section mostly apply to other kinds of neural networks (section 2.7) as well.

10

2.1.1 Artificial Neuron
A cornerstone of a neural network is an artificial neuron. Each neuron

has n inputs x1, x2, x3, ..., xn. Each i-th input has its associated weight ωi,
which is used for computing a weighted sum (expression 2.1).

n∑
i=0

xiwi (2.1)

Furthermore, there is a number b (called bias) associated with the neuron.
To get the output y we add the bias to the weighted sum and pass it through
a non-linear function, which is called an activation function (see section 2.2
for more details). The computation in a neuron is described by equation 2.2
[4]. The structure of a neuron is illustrated in figure 2.1.

y = ϕ(
n∑

i=0
xiwi + b) (2.2)

...

x1

x2

x3

xn

...

1

2

3

n

b

y

inputs weights sum activation function output

bias

Figure 2.1: Symbolic structure of an artificial neuron.

2.1.2 Layer
Generally speaking, a layer represents an arbitrary transformation of input

data inside the neural network. It is the essential building block of the neural
network model in many deep learning frameworks (Tensorflow, Keras and
et cetera). An organization of layers forms a computational graph defining
operations performed on data. Layers do not even have to consist of any
artificial neuron at all since a layer can be defined using other mathematical
operation over the input data. However, the rest of this subsection is going
to discuss a dense layer, which is made up of the neurons introduced in
section 2.1.1.

11

When neurons are organized into the layer, it is not necessary to compute
an output activation of each neuron one by one. Instead, the vector form of
the equation for one neuron can be used to calculate the activation of the
whole layer (equation 2.3). W T then denotes a transposed matrix of all the
weights in the layer, x is a vector of inputs and b is a vector of biases [4].
The function ϕ is the activation function and is applied element-wise on the
resulting vector W Tx+ b.

y = ϕ(W Tx+ b) (2.3)

Equation 2.4 shows a detailed expansion of equation 2.3 for a layer made
up of two neurons and three inputs. In the expanded equation, yi denotes an
output activation of the i-th neuron, wij indicates a weight of the j-th input
in the i-th neuron, bi is a bias of the i-th neuron and finally, xj represents a
value of the j-th input [4].

[
y1

y2

]
= ϕ(

[
w11 w12 w13

w21 w22 w23

]
x1

x2

x3

 +
[
b1

b2

]
) (2.4)

2.1.3 Model
The way how different layers are organized and connected (figure 2.2) is

called a neural network model. Generally, a model consists of three parts -
an input layer, hidden layers and an output layer. The input layer stands
at the very beginning of the network and represents an entry point for data.
If the input is an N -dimensional vector, then the input layer has N neurons
inside. Moreover, the first layer is simplified and does not perform any
computation. The only thing done is that the output activation of each
neuron is set to the value of the corresponding input (yi = xi). Subsequent
layers (hidden layers) perform the main part of the computation (section
2.3). Finally, activations in the output layer, which stands at the end of the
model, are used to determine a resulting class (section 2.3).

2.2 Activation Functions
An essential part of each neural network is a non-linear activation function,

which is used to obtain the activation of a neuron/layer (equation 2.2). Its
most significant contribution is introducing a non-linearity into the model.
Without such function, the neural network would be able to model only
a linear dependency of a class on input data. It is because the output of

12

Figure 2.2: Example of a neural network model with four inputs, N hidden
fully connected layers and two neurons at the output.

the model would then consist of a linear combination of the input and the
network parameters only [3].

2.2.1 Sigmoid
A sigmoid function (equation 2.5) is commonly used in output layers for

tasks such as logistic regression or multi-label classification tasks. However,
it is suitable for hidden layers as well [5]. Its major drawback is a vanishing
gradient (draws near zero) for low and high values of the z.

ϕ(z) = 1
1 + e−z

(2.5)

2.2.2 Hyperbolic Tangent (TanH)
A hyperbolic tangent (equation 2.6) is similar to the sigmoid function

in its shape and drawbacks, with the difference that a range of values is
<−1, 1>, whereas sigmoid’s range is < 0, 1>. This activation function is

13

predominantly used in hidden layers [6].

ϕ(z) = ez − e−z

ez + e−z
(2.6)

2.2.3 Rectified Linear Unit (ReLU)
A rectified linear unit is a straightforward activation function, which is

defined as a maximum of zero and z. A significant advantage of ReLU is
that it is computationally efficient and despite its simplicity, it turns out to
work very well for a wide range of tasks. It is typically used in hidden layers
[5].

ϕ(z) = max(0, z) (2.7)

2.2.4 Softmax
A softmax function (equation 2.8)[7] is frequently used in output layers

of the neural network thanks to its ability to transform the inputs into a
probability distribution for the classes. It means that a sum of the softmax’s
output vector elements is always equal to one. In combination with a cross-
entropy loss, it forces the network to give the highest predicted probability
to the class given by the label and to assign as low probability as possible
to the rest of them.

It is worth mentioning that including the softmax in the activation func-
tions section is questionable. It is due to the impossibility to compute an
activation of a single neuron using the softmax. This fact can be seen in
equation 2.8, where the knowledge of an inner product zj (bias added to
the weighted sum) of all the neurons in the layer is necessary to scale the
inner product of the current (i-th) neuron zi. Therefore the softmax is often
perceived as a self-standing softmax layer.

ϕ(z)i = ezi∑K
j=1 e

zj
(2.8)

2.3 Classification Using a Neural Network
A classification task can be defined as a process of feeding in one sample

of data, passing it through the whole model and determining the resulting
class. This process is called a forwardpass and starts with setting output

14

activations of neurons in the input layer according to values of the input.
Then, the activation of the input layer is used as an input for the subsequent
hidden layer. Generally, activation of the n-th layer is used as an input for
the (n + 1)-th layer. This step is done repeatedly until the output layer is
reached.

Finally, when the activation of neurons in the output layer is known, a
resulting class can be determined. Let us say that each neuron in the output
layer represents one class, then a result of the classification is the one with
the highest activation.

2.4 Loss/Cost Functions
As further explained in section 2.5, the loss function is used during training

as a measure of how good or bad the current setting of network parameters
is. It should be noted that the value of the loss is not a suitable measure of
a network accuracy. For this purpose, metrics introduced in section 2.6 shall
be used. Moreover, the selection of the loss function should be tailored to
the metric we want to maximize, due to uncorrelation between some losses
and metrics (section 2.4.3).

2.4.1 Mean Squared Error
Mean squared error (MSE) is a loss function that is defined by equation

2.9 and suits well for regression tasks [3]. In the equation, C denotes the loss
function, w and b are sets of all weights and biases of the neural network,
respectively and X is the current batch of inputs. On the right-hand side,
there is a sum of the differences of labels y and predicted values ŷ summed
over all inputs in the batch. Finally, the sum is divided by the number of
examples n.

C(w, b,X) = 1
n

∑
x

(y − ŷ)2 (2.9)

2.4.2 Cross-Entropy
Another kind of a loss function is a cross-entropy loss (equation 2.10),

which is often used for classification problems [3]. The left side of the equa-
tion is identical to equation 2.9 and is described in section 2.4.1. On the right
side, there is a negative-sum of product yclog(pc) over all possible classesM .
In the product, yc is a binary class indicator - equal to 1 if the true class of a

15

current sample is c, else 0. Finally pc is a probability of the current sample
belonging to class c [8]. Value of pc is determined by a softmax output layer
(section 2.2.4) with which, the cross-entropy should be used.

C(w, b,X) = −
M∑

c=1
yclog(pc) (2.10)

2.4.3 F1 Loss
In some cases, it might happen that the loss value does not correlate with

a metric meant to be maximized. In other words, even if the loss decreases,
the maximized metric may decrease as well. However, the expectation is that
if we get better (lower) loss, we get a better (higher) value of the metric.
This phenomenon can appear when the maximized metric is an f1 score
(section 2.6.2) and the chosen loss is a cross-entropy [9]. In situations such
as this, it is necessary to select another loss function, which can result in a
better-trained model.

To maximize the f1 score (section 2.6.2) it can be favorable to use the f1
loss. Equation 2.11 states how the f1 loss is calculated. The equation is
the same as in the case of the f1 score. However, the meaning of TP (true
positives), FP (false negatives), FN (false negatives) is different from the f1
score. That is to be able to differentiate the loss. For example, if a label is 1
and a model’s prediction is 0.8 probability for class 1, we count TP = 0.8∗1,
FN = 0.2 ∗ 1 and FP = 0.8 ∗ 0. Generally, this calculation is described by
equations 2.12 [10].

C(w, b,X) = 1
n

∑
x

(2TP
2TP + FP + FN

) (2.11)

TP = prediction ∗ label
FN = (1− prediction) ∗ label
FP = prediction ∗ (1− label)

(2.12)

2.5 Training a Neural Network Model
Thanks to equation 2.3 and a description of the forwardpass in section 2.3,

it shall be clear that a result of classification is a function of input values,
weights and biases. Since the input values are fixed, the only way how to
affect the behavior of a neural network model is to adjust the weights and
biases. The weights and biases are called parameters of the network.

16

The process of setting the weights and biases (which may be randomly
initialized at the begging) to maximize the accuracy of the network is called
training. To measure how optimal our current setting is, we define a loss
function (section 2.4). A higher value of the loss means a worse accuracy of
the network. In other words, we try to minimize the loss. However, the loss
is a function of thousands of variables (mostly network parameters), which is
the reason why it is not possible to find optimal values for all the parameters
analytically. Due to that, an approximation of the loss minimum has to be
found using gradient optimization methods (see section 2.5.1 for details).

The training procedure (minimizing the loss) is described in the following
steps, which are performed in a loop over all dataset batches [3]:

1. Select a batch of training examples from a training dataset.

2. Do a forward pass with the selected examples and get predictions.

3. Compute the value of a loss over the current batch using the obtained
predictions and true labels.

4. Compute an error of each neuron in an output layer using the loss.

5. Propagate the error to previous layers (this process is called a back-
propagation).

6. Adjust parameter values to minimize the error (minimize the loss).

The loop over all the batches is performed multiple times (epochs). Since
the previous steps are only a brief description of the training process, refer
to the book by M. Nielsen [4] for further details.

2.5.1 Optimizer
An optimizer represents an exact algorithm that is used for adjusting the

network parameters [3]. Generally, the optimization is based on computing a
gradient (direction of the steepest increase) for each parameter with respect
to the loss. The calculated gradient is used to move a value of the parameter
against the gradient direction by a certain amount of the gradient’s size. The
amount of change is called a learning rate and is denoted as η. The learning
rate is a member of a particular group of parameters called hyperparameters.
They represent network parameters that are not learned during the training.

17

Examples of commonly used optimizers are listed below:

• Stochastic gradient descent (SGD) [11]

• RMSProp [12]

• AdaGrad [13]

• Adam [14]

2.6 Metrics
As stated in section 2.4, a loss function is not the best for measuring how

well a network is trained. For this purpose, it is necessary to use other
metrics that are presented in this section.

2.6.1 Accuracy
Accuracy is defined as a fraction of correctly classified examples (equation

2.13). Even though this metric is the most often used one, it is not suitable
for datasets with an unbalanced number of samples in the classes. For
instance, if there is a binary classification task and we have a dataset with
95% of "true" examples, the classifier can achieve a 95% accuracy only by
classifying all the data as "true". It means that it might be reasonable to
use another metric, such as an f1 score (section 2.6.2), that does not suffer
from this drawback.

acc = correctly classified

total number of examples
(2.13)

2.6.2 Precision, Recall and F1 score
Before defining what a precision, recall and f1 score are, it is necessary

to establish the concept of true positives (TP), true negatives (TN), false
positives (FP) and false negatives (FN), which are possible results of a binary
classification. Table 2.1 states the individual cases and assigns a correct
result class (TP, TN, FP, or FN) to them [5].

Using the previously declared result classes, the precision, recall and the f1
score can be defined. The precision (equation 2.14) is a fraction of correctly
classified positive samples from all samples classified as positive (equation
2.15). The recall is a fraction of correctly classified positive samples from

18

Label Prediction Result class

1 1 TP
1 0 FN
0 1 FP
0 0 TN

Table 2.1: Possible results of binary classification and underlying result
classes.

all the truly positive samples. Finally, the f1 score is defined as a harmonic
mean of precision and recall (equation 2.16). As stated in section 2.6.1, the
f1 score is extremely useful for the evaluation on unbalanced datasets.

precision = TP

TP + FP
(2.14)

recall = TP

TP + FN
(2.15)

f1_score = 2 precission ∗ recall
precission+ recall

(2.16)

Even though the stated computation works for binary classification only,
there are three possible ways of how to generalize the f1 score for multi-class
classification. This generalization can be made using a micro, macro and
weighted f1 score [15].

2.6.3 Confusion Matrix
A confusion matrix (figure 2.3) is a handy metric for evaluating network

behavior in detail. Its significant benefit is that it shows which classes are
being confused during the classification. It means that the confusion matrix
is a C × C sized matrix where each member nij of the matrix denotes the
number of cases when a sample of the i-th class was classified as the class
j. Thanks to that, we can identify classes that the model struggles to dis-
tinguish the most. The confusion matrix may also appear in a normalized
form, where each row is normalized to one.

19

Figure 2.3: An example of a confusion matrix for three-class classification.
For example, it shows that a sample from class 2 was classified as a class 1
for seven times.

2.7 Other Neural Network Concepts and Tech-
niques

A concept of the multilayer perceptron does not suit very well for all
tasks where neural networks can be utilized. Therefore, many other ar-
chitectures dealing with different drawbacks of the original concept were
developed. One such architecture, which tries to address a problem of multi
layer perceptron’s inability to deal with sequential data, is a recurrent neural
network (RNN) [16] and its often used bi-directional form [16]. An exten-
sion of this concept is a gated recurrent unit (GRU) and a long short term
memory (LSTM)[17] network that can handle long term dependencies in the
sequences. The concept of RNNs is often amended by an attention mechan-
ism [18].

Another type of architecture is a convolutional neural network (CNN),
which applies a convolution operation over a sliding window to discover
patterns emerging in the input [5]. This concept is often used for image or
video classification and natural language processing.

Although these concepts are quite diverse, they all suffer from a common
problem, which is overfitting [4]. This phenomenon can be identified by
achieving perfect training accuracy while having poor results on a validation
part of the dataset. To cut down the influence of the overfitting, regulariza-

20

tion techniques can be used. An example of a regularization technique is an
L2 regularization [4] or a dropout [19].

2.7.1 Siamese Neural Networks
The previously discussed multilayer perceptron can be perceived as a se-

quential network (figure 2.4), since layers are organized into an ordered se-
quence that defines the flow of computation. However, the sequential net-
work that accepts one input vector (or one sequence) is not the only type of
neural network architecture.

input layer 2layer 1 output

Figure 2.4: An example of a sequential neural network.

Generally, the neural networks can have multiple input vectors or se-
quences and the organization of the layers can be diverse. A special type
of architecture is a siamese network [20]. This kind of network accepts two
inputs that are passed through two parallel subnets sharing their weights.
The two subnets can be followed by other layers processing an output of the
subnets. An example of siamese network architecture is depicted in figure
2.5. Such architecture finds its usage, for example, in facial recognition or
semantic similarity (section 3.3).

input 1 layer 2layer 1

input 2 layer 2layer 1

layer 3 outputshared weights

Figure 2.5: A siamese neural network that accepts two inputs and produces
one output vector. The layers on the same level share their weights, as
marked in the picture.

21

3 Semantic Vector
Representation of Text

A natural language processing (NLP) is a subfield of linguistics and com-
puter science. In recent years many deep learning techniques have been
successfully applied to many NLP problems. These are, for instance, sen-
timent analysis, machine translation, text classification, semantic similarity
and many more [21].

A problem in the NLP is that a dimension of the space of possible words or
sentences fed into a neural network is immensely high. The way how neural
networks deal with it is that each subsequent layer creates more abstract
and usually lower-dimensional features from the one created by the previous
layer. Figure 3.1 shows such a hierarchy, where the words are fed into a
neural network as a one-hot representation. Then, subsequent layers create
more abstract features, which can be perceived as word embeddings, sentence
embeddings, higher-level features and finally, as a vector determining the
resulting class.

One hot vectors

Word embeddings

Sentence embeddings

Higher-level abstract features

Class representation

Figure 3.1: A pyramid of abstraction of processing a natural language using
neural networks

In some cases, it might be beneficial to pre-train a part of the neural net-
work in advance. For example, it is possible to pre-train word embeddings or
a whole sentence encoder that is later used to build the final neural network.
The pre-training can be done in a supervised as well as unsupervised way.

22

3.1 Vector Representation of Words
An embedding of words can be directly useful for a lot of NLP tasks.

Moreover, since sentences are made up of words, text representation tech-
niques are often based on the word embeddings. The desired word repres-
entation is a low dimensional vector (about hundreds of dimensions) of real
numbers that captures the semantics of the word. Put differently, it is ex-
pected that two similar words appear close to each other in a vector space of
the representations. A favorable fact is that the embeddings can be trained
using unsupervised learning on a large text corpus. Such techniques are
usually based on a distributional hypothesis [22].

In this section, two types of word representations - context-free and con-
textual representations are presented. At the end of the section, a concept
of subword models is also briefly discussed.

3.1.1 Context-Free Word Representation
Context-free word representation techniques are identified by creating a

fixed vector for each word, no matter its context. It means that, for example,
the word "bank" would have the same representation when it appears in a
context "bank account" as in case it appears in a context "river bank" [23].

An advantage of this approach is that unlike the contextual representa-
tions, the word embedding is self-standing. Therefore, a similarity score of
two words can be computed and used for similar word search.

Word2Vec

A Word2Vec [24] is an unsupervised technique to represent words as vec-
tors. Generally, this algorithm can be found in two forms. The first one is
called a continuous bag of words (CBOW) and lies in predicting a target
word given its context. The other method, on the contrary, predicts the
context given a central word and is known as a skip-gram model.

The skip-gram model is trained in a way that the central word is used
as an input to a neural network that produces a conditional probability
of the central word co-occurring next to other adjacent words in a sliding
window. The window size defines the number of neighboring words taken
into account. Then the vector representing the central word (which is stored
in a weight matrix of the network) is adjusted to maximize the computed

23

conditional probabilities for the neighboring words. The way how the CBOW
model is trained is analogical and further explained in [25] together with
mathematical details of the skip-gram model.

Global Vectors (GloVe)

Global Vectors (GloVe) [26] are another method of creating word embed-
dings. Unlike Word2Vec, GloVe utilizes a global word co-occurrence statistic
that is captured in a co-occurrence matrix. To turn such a matrix into a
vector representation, the authors introduced a new algorithm. It is based
on optimizing the word vectors so that the dot product of the two word
embeddings is equal to a logarithm of their co-occurrence count.

3.1.2 Contextual Word Representation
As stated in section 3.1.1, the context-free representations do not capture

the context in which a word is used and this feature may be undesirable in
many NLP tasks. Fortunately, contextual word representation techniques
exist. The idea is that hidden layers in an LSTM based language model
contain contextualized representations of fed-in words. The usage of such
embeddings is then different than with the fixed representations, such as
pre-trained Word2Vec (section 3.1.1). Instead of querying a lookup table,
the vector embedding is obtained by passing the words into a model that
produces the contextual embedding later used as an input to a task-specific
neural network. An example of contextual word representations based on
the deep bi-directional LSTM language model is ELMo (Embeddings from
Language Models) [27].

Another contextual embedding method is a BERT [28] (Bidirectional En-
coder Representations from Transformer) model. This model is based on
Transformer architecture [29], and its utilization provides outstanding res-
ults in many tasks.

3.1.3 Subword Embedding
A significant drawback of the techniques presented in section 3.1.1 is that

they are not able to handle uncommon and out of vocabulary words (OOVs)
- word for which an embedding does not exist. Techniques trying to over-
come this obstacle are called subword embeddings and are based on dividing
words into smaller units down to a character level. For instance, the word
"inevitable" can be composed of two units "in" and "evitable".

24

Byte-Pair Encoding

A byte-Pair encoding [30] is an unsupervised text segmentation algorithm
which originated as a compression method. The algorithm starts with a list
of elementary symbols, such as characters. Then it creates a new symbol
composed of the most frequent symbol pair that appears in the training text.
This step is repeated until the desired size of the vocabulary is achieved.

WordPiece

Another unsupervised method for subword tokenization is a WordPiece
algorithm [30], which is to some extent similar to the Byte-Pair encoding
(section 3.1.3). The difference is in the merging step. Instead of combining
the two most frequent pairs, WordPiece chooses a couple, that would increase
the log-likelihood of a language model [22] if added to the vocabulary.

3.2 Vector Representation of Sentences
As stated in the introduction of chapter 3, having a robust vector repres-

entation of text may be advantageous or even necessary for many NLP tasks.
In this section, some of the used methods for obtaining semantic sentence
embeddings are presented.

3.2.1 Combining Word Embeddings
Simple methods obtain a vector representation of text by combining pre-

trained word vectors. One way how to combine the word embeddings is a
summation or a weighted average, where the weights are tf-idf scores com-
puted from a language corpus [31]. The tf-idf score for the i-th word is
calculated according to equation 3.1, where k is the number of all words in
the j-th document and nxy denotes an occurrence count of the x-th word in
the y-th document. Finally |D| is the number of documents in the corpora
and |{j : ti ∈ dj}| is the number of documents where the word i appears.

tf_idfi = nij∑
k nkj

∗ log |D|
|{j : ti ∈ dj}|

(3.1)

3.2.2 Supervised Representation Learning
A different way how to get a robust vector representation of text is to train

a neural network model on a supervised learning task since the sentence em-
bedding would then lie in hidden layers of the neural network. For example,

25

in case of a network that consists of an embedding layer on the beginning,
two LSTMs above it and two dense layers at the output, the representation
of the sentence can be taken from the output of the second LSTM layer. A
significant downturn of this method is a necessity of a labeled dataset that
may not be available in many cases.

The quality of the embeddings obtained by this technique depends on the
choice of a learning objective. Examples of such tasks are, for instance,
machine translation or natural language entailment (section 3.3.1). Another
supervised learning objective is a semantic similarity task, which aims to
recognize whether two texts are similar or not on a semantic basis. This
task is going to be further focused by the rest of the work and a more
detailed description can be found in section 3.3.

3.2.3 Unsupervised Representation Learning
In cases when a labeled dataset is not available, an unsupervised repres-

entation learning might come into play. Generally, a principle of the su-
pervised representation learning (section 3.2.2) applies for the unsupervised
case in the same way - the desired vector representation of sentences is in
the hidden layers. The difference is the choice of the learning task, which is
unsupervised in this case.

To give an example, the BERT model [28] is trained on two unsupervised
tasks. The first one is to predict a randomly masked token from an input
sequence based on its context. The second one is the next sentence task,
which aims to predict whether one sentence follows the other one in the
original text. Another unsupervised learning model called GPT-2 [32] is
trained on predicting the next word in a text.

3.3 Semantic Similarity Task
In many real applications of the NLP, such as search engines, it is essential

to measure or identify whether two texts are similar or not. Although this
may look easy to accomplish just by looking if both documents contain
the same keywords, distinguishing between tiny semantic nuances may be
a severe problem. To differentiate texts with minor semantic differences
is a target of a semantic similarity task, which is under ongoing research
at the moment. Generally, the approach is to embed sentences into an n-

26

dimensional space and then to compute a cosine similarity (equation 3.2) or
another metric of the two vectors.

similarity = cos(θ) = A ·B
||A|| ||B||

(3.2)

Therefore, the main objective of the semantic similarity task is to create
embedding vectors that contain robust semantic information (section 3.2).
The following sections present the related datasets and techniques.

3.3.1 Related Datasets
For the semantic similarity task, there is not a lot of data available, which

is a crucial problem in this field. While some datasets suffer from a small
size, some of the others are partially made up of automatically generated
samples, which may be undesirable as well. In this section, some of the
available datasets are discussed.

STS Benchmark

STS benchmark dataset [33] is a subset of data used in SemEval competi-
tions. Examples contained in the dataset come from various sources such as
user forums, image captions and news headlines. The dataset is separated
into three subsets - training, development and testing. The total size of the
dataset is around 8 600 samples and the sizes of the dataset parts are shown
in table 3.1.

Dataset part Dataset size

training 5 749
development 1 500
testing 1 379

Table 3.1: Sizes of training, development and testing parts of the STS Bench-
mark dataset.

Stanford Natural Language Inference Dataset

A Stanford Natural Language Inference dataset (SNLI) [34] consists of
human-labeled pairs of sentences. The possible labels are a contradiction,
entailment, and neutral relationship. Although a learning objective of this

27

dataset is not the semantic similarity, a natural language inference task
requires a meaningful vector representation of sentences in the same way as
the semantic similarity does. In other words, the significant difference lies in
the classifier built over the representations. Thanks to that, the SNLI can
be used for both an evaluation and training of the semantic representations
of a text.

The SNLI dataset, which consists of 570 000 examples, is split into three
parts - training, development and testing. The sizes of these parts are shown
in table 3.2. The amount of data and a lack of automatically generated
examples make SNLI a very reasonable choice for many researchers. An
example of the dataset pairs with the corresponding labels from the original
paper [34] are shown in table 3.3.

Dataset part Dataset size

training 550 152
development 10 000
testing 10 000

Table 3.2: Sizes of training, development and testing parts of the SNLI
dataset.

Text Hypothesis Label

A man inspects the uniform
of a figure in some East
Asian country.

The man is sleeping. contradiction

An older and younger man
smiling.

Two men are smiling and
laughing at the cats playing
on the floor.

neutral

A soccer game with multiple
males playing.

Some men are playing a
sport.

entailment

Table 3.3: Three examples from the SNLI dataset.

3.3.2 Related Work
Since the rest of the work focuses on the vector representation of text

enriched with source code snippets, the following section presents an existing

28

work on related topics. The paragraphs provide a brief description of the
papers. A more detailed description can be found in the cited sources.

A large annotated corpus for learning natural language inference

Authors of the SNLI dataset published the results of three different models
in their paper [34]. Generally, all of their models consist of a word embedding
layer for both premise and hypothesis and a sentence embedding layers on the
top of the word embeddings. In the end, classification is done by three 200-
dimensional dense layers taking the 100-dimensional representation of the
premise and hypothesis as an input. At the output, there is a softmax layer.
A difference between these models is a method of sentence representation.
The first and most simple model uses a sum of the word embeddings. The
next one uses a simple RNN layer, whereas the last one uses an LSTM
layer for sentence representation. The latest mentioned model is the most
successful one with a test accuracy of 77.6%.

Shortcut-Stacked Sentence Encoders for Multi-Domain Inference

In 2017, Nie X. and Bansal M. presented their work on a Shortcut-Stacked
Sentence Encoder [35]. It aims to represent a sentence as a vector of real
numbers that is later used for an NLI classification. The model is made up of
three bi-directional LSTM layers with shortcut connections and a classifier
on top of it. The shortcut connections are made in the way that input of
each LSTM layer consists of an original word embedding concatenated with
a corresponding sequential output of all the preceding LSTMs. Such an
approach led to an 86.0% accuracy on the SNLI dataset.

Sentence Embeddings in NLI with Iterative Refinement Encoders

Another work [36] related to obtaining a vector representation of text
introduces a hierarchical structure of bi-directional LSTM layers that imple-
ments an iterative reinforcement strategy. The key idea behind the model
is that each subsequent LSTM layer is initialized with the last hidden state
of the preceding layer while accepting the original word embeddings as an
input. An output of each LSTM is then max-pooled and concatenated to a
resulting representation. The authors have reported a very good accuracy
of 86.6% on the SNLI dataset.

29

Dynamic Self-Attention Model

Yoon D., Lee D. and Lee S. in their paper [37] presented a new Dynamic
Self-Attention (DSA) model, which outperforms many related models. DSA
is based on attending to a dynamic weight vector rather than to a fixed
vector learned during training. The model succeeded on the SNLI dataset
with a result of 87.4%, which is the highest score among reported results in
a sentence vector-based group of models.

Semantics-aware BERT for Language Understanding

At the moment, the best reported result on the SNLI dataset is achieved
by a model called Semantic-aware BERT (SemBERT) [38]. It is a BERT [28]
model extended by information about a semantic role of different parts of
an input. More precisely, the BERT model is used to compute a contextual
representation of word tokens. It is then concatenated with a vector, which
carries the information about the semantic role of the token in a particular
sentence. An achieved accuracy on the SNLI dataset is 91.9%.

Retrieval on Source Code: A Neural Code Search

In their paper, Sachdev S. et al. [39] addresses a natural language search
over a large code base acquired from the GitHub. They use a variant of a
Word2Vec embedding (section 3.1.1) to obtain a representation of the query
and a code snippet. Three methods of creating a document embedding based
on the word representations are evaluated. These are simple averaging of all
the word vectors, averaging unique words only and a weighted average using
the tf-idf (equation 3.1). Such embedding of the query is then used to find
a code snippet with its representation closest to the query embedding. The
accuracy of the code search was evaluated on 100 hand-picked StackOverflow
questions with an accepted answer. The most promising result is achieved
using the weighted average method, where an acceptable solution was found
for 43 out of 100 test queries.

When Deep Learning Met Code Search

Another existing work [40] extends the previously discussed method by
introducing supervision into the training. A significant difference is that
the authors use two different embedding matrices (the first one is used for
the code and the second for the query), initialized by the same pre-trained
weights. These matrices are then fine-tuned during the training process.
Additionally, the scheme of producing a document level embedding from the

30

word token embeddings is changed. Instead of the tf-idf weighted average, a
simple average is used for the query and a weighted average based on learned
attention weights is used for the code.

31

4 Stackoverflow Data

A Stackoverflow is one of Stackexchange’s community platforms, which
is designated for programmers. It provides a space to ask questions and
get answers from other members of the community. At the beginning of
July 2019, the page contained more than 45 million questions and answers,
which makes the Stackoverflow being considered as the biggest programming
discussion platform.

Not only does the Stackoverflow store an enormous knowledge base, but
the site also hides valuable hand-tagged data that can be used for machine
learning. More precisely, users can mark two questions as duplicates so
that it warns the others that there may be a desired solution already avail-
able. However, the interesting part thereof are the duplicate links themself.
Thanks to them, the Stack Overflow data can be used to create a dataset
for the semantic similarity task (section 3.3). Utilization of the duplicates
for learning a sentence encoding is an aim of this work and will be focused
in the subsequent chapters.

This chapter is structured as follows. Firstly a detailed description of the
data source is given. Later the chapter discusses the structure of the data
dump and presents essential data statistics. Finally, a short discussion about
alternative data sources takes its place.

4.1 Data Source
The export of the complete Stackoverflow website is available at www.

archive.org/details/stackexchange. The work uses a page dump from
the beginning of July 2019. Therefore the information stated by this work
is related to this date. The export comes logically separated in eight com-
pressed XML files, each carrying different information. The individual parts
and their sizes (compressed) are listed below:

• badges (242.7 MB) - gained honors

• comments (4.2 GB) - user comments

• post history (25.0 GB) - history of posts

• post links (84.7 MB) - relationship links between the posts

32

www.archive.org/details/stackexchange
www.archive.org/details/stackexchange

• posts (14.3 GB) - all questions and answers
• tags (797.9 KB) - tags that can be associated with the posts
• users (504.8 MB) - profiles of page users
• votes (1.1 GB) - votes for the posts

Only the post links and posts (both outlined using a bold font in the
listing) thereof are used for assembling the dataset. A detailed description
of the export parts relevant to the dataset is provided in the following section.

4.2 Data Dump Structure
As stated in the previous section, the Stackoverflow dump comes in XML

files. Since not all the fields available in the XML are necessary, only the
relevant ones are chosen to be further processed. A field listing of the posts
and post links exports with the selected fields highlighted can be found
below:

posts.xml
- Id
- PostTypeId

-> 1: Question
-> 2: Answer

- ParentID (only present if PostTypeId is 2)
- AcceptedAnswerId (only present if PostTypeId is 1)
- CreationDate
- Score
- ViewCount
- Body
- OwnerUserId
- LastEditorUserId
- LastEditorDisplayName
- LastEditDate
- LastActivityDate
- CommunityOwnedDate
- ClosedDate
- Title
- Tags
- AnswerCount
- CommentCount
- FavoriteCounts

33

postlinks.xml
- Id
- CreationDate
- PostId
- RelatedPostId
- PostLinkTypeId

-> 1: Linked
-> 3: Duplicate

From the listing above, it can be seen that the linking of the duplicates
is done using a post link record with PostLinkTypeID = 3. Each post link
has its unique identifier (Id) and is assigned to one of the related posts via
a unique identifier of the post (PostId). The second post in the relationship
is also determined by its identifier (RelatedPostId).

From the post attributes, the most important fields are Id, PostTypeId,
Body and the Title. Worth mentioning is that the Body attribute contains
a formatted content of the post in an HTML.

4.3 Data Statistics
Table 4.1 shows document counts in different categories of the data. The

first four of them are basic categories defined by a separation of the data
source. The last four of them (separated by a horizontal line) are derived
categories that are subsets of the posts.

From the table, it can be seen that the overall number of posts is around
45 million. 17.8 million of thereof are the questions, which are the point of
interest in this work. Moreover, around 491 thousands of pairs of questions
are the duplicates that will form a basis of the entire dataset. Another
significant property observed in the data is that 76.6% of the questions
contain a code snippet (body of the post contains an HTML tag "<code>").

4.4 Other Data Sources
Besides the Stackoverflow duplicate questions, other data sources exist

as well. One of the alternative data sources can be even obtained from
the Stackoverflow dump by extracting pairs made up of questions and their
corresponding accepted answers. The idea behind that is to use the accepted
answers to predict whether the post is an answer to the given question.

34

Dataset part Number of samples

comments 74 003 667
users 10 640 388
post links 5 600 831
posts 45 069 473
questions 17 786 242
questions containing a code snippet 13 628 089
questions with an accepted answer 9 362 222
duplicate pairs of questions 491 337

Table 4.1: Example counts in different document categories in the Stack-
overflow data dump. Below the horizontal divider are derived categories
that are subsets of the "posts" category.

Alternatively, the size of the current dataset might be enlarged with data
from the remaining 173 webpages of the Stackexchange platform. That
would bring more complexity into the dataset since each page focuses on a
different topic such as 3D printing or math. Furthermore, variants of few
Stackexchange pages exist in languages other than English.

Apart from the Stackexchange, there are other similar web pages, such as
Quora. That page was already utilized to create a Quora Question Pairs
dataset consisting of approximately 404 thousands of training examples. A
training objective of the dataset is to predict whether two questions are
duplicates or not. The dataset can be accessed on https://www.kaggle.
com/c/quora-question-pairs.

35

https://www.kaggle.com/c/quora-question-pairs
https://www.kaggle.com/c/quora-question-pairs

5 Analysis of the Problem

This work aims to create a sentence encoder using the dataset from Stack-
overflow duplicate questions (chapter 4). Therefore, this work utilizes deep
learning techniques to train a classifier distinguishing between different,
similar (only some of the presented models) or duplicate questions. This
chapter presents possible solutions for different sub-problems and discusses
the chosen approaches.

5.1 Assembling the Dataset
The first step in training a neural network is to obtain a dataset. To solve

the given task, this work chooses to utilize duplicate questions obtained from
the Stackoverflow webpage (chapter 4). The Stackoveflow page was chosen
from the Stackexchange pages since it is the largest one. Additionally, it
requires to address the domain specific language containing code snippets.

To assemble the dataset, it is essential to clean the data source. In this
case, the data contain duplicate links pointing to a not existing post (the
previously stated number of duplicates is after cleaning the invalid links).
That can be achieved by iterating over all the links and querying referenced
posts. If one of the referenced posts cannot be found, the corresponding link
is removed. All the remaining links are then used as a base for the dataset.

Generally, the learning objective of the created dataset shall be to classify
whether two questions are duplicates or not. It implies that each example in
the dataset is a triplet "(master post, related post, class)", where the class de-
notes the relationship between the two posts. Since the neural network must
distinguish a tiny semantic difference in the questions, the dataset shall not
consist of duplicates and different question pairs only. Therefore, the dataset
must embrace similar question pairs as well. This work defines a question
pair as similar if there is no duplicate link between the questions, but a
keyword-based search query finds a match between them. Consequently,
the dataset is made up of pairs of questions classified into the following
categories: different, similar and duplicates.

To assemble the dataset, firstly, the duplicates are found and assigned to
each other. The process is to iterate over all the duplicate links and query

36

the first post of the current link. This post is marked as a master post.
After that, all duplicates for the given master post that are not already in
the dataset are found. During the duplicate search, the links are handled
transitively up to a depth of five links. Handling the links transitively may
result in marking two questions as duplicates even though they are different
(in case of the transitive links of a higher order). However, table 5.1 shows
that transitive duplicates of higher order are not represented in the dataset
in significant numbers. All the found duplicates are the assigned to the
master post and they are marked as duplicates.

Relation type Total examples Percentage

direct 222 656 98.48%
1st transitive 3 226 1.43%
2nd transitive 133 0.06%
3rd transitive 28 0.01%
4th transitive 25 0.01%
5th transitive 22 0.01%

Table 5.1: Summary of duplicate examples obtained from direct links and
transitive relations.

After that, three similar posts that are not already in use shall be found for
each master post in the dataset. To perform such queries over the data, they
must be stored in a database providing such functionality. Currently, there
are many software tools for data storage, analysis and search available on the
market. Examples of such databases are, for example, MySQL, MongoDB,
Elastic stack, et cetera. This work chooses to work with the Elastic stack
(Elasticsearch + Kibana) since it comes in a free, open-source version and
provides suitable functions for data indexing, searching, exploration and
visualization. The posts found using the Elasticsearch are assigned to the
master post and marked as similar.

In the end, three randomly chosen posts (that are not in use already) are
assigned to each of the master posts as a different post. The different posts
are chosen randomly since there is little likelihood that the post would be
similar.

37

5.2 Framework
One of the essential decisions when it comes to neural networks is a frame-

work choice. These days, many machine learning frameworks are available
and each has its advantages and disadvantages. These are, for example,
PyTorch, Scikit-learn, Tensorflow (TF), or Keras.

This work chooses to work with the Tensorflow 2.0 in combination with
the in-built Keras. Together they provide extensive options to build, train
and evaluate a neural network. Other significant advantages of the TF are
the detailed tutorials that are freely available. Additionally, there is an
active community that stands behind the TF. Moreover, a web application
called Tensorboard can be used to display a computational graph of the
network, view the training and evaluation results, or analyze how does a
hyperparameter setup affects the resulting accuracy.

5.3 Feeding the Data into a Neural Network
Feeding dataset examples into a neural network for a purpose of training

or evaluation requires to build an input pipeline. Its role is to load, shuffle
and batch the examples. Furthermore, the raw data needs to be preprocessed
before being ingested by the network. These points are discussed in detail
in this section.

5.3.1 Input Pipeline
The design of an input pipeline heavily depends on the features provided

by the chosen framework. The Tensorflow provides a wide range of possibil-
ities of feeding in the data. The first one is to build a complete instance of a
TF Dataset class, which provides functionality to download, split and feed
the data into the network. However, this approach is quite labor-intensive.
That may be undesirable in the early phases of development since there is
a chance that there will be additional changes in the dataset.

Another feasible approach is to omit the Dataset API entirely and to use
pure Python generators. Unfortunately, this results in losing a lot of useful
functions that the API provides. A good compromise between implementa-
tion complexity and the features provided by the TF is to create an instance
of a Dataset class from an external data source. The external sources that

38

can be used are NumPy arrays, Python generators, TFRecords, CSV, et cet-
era. For development purposes on our dataset, two pipeline versions based
on Python generators might be used. These two approaches are further
discussed below.

Elasticsearch Generator

The first possible input pipeline works with an export of the dataset that
consists of IDs of two posts and a corresponding label. The generator reads
CSV lines and dynamically loads both posts from the Elasticsearch instance
where the posts are stored. Then, it runs a preprocessing (section 5.3.2) and
yields a dataset item. Unfortunately, it turns out that this type of generator
is slow due to the need to download and preprocess the data on the fly.

Text CSV Generator

The second input pipeline utilizes another version of the dataset export
that contains the text of the posts instead of their IDs. Such an approach
provides better speed and the possibility to preprocess (section 5.3.2) the
content in advance when exporting the dataset. Generally, the generator
accepts one or two CSV files, depending on the model type. One of the
files carries preprocessed text pairs and the other optional one carries a
preprocessed code. The generator then reads the input file(s) and yields
dataset examples.

5.3.2 Preprocessing
As stated in chapter 4, post content is an HTML code that carries format-

ting information for the webpage. Therefore, it is necessary to extract text
from the HTML and to do other preprocessing steps described in the sub-
sequent paragraphs. Furthermore, since a significant part of all the posts
contains code snippets, the text and code are preprocessed separately. The
preprocessing is done during an extended export of the dataset to save com-
putational power during the training.

Text Preprocessing

The text is preprocessed in a few steps. Firstly new line characters "\n"
are removed from the text. Then, all URL addresses are replaced with a
special reserved token "<url>" and HTML tags are stripped while replacing
a content of "<pre><code>" tags with a token "<code>". After that, date

39

and time data are replaced with a reserved token "<datetime>", numbers
are replaced with "<numbers>" and finally, special characters are removed
from the text.

Code Preprocessing

The code preprocessing is slightly different from text preprocessing. Firstly,
the content of all "<pre><code>" tags is extracted. Then, comments are
removed from the source code and float and integer numbers are replaced
with "<float_token>" and "<integer_token>" respectively. In the end, the
new line characters are removed from the resulting code.

5.4 Approaches
There are many feasible approaches for classifying pairs of the Stackover-

flow questions into categories expressing the measure of similarity. In this
section, possible and chosen approaches are briefly discussed.

One possibility for classifying whole text is to combine the word embed-
dings of words as described in section 3.2.1. The resulting feature vectors
can be passed through dense layers with a softmax output layer to determine
th class. A significant advantage of this model is its simplicity, despite which
it provides meaningful results. That is the reason why this model is often
used as a baseline for datasets, such as the SNLI (section 3.3.1). To be able
to evaluate results improvement of models proposed later in this work, the
summation of word embeddings is used as a baseline model.

Another approach is to use an RNN encoder to produce a sentence rep-
resentation based on fed in words or characters. RNNs and their variations
turn out to perform very well (section 3.3.2) on many NLP tasks, which is
the reason why other proposed models are based on the LSTM layers.

Recently 1D CNNs are also being utilized for text processing. Generally,
the words or characters represented as vectors are passed through one or
more 1D convolution operations, which produces the resulting vector rep-
resentation of the sentence. The vector is then used for final classification
in dense layers. The process of 1D convolution with one convolution filter
is depicted in figure 5.1. An application of the CNNs to this problem is not
examined in this work since the recent results on similar tasks show that the
CNNs does not outperform RNN based solutions.

40

Figure 5.1: Sentence encoding using a 1D convolution with one filter.

Last but not least, there is a possibility to use pre-trained models such as
BERT or GPT-2. These are powerful models trained for a couple of days on
large clusters and are usually only fine-tuned during training on a final task.
In other words, it is not feasible to train them on a custom dictionary from
scratch in this work. That is a major drawback for the Stackoverflow dataset
due to the specific dictionary of the users. Moreover, the posts contain code
snippets for which neither the BERT nor GPT-2 is pre-trained.

5.4.1 Word Embedding
A lot of neural network models dealing with similar problems use pre-

trained word embeddings. The reason is either to save a training time or
to cope with a lack of labeled data. This work also chooses to utilize pre-
trained embeddings for both textual parts of the posts and parts containing
code. The reason is mainly to speed up the training.

The major questions regarding word representations are which embedding
technique to use and how to treat the code. One approach that can be seen
in work from Facebook [39] is to use a Fasttext (a variant of the Word2Vec)
and to remove all special characters and programming language reserved
tokens from the code. The result is a sequence made up of identifiers only.

This approach does not seem to be beneficial for this work since the men-
tioned preprocessing of the code results in losing information about the pro-
gramming language. Moreover, it relies on using identifiers with reasonable
names. For this work, it is essential to preserve the information about the
used programming language, since this may be the major difference between
the two questions. Similarly, the proposed models shall not rely on the us-
age of meaningful identifiers. This is because the questions may refer to a

41

general feature of the programming language and the code snippet might
not be supposed to do a meaningful activity.

These facts lead to choosing a different approach for code embedding,
where the reserved words and special characters are processed by the network
as well. Therefore, the k most common tokens in the complete dictionary
(including tokens such as "{", "}" or "public") are used to pre-train their
embeddings and the rest of them is handled as OOVs. It can be assumed
that all the OOVs that appear in the code are variable or function identifiers.

Another important decision is the way how to treat OOVs. To handle
them, this work creates a special "<OOV>" token, whose representation is
learned during the end to end training, while the rest of the embeddings are
pre-trained and fixed. Additionally, representations of other special tokens
described in section 5.3.2 are pre-trained as well. Other possible ways of
how to handle the OOVs are subword models (section 3.1.3), character level
embedding, or a mixture of the word and character level embedding.

To pre-train the embeddings, this work chooses to work with theWord2Vec
- CBOW model, which is a frequent choice of many related works. Moreover,
there is a pre-trained Word2Vec model available on a Tensorflow Hub, which
can be used for a comparison with the custom trained embeddings.

5.5 Architecture
Generally, the proposed models use siamese neural network architecture

(section 5.2), which is illustrated in figure 5.2. The siamese neural net-
work in the picture accepts two questions, applies pre-trained embeddings
and passes them through subsequent layers that share their weights between
both branches. That results in generating a vector representation of both
questions. These vectors are merged and passed through a multi-layer per-
ceptron with a softmax layer at the end.

The most remarkable difference between proposed models is a sentence
encoder, while the general architecture is the same. Other minor differences
can be found in a softmax classifier part as well. These can be, for example,
a number of layers or a number of neurons in the layers.

42

Figure 5.2: Siamese neural network architecture for classification on the
Stackoverflow dataset.

The subsequent sections firstly introduce common features of all the mod-
els and then the individual models are described in detail.

5.5.1 Common Features
All the proposed models share common architectural elements such as an

input pipeline, embedding layer, the way how sentence vectors are merged,
metrics and loss. These common features are discussed in this section.

Data input

The question pairs are fed into the model in batches of a parametrizable
size. An input pipeline takes care of loading the data, padding the sentences
to the same length, shuffling and batching. The yielded batch contains pairs
of sequences created from dictionary indexes of each word. Put differently,
the input is a tensor of shape (2, batch size, max sequence length).

Embedding Lookup

The first layer of each model is an embedding layer (tf.keras.layers.Embedding),
whose weight matrix is initialized with the pre-trained embedding weights.
The embedding layer creates a matrix made up of one-hot vectors that cor-
respond to the dictionary indexes of fed-in words. The matrix is then mul-
tiplied with the weight matrix, which results in a tensor with shape (batch

43

size, max sequence length, embedding dimension) for each of the input ques-
tions. A way how the OOVs are handled is similar for all the models and is
described in section 5.4.1.

Merge Step

Another common feature of all the models is the merging of sentence rep-
resentations. All proposed models work with a concatenation of the sentence
vectors, which is also used in the SNLI dataset paper [34].

Optimized Metric

The choice of a metric (section 2.6) to be optimized and observed is very
important. This work aims to optimize an f1 score since table 6.1 shows
that the dataset is unbalanced. It means that accuracy would not provide
interpretable results. Besides, a confusion matrix is used to provide more
in-depth insight into the model’s behavior.

Loss Function

An originally used loss function was a cross-entropy (section 2.4.2), which
is a frequent choice of classification tasks with a softmax output layer. How-
ever, experiments showed that the cross-entropy does not correlate with the
f1 score very well, causing worse results. To address this problem, an f1
loss (section 2.4.3) is used for training the models and is optimized using an
Adam optimizer (section 2.5.1).

Regularization

A regularization (section 2.7) is an integral part of a neural network. The
models proposed in this work use an L2 regularization (tf.keras.regularizers.l2)
in all the layers of the softmax classifier. A regularization parameter is al-
ways the same for all the layers.

Additionally, the models utilize dropout layers (tf.keras.layers.Dropout).
In the models, two different dropout configurations are used. The first one
(which is usually configured to a higher dropout rate) is always after the
embedding layer. The second dropout follows each of the subsequent layers.

44

5.5.2 Word Summation
The first proposed model (figure 5.3) is based on a word summation

method described in section 3.2.1. It means that the whole sentence en-
coder is just a sum of the word embeddings. Encoded questions are then
concatenated and passed through a dense layer and a softmax layer at the
output. This model uses only a textual part of the dataset while omitting
code tokens entirely (except the special "<code>" replacement token in the
text).

This model is used in two variants that differ in a number of classes. A
two-class model is a special case of a three-class model, where all the "similar"
samples are treated as "different".

Variant Classes

WordSum2Cls 2
WordSum3Cls 3

Table 5.2: Variants of a word summation model.

5.5.3 BiLSTM Encoder
The second proposed model is based on a bidirectional LSTM encoder and

utilizes only the textual part of the dataset. Figure 5.4 shows one variant of
the model, where the embedded sequences are passed through two BiLSTM
layers that produce the vector representation of the sentences. The resulting
representations are concatenated and used for classification in the softmax
classifier.

Variants of the model differ in a number of classes, a number of BiL-
STM layers in the encoder and a number of the dense layers in the softmax
classifier. These variants are described in table 5.3.

5.5.4 BiLSTM Code Encoder
The last proposed model (figure 5.5) is different from the previous one in

a way how the code parts of the dataset are handled since this model also
utilizes the second part (with code tokens) of the dataset. It means that
the model accepts four sequences - two of them carry the textual tokens and
the others carry the code tokens. The textual sequences are then embedded

45

Figure 5.3: Neural network model based on a word embedding summation.
Dropout layers are omitted in the picture for the sake of readability.

Variant Classes BiLSTM Dense

BiDirLSTM1L3Cls 3 1 1
BiDirLSTM2L3Cls 3 2 1
BiDirLSTM1L2Cls 2 1 1
BiDirLSTM2L2Cls 2 2 1
BiDirLSTM2LDense2L2Cls 2 2 2
BiDirLSTM2LDense2L3Cls 3 2 2

Table 5.3: Variants of a BiLSTM encoder model.

using the pre-trained embeddings for text, whereas the code sequences are
embedded using embeddings trained for code.

The sentence encoder is separated into two parts - an encoder for code
and an encoder for text. The structure of both of them is identical since
they are made up of two bidirectional LSTM layers. However, the encoders
do not share their weights completely. The way how the weights are shared

46

Figure 5.4: A bidirectional LSTM encoder model. Dropout layers are omit-
ted in the picture for the sake of readability.

is marked out by yellow and blue background in the figure.

A result of passing the question through the embedding layer and the en-
coder is a vector representation of the code contained in the question as well
as a representation of the text. These two representations are concatenated,
and together they form a complete representation of the entire question.
The fact that this model utilizes the complete information from the ques-
tion is a significant advantage of this model. Thanks to that, the model can
provide better results since it can distinguish, for example, the programming
language of the code snippets.

47

To illustrate how the code processing can help to improve the accuracy
of the model, imagine two questions where users ask "How to implement
synchronization of threads t1 and t2 into the following code". For a model
that only has the text of the questions, not the code snippet, these questions
appear the same. However, if the code of the first query is written in Java
and the second in C, the two questions are clearly different.

Finally, the representations of the questions are concatenated and pro-
cessed by a softmax classifier with two dense layers and a softmax layer on
the top. The code encoder model is trained in a variant with two and three
classes (table 5.4).

Variant Classes

BiDirCodeEncoder2L2Cls 2
BiDirCodeEncoder2L3Cls 3

Table 5.4: Variants of a BiLSTM encoder model.

48

Figure 5.5: A bidirectional LSTM code encoder model. Dropout layers are
omitted in the picture for the sake of readability.

49

6 Results and Evaluation

This chapter aims to discuss the results achieved using the models pro-
posed in chapter 5. Furthermore, the chapter provides a more detailed de-
scription of realizing the chosen approaches. The first section discusses a
data pipeline, while in the second section, the setup of hyperparameters is
stated. Since numerous experiments are done for each of the model variants
using different hyperparameters, only the configuration leading to the best
result of the given model is stated. After that, the second section states the
achieved results and compares them with existing work on the SNLI (section
3.3.1) dataset. Finally, the results are further analyzed to provide deeper
insights into the accuracy.

6.1 Data Pipeline Construction
This section describes the steps taken to prepare data for the neural net-

work. In the first part, details of indexing the Stackoverflow data into Elast-
icsearch are discussed. In contrast, the second part describes how the data
are exported from the Elasticsearch into a form usable by input pipelines.

6.1.1 Indexing Data into Elasticsearch
As stated in section 5.1, it is necessary to store the data in the Elastic-

search to assemble the dataset. Therefore, an Elasticsearch cluster made up
of three nodes is established. The cluster is running on virtual machines
provided by the MetaCentrum (https://metavo.metacentrum.cz). The
machine running the cluster’s master node also hosts a Kibana instance to
facilitate exploration of the data in the cluster.

To index the data, a Logstash utility is used. Using the Logstash, one can
configure an input pipeline that processes a given stream of data and ingest
them into a configured Elasticsearch instance. The Logstash input pipelines
used for this work consist of three primary operations - input, filter and
output. The input operation ingests the given XML file into the pipeline.
Then the filter operation takes care of parsing the XML and selecting desired
fields. Finally, the output operation of the pipeline assembles a document
and sends it to the Elasticsearch instance.

50

https://metavo.metacentrum.cz

6.1.2 Dataset Export
According to a description in section 5.1, the dataset is assembled and

resulting assignments of the posts are stored in the Elasticsearch database.
The assignments are represented by dataset groups and post roles. In each
group there is a master post and a number of duplicate, similar and different
posts. Based on that, the dataset export is created.

The process of dataset export iterates over all the master posts and queries
all remaining posts in the corresponding dataset group. Each of these posts
is then used in a pair with the master post and together, they represent one
example. The corresponding class is derived from the role of the post, not
being the master.

The individual dataset examples are exported into a CSV file with format:
"first_post_ID;second_post_ID;class". Furthermore, to be able to use a
faster variant of the proposed input pipeline (section 5.3.1), two additional
CSV files are created. One of them contains the corresponding preprocessed
text of the posts and the second one consists of preprocessed code. The
resulting dataset is split into three distinct parts, as shown in table 6.1.

Type Train Dev Test Total

Different 550 757 64 615 32 448 647 820
Similar 526 759 62 010 30 790 619 559
Duplicates 191 931 22 721 11 437 226 089
Total 1 269 447 149 346 74 675 1 493 468

Table 6.1: Stackoverflow dataset example count summary.

6.2 Experimental Setup
In the previous chapter, the architecture of the models is discussed. How-

ever, the setup of hyperparameters and other essential settings are not men-
tioned there at all. Therefore, this section discusses the hyperparameter
setup using which the best results are achieved.

51

6.2.1 Embedding
As stated in chapter 5, the work utilizes pre-trained Word2Vec embed-

dings for both code and textual parts. These embeddings are joint for all
the models and are trained on a whole set of posts from the Stackoverflow
(chapter 4). Since experiments show that fine-tuning the embeddings during
an end to end training does not improve the results at all, the pre-trained
embeddings are fixed and are not fine-tuned during the training.

The embeddings are pre-trained using a CBOW variant of a Word2Vec
(section 3.1.1) with negative sampling. The window size for training is set
to five words. A dictionary for the textual embeddings is composed of all
words that appear in a corpus at least 50 times. For the embeddings of the
code parts, the minimum occurrence threshold is set to 500 occurrences.

6.2.2 Word Summation Model
The word summation model turns out to show the best results while us-

ing the two-class variant (WordSum2Cls) in combination with an f1 loss.
Experimentally set hyperparameters are:

• batch size: 256

• length of input sequences: 150

• number of neurons in the first dense layer: 128

• the activation function in the first dense layer: ReLu

• L2 regularization factor in the dense and softmax layer: 0.05

• first dropout rate (after embedding): 0.5

• second dropout rate (all the others): 0.35

6.2.3 BiLSTM Encoder
The most successful BiLSTM encoder model is the two-class variant with

two LSTM layers in the encoder and two dense layers preceding the soft-
max layer (BiDirLSTM2LDense2L2Cls). A used loss function is an f1 loss.
Experimentally set hyperparameters are:

• batch size: 256

52

• length of input sequences: 150

• size of the first BiLSTM layer: 256

• size of the second BiLSTM layer: 128

• number of neurons in the first dense layer: 128

• number of neurons in the second dense layer: 64

• the activation function in the first two dense layers: ReLu

• L2 regularization factor in the dense and softmax layers: 0.05

• first dropout rate (after embedding): 0.5

• second dropout rate (all the others): 0.35

6.2.4 BiLSTM Code Encoder Model
The last model that uses a code encoder alongside the textual encoder

shows the best results in the two-class variant with an f1 loss. The values
of the hyperparameters are the same for both encoders and are therefore
stated only once in a listing. The used hyperparameter values are:

• batch size: 256

• length of input sequences: 250

• size of the first BiLSTM layers: 256

• size of the second BiLSTM layers: 128

• number of neurons in the first dense layer: 256

• number of neurons in the second dense layer: 128

• the activation function in the first two dense layers: ReLu

• L2 regularization factor in the dense and softmax layers: 0.05

• first dropout rate (after embedding): 0.45

• second dropout rate (all the others): 0.3

53

Before presenting results achieved using these hyperparameters, it should
be pointed out, that the dropout rates are configured to high values for
all the models. Decreasing the rates results in significantly lower f1 scores.
Additionally, it is important to disable a bias in the softmax output layer
to prevent the models from learning a strong bias towards more numerous
classes.

6.3 Model Results Evaluation
Tables 6.2 and 6.3 state achieved results of the proposed models on the

Stackoverflow dataset. The tables are separate for two-class and three-class
models since the results are not easily comparable, as discussed later.

Model Train Dev Test
Acc F1 Acc F1 Acc F1

BiDirCodeEncoder2L2Cls 88.0 75.8 86.9 74.6 86.1 74.1
BiDirLSTM2L2Cls 84.2 70.8 84.0 70.6 83.9 71.0
BiDirLSTM2LDense2L2Cls 84.0 70.8 85.5 70.7 84.6 70.9
BiDirLSTM1L2Cls 84.1 70.4 85.0 70.5 84.7 70.8
WordSum2Cls 84.3 70.1 84.5 69.2 86.2 68.8

Table 6.2: Results of two-class models.

Model Train Dev Test
Acc F1 Acc F1 Acc F1

BiDirCodeEncoder2L3Cls 88.2 81.6 86.6 80.2 85.3 79.2
BiDirLSTM2LDense2L3Cls 86.0 78.0 86.6 78.0 85.9 78.1
BiDirLSTM2L3Cls 85.6 77.6 87.4 76.8 87.2 77.5
BiDirLSTM1L3Cls 85.5 77.6 86.4 77.1 85.8 77.5
WordSum3Cls 84.6 76.8 85.1 77.0 86.7 75.1

Table 6.3: Results of three-class models.

The results show that the most successful models were the BiLSTM code
encoders. That confirms the assumption that discarding the code contained
in most queries can lead to a significant loss of information. Moreover, the
word summation model was the least successful one, which was, however,
expected since it is a baseline model. The difference in a test f1 score between
the baseline models and BiLSTM code encoders is 5.3% and 4.1% for the
two-class and three-class models respectively.

54

An interesting observation that can be done on the results is that the
architecture variant of BiLSTM encoder does not play an important role
in the resulting f1 score. In other words, it can be seen that neither an
expansion of the softmax classifier part nor an expansion of the encoder
improved the f1 score in a significant way.

Furthermore, it can be noticed that the three-class models report much
better results than the two-class models. As a matter of fact, this observation
might be misleading since a more in-depth analysis of confusion matrices
shows that the two-class models work slightly better. That can be seen
in figures 6.1 and 6.2. The figures show that despite the higher f1 score,
the three-class models classify fewer duplicates correctly than the two-class
models do. Even though this phenomenon is demonstrated on the BiLSTM
code encoder, it applies to all the proposed models in the same way.

different duplicates
Predicted label

di
ffe

re
nt

du
pl
ica

te
s

Tr
ue

 la
be

l

0.88 0.12

0.35 0.65

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6.1: A confusion matrix for the two-class variant of the BiLSTM code
encoder model on a test dataset split.

6.3.1 Other experiments
Developing and fine-tuning the model requires a lot of experiments and

testing of various techniques. In this work, these are mainly a different loss
function and a different merging step. This section briefly discussed the
results and conclusions of these experiments.

55

duplicates similar different
Predicted label

du
pl
ica

te
s

sim
ila

r
di
ffe

re
nt

Tr
ue

 la
be

l

0.61 0.39 0

0.21 0.79 0

0 0 1

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6.2: A confusion matrix for the three-class variant of the BiLSTM
code encoder model on a test dataset split.

An originally used loss function was a cross-entropy, which correlates very
well with accuracy. Unfortunately, with the cross-entropy loss function, the
models tend to learn a strong bias towards more numerous classes such as
similar or different, not classifying the duplicate examples correctly. To
address this problem, the f1 loss function is used instead and it brings a
significant improvement observed in both the f1 score and confusion matrix.
The improvement of the f1 score achieved by using the f1 loss is around 2%
on average.

Additionally, the work also investigated the possibility of using the abso-
lute value of an element-wise subtraction as a way of merging the sentence
representations. However, this merging technique turns out not to be work-
ing very well. As a matter of fact, the absolute difference worsens the f1
score by about 4%.

6.3.2 Comparison to SNLI
Classification on the SNLI dataset is, to some extent, similar to the task

of recognizing duplicate questions. At least the proposed three-class archi-
tectures, except the BiLSTM code encoders, apply to this task, which is why
the SNLI dataset has been used to verify the proposed models.

56

Model Test accuracy
LSTM RNN [34] 77.6
Sum of words [34] 75.3
BiDirLSTM2L3Cls 72.1
WordSum3Cls 69.7

Table 6.4: An accuracy comparison of the proposed models with the work
[34] on the SNLI dataset.

Since the SNLI dataset does not contain any code, the only models used for
the verification on the SNLI are the word summation and BiLSTM encoder
models. The results of these models (table 6.4) without any architectural
change are significantly lower than those presented in [34] with similar mod-
els. However, this is expected since the models proposed in this work are
tailored and fine-tuned to a slightly different task and the main aim of this
work is to optimize the results for the Stackoverflow dataset, not for the
SNLI.

6.4 Manual Analysis of Dataset and Errors
The previous section of this chapter states the results we achieved using

the proposed models. However, the measured metrics, such as the f1 score
and confusion matrix, heavily depend on having the dataset labeled precisely.
In our case, the dataset is extracted from a public webpage with millions
of users, and therefore, it can be expected that the dataset may be subject
to many errors. More precisely, we assume that some amount of duplicate
links may be erroneous. Therefore, we create a manual survey of a subset
of question pairs, which shall provide us more profound insights into the
achieved results.

The subset of question pairs to be analyzed is made up of 100 samples.
The first 50 of them are randomly sampled from the dataset examples labeled
as duplicate. Next 25 samples are chosen from duplicate pairs that are erro-
neously classified as different (type I error) by our BiLSTM Code Encoder
model. Finally, the remaining 25 samples are chosen from non-duplicate
pairs of questions, erroneously classified as duplicate (type II error).

For each of the survey samples, we asked three independent people who
work or study in the information technologies field, to asses whether the

57

questions are duplicates or not. To determine the resulting class for each
of the pairs, we choose the predominant answer (answer with two or three
votes).

The results of the survey are summarized in table 6.5. The manual ana-
lysis shows that the dataset comprises a not negligible amount of redundant
duplicate links. This can heavily affect the results obtained by the neural
network and therefore, this shall be considered when evaluating the results.
For a detailed listing of respondent answers, see appendix A.

Survey subset Samples total Duplicates # Duplicate %
random duplicates 50 36 72%
type I error 25 13 52%
type II error 25 3 12%

Table 6.5: Results of manual survey of the dataset samples. The samples
are divided into three categories based on the how they are chosen for the
survey.

6.5 Results Discussion
This section builds on the results presented in the previous sections, dis-

cussing in more detail why the models can detect at most 65% of the du-
plicates. The discussion is mainly from the source data point of view since
it can play a significant role in the achieved f1 score.

A first phenomenon that can be observed on the Stackoverflow website is
that users often mark questions as duplicates, although the questions focus
on slightly different topics. Therefore, the data source contains a not negli-
gible amount of false-positive examples, which have a negative consequence
on the network’s metrics. We substantiate this statement by manual ana-
lysis of the dataset samples (section 6.4), which shows that the proportion
of false-positive samples in the dataset is around one quarter.

Furthermore, the manual analysis shows that among the dataset examples
labeled as duplicate but classified as different is roughly 48% of false-positives.
If we consider this fact, we get 81% precision on the duplicate questions,
which is a significant improvement over the measured 65%.

58

Unlike the false-positives, the false-negative examples are not so abundant
among the different pairs classified as duplicate since they make up only
12% of the errors. Taking this into consideration, we get 89% precision on
the non-duplicate questions. A cause of the false-negative examples is the
dataset assembly algorithm (section 5.1). It is because the dataset shall
contain semi-positive samples that are collected by Elasticsearch’s full-text
queries, which may find unmarked duplicated questions.

Based on the manual analysis of errors, we create an estimation of a
confusion matrix showing the network results not being affected by errors in
the evaluation data. The resulting confusion matrix is depicted in figure 6.3.
However, it shall be further noted that the accuracy of the network might
increase if being trained on data free from such errors.

different duplicates
Predicted label

di
ffe

re
nt

du
pl
ica

te
s

Tr
ue

 la
be

l

0.89 0.11

0.19 0.81

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6.3: Resulting confusion matirx of BiLSTM Code Encoder model
after correction based on manual error analysis.

59

7 Conclusion

In the scope of this work, a new dataset for semantic textual similarity
was created from a Stackoverflow data dump. The dataset consists of al-
most 1.5 million examples. A learning target of the dataset is to classify
whether two questions are duplicates or not. In the future, we are going
to release the dataset as an official TF Dataset available for the research
community. Furthermore, the work proposed three different siamese neural
network architectures to solve this task.

The most successful architecture reports a test f1 score of 74.1%, improv-
ing the f1 score by 5.1% compared to a baseline model. Furthermore, a
manual analysis of duplicate questions and errors suggests that the achieved
f1 score is even better. An important feature of our design is a different
encoder of code snippets in parallel to a textual encoder. This architectural
element enables the network to utilize all the information stored in the data
and to make more precise decisions. The proposed models in their hidden
layers create a vector representation of sentences that can be obtained and
used as a pre-trained sentence embedding for other tasks.

This work can be further followed by research into the usage of the ob-
tained sentence representations by integrating them in a Stackoverflow in-
formation retrieval or code generation task. For future work, a web applica-
tion for browsing and searching in the Stackoverflow data was constructed.
At the moment, the application provides a standard full-text search only,
but it is prepared for integrating with the vector representation based search.
Screenshots of the demonstration application can be found in appendix D.

Moreover, it might be beneficial to explore the usage of self-attention
models such as BERT on the created dataset. Even though it would be
complicated to train BERT on the code tokens from scratch, it can be used
for encoding the textual part alongside the current code encoder. Addi-
tionally, the Stackoverflow data contains questions with accepted answers,
which could be utilized by another dataset with a learning objective to clas-
sify whether a post is an answer to a given question.

All source codes used in this work are accessible in a GitHub repository:
https://github.com/janpasek97/stackoverflow-siamese-network.

60

https://github.com/janpasek97/stackoverflow-siamese-network

List of Abbreviations

API - application programming interface

CBOW - continuous bag of words

CNN - convolutional neural network

DSA - Dynamic Self-Attention

FN - false negative

FP - false positive

GRU - gated recurrent unit

LSTM - long short term memory

ML - machine learning

MSE - Mean squared error

NLI - natural language inference

NLP - natural language processing

OOV - out of vocabulary

ReLU - Rectified linear unit

RNN - recurrent neural network

SNLI - Stanford Natural Language Inference

TF - Tensorflow

tf-idf - term frequency - inverse document frequency

TN - true negative

TP - true positive

61

Bibliography

[1] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of Machine
Learning. Massachusetts, MA, USA: The MIT Press, 2012.

[2] C. Nicholson. A beginner’s guide to neural networks and deep learning.
[Online]. Available: https://pathmind.com/wiki/neural-network

[3] F. Chollet, Deep Learning with Python. New York, NY, USA: Manning
Publications Co., 2018.

[4] M. Nielsen, Neural Networks and Deep Learning. Determination Press,
2015.

[5] S. Raschka and V. Mirjalili, Python Machine Learning. Birmingham, UK:
Packt Publishing, 2017.

[6] B. Karlik and A. V. Olgac, “Performance analysis of various activation
functions in generalized mlp architectures of neural networks,”
International Journal of Artificial Intelligence And Expert Systems, vol. 1,
no. 4, 2015. [Online]. Available: https://www.cscjournals.org/manuscript/
Journals/IJAE/Volume1/Issue4/IJAE-26.pdf

[7] K. P. Murphy, Machine learning: a probabilistic perspective.
Massachusetts, MA, USA: The MIT Press, 2012.

[8] (2017) Loss functions. [Online]. Available:
https://ml-cheatsheet.readthedocs.io/en/latest/loss_functions.html

[9] M. Haltuf. (2018) Best loss function for f1-score metric. [Online]. Available:
https://www.kaggle.com/rejpalcz/best-loss-function-for-f1-score-metric

[10] M.-A. Maizas. (2019) The unknown benefits of using a soft-f1 loss in
classification systems. [Online]. Available: https://towardsdatascience.com/
the-unknown-benefits-of-using-a-soft-f1-loss-in-classification-systems-753902c0105d

[11] L. Bottou, “Stochastic gradient learning in neural networks,” Proceedings of
Neuro-Nîmes 91, 1991. [Online]. Available:
http://leon.bottou.org/papers/bottou-91c

[12] G. Hinton. Overview of mini-batch gradient descent. [Online]. Available:
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

62

https://pathmind.com/wiki/neural-network
https://www.cscjournals.org/manuscript/Journals/IJAE/Volume1/Issue4/IJAE-26.pdf
https://www.cscjournals.org/manuscript/Journals/IJAE/Volume1/Issue4/IJAE-26.pdf
https://ml-cheatsheet.readthedocs.io/en/latest/loss_functions.html
https://www.kaggle.com/rejpalcz/best-loss-function-for-f1-score-metric
https://towardsdatascience.com/the-unknown-benefits-of-using-a-soft-f1-loss-in-classification-systems-753902c0105d
https://towardsdatascience.com/the-unknown-benefits-of-using-a-soft-f1-loss-in-classification-systems-753902c0105d
http://leon.bottou.org/papers/bottou-91c
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

[13] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for
online learning and stochastic optimization,” The Journal of Machine
Learning Research, vol. 12, no. null, p. 2121–2159, Jul. 2011.

[14] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimization,”
conference paper at ICLR 2015, 2015. [Online]. Available:
https://arxiv.org/pdf/1412.6980.pdf

[15] (2019) Multi-class metrics made simple, part ii: the f1-score. [Online].
Available: https://towardsdatascience.com/
multi-class-metrics-made-simple-part-ii-the-f1-score-ebe8b2c2ca1

[16] Z. C. Lipton, “A critical review of recurrent neural networks for sequence
learning,” ArXiv, vol. abs/1506.00019, 2015.

[17] C. Olah. (2015) Understanding lstm networks. [Online]. Available:
https://colah.github.io/posts/2015-08-Understanding-LSTMs

[18] C. Olah and S. Carter. (2016) Attention and augmented recurrent neural
networks. [Online]. Available: https://distill.pub/2016/augmented-rnns/

[19] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” Communications of the ACM, vol. 60,
no. 6, 2017. [Online]. Available: https://dl.acm.org/doi/10.1145/3065386

[20] L. V. Utkin, M. S. Kovalev, and E. Kasimov, “An explanation method for
siamese neural networks,” ArXiv, vol. abs/1911.07702, 2019.

[21] A. Padmanabhan. (2019) Natural language processing. [Online]. Available:
https://devopedia.org/natural-language-processing

[22] J. Eisenstein, Natural Language Processing (draft version), 2018.

[23] J. Devlin and M.-W. Chang. Bert. [Online]. Available:
https://github.com/google-research/bert

[24] T. Mikolov, K. Chen, G. S. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” CoRR, vol. abs/1301.3781, 2013.

[25] X. Rong, “word2vec parameter learning explained,” CoRR, vol.
abs/1411.2738, 2014. [Online]. Available: http://arxiv.org/abs/1411.2738

[26] J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors for word
representation,” EMNLP, vol. 14, pp. 1532–1543, 01 2014.

[27] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and
L. Zettlemoyer, “Deep contextualized word representations,” CoRR, vol.
abs/1802.05365, 2018. [Online]. Available: http://arxiv.org/abs/1802.05365

63

https://arxiv.org/pdf/1412.6980.pdf
https://towardsdatascience.com/multi-class-metrics-made-simple-part-ii-the-f1-score-ebe8b2c2ca1
https://towardsdatascience.com/multi-class-metrics-made-simple-part-ii-the-f1-score-ebe8b2c2ca1
https://colah.github.io/posts/2015-08-Understanding-LSTMs
https://distill.pub/2016/augmented-rnns/
https://dl.acm.org/doi/10.1145/3065386
https://devopedia.org/natural-language-processing
https://github.com/google-research/bert
http://arxiv.org/abs/1411.2738
http://arxiv.org/abs/1802.05365

[28] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training of
deep bidirectional transformers for language understanding,” CoRR, vol.
abs/1810.04805, 2018. [Online]. Available: http://arxiv.org/abs/1810.04805

[29] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” CoRR, vol.
abs/1706.03762, 2017. [Online]. Available: http://arxiv.org/abs/1706.03762

[30] D. Jurafsky and J. H. Martin, Speech and Language Processing: An
Introduction to Natural Language Processing, Computational Linguistics,
and Speech Recognition, Stanford, CA, US, 2019.

[31] E. A. Corrêa Júnior, V. Q. Marinh, and dos Santos Leandro Borges,
“Nilc-usp at semeval-2017 task 4: A multi-view ensemble for twitter
sentiment analysis,” NILC-USP, pp. 611–615, aug 2017. [Online]. Available:
https://www.aclweb.org/anthology/S17-2100

[32] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language models are unsupervised multitask learners,” 2019.

[33] http://ixa2.si.ehu.es/stswiki/index.php/stsbenchmark. [Online]. Available:
http://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark

[34] S. R. Bowman, G. Angeli, C. Potts, and C. D. Manning, “A large
annotated corpus for learning natural language inference,” Proceedings of
the 2015 Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2015.

[35] Y. Nie and M. Bansal, “Shortcut-stacked sentence encoders for
multi-domain inference,” CoRR, vol. abs/1708.02312, 2017. [Online].
Available: http://arxiv.org/abs/1708.02312

[36] A. Talman, A. Yli-Jyrä, and J. Tiedemann, “Natural language inference
with hierarchical bilstm max pooling architecture,” CoRR, vol.
abs/1808.08762, 2018. [Online]. Available: http://arxiv.org/abs/1808.08762

[37] D. Yoon, D. Lee, and S. Lee, “Dynamic self-attention : Computing
attention over words dynamically for sentence embedding,” CoRR, vol.
abs/1808.07383, 2018. [Online]. Available: http://arxiv.org/abs/1808.07383

[38] Z. Zhang, Y.-W. Wu, Z. Hai, Z. Li, S. Zhang, X. Zhou, and X. Zhou,
“Semantics-aware bert for language understanding,” ArXiv, vol.
abs/1909.02209, 2019.

[39] S. Sachdev, H. Li, S. Luan, S. Kim, K. Sen, and S. Chandra, “Retrieval on
source code: A neural code search,” Proceedings of the 2nd ACM SIGPLAN

64

http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1706.03762
https://www.aclweb.org/anthology/S17-2100
http://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark
http://arxiv.org/abs/1708.02312
http://arxiv.org/abs/1808.08762
http://arxiv.org/abs/1808.07383

International Workshop on Machine Learning and Programming Languages,
p. 31–41, 2018. [Online]. Available:
https://doi.org/10.1145/3211346.3211353

[40] J. Cambronero, H. Li, S. Kim, K. Sen, and S. Chandra, “When deep
learning met code search,” Proceedings of the 2019 27th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, p. 964–974, 2019. [Online]. Available:
https://doi.org/10.1145/3338906.3340458

65

https://doi.org/10.1145/3211346.3211353
https://doi.org/10.1145/3338906.3340458

A Results of Manual Dataset
Analysis

This appendix represents a detailed listing (tables A.1 - A.3) of all answers
obtained in the manual dataset survey. The first two columns of the table
contain identifiers of the Stackoverflow questions. The questions can be ob-
tained from Stackoveflow on the following URL https://stackoverflow.
com/questions/<id> by replacing the "<id>" with a correct identifier. The
third column states the answers for the given pair, and finally, the last
column states if the couple is evaluated duplicate or not, based on the an-
swers (True/T = duplicate, False/F = not duplicate).

A.1 Duplicate questions

1st question ID 2nd question ID Answers Result
46871818 12668231 T T T True
44292813 10980997 T T T True
46044661 3650506 F F F False
46475177 24025340 F T T True
46475881 4352026 F T T True
45864305 17255851 F T T True
45680885 6382023 T T T True
44215551 13550423 T T T True
44613967 9836861 T T T True
44520723 3070789 F F F False
46532621 24063590 T T T True
46597071 31490853 F T T True
46567961 40749465 F T T True
41652796 40214342 T T T True
12525396 3005577 T F F False
44288143 12061030 T F F False
47015356 9516263 F T T True
46899216 46507473 T T T True
46433315 26813667 F F F False
44728542 45462666 T T T True
44057883 42613359 F T T True

66

https://stackoverflow.com/questions/<id>
https://stackoverflow.com/questions/<id>

44055768 1113409 F T T True
46045150 45543212 T F T True
44054122 9319317 F T T True
43940753 2683214 F T F False
46176520 22357063 F F F False
46030374 18167769 F F F False
44540588 33212839 T T T True
45593362 19200734 F F T False
44188265 1391793 F F F False
45708917 13755762 T F T True
43881228 9038642 F T F False
46880969 4421207 F F T False
44189465 5865937 T F T True
43941432 1979884 T F T True
44410196 8855589 T F F False
46696837 38433594 T T T True
45707342 27525617 T T T True
46777861 6075726 T T T True
46375475 32535110 T F T True
42350919 25212986 T T F True
45643893 17409862 T F T True
46802511 41691261 F T T True
44230779 35342332 T T T True
45905293 4679352 T F T True
46037050 46585 T T T True
40672002 24100372 F F T False
44510204 8354422 T T F True
47084924 36557412 T T T True
46595588 7546285 T T T True

Table A.1: Results of the analysis of randomly selected
duplicate pairs.

67

A.2 Type I Error

1st question ID 2nd question ID Answers Result
39665029 250283 F F F False
48752678 4735058 T F T True
51906491 50628267 F F F False
55163628 51547389 T T T True
37461662 32019733 T T T True
44434913 2543589 F F F False
29874677 19635090 F T F False
55916219 55811441 F T F False
56177256 11591129 T T T True
52468678 52300922 T T T True
53022405 41704484 F T F False
40617468 32233636 T T T True
21678429 15558353 F F F False
52263073 26873627 F T F False
13432439 6989981 T T T True
45536352 13366249 F T F False
54252449 18738161 T T T True
34938916 10616935 T T T True
33495652 5260680 T T T True
46252521 25929458 F F F False
55719234 42870307 T F F False
31549504 28935302 T T T True
10503737 39393850 T F F False
22416263 22390089 T T T True
16006902 9906091 T T T True

Table A.2: Results of the analysis of duplicate question
pairs classified as different.

68

A.3 Type II Error

1st question ID 2nd question ID Answers Result
47261301 8369455 F F F False
36232418 7582102 F F F False
21678429 15558353 F F T False
51008027 7582102 F F F False
40536381 36922371 F F F False
13192089 44797254 F F F False
38318713 30853454 F F F False
21914364 31428349 F F F False
37974487 8750074 F F F False
11720010 42965421 F F F False
36221117 36224276 F F F False
25095298 8552937 F F F False
53809706 45824437 F F F False
16861104 31991388 F F F False
50175795 47856524 F F F False
48328645 7582102 F F F False
35232843 42176206 F F F False
30308336 7582102 F F F False
29746415 25034919 T F T True
45401138 7582102 F F F False
45956837 7582102 F F F False
10084296 9987653 F T T True
34213965 31158378 F T T True
47515552 7584208 F F F False
48328110 47123666 F T F False

Table A.3: Results of the analysis of different question
pairs classified as duplicate.

69

B Script Documentation

This appendix briefly describes implemented scripts and libraries that are
used for the realization of the work. The scripts and utilities are organized
into subchapters that correspond to a top-level repository structure. The
scripts are accessible at:
https://github.com/janpasek97/stackoverflow-siamese-network.

B.1 Used Libraries
A complete list of libraries/packages and their versions necessary to run

the scripts is in a file requirements.txt in the root of the repository. This
section states only the most important ones only.

• bs4 - stripping HTML tags from the post bodies

• elasticsearch-dsl - object-like access to Elasticsearch indices

• html5lib - stripping HTML tags from the post bodies (used by bs4)

• matplotlib - plotting graphs and confusion matrices

• numpy - vector computation (required by tensorflow)

• pandas - csv file operations and analysis

• tensorflow - neural network framework

• tensorflow-datasets - SNLI dataset source

• tensorflow-hub - pre-trained Word2Vec embeddings

• gensim - Word2Vec model training

• django - framework for demonstration web application

B.2 Data
The data directory contains scripts and configuration files for indexing the

data into the Elasticsearch instance and accessing them using the elasticsearch-
dsl library.

70

https://github.com/janpasek97/stackoverflow-siamese-network

index_config - *.conf

The directory index_conf contains five *.conf Logstash pipeline config-
uration files. These pipelines are used for indexing the Stackoveflow dump
into the Elasticsearch indices.

documents.py

The file documents.py contains class definitions for the elasticsearch-dsl
library to be able to access the Elasticsearch documents as objects.

B.3 Dataset
The directory dataset contains scripts for assembling, exporting and clean-

ing the dataset.

dataset_cleanup.py

The script cleans invalid links from the Elasticsearch indices and removes
an assignment of all documents to dataset groups.

make_ds.py

The script make_ds.py takes care of assembling the dataset. The script is
separated into more parts since the process takes a long time. Therefore it
shall be possible to restart the work from some point. A result of the script
is a CSV file with post id pairs and labels. The procedure of creating the
dataset is explained in chapter 4.

export_dataset_text.py

The script takes a CSV file with format "first_post_id, second_post_id,
label" and outputs two CSV files. The first CSV has a format "first_post_text,
second_post_text, label" and the second one has a format "first_post_code,
second_post_code, label". The exported text and code is preprocessed and
ready to be tokenized on spaces without any additional preprocessing.

shuffle_and_split.py

Provides functionality to shuffle the dataset and split it into three parts -
train, dev, test. The module is used by make_ds.py.

71

B.4 Network
The directory network encapsulates all functionality that is necessary to

create and train the neural network models.

assets

The directory assets contains the dataset exports, Word2Vec embedding
matrices and word to dictionary index translation maps.

checkpoints

The directory checkpoints is expected to contain folders with checkpoints
of the individual models. The subdirectories shall follow the naming con-
vention "modelname_loss", since the script evaluate_model.py expects the
model’s checkpoint to be stored in such a directory.

logs

The directory logs contains all training logs for a Tensorboard.

losses/f1_loss.py

An f1 loss implementation as a child class of tf.keras.losses.Loss. The
implementation is based on [9].

metrics

The directory metrics contains a custom implementation of a confusion
matrix and f1 score, which is an enhanced version of the original Tensorflow
code. Both implemented metrics are child classes of tf.keras.metrics.Metric.

models

The directory models contains definitions of the proposed models as a
child class of tf.keras.Model.

utils

The directory utils contains many scripts with various functionality. These
are, for example, configurations of the available models, text and code pre-
processing scripts and dataset generators.

72

evaluate_model.py

The script evaluate_model.py creates the model selected by a command
line parameter and loads its weights from the latest checkpoint. The created
model is used for evaluating an accuracy, f1 score and confusion matrix on
a test dataset.

main.py

The script main.py is used for training the models on the Stackoverflow
dataset. It creates dataset generators, configures training callbacks and
starts the training. The model to be trained, as well as the used loss function,
is selected using command line parameters.

snli_baseline.py

The script snli_baseline.py is used for training the models on the SNLI
dataset. It creates dataset generators, configures training callbacks and
starts the training. The model to be trained, as well as the used loss function,
is selected using command line parameters.

B.5 Word2Vec
The directory word2vec contains scripts for creating a text/code corpus

and training the Word2Vec embeddings on the Stackoverflow data.

create_code_word2vec_ds.py

Creates a training corpus for training the Word2Vec embeddings of code
tokens. The corpus consists of cleaned code snippets from all the Stackover-
flow posts. An output of the script is a .txt file, where each line represents
one training example.

create_text_word2vec_ds.py

Creates a training corpus for training the Word2Vec embeddings of textual
tokens. The corpus consists of cleaned texts from all the Stackoverflow posts.
An output of the script is a .txt file, where each line represents one training
example.

73

create_dictionaries_and_embedding.py

Exports an embedding dictionary and embedding matrix from an output
of the Gensim Word2Vec model.

train_word2vec.py

Train Word2Vec embeddings on a given corpus using the Gensim library.

B.6 Web
The directory web contains source code of the demonstration web applica-

tion (appendix D). The application is based on the Django framework. The
following text describes the most important source code files and folders.

SiameseSearchWeb/settings.py

The file settings.py contains settings of the Django application such as
available middleware modules, an URL configuration, path to static files
and templates, et cetera.

search/views.py

The file views.py contains the code of all application views. Usually, each
view is represented by a function that queries an Elasticsearch database and
renders the corresponding template which is returned in an HTTP response.

search/search.py

The file search.py implements functions for running full-text searches over
the Stackoverflow data. Furthermore, in the future, it will implement the
search based on obtained vector representations of the questions.

search/static

The directory static contains all CSS, javascript and image files used by
the application.

search/templates

The directory templates contains all Django templates used by the applic-
ation.

74

C Elasticsearch and Kibana
Examples

This appendix presents figures C.1 - C.4 that show screenshots obtained
in a Kibana instance. The purpose of the screenshots is to get an impression
of how does exploring the data source indexed in Elasticsearch may look
like. A reader is not expected to read the text in the figures.

Figure C.1: Summary of all documents indexed in the Elasticsearch cluster.

Figure C.2: One dataset group displayed in the Kibana instance. The figure
shows a master post (ds_item_role = 0) with a corresponding duplicate
(ds_item_role = 1) and three similar posts (ds_item_role = 2).

75

Figure C.3: Expanded details of one document (post) displayed in the
Kibana instance.

Figure C.4: Example of an HTML body of one post.

76

D Demonstration Application

We created a web application that allows us to browse and search in the
Stackoverflow data using the Elasticsearch full-text queries. Furthermore,
the application is ready for the integration of information retrieval techniques
using the obtained vector representations of questions. In other words, the
application will serve to demonstrate the benefits of this work, which is
beyond the scope of this work.

In this appending, you can find screenshots (figures D.1 - D.4) obtained
from the application. Each screenshot is accompanied by a short caption
with a description of the functionality. The purpose of the screenshots is to
get an impression of how does the application work. A reader is not expected
to read the text in the figures.

77

Figure D.1: A homepage of the web application. In the middle of the screen,
there is a text field for a query and a corresponding search button. Users can
select whether to use standard the full-text search or the improved search
technique using our outcome. However, the latter is not implemented at the
moment.

78

Figure D.2: This figure shows a page with the results of the query displayed
in figure D.1. The page displays individual results with necessary inform-
ation. Users can show details of the question by clicking the link in the
title.

79

Figure D.3: This figure shows a part of a page with details of the Stack-
overflow question. On the top of the page, a title, author, and publish date
is displayed. The question details are followed by expanded text and code
snippet of the question.

80

Figure D.4: This figure follows the question details depicted in figure D.3.
In this part of the question detailed view, all answers and comments are
displayed.

81

	Introduction
	Neural Networks
	Neural Network Architecture
	Artificial Neuron
	Layer
	Model

	Activation Functions
	Sigmoid
	Hyperbolic Tangent (TanH)
	Rectified Linear Unit (ReLU)
	Softmax

	Classification Using a Neural Network
	Loss/Cost Functions
	Mean Squared Error
	Cross-Entropy
	F1 Loss

	Training a Neural Network Model
	Optimizer

	Metrics
	Accuracy
	Precision, Recall and F1 score
	Confusion Matrix

	Other Neural Network Concepts and Techniques
	Siamese Neural Networks

	Semantic Vector Representation of Text
	Vector Representation of Words
	Context-Free Word Representation
	Contextual Word Representation
	Subword Embedding

	Vector Representation of Sentences
	Combining Word Embeddings
	Supervised Representation Learning
	Unsupervised Representation Learning

	Semantic Similarity Task
	Related Datasets
	Related Work

	Stackoverflow Data
	Data Source
	Data Dump Structure
	Data Statistics
	Other Data Sources

	Analysis of the Problem
	Assembling the Dataset
	Framework
	Feeding the Data into a Neural Network
	Input Pipeline
	Preprocessing

	Approaches
	Word Embedding

	Architecture
	Common Features
	Word Summation
	BiLSTM Encoder
	BiLSTM Code Encoder

	Results and Evaluation
	Data Pipeline Construction
	Indexing Data into Elasticsearch
	Dataset Export

	Experimental Setup
	Embedding
	Word Summation Model
	BiLSTM Encoder
	BiLSTM Code Encoder Model

	Model Results Evaluation
	Other experiments
	Comparison to SNLI

	Manual Analysis of Dataset and Errors
	Results Discussion

	Conclusion
	List of abbreviations
	Bibliography
	Results of Manual Dataset Analysis
	Duplicate questions
	Type I Error
	Type II Error

	Script Documentation
	Used Libraries
	Data
	Dataset
	Network
	Word2Vec
	Web

	Elasticsearch and Kibana Examples
	Demonstration Application

