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Assignment

1. Get introduced with the issue of automatic vehicle make and model recognition and
describe the current status of the solution.

2. Prepare a suitable image dataset for training and testing the classifier for the issue.

3. Based on a thorough analysis, choose the appropriate classification method, imple-
ment the method.

4. Find a suitable classifier topology and demonstrate this by experimenting on the
dataset created.

5. Discuss the results and suggest additional extensions.
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Abstrakt
Tato práce se věnuje problematice automatického rozpoznávání výrobce a modelů vozidel.
Detailně popisuje postup výroby datasetu z veřejných zdrojů. Pro klasifikaci jsou použity
konvoluční neuronové sítě. Práce srovnává výsledky experimentů prováděných na sítích
ResNet-50 a VGG-16. Experimenty jsou implementovány v jazyce Python s využitím
knihovny Keras/TF. Nejlepší dosažené výsledky jsou otestovány v reálné situaci. Závěrem
jsou publikovány návrhy na vylepšení.

Abstract
This work describes the problems of vehicle make and model recognition. It presents
in detail the creation of a suitable image dataset from public web resources. Extensive
experiments are conducted to find suitable architecture of convolutional neural network.
Great results were achieved by using CNN models based on ResNet-50 and VGG16. The
work is implemented in Python using Keras/TF. In the conclusion, the actual proposal is
evaluated and compared with real world scenarios. Further improvements are proposed.

Keywords: Vehicle Make and Model Recognition, VMMR, Convolution Neural Network,
CNN, Keras, SVM, Augmentation
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1 Introduction

Vehicle Make and Model Recognition (VMMR) is a part of image classification problem.
The basic idea is to recognize make and model of a vehicle using suitable features extracted
from the images of a vehicle. It is not a new area of interest. It come with the need of
various access control systems for buildings, outdoor sites or traffic control systems.[1]
The first systems provided just a basic detection of a vehicle or were able to identify
whether a vehicle is a bus, truck or car [12]. Modern systems are able to identify make
and model of vehicle with high accuracy. Many of VMMR systems are designed very
specific, analyzing an frontal image of a vehicle from fixed point of view against road
environment background. For example Petrović [13] states their system is capable of 93%
accuracy tested on 1000 images containing 77 classes. Their algorithm locates a region of
interest (ROI) for feature extraction. Obtained feature vector is classified using a nearest
neighbour algorithm. VMMR is a recognition of very similar objects with relatively small
differences. It makes it more challenging problem compared to other image classification
problems. This type of problem is often referred to as fine-grained classification [8].

The recognition problem considered in this paper is more general. We recognize a car
from any horizontal angle in any background. Our approach is based on deep convolutional
neural networks. We distinguish 40 main manufacturers and their appropriate car models.
In that way it is more challenging problem that can offer improvements in identification of
vehicles. It can be used as an enhancement of License Plate Recognition (LPR) systems.
LPR systems rely on license plates to identify a car. However, they fail in a situation
where two license plates are illegally swapped. Here presented system provides additional
information such as name of manufacturer of car, name of car model and estimated year
of production even in a situation where no license plate is visible.
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This work is structured as follows:

• Analysis
We describe what kind of problem we are facing to and propose solutions.

• Theory This section is a short recap of important terms and algorithms in machine
learning field.

• Current state
A large dataset is required for training a CNN for an image classification task. Here
we walk through the most interesting public datasets discussing their pros and cons.

• Building a Dataset
In this section we show how to compile own dataset from public web resources. We
cover web scraping, data cleaning and balancing of dataset.

• Experiments We describe many experiments we conducted in order to find best
topology of neural network. We cover two commonly used CNN: VGG16 and
ResNet50. Both bring great results.

• Results And finally we present our results and discussing conditions. We also
discuss testing in real world situation and proposing further improvements.
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2 Analysis

To recognize a car make or a car model is a classification task. It is a supervised learning
approach where labeled input data are provided. As there are many categories (car makes
and car models) it implies multi-class classification. Our task is to find a mapping function
from images of cars to discrete output categories - their appropriate car make. In machine
learning, we have many algorithms suitable for classification. To choose right approach
we need to consider what data we have. Approaches like decision tree or random forest
are based on features or attributes. Our data are images. We can think about image
as two dimensional vector of features. It implies a huge number of features. The most
effective tools for image recognition is a deep neural network, especially convolutional
neural network (CNN). They got the best results in international competitions, as stated
bellow in Wikipedia article.

The resulting annual competition is now known as the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC). The ILSVRC uses a "trimmed" list of only 1000 image
categories or "classes", including 90 of the 120 dog breeds classified by the full ImageNet
schema. The 2010s saw dramatic progress in image processing. Around 2011, a good
ILSVRC classification error rate was 25%. In 2012, a deep convolutional neural net
called AlexNet achieved 16%; in the next couple of years, error rates fell to a few percent.
While the 2012 breakthrough "combined pieces that were all there before", the dramatic
quantitative improvement marked the start of an industry-wide artificial intelligence boom.
By 2015, researchers at Microsoft reported that their CNNs exceeded human ability at the
narrow ILSVRC tasks. [19]

Generally we can say our output depends on our input. It means to get good results
with CNN we need a great dataset. We will pay high attention to build our dataset.

A good source of images can be a local traffic control and surveillance systems. Un-
fortunately, we don’t have access to such a system. So we can scrape images from the
internet. We can use well structured websites like used car sellers. They usually expose a
great number of cars to sell. Every car is accompanied with multiple images and its brief
description. It is important to scrape more information about a car for creating labels.
A disadvantage of web scraping is that we get data dirty. Some images show the interiors
of cars. They are not suitable for our purpose. We need to pull them out. This process
is called data cleaning. The final dataset should be clean distinct classes(car makes) of
labeled images. When we got our dataset we are ready to start to train our neural net-

3



work. We decided to compare two popular CNN. The first is a simple neural network
called VGG16 and the second one is a deep residual neural network called ResNet-50. We
try to get the best results of both and compare them.

We conduct several experiments. The first is the recognition of car make. Then we pick
a car make and we try to determine the car model and the last experiment is estimating a
year of production. For every task, we need a separate dataset. We will need 3 separated
datasets to conduct our experiments.

4



3 Theory

This section is a short recap of important terms and algorithms in machine learning field.

3.1 Linear SVM
Support Vector Machine - SVM [6] is a method of machine learning solving a binary clas-
sification problem. It searches an optimal division hyperplane in high dimensional feature
space. Every image is projected as a set of features. In our case, the hyperplane divides

Figure 3.1: SVM [6]

all images into two distinct groups - in-
terior or exterior images. Here is shown
simplified version in 2D space in fig-
ure 3.1. SVM finds an optimal hyper-
plane. It means that the distance of
the two nearest opposite samples is as
big as possible. That’s why it is some-
times called Large Margin Classifier. It is
also why this method is suitable for our
problem. Another good feature is that
it works with a small number of sam-
ples.

3.2 Convolution
A convolution [16] is a mathematical operation on two functions (f and g) that produces
a third function expressing how the shape of one is modified by the other.

(f ∗ g)(x) =
∫ ∞
−∞

f(α)g(x− α)dα (3.1)

3.3 Neural Network
A neural network (NN) [4] is a computational graph. It is a collection of connected
nodes called neurons. Each neuron can receive an input signal. It combines the input

5



with its internal state using an activation function and produces output using an output
function. It can pass output to other connected neurons. Neurons are organized in

Figure 3.2: Neural network
[5]

layers as we can see in Figure 3.2. For
neural networks it is essential they are
adaptive systems. Neurons are able to
change their internal state (weights) depend-
ing on computational process. They use
backpropagation algorithm [18]. It works
with an error function that is computed
on the output layer and propagated back
to the previous layers to adjust weights
of neurons to minimize the error in the
next round. Modern neural networks are
able to compute very complex hypothe-
sis.

3.4 Convolution Neural Network
Convolutional neural networks (CNN) are a special kind of neural networks. They contain
several convolutional layers. A convolutional layer is able to successfully capture the
spatial dependencies in an image through the application of relevant filters. The filters
are composed of weights. A convolution is calculated between the filters and the input data
underneath. It works like a pattern matcher. In lower layers, general edges or patterns are
matched. In deeper layers, more complex shapes are captured. That’s why convolution
takes place in image recognition. Convolutional layers create a map of features.

3.4.1 Convolution Layer
A convolution layer is one type of layers in CNN. It creates a map of features. In lower
layers, general edges or patterns are matched. In deeper layers, more complex shapes are
captured. They are often organized in blocks.

3.4.2 Pooling Layer
A pooling layer reduces dimension. It helps to reduce a noise. There are max pooling and
average pooling depending on reduction.
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3.4.3 Fully Connected Layer
A fully connected layer consists of neurons. Every neuron is connected with all neurons
of the previous layer. A block of fully connected layers is called classifier and it is placed
on the top of the network. Count of neurons in the last fully connected layer is equal to
the count of classes for classification problems.

3.4.4 Dropout Layer
A dropout layer is a regularization method. It removes weights of random neurons in a
layer. We lose some random pieces of information to improve independency of particular
neurons that increases generalization.

3.4.5 Batch normalization
Batch normalization normalizes the output of a previous activation layer by subtracting
the batch mean and dividing by the batch standard deviation. It speeds up learning.

3.4.6 Regularization
Regularization increases generalization. It means it can improve the generalization per-
formance on new, unseen data. It prevents from overfitting of a model. It is based on
penalization of complexity.
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3.5 VGG-16
VGG-16(Visual Geometry Group) [15] is a convolutional neural network consisted of 12
convolutional layers and 4 fully connected layers. It uses a default 1000 classes softmax
classifier for ImageNet dataset.

Figure 3.3: VGG-16 Architecture
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3.6 Resnet-50

Figure 3.4: ResNet-50 Schema
[9]

Resnet-50 [10] is a residual convolutional
neural network with a deep of 50 layers.
It is deeper than VGG-16, but still having
lower complexity. It won the 1st place on
the ILSVRC 2015 classification task.
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4 Current State

Based on the previous analysis we choose CNN for recognition in this thesis. A large
dataset is required to utilize CNN with supervised learning. There are many solutions
related to this problem on the internet including interesting datasets. But they usually
have some limits; e.g. the dataset is small or it is too general or cars are from a different
continent etc. Let’s go through some solutions to have a closer look.

4.1 CIFAR-10/100
Dataset CIFAR-10 [1] was created in 2010 and it includes 60.000 of small images 32x32
divided into 10 classes. Every class has 6000 samples. One class is an Automobile. It
covers all type of vehicles. This dataset is too general for VMMR. There is another similar
dataset CIFAR-100, which has 100 classes. Every class has 600 samples. But it has the
same problem. It contains animals, plants, etc. This dataset is very general and it is not
suitable for VMMR.

Figure 4.1: CIFAR-10
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4.2 ImageNet
ImageNet [7] is a huge and very popular dataset of images categorized into 1000 classes.
It was designed specially to support computer vision and it contains more than 14 million
hand-annotated pictures. Although it was presented for the first time in 2009, it is still
very popular and becomes a referral dataset for CNN. It contains category vehicles, where
we can find cars, but they are not annotated with appropriate makes. This dataset is not
suitable for VMMR task as it is too general.

4.3 CompCars
In 2015 Linjie Yang, Ping Luo, Chen Change Loy, Xiaoou Tang published work A Large-
Scale Car Dataset for Fine-Grained Categorization and Verification [21]. Samples from
this dataset come from two sources: from the web and from surveillance. There are more
than 130 000 the entire images of cars and more than 25 000 images capturing the car
parts. It covers 163 car makes with 1713 car models, mostly from North America. This
dataset is a good choice for a VMMR task.

Figure 4.2: CompCar

4.4 VMMRdb
In 2017 F. Tafazzoli, K. Nishiyama and H. Frigui published own work A Large and Diverse
Dataset for Improved Vehicle Make and Model Recognition [17]. This paper is based on av-
dataset created by web crawling from online resources like amazon.com and craigslist.com.
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It contains more than 290,000 samples of cars divided into 9170 classes. Mostly cars from
the USA. The dataset is well balanced and described. The author used a pre-train neural
network ResNet50. VMMRdb is very good dataset for VMMR task.

Figure 4.3: VMMRdb

4.5 Stanford Car Dataset
Stanford car dataset [11] comes from 2013. It contains more than 16,000 of cars in 196
classes. It needs to mention this dataset was a part of Large Scale Visual Recognition
Challenge 2013 FGComp2013. They reached 75% accuracy, later in 2018 reached 93.9%.
Stanford Car dataset is relatively small but can be sufficient for a simple VMMR task.

Figure 4.4: Stanford Car Dataset
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4.6 Summary
The biggest problem of above mentioned datasets is their geographical limit. Most of the
car makes comes from the USA or Asia. Each continent has its own specific subgroup
of car makes and car models. Since we want to test our results in real-life scenarios in
central Europe, we definitely need to compile our own dataset.
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5 Building a Dataset

The dataset is the most important part of our effort. Our results are directly depending on
it. That’s why we need to pay attention to build good dataset. We set several conditions
for our dataset:

• dataset should cover most of all local car makes

• every car make should be represented approximately by the same number of samples

• every car make should be exposed from many angles (as long as we want to recognize
a car make from the horizontal angle 360 degrees)

• generally more samples produce better results

• all samples must be labeled

We use the internet as our source of input data. The biggest suppliers of online car
images are big used car dealers. AAAAuto.cz offers thousands of cars and every car has
many high quality photographs with a neutral background on their website. There is
enough information about every car like name of make, model and year of production. It
makes it a good fit for our needs. There is one disadvantage, photographs contain also
images of the interior of cars. Interiors are not good samples for our VMMR task as we
want to recognize the shape of the car. We need to filter car interiors out.

5.1 Web Scraping
Web scraping is a technology helping download a large number of internet resources.
In our case we downloaded images of cars. It is basically a program for downloading
web resources, parsing its content, searching for links to related further resources and
downloading them and the process is repeated. We used a Python library Scrapy [20]
for downloading images of cars. It is important to mention that data is well structured
on website AAAAuto.cz. This allows us download images by manufacturer and save it
to folder with its name and name of its model and even year of production of the car.
That means we scraped labeled data and stored them in hierarchical directory structure
/make/model which is very convenient for next processing.

14
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5.2 Data Cleaning
As mention above there are images of car interiors in the dataset as we can see in Figure
bellow 5.1. We need to separate these interior images from the rest of dataset. This is a
binary classification task.

Figure 5.1: Raw Dataset polluted by car interiors

We used Support Vector Machine (SVM) 3.1 for making a decision whether a sample is
an interior or not. We manually prepared data for two classes. We separated 1000 images
with interior and 1000 images without interior (just a car). Than we used CNN ResNet-50
to process images to create a feature vector. We used output of the last convolutional
layer as our feature vector as shown in Figure 5.2.

Figure 5.2: SVM Classifier

We trained SVM classifier with 800 of samples with high accuracy. Than we used this
model to separate the rest of images. The result was perfect. All interiors were removed.
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Figure 5.3: Cleaned Dataset

5.3 Raw Data Statistics
Here are some raw numbers describing our dataset:

• downloaded data from aaaauto.cz 7/2018 total 17GB

• downloaded data from aaaauto.cz 12/2018 total 18GB

• downloaded data from aaaauto.sk 3/2019 total 11GB

• downloaded data from aaaauto.pl 3/2019 total 5GB

• downloaded data from aaaauto.hu 3/2019 total 2GB

• downloaded data from aaaauto.cz 3/2019 total 7GB

After cleaning

• cleaned dataset total 18.5GB

• 58 car makes

• 331,000 labeled images

• size of images: 640x480 and 1024x768 pixels

The biggest problem of our dataset is its unbalanced distribution. As we can see in
Figure 5.4 some car makes have tens of thousands of images, but there are few car makes
with counts under 50 samples. We removed all classes smaller than 50 samples.
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Figure 5.4: Distribution of samples in dataset

Here is a distribution of a year of car production:

Figure 5.5: Distribution of Year of Production

There is another problem with particular car models. Every manufacturer produces
several models. They are distinguished by their model name. A model name can have
variations. For example cars Volkswagen Golf and Volkswagen Golf Plus and Volkswa-
gen Golf Sportvan They are considered as a single model Volkswagen Golf. A model is
determined by the first word after car make. All variations are merged.

5.4 Dataset for Car Make Recognition
In Figure 5.4 we can see that a cleaned dataset is very unbalanced. There are 17 classes
with a total count under 50 samples. We skipped these "small" classes. We created a
dataset with 41 bigger classes. The smallest class has 55 samples. The average count of
samples in every class in the final dataset is designed to be 5000. There are 18 classes
with a total count over 5000. The rest 23 classes have a total count of less than 5000 and
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higher than 50. We used augmentation to increase number of samples of these classes up
to 5000.

5.4.1 Data Augmentation
Data augmentation is a method for increasing the count of samples in classes with a
small number of samples. The idea behind augmentation is to take an original picture
and perform small adjustments to create a new image that is slightly different from the
original but still has all features of the original class. These adjustments are i.e.: vertical
or horizontal shifts, rotations, changing light or color, etc. There are two ways how to
implement augmentation. The first is before training. It increases the count of samples
in small classes. The second is during training. It just uses augmented images during
training epochs. The second one is implemented in library Keras [3] in class ImageData-
Generator. Figure fig:augmentation shows examples of random shift and rotation.

Figure 5.6: An example of augmentation

We used both ways of augmentation, but we used different methods in every phase.
In Keras we used geometric transformations like shifts, rotations and flips because these
adjustments are suitable for all data. That means all data entering in our network are
augmented data.
For "before training augmentation" we used library OpenCV [2] to adjust images by script.
We implemented a few filters:

1 filters = ["lighter", "saturation", "blur", "invert", "contrast",
2 "affinet", "grayscale", "hist", "foggy", "rainy", "drops"]

18



Here is an example of augmentation using openCV library. The first picture is an
original.

Figure 5.7: Augmentations with OpenCV

19



The final dataset is called UWB-VMMR-5000. It contains 41 classes. The dataset
is well balanced as shown in Figure 5.8. The average count of samples in every class is
5000.

Figure 5.8: The final dataset UWB-VMMR-5000
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5.5 Dataset for Car Model Recognition
For recognition of car models, we chose the manufacturer SKODA, because it is the class
with the highest number of samples in our dataset. They have 10 models referenced in
our dataset with high quantity. The models are: Citigo, Fabia, Favorit, Felicia, Karoq,
Kodiaq, Octavia, Rapid, Roomster, Superb, Yeti. We created dataset SKODA-5000
with 10 classes shown in Figure 5.9. Every class has an average 5000 samples. We used
data augmentation the same way as in the previous dataset UWB-VMMR-5000.

Figure 5.9: The final dataset SKODA-5000
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5.6 Dataset for Year of Production Estimation
In our raw dataset, we have labeled data. Every sample is labeled with car make, car
model and year of production. We chose manufacturer SKODA, model OCTAVIA as
most frequented model and we built a new dataset called OCTAVIA-2000 from it as
shown in Figure 5.10. There are models since 1997 till 2018. These are 22 numeric values
(years) for SKODA OCTAVIA. Because the values are numeric, it is more accurate to use
regression than classification. Every value has an average of 2000 samples. We used the
same data augmentation method as in the previous case to balance the dataset.

Figure 5.10: The final dataset OCTAVIA-2000
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6 Experiments

Our goal is to find the NN architecture producing correct predictions. We can measure
correctness of our trained model as a fraction of predictions our model got right divided
by total predictions. We used standard accuracy. For this purpose we started with a
minimal test dataset, named Sample5, because computing with full dataset is very time
consuming task. First we find good performing architecture of CNN and than we use
this architecture for computing model with full dataset. The minimal dataset has just 5
classes reflecting 5 car models: Audi A3, Citroen C3, Ford Focus, Opel Astra, Toyota Raw.
Notice they are car models not car makes. Every class has 2000 samples. Data was split
between training data and validation data with rate 80/20. We proceed several test with
VGG16 and ResNet-50 upon dataset Sample5 to find out how they behave depending on
its parameters. Results of experiments are depicted in the table 6.1.

ID CNN ImageNet Optimizer Classifier Val. Acc.
s50 VGG16 yes SGD 5 20.3
s51 VGG16 no SGD 4096 x 4096 x 5 98.7
s52 VGG16 yes SGD 4096 x 4096 x 5 99.1
s52a VGG16 yes Adam 4096 x 4096 x 5 20.9
s52r VGG16 yes RMS 4096 x 4096 x 5 99.9
s53 VGG16 yes SGD 4096 x 256 x 5 20.0
s54 VGG16 yes SGD 4096 x 4096 x 256 x 5 99.7
s55 ResNet yes SGD 5 98.0
s56 ResNet yes SGD 4096 x 4096 x 5 92.7
s56n ResNet no SGD 4096 x 4096 x 5 53.6
s56a ResNet yes Adam 4096 x 4096 x 5 97.8
s56r ResNet yes RMS 4096 x 4096 x 5 22.5
s57 ResNet yes SGD 4096 x 5 98.7
s58 ResNet yes SGD 4096 x 4096 x 256 x 5 97.9
ID - experiment ID

CNN - type of CNN

ImageNet - classifier pre-trained on ImageNet

Optimizer - method of optimization

Classifier - structure of classifier

Val.Acc. - validation accuracy

Table 6.1: Results of experiments
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The parameters we tuned are:

• number of full-connected layers of classifier

• using a pre-trained weights of ImageNet or not

• changing optimizer (SGD, Adam, RMSprop)

The classifier consists of several full-connected layers and always end up with 5 neurons
in this case. This is because we have just 5 classes reflecting 5 car models in our dataset.

We can see some configurations perform better than others. We can see it is better to
use a pre-trained CNN. SGD optimizer performs well in both networks, furthermore RMS
is even better with VGG in this dataset. It is better to use simple classifier for ResNet
than VGG. All these results were used for final training later.

6.0.1 The Best Topology for VGG16
We conducted several experiments in order to tune parameters of the network as you
can seen in table 6.1. VGG16 pre-trained on ImageNet with RMS optimizer and original
classifier layers brought the outstanding results.

Test ID: s52r

1 model = VGG16(include_top=True, weights="imagenet")
2 model.layers.pop()
3 x = model.layers[-1].output # add last layer
4 x = Dense(len(classes), activation="softmax")(x)
5 finetuned_model = Model(model.input, x)
6 finetuned_model.summary()
7 opt = RMSprop(lr=0.001, rho=0.9, epsilon=None, decay=0.0)
8 finetuned_model.compile(optimizer=opt,
9 loss='categorical_crossentropy',

10 metrics=['accuracy'])

We used the default setting of RMSprop optimizer with lr=0.001. It reached 99.9%
validation accuracy! This is the best result at all.
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Figure 6.1: Accuracy
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Figure 6.2: Loss
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6.0.2 The Best Topology for ResNet-50
Same approach was applied with ResNet-50. Results are also described in table 6.1.
ResNet-50 pre-trained on ImageNet with SGD optimizer and simplified classifier shows
the best results in this case. We added 1 fully connected layer and the final 5-neurons
layer on top of it.

Test ID: s57

1 model = ResNet50(include_top=True, weights="imagenet")
2 model.layers.pop()
3 x = model.layers[-1].output # add last layer
4 x = Dense(4096, activation="relu")(x)
5 x = Dense(len(classes), activation="softmax")(x)
6 finetuned_model = Model(model.input, x)
7 finetuned_model.summary()
8 opt = SGD(lr=0.001, decay=1e-6, momentum=0.9, nesterov=True)
9 finetuned_model.compile(optimizer=opt, loss='categorical_crossentropy',

10 metrics=['accuracy'])
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Figure 6.3: Accuracy
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Figure 6.4: Loss

This is the best accuracy for ResNet-50. It reached 98.7% validation accuracy. But it
is bumpy.

6.1 Final Training
Upon the previous experiments we chose the best training parameters and we will use them
to train on whole dataset. In real world situation we need to do 3 steps of recognition:

1. a recognition of car make

2. a recognition of car model

3. an estimation of year of production

6.1.1 Car Make Recognition
We prepared own dataset UWB-VMMR-5000 in Figure 5.8 for training CNN to recognized
a car make. This dataset is well balanced and contains 41 popular car makes. As both
networks VGG-16 and ResNet-50 performed very well during warm-up tests, we used
both for final training.
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6.1.2 ResNet-50 with the Final Dataset

1 model = ResNet50(include_top=True, weights="imagenet")
2 model.layers.pop()
3 x = model.layers[-1].output # add last layer
4 x = Dense(256, activation="relu",
5 kernel_regularizer=regularizers.l2(0.01))(x)
6 x = Dense(len(classes), activation="softmax")(x)
7 finetuned_model = Model(model.input, x)
8 finetuned_model.summary()
9 opt = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)

10 finetuned_model.compile(optimizer=opt, loss='categorical_crossentropy',
11 metrics=['accuracy'])

0 5 10 15 20 25 30
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

RESNET

Training accuracy (0.9943938815010616)
Validation accuracy (0.9863780041216704)

Figure 6.5: Accuracy
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Figure 6.6: Loss

The validation accuracy on the final dataset reached 98.6%. We used ResNet-50 with
a simple classifier 256 x 41 and SGD optimizer.
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6.1.3 VGG-16 with the Final Dataset

1 model = VGG16(include_top=True, weights="imagenet")
2 model.layers.pop()
3 x = model.layers[-1].output # add last layer
4 x = Dropout(0.1)(x)
5 x = Dense(256, activation="relu",
6 kernel_regularizer=regularizers.l2(0.01))(x)
7 x = Dense(len(classes), activation="softmax")(x)
8 finetuned_model = Model(model.input, x)
9 finetuned_model.summary()

10 opt = SGD(lr=0.001, decay=1e-6, momentum=0.9, nesterov=True)
11 finetuned_model.compile(optimizer=opt, loss='categorical_crossentropy',
12 metrics=['accuracy'])
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Figure 6.7: Accuracy
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Figure 6.8: Loss

The validation accuracy on the final dataset reached 98.5% in the eleventh epoch.
Then it started slowly decrease, so we stopped the learning process. We used VGG-16
with extended classifier 4096 x 4096 x 256 x 41 and SGD optimizer.
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6.1.4 Car Model Recognition
We prepared own dataset SKODA-5000 in Figure 5.9 for training CNN to recognized a car
model. This dataset is well balanced and contains 10 popular car models of manufacturer
SKODA. We used ResNet-50 for final training with the same architecture as previous.

1 model = ResNet50(include_top=True, weights="imagenet")
2 model.layers.pop()
3 x = model.layers[-1].output # add last layer
4 x = Dense(256, activation="relu",
5 kernel_regularizer=regularizers.l2(0.01))(x)
6 x = Dense(len(classes), activation="softmax")(x)
7 finetuned_model = Model(model.input, x)
8 finetuned_model.summary()
9 opt = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)

10 finetuned_model.compile(optimizer=opt, loss='categorical_crossentropy',
11 metrics=['accuracy'])
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Figure 6.9: Accuracy
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Figure 6.10: Loss

The validation accuracy on the final dataset reached 99.3%. We used ResNet-50 with
simple classifier 256 x 41 and SGD optimizer.

6.1.5 Estimation of a Year of Production
For estimation of a year of production of a car we used own dataset OCTAVIA-2000.
There are 22 classes with a numeric value. We used regression for estimation of a year of
production with just one neuron on the top. The loss function is mean square error.

1 model = ResNet50(include_top=True, weights="imagenet")
2 model.layers.pop()
3 x = model.layers[-1].output # add last layer
4 x = Dropout(0.1)(x)
5 x = Dense(256, activation="relu", kernel_regularizer=l2(0.01))(x)
6 x = Dense(1, activation="relu")(x)
7 finetuned_model = Model(model.input, x)
8 finetuned_model.summary()
9 opt = Adadelta(lr=0.001)

10 finetuned_model.compile(optimizer=opt, loss='mean_squeared_error', metrics=['mse'])
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Figure 6.11: MSE

We can see that validation error is rather high, but we can explain it. Sometimes
there is not any visual difference between the same car models with a different year of
production. Car models can be just the same across a few years.
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6.2 Testing with Online Images
We got amazing results during validation. Then we performed tests on photos from
another website autoesa.cz. This is another used car dealer.

Input Label ResNet-50 VGG-16

Subaru Subaru (0.87) Subaru (0.94)

Skoda Citigo
Skoda (1.00)
Citigo (0.97)

Skoda (1.00)
Citigo (1.00)

Skoda Fabia
Skoda (1.00)
Fabia (1.00)

Skoda (1.00)
Fabia (1.00)

Skoda Fabia
Skoda (1.00)
Fabia (1.00)

Skoda (1.00)
Fabia (1.00)

Skoda Fabia
Skoda (1.00)
Fabia (1.00)

Skoda (1.00)
Fabia (1.00)

Skoda Felicia
Skoda (1.00)
Felicia (0.99)

Skoda (0.99)
Felicia (1.00)

Figure 6.12: Testing with web images
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Input Label ResNet-50 VGG-16

Ford Ford (0.99) Ford (1.00)

Skoda Octavia
2012

Skoda (1.00)
Octavia (1.00)
2011.8)

Skoda (1.00)
Octavia (1.00)

Skoda Octavia
2013

Skoda (1.00)
Octavia (1.00)
2007.6)

Skoda (1.00)
Octavia (1.00)

Opel Astra Opel (1.00) Opel (1.00)

Skoda Roomster
Skoda (1.00)
Roomster (1.00)

Skoda (1.00)
Roomster (1.00)

Skoda Superb
Skoda (1.00)
Superb (1.00)

Skoda (1.00)
Superb (1.00)

Toyota Yaris Toyota (1.00) Toyota (1.00)

Volkswagen
Passat

Volkswagen
(1.00)

Volkswagen
(1.00)

Skoda Yeti
Skoda (1.00)
Yeti (1.00)

Skoda (1.00)
Yeti (1.00)

Figure 6.13: Testing with web images

36



Results of testing with web images are amazing. We tested all car makes, when it
was SKODA, we tested a car model and when it was OCTAVIA, we tested its year of
production. Almost all estimates were correct. Our CNN had not seen these pictures
before as they come from a different website. But the composition of photographs is very
similar to our training dataset: same point of view, very clean neutral background etc.

6.3 Testing with Real Photos
We got great results during validation and testing with online images. We wanted to
verify these results in a real life scenario. Here are some photos from the streets of Pilsen
taken by a mobile phone camera.

Input Label ResNet-50 VGG-16

Dacia Dacia (1.00) Dacia (1.00)

Ford Ford (1.00) Ford (1.00)

Ford Mercedes(0.20) Mercedes(0.61)

Ford Ford (0.62) Ford (0.99)

Ford Ka Peugeot (0.39)
Skoda (0.24)
Superb (0.29)

Figure 6.14: Testing with street images
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Input Label ResNet-50 VGG-16

Nissan Nissan (0.89) Dacia (0.78)

Opel Peugeot (0.26)
Skoda (0.63)
Fabia (0.58)

Renault Renault (0.99) Renault (1.00)

Skoda Fabia
Skoda (0.86)
Superb (0.59)

Skoda (0.98)
Octavia (0.40)
2015.1

Skoda Fabia
Skoda (0.63)
Fabia (1.00)

Skoda (0.99)
Fabia (1.00)

Skoda Fabia
Skoda (1.00)
Fabia (0.97)

Skoda (1.00)
Fabia (0.95)

Skoda Fabia Lada (0.23)
Volkswagen
(0.32)

Skoda Felicia
Skoda (0.64)
Felicia (0.97)

Skoda (0.45)
Felicia (0.96)

Skoda Octavia
Skoda (0.80)
Fabia (0.80)

Skoda (0.35)
Fabia (0.82)

Figure 6.15: Testing with street images
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Input Label ResNet-50 VGG-16

Skoda Octavia Volvo (0.50)
Skoda (0.84)
Octavia (0.97)
2004.8

Subaru Forester Mitsubishi (0.43) Opel (0.25)

Ford Honda (0.87) Ford (0.35)

Figure 6.16: Testing with street images

The results of testing with real street photos are far from perfection. Accuracy of
VGG16 is 0.64 and accuracy of Resnet-50 is 0.58. We can say VGG-16 performed slightly
better than ResNet-50, but that is not the point. There are some serious issues when
CNN was not able to recognized a make of car even from the front of the car. It means
that CNN is not able to recognize a logo as a feature of a particular class.
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6.4 Analysis of Results
Testing of street images was really interesting. Why some images were not recognized?
To understand what’s happened we used visualisation library keras-vis. It uses Gradient-
weighted Class Activation Mapping (Grad-CAM) [14] and it can visualize regions of input
that were ’important’ for the prediction.

(a) Input Image (b) Guided Backprop. (c) Grad-CAM

Figure 6.17: Failed estimation Skoda(0.24) Superb(0.29)

We can see Ford Ka in Figure 6.17. It was not recognized by CNN. In Figure 6.17 (b)
we can see what regions of the input image was considered as ’important’ by the network.
We can see the most of activation came from the background above the car. In Figure 6.17
(c) we can see color visualization of ’attention’ of the network. The network didn’t pay
attention to a shape of the car, but it was catching a noise from the background. That’s
why the network failed to recognized the car. Here are another two examples where the
network failed.

40



(a) Input Image (b) Guided Backprop. (c) Grad-CAM

Figure 6.18: Failed estimation Mercedes (0.61)

(a) Input Image (b) Guided Backprop. (c) Grad-CAM

Figure 6.19: Failed estimation Opel (0.25)
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Now let’s have a look to successful recognition. Here are two examples where the
network succeeded. We can compare them with negative ones.

(a) Input Image (b) Guided Backprop. (c) Grad-CAM

Figure 6.20: Correct estimation Renault (1.00)

(a) Input Image (b) Guided Backprop. (c) Grad-CAM

Figure 6.21: Correct estimation Skoda(0.99), Fabia(1.00)

We can see clearly that the network did not recognize a logo on the front of a car on
negative tests, on the other hand when the network did recognize a logo of the manufac-
turer on positive tests then it determined its class confidently. The logo is an essential
feature of a car make class. We used standard input size of image. It is (244 x 244) pixels.
The area with a logo is very small. It is too small that the network doesn’t recognize it
in some cases.
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Let’s have a look at a visualization of an activation function at the last fully connected
layer for several classes. We can see something like a logo on visualizations bellow 6.22.

Figure 6.22: Audi, BMW, Ciroen, Opel, Skoda, Toyota
(from top left to right)
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6.5 Conclusion
We compiled own dataset for VMMR based on online public resources. We set up two
common CNN architectures VGG-16 and ResNet-50 using Python and Keras/TF [3] back-
end. We conducted experiments to find out what topology of CNN performs best. We
realized both networks work great and we can not say one is better over another - we
confirmed that more important is a dataset. We trained CNN models for a car make,
a car model and a year of production on our dataset. Despite we reached great results
during validation (more than 98% accuracy), results of real life scenario tests performed
not so well. We realized that our CNN models are sensitive to image background and
sometimes they do not recognize a logo of the manufacturer. We also verified that if
the network is able to recognize a logo, then it determines a car make confidently. That
confirms hypothesis that a logo is the most important visual feature common for every
car make. The reason why a logo is not always recognized is the small size of input image.

Upon this research we suggest the following improvements:

1. Improve dataset
Existing dataset UWB-VMMR-5000 can be extended by images with various back-
grounds. These can be personal photos of car from internet such as photos of cars
from a street or individual selling ads. Adding these kind of images with different
backgrounds can make final model more robust against the noise from the back-
ground in real life scenario.

2. Enlarge input image size
As it was mention before the size of input images is fairly small and the area of
manufacturer logo is too small to catch all details of it. But the logo is a dominant
feature of every car make class. That is way increasing of input size can improve
performance of our model significantly. Of course it increases computational com-
plexity of final model too. We need to find a compromise between computational
complexity and size of input image.

3. Optionally use a front car mask for input
We can build a pipeline for the recognition process consisting of several steps. In the
first step we detect car lights. Than we crop region of interest (ROI) with lights and
process only this area. It contains most of car make features including an enlarged
logo, lights and shape of frontal/rear mask. Disadvantage of this method is that if
there are no lights in the input image, we can not use it. This approach is more
advanced.
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Appendices

45



A Content of DVD

There are saved all artefacts created during experiments.

Folders:

• datasets - contains collections of images

• experiments - various python scripts for training

• models - saved final models in .h5 format

• results - result files with progress of accuracy

• scripts - utility python scripts

• tasks - bash and python scripts used in computing grid environment

• doc - pdf version of this document

• predict - source of the final VMMR classifier

46



B User Manual

B.1 Installation
• Insert DVD disk into PC

• Copy folder /predict/ to your hard drive

• CD to the destination folder predict/

• install python3 (apt install python3-pip)

• install dependencies (pip3 install -r requirements.txt)

Installation is complete.

B.2 Run Program

$ python3 predict_car.py

The program will start classification of images from the folder predict/street/. Results are
displayed on screen in format: name of image, name of class(car make) and appropriate
accuracy.
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