University of West Bohemia in Pilsen
Faculty of applied sciences

Department of Cybernetics

BACHELOR'S THESIS

PILSEN, 2020 MILAN MALINA

ZAPADOCESKA UNIVERZITA V PLZNI Studijni program: Aplikované védy a informatika
Fakulta aplikovanych véd Forma studia: Prezenvéni
Akademicky rok: 2019/2020 Obor/kombinace: Kybernetika a fidici technika (KRT)

Podklad pro zadani BAKALARSKE préce studenta

Jméno a prijmeni: ~ Milan MALINA

Osobni ¢islo: A17B0560P
Adresa: Klatovska 359, Pizen - Litice, 32100 Plze 21, Ceska republika
Téma prace: Névrh systému autonomniho fizeni pro bezpilotni letoun

Téma prace anglicky: ~ Control system design for unmanned aerial vehicle autopilot

Vedouci prace: Ing. Martin Goubej, Ph.D.
Katedra kybernetiky

Zasady pro vypracovani:

. Vytvorte simulacni letovy model zvoleného typu bezpilotniho prostiedku

. Seznamte se s technikami autonomniho fizeni pro systémy udrzovani vysky, kurzu, rychlosti a orientace pro dany typ letounu
. Navrhnéte vhodnou strategii fizeni na simulacnim modelu

. Implementuijte algoritmy autonomniho fizeni na zvolené SW a HW platformé.

. Otestujte navrzeny systém v rezimu Hardware-in-the-loop simulace, v pripadé moznosti také na realném modelu

GBS W RN

Seznam doporucené literatury:

Skogestad, Postletwaithe, Multivariable Feedback Control, Wiley 2012

Podpis studenta: Datum:

Podpis vedouciho prace: Datum:

O IS/STAG, Portal - Podklad kvalifikacni prace , mmalina, 5. cervence 2020 03:41

DECLARATION

I hereby submit for assessment and defense a bachelor's thesis prepared at the end of my studies at the
Faculty of Applied Sciences of the University of West Bohemia in Pilsen.

I declare that I have composed the bachelor's thesis independently and exclusively using the professional
literature and sources, the complete list of which is a part of it.

In Pilsen (date):

signature

ACKNOWLEDGEMENT

I would like to thank my supervisor Ing. Martin Goubej, Ph.D. for his consistent help and guidance
during the running of this project. The meetings were vital and helpful. Furthermore, 1 would like to
thank my parents Milan Malina, Hana Malinova for their care and my girlfriend Milagros E. Chavez

for her support and motivation.

ANNOTATION

The bachelor's thesis Control system design for unmanned aerial vehicle autopilot is divided
into six sections. First, development of the onboard controller is described. Second, the functionality of
the ground control app is introduced together with its capabilities. It is followed by the description of
the flight simulation and the equations used in this simulation. Later, these equations are utilized in the
creation of the mathematical model which makes a part four. A non-linear mathematical model of the
aircraft is obtained in this part. In the fifth part of this thesis this non-linear model is linearized using
MATLAB. As the final part of this thesis 3 PID controllers are designed using the linearized model. The
functionality of these controllers is verified using hardware in the loop simulation using the onboard
controller with PID controllers implemented and the flight simulation mentioned in part three of this

KEYWORDS

UAV, aircraft, control system design, controller, PID, model, linear model, non-linear model,

control software, aerodynamics

ANOTACE

Bakalarska prace na téma Navrh systému autonomniho fizeni pro bezpilotni letoun je rozdélena
do Sesti sekci. Nejprve je popsan vyvoj palubniho ovladace. Za druhé, aplikace ground control je
predstavena spolu s jejimi schopnostmi. Nasleduje popis simulace letu a rovnic pouzitych v této
simulaci. Nasledné jsou tyto rovnice vyuZity pii tvorbé matematického modelu, ktery tvoii ¢tvrtou ¢ast.
V této Casti je ziskan nelinedrni matematicky model letadla. V paté casti této prace je tento nelinearni
model linearizovan pomoci programu MATLAB. V zavérecné ¢asti této prace jsou navrzeny 3 PID
regulatory pomoci linearizovaného modelu. Funkénost téchto regulatort je ovéfovana pomoci hardware
in the loop simulace palubniho ovladace s implementovanymi regulatory PID propojeného s letové

simulace popsané ve tieti ¢asti této prace.

KLICOVA SLOVA

UAV, letadlo, navrh tidiciho systému, regulétor, PID, model, linearni model, nelinearni model, Fidici

software, aerodynamika

TABLE OF CONTENTS

(@8 T o (= gl] T [1 T ([OSSP 7
Chapter 2: ONDOAIrd COMPULETccuiiieiieieeie ettt sttt e e sr e st e et esbeeteesbesreebesteasnesreares 8
2. L INEFOTUCTION ...t bbb bbbttt 8
2. 2 MASEEr — NOUE MCU ... bbbttt n e 9
2. 3 SECONAANY MCU ...t bbbt nnenn e 10
2. 4 RF TECRIVET ...ttt b et h bbbt bbbt e e e e bt et bttt nen s 10
2. 5 Inertial measurement UNit, BarOMELIiC SENSONiiiiiveiiiiiiiiiesirrieeessreeeessreesssssrersssssbessesssenees 11
Chapter 3: GrOUNG CONLIOL.........ciiiiie ettt st et sre e e be s e s b e s be e besbeereestesaeeneesreans 12
3L L INEFOTUCTION ...ttt bbbt b bbbt b et nas 12
3. 2 COMMUINICALION ...ttt bbb bbbtk nb et b et ans 12
KRR I B - v- W [1101 Y SO SRSPRRSSN 15
3. 4 ENNANCed CONEIASE MOUE........ccueiiiiiitiieeiiiee ettt 18
Chapter 4: FIGNt SIMUIATIONcviiiiiiis et 19
A, L INEFOTUCTION L.ttt bt bbbt ettt b et ne et 19
4.2 ATTOI MOUEL ...ttt bbb nn e 19
4. 3 DALA TFANSTEE ...ttt bbbttt bbb 21
Chapter 5: Mathematical MOUEIccociiiiiie e st sre e e 23
5. L INEFOTUCTION ...t bbbkttt ettt n et anas 23
5. 2 COOIUINALE SYSIEIM ...c.viiuieiieiteeie sttt ettt et et st e te et e s be e e e beeae e sbesbeesbesbeessesbesaeebesteessesbeetaenresrens 24
5. 3 Linear/Angular acceleration fUNCLIONSccccoiiiiiiiiieic et 27
5. 4 FOrces/MOomMENES FUNCLIONScvoviiiiiiiiees et 27
5.5 GraVity TUNCLIONcouiiiiiiieieeee bbbttt bbbt 27
5. 6 ArodynNamiCs TUNCTIONoiiiiieiiieie bbbt 27
5.7 Control SUIMTACES TUNCTIONocuiiiiiiiies bbbt 29
5. 8 Thruster/TRruSt FUNCTION.........cc.oiiiieiise bbb 29
5. 9 MOE VEFTFICALION ...t 29

Chapter 6: LINEAr MOUEL........c. it ettt ee st eesreeseeneesneeneesee e 32

B. 1 INEFOTUCTION ...t b e et b et n e n e 32
6. 2 Linearization USING MATLABoii e 33
Chapter 7: CONIOIIEr ESIGNc.veieeiiiie et 36
7. L PICN CONTIOTIET ... et 37
7.2 ROI CONEIOTIET ...ttt 38
7. 3VEIOCILY CONTIONIET ..ot e e e s re e e e sbeereenrenre s 40
7.4 TeSt With @ll 3 CONTIOIIEIScviiiiiii e 42
7.5 Hardware iNthe [00P TEST.......c..iiiiiiie ettt s be ettt e aesbe e esrestaesbesre s 44
Chapter 8: CONCIUSIONo.viiiieieiee ettt e b n s 46
CNAPTEr O: RETEIEINCE ...ttt bbbttt bttt b ettt r e ens 47
Chapter 10: LISt OF TIQUIES.oveieieiieiietistt sttt bbbttt 48
Chapter 11: LISt OF TADIESoeiiecic et 50

CHAPTER 1: INTRODUCTION

This project is divided into three different sections. The first goal of this project is to design a
solution for an autopilot out of commonly available parts. After their integration together the working
prototype must be able to sustain a stable flight in a simulation and has to have the option of being
deployed into a real-life airplane model. Therefore, the ability to control servomotors and BLDC electric

motor is also required.

Second goal of this project is to enhance previous project (Flight simulation and Telemetry
visualization) and implement specific features allowing “hardware-in-the-loop” simulation in order to
verify the functionality of the hardware solution in form of Onboard Computer (OC) and its ability to
sustain a stable flight. That means to ensure efficient enough both ways communication of the OC with
the flight simulation. Also, Telemetry visualization must be able communicate with the OC wirelessly
in order to ensure its purpose of delivering relevant data to the user. Therefore it does not function only

as a visualization but as a full ground control (GC).

The third goal is to design a mathematical model in MATLAB and Simulink that can be used
to precisely simulate the physical behavior of the aircraft which can be later used to design an efficient
form of control of the aircraft.

0]
C
WiFi /N
Serial com
\\Vg
Telemetry
visualization Flight
simulation

Figure 1: Overall structure

CHAPTER 2: ONBOARD COMPUTER

2.1 INTRODUCTION

Onboard computer (OC) is essential part of any aircraft not only if autonomous operation mode
is required. In order to ensure user-friendly experience, there are 3 operation modes: DISABLED —
aircraft is unarmed and control outputs have default values (zero control surface deflection angle and
zero thrust), MANUAL - aircraft is armed and control outputs can be changed manually and
AUTOPILOT - aircraft is armed and control outputs are driven by the output of the flight controllers
which reference values can be changed manually. OC consists of main MCU which purpose is to read
data from the sensors and provide correct input for the driver of the actuators, communicate with the

ground control and if in a simulation mode, also send and receive data to and from the flight simulation.

Baro-
sensor

+ Onboard computer
1 = RF 1
: - > receiver :
! = |
’ o
X PWM !
1 Serial m"c‘,’cil';ile Serial \ > Servo 1
PC — Master o > Secondary PWM : N\
. v 1 2] Servo 2
Debug, Sim NOde MCU < MCU X
P —] Ecs
: 7

Figure 2: Onboard computer structure

2.2 MASTER — NODE MCU

This board is the center and the main part of the OC. It reads and processes the data from the
IMU and Barometric sensor, handles data exchange with both the GC and the simulation, if in simulation
mode. It also sends data containing information about current control surfaces and thrust setting to the
secondary MCU (this data can be read from the simulation to duplicate the current state of actuators in
the simulation environed). If in manual mode, it reads data containing information about joystick
channel from the secondary MCU (if joystick is enabled). This board can be either set up as WIFI AP

or can connect to another AP. It runs a server to which ground control app can connect.

If autopilot is engaged, it computes the input for the actuators using 3 PID controllers (pitch,
roll and velocity). The PID parameters and setpoints for all 3 PID controllers can be set up from the GC

app over WIFI.

In order to process all the mentioned above, powerful enough MCU must be chosen. The current
MCU is Node MCU. It can run by default on 80 MHz with the possibility of 160 MHz. For stability
reasons, all testing so fast has been done using the clock speed of 80 Mhz. In most cases that proved to
be sufficient enough but for future development, ESP32 with the 160 MHz up to 240 MHz clock speed
would be more fitting. Both Node MCU and ESP32 are very budged friendly and they come with a build
in WIFI capabilities, unlike for example Teensy 4.1 which has clock speed of 600 MHz [1] but costs

way more and doesn’t come with WIFI module.

Figure 3: NodeMCU illustration [5]

2.3 SECONDARY MCU

This board has two purposes: actuator driver and RF handler. It receives information containing
current desired actuator settings from the main MCU in from of serial data feed. This data is read and
both servos and ESC * is setup accordingly. Both, servos and ESC accept 5V PWM signal generated by
this board. The second purpose of this board is to read data from the RF receiver which outputs it also
in the form of PWM signal for each channel. Currently 3 channels are used. By measuring the duty
cycle if each of these signals, corresponding value is calculated and can be send to the main MCU over
serial port. This task can be tricky and has to be done precisely and efficiently by reading directly from
the registers in order to work reliably.

Arduino Leonardo Micro Pro running at 16 MHz is dedicated to being used only for these two

tasks in order to eliminate possible timing issues.

Figure 4: Arduino Leonardo Micro Pro illustration [4]

2.4 RF RECEIVER

In case manual control is selected and joystick is enabled, data from the transmitter is wirelessly
transmitted to the RF receiver. It outputs this data in form of PWM signal for each channel. Currently,
3 channels are used (pitch, roll and throttle) and this specific receiver allows up to 4 channels. 3 PWM
signals are then processed by the secondary MCU as described above. This allows the aircraft to be

controlled in manual mode using a radio transmitter.

! Electronic speed controller controls the BLDC motor by outputting 3 phase AC power.

10

/. DUMBORC

(GYRO Inside)

2.4%H:
48-10V/DC

CEFC RoHS 2

Figure 5: RF transmitter[2] Figure 6: RF receiver[3]

2.5 INERTIAL MEASUREMENT UNIT,
BAROMETRIC SENSOR

In order to calculate the orientation in space and the altitude of the airplane, inertial
measurement unit and barometric sensor must be present. It communicates with the main MCU over
12C. Using the data from IMU (MPU9250 module is used), pitch, roll and heading angles can be
calculated. This is done using trigonometry so far. Kalman filter could be used to ensure better
robustness.

To calculate the altitude above the sea level barometric sensor is necessary. It communicates
with the main MCU over I12C the same as the IMU. The current altitude is calculated from the barometric

pressure using the barometric formula.

Figure 7: IMU (MPU9250)[6] Figure 8: Barometric sensor (BMP388)[7]

11

CHAPTER 3: GROUND CONTROL

3. 1 INTRODUCTION

The purpose of the application is to display flight telemetry data and control the aircraft.
Communication with the main MCU that controls the aircraft is established via WIFI. The user is
allowed to set various flight parameters (direction, speed, etc.) and also to change MCU settings (PID
controller parameters, etc.). The application is developed in the Unity3D Engine and the code is written
in C#.

ATTITUDE MVMT MISC CMD

PITCH: +@@1 DEG ALT: 402.7 M BATT: @98 % EXEC: V 30
ROLL: -@20@ DEG SPD: @30 M/S TEMP: +62 C i

SUCCESS: 100

HDG: 155 DEG HVEL: @30 M/S DST: 0000 M EXEC: R -20

SENT: SET_DES_ROLL -> -28

AOA: +1. @ DEG VVEL: +@08 M/S SGNL: 040 % SUCCESS: 100
EXEC: ILED @

GACC: 1.0 G TMEE: @: 39: 59 SENT. SET_IND_LED -> 8

SUCCESS: 100

DISABLED EXEC: M 2

SENT: SET_MODE -> 2

MANUAL SUCCESS: 108
m| AUTOPILOT > P15

MODE

CTRL SRF

MAP
LAT: 00.000000
LNG: 000~ 9000080

280 %
+92.2 DEB +@2. 2 DEG

STATUS: ACTIVE

Figure 9: Ground control layout

3. 2 COMMUNICATION

Two-way communication with the MCU is established over WIFI and works as follows. A byte
with the ID of the command to be executed (for example, telemetry data request or setting a parameter)
is sent from the application to the MCU. After it is received, the MCU executes the corresponding
command and sends the information on whether the execution was successful. (if telemetry data from

the MCU is requested, it is sent instead of executing command.)

12

1. command + parameter

2. result/telem. data

Figure 10: Communication overview

A command and its parameter separated with a space can be typed into the CMD panel in GC

app for it to be executed. Available commands are described in the following table:

Table 1: Command list

Command Reference Parameter ID Description

READ_CMD --- 82 | Send data

D DISCONNECT_CMD --- 68 | Terminate connection

M SET_MODE {0, 1, 2} 1 | Change mode

AH SET_ALT_HLD {0, 1} 2| Altitude hold (YES/NO)
ILED SET_IND_LED {0, 1} 3 | MCU LED (ON/OFF)

LS SET_LEFT_SERVO (0;180) 4 Left servo deflection

RS SET_RIGHT_SERVO (0;180) 5 Right servo deflection

T SET_THROTTLE (0;100) 6 | Throttle level

J SET_USE_JOYSTICK {0, 1} 7 Use joystick (YES/NO)

P SET_DES_PITCH (-180;180) 8 | Pitch angle setpoint

R SET_DES_ROLL (-180;180) 9 | Roll angle setpoint

Vv SET_DES_VEL (8;50) 10 | Velocity setpoint

PPP SET_PPP (0;inf) 11 | Set pitch PID controller P term
PPD SET_PPD (0;inf) 12 | Set pitch PID controller D term
PPI SET_PPI (0;inf) 13 | Set pitch PID controller | term

RPP SET_RPP (0;inf) 14 | Set roll PID controller P term

RPD SET_RPD (0;inf) 15 | Set roll PID controller D term

RPI SET_RPI (8;inf) 16 | Setroll PID controller I term

VPP SET_VPP (8;inf) 17 | Set throttle PID controller - P term
VPD SET_VPD (8;inf) 18 | Set throttle PID controller - D term
VPI SET_VPI (0;inf) 19 | Set throttle PID controller - | term
SIM SET_USE_SIM {e, 1} 20 | Hardware-in-the-loop mode - simulation

13

After a command is received by the main MCU the ground control app receives command
execution result based on a following table:

Table 2: Command execution result list

Reference ID Description
RES_OK 100 Execution successful
RES_FAIL 101 Execution failed

After GC app startup, attempt to connect to the control MCU via WIFI is made immediately.
Then, telemetry data is started to be pulled from the MCU using Unity Coroutine named
HandlePullingData and the READ_CMD command. Telemetry data is received as a byte array from
which structure named FlightData is created using System.Buffer.BlockCopy method. This structure
contains the following variables: pitch, bank, hdg, alt, velX, velY, velZ, accX, accY, accZ,

gyroX, gyroY, gyroZ, magX, magY, magZ, batt, temp, posX, posY, posZ, sgnl, upTime, lsDef,
rsDef, throtlle, mode.

IEnumerator HandlePullingData()
{
while (pullingEnabled)
{
while (networkBusy)
yield return WaitForEndOfFrame();
networkBusy = H
[1 floatArr = { ()(READ_CMD), @ };
[1 result = [floatArr.Length * ()1;
BlockCopy(floatArr, @, result, @, result.length);
sender.Send(result);

[]1 messageReceived = [System.Runtime.InteropServices.Marshal.SizeOf<FlightData>()];

while (sender.Available Q)
yield return WaitForEndOfFrame();

s = sender.Receive(messageReceived);
FlightData(messageReceived);
signalStrength = RSSIToPercent(Mathf.RoundToInt(flightData.sgnl));

networkBusy = H
yield return WaitForEndOfFrame();

Figure 11: Data pulling coroutine
To send the command, wrapper method sendcmd is used, which runs the corresponding

Coroutine, converts the command and parameter to a byte array, and sends it using Socket.Send (byte

[1 buffer). Coroutine waits for a response containing information about the result of the execution of
the given command and writes the result to the CMD panel.

14

TEnumerator SendCmdCor(cmdIndex, cmdStr)

I
L
while (networkBusy)
yield return WaitForEndOfFrame();
networkBusy = H

[1 floatArr = [1 { cmdIndex, param };
[] result = [floatArr.Length * ()1;
=m. Buffer.BlockCopy(floatArr, 8, result, @, result.Length);

sender.Send(result);

while (sender.Availabl
yield return Wal

[1 messageReceived =
b = sender.Receive(messageReceived);

Panel.Instance.LogBackCmd(cmdStr, messageReceived[@] == RES_OK, messageReceived[@]);

networkBusy =

Figure 12: Data sending coroutine

3. 3 DATA DISPLAYS
3.3.1 ATTITUDE PANEL

This panel is mostly used to display angular information of aircraft. These are: pitch angle, roll
angle and yaw angle. The value of angle of attack can also be found here. All angular values are
outputted in degrees and defined as represented by following figure:

Yaw

Figure 13: Attitude of the aircraft

Acrtificial horizon is also used in the GC app to represent the orientation:

15

Figure 14: Artificial horizon in GC app

3.3.2 MVMT PANEL

This panel is used to display more detailed information about the characteristics of movement
of the aircraft in general. Those are: current flight altitude (in meters), velocity of the aircraft, its
horizontal and vertical element (in ms™1) and linear acceleration exerted currently exerted on the

aircrafts body. This information is supplied as a g-force measurement.

3. 3. 3 MISC PANEL

This panel displays other important information. That is: remaining battery power, temperature
inside of the drone (measured by IMU and barometric sensor and averaged afterwards), distance from
takeoff location, WIFI signal strength and time since main MCU startup. (Some of those couldn’t been
implemented yet due to the current situation in the world resulting in logistics and supply delivery

issues.)

3.3.4 CMD PANEL

The purpose of this panel is to allow the user to enter commands to be executed by the main
MCU. This panel is active while the app is running and is waiting for keyboard input. Detailed

description of the commands is available above the chapter Communication.

16

This panel shows and overview of the current actuator status of the aircraft. This includes

information about current control surfaces deflection and current thrust level. Aircraft status is also

displayed.

Panels shows left control surface deflection (1), right control surface deflection (3) and current

thrust level in percentage (2)

17

CMD

EXEC: V 30

SENT: SET_DES_VEL -> 3@
SUCCESS: 109

EXEC: R -20

SENT: SET_DES_ROLL -> -20

SUCCESS: 100

EXEC: ILED @

SENT: SET_IND_LED -> @
SUCCESS: 100

EXEC: M 2

SENT: SET_MODE -> 2
SUCCESS: 1020

> P 15 ‘

Figure 15: CMD Panel example use

3.3.5 CTRL SRF PANEL

CTRL SRF

280 %
+02.2 DEG +@2. 2 DEG

STATUS: ACTIVE

Figure 16: CTRL SRF Panel description

3.4 ENHANCED CONTRAST MODE

Due to the possibility of the GC app being used outside in bright light environment, enhanced
contrast mode can be toggled using F1 key on the keyboard. Following figure illustrates the difference

between normal and enhanced contrast mode.

e o s ou aTTITiOE wa as: o
PITCH: +0@ DEG | (ALT: ©00.0 M BATT: 099 % PITCH: +00 DEG | (ALT: ©00.0 M BATT: 099 %
ROLL +000 DEG SPD: 200 M/S TEMP: +080 C ROLL: +000 DEG SPD. 000 M/S TEMP: +00 C
HDG: 000 DEG HVEL. 200 M/S DST: 0008 M HDG: 800 DEG HVEL. 000 M/S DST: 0000 M
ADA. +0.0 DEG VVEL: +000 W/S SGNL: -001 % AOA +0.0 DEG VVEL: +000 M/S SGNL: -801 %
,,,,, GACC: 0.8 @ TMEE: 0. 0: 0 ot GACC: 920 & TNEE: 0: 0: 0
m DISABLED = DISABLED
MANUAL VANUAL
AUTOPTLOT AUTOPILOT
o s

P a wp
LVAT, 00. 600000 LATdp, 00. 000000
LNG: 000, 800000 LNG: 200000000

STATUS: DISABLED STATUS: DISABLED

Figure 17: Comparison (normal contrast mode - left, high contrast mode - right)

18

CHAPTER 4: FLIGHT SIMULATION

4.1 INTRODUCTION

The idea behind this application is to simulate real life flight dynamics in order to test the
reliability and stability of the onboard controller. The simulation runs in real time and provides graphical
output allowing user to understand what scenario of the simulation the OC is undergoing. Engine
Unity3D is used and the code is written in C#. Thanks to that, real life environment graphics is included
in order to provide better experience and better visual reference.

000 DEG PITCH: @00 D PITCH: @ | PITCH: @00 DEG
000 DEG BANK: 000 DEG N | DEG BANK: @@ DEG

000 DEG HDG: @00 DEG HDG: 200 DEG HDG: 000 DEG,

Figure 18: Flight simulation visual overview

4.2 AIRFOIL MODEL

In order to create a flight simulation a certain amount of simplification must be considered. In
this simulation, simple shaped wings only are considered which is precise enough for the purpose of this

application. As stated above, the simulation is written in C# and built using Unity3D.

In the simulation, two main airfoil designs are used: NACA0015 which produces no lift at angle
of attack of 0 and AG36 which produces a positive lift at the same angle of attack. (The lift and drag
datapoints were obtained at webpage: airfoiltools.com where data of various wing designs is available

for download in a form of a CSV table that can be loaded in code. Charts are also included on the page

19

so that data can be easily interpreted.) This data in a form of relations of lift coefficients and drag

coefficients on angle of attack is then used in lift and drag force calculations for each airfoil.

Figure 2: AG36 winglet cross section

Figure 3: NACA0015 winglet cross section
The lift coefficients and drag coefficients data set values also depends on Reynolds number of

the environment where the winglet characteristics were measured.

In order to choose the right lift coefficient and drag coefficient values, current angle of attack
must be calculated as an angle between a vector of relative velocity of the airfoil and a vector that points
the same direction as the airfoil.

In order to obtain correct lift forces, following formulas must be used:
1
F, = ECvazA

where C;, is the coefficient of lift obtained from the table mentioned above, p is air density, v is the
current velocity of the airfoil and A is its wing area. To get the direction of the force it is necessarily to

cross multiply the world velocity vector with a vector which points to the right of the airfoil.

Drag force can be calculated in a similar way:

1
FD = ECDPUZA

where Cp, is the drag coefficient also obtained from the table mentioned above and the direction is the

opposite as the direction of the world velocity vector.

20

forward
€

Figure 4: Forces acting on a wing

As mentioned above, Unity3D provides a built-in physics engine. Each object that physically
interacts with its environment, it needs to have a Rigidbody component attached to it. This component
provided by the Unity API brings various functionality and allows developer to directly define forces
applied to this Rigidbody. For this, the most important method is: AddForceAtPosition(Vector3 force,
Vector3 position, ForceMode mode). This function takes two vectors and one enum describing the way
the force will being applied. Vector called force describes the direction and the magnitude of the force
and vector position defines at what point in the world coordinates the force is applied. Enum mode
specifies in which mode the force should be applied. It depends on what the result should be. In this case
it’s set to ForceMode.Force. After method mentioned above is called for every wing surface, the physics
engine calculates position, rotation, velocity and angular velocity for the next physics frame. The physics
engine runs on a separate thread. The physics update is fixed and independent from visual update
(graphics render). To ensure higher precision, the physics fixed update runs with a period of 2ms that

means 500 times per second.

4.3 DATA TRANSFER

In order to ensure hardware-in-the-loop simulation capabilities, the data transfer between the
OC and the simulation is necessary. OC (main MCU exactly) can be connected using two serial ports.
(The main MCU — Node MCU is capable of only 2 serial connections — debug, secondary board
communication) This could be solved by either disabling debug option and use the debug serial port for
the two-way communication with the simulation or by using for example ESP32 board, which allows

more hardware serial connections. Unfortunately, debug capabilities proved to be too valuable and due

21

to logistic problems, ESP32 couldn’t be acquired either. The communication had to be designed as
follows. The debug serial port is used only one way (Sim -> main MCU) in order to send data from the
simulation to the OC so it can be used instead of data from the real sensors, therefore not interrupting
debug messaged from the Node MCU. And the data containing the current actuators settings can be
acquired directly by reading the Main MCU -> Secondary MCU data stream. Following figure explains
the data traffic.

Actuator

data

N Sim sensors Actuator
data data
PC Master - S secondary
Debug, Sim
I NOde MCU N RF joystics MU
Debug data

data

Figure 19: Hardware in the loop overview

22

CHAPTER 5: MATHEMATICAL
MODEL

5. 1 INTRODUCTION

In order to implement functional autopilot solution including flight controllers, mathematical
model must be developed. MATLAB and Simulink can be used to develop a nonlinear model which
later can be linearized using Control systems toolbox. In order to verify the models accuracy, already
developed Unity flight simulation can be used. In order to perform verification the data from MATLAB
must be stored and loaded by the Unity engine. Following schematics shows the Simulink subsystem

simulating the flight dynamics:

A
id
BEREE

]

M
C

Eaeawa
8

)
ST L
ol
[]4[] -]

T
&

Aerodynamics J l /\')
4 3
g FT "I Rotvel
» ang’ 7 T
¢ [T
£
G rectsa . o
thrott en Thrust
Theuster ¢ . » 1 1
MA, f s s
=
> ur ‘ 1 1
r : (I

Moments Angular Acceleration

Figure 20: Flight dynamics subsystem

Following table describes which input block corresponds to which actuator:

Table 3: Subsystem inputs

Input # Description
1 Right aileron input
2 Left aileron input
3 Right elevator input

23

4 Left elevator input

5 Rudder input

6 Throttle input

Following table describes which output block corresponds to which information:

Table 4: Subsystem outputs

Input # Description

1 Linear position vector (X, Y, z)

Linear velocity vector (X, Y, z)

Angular position vector (Euler angles)

Angular velocity vector (Euler angles)

Force vector (right front wing)

Force vector (left front wing)

Force vector (right rear wing)

Force vector (left rear wing)

© | 0 N O |0 bW DN

Force vector (rudder)

5.2 COORDINATE SYSTEM

In order to describe the orientation of any vessel in general a coordinate system must be defined.
In order to be able to used Newtons laws of maotion, this coordinate system must be inertial. For that,
coordinate system connected with ground can be used. The origin of this global coordinate system is the

takeoff location. The individual axes are defined as follows:

24

Figure 21: MATLAB model coordinates

This figure shows how the aircraft is positioned at the beginning of the simulation and how the
coordinate system is defined. The positive x-axis points forward, positive y-axis points right and positive
z-axis points up. The coordinate system in Unity3D is defined as follows, that’s why in order to view
and verify data obtained from MATLAB in Unity the must be converted into a correct format. Unity3D
defined its coordinate system by default as follows:

Figure 22: Unity sim coordinates

The positive z-axis points forward, positive x-axis points right and positive y-axis points up.

25

In order to perform transformation between the global coordinate system and a local
coordinate system connected with the aircraft, rotational transformation matrix R can be used as

illustrated in the following graphics:

Figure 23: Coordinate transformation

Matrix R can be defined as follows: R = R; R, R3, where R, ; 5 are individual rotation matrices.

These matrices can be defined as follows:

1 0 0
R, = (0 cos (@) sin (q)))
0 sin(ep) cos ()

cos(6) 0 sin(6)
R, = < 0 1 0 >
sin(8) 0 cos(6)

—sin () cos(y¥) O

cos(¥) sin(y) O
il)
0 0 1

Where ¢, 8, ¥ described angular orientation of the aircraft. In order to perform transformation from the

aircrafts local coordinate system to global coordinate system R,y = R~ matrix can be used.

26

5. 3 LINEAR/ANGULAR ACCELERATION
FUNCTIONS

. F

Based on Newtons laws of motion, linear acceleration is calculated as a following ratio: a = m

and angular acceleration as follows: a; = % where F is a vector of sum of all forces acting on the
A

rigidbody, 7 is a vector of sum of all moments acting on the rigidbody. F a t are supplied by blocks

names as “Forces” and “Moments”. M is mass of the rigidbody and [is its moment of inertia in a

Ly, 0 0
corresponding axis i. Matrix of inertia I is definedas/ =| 0 I,, 0 Janditsvalues are calculated
0 0 I,

in MATLAB for a specific aircraft geometry.

5.4 FORCES/MOMENTS FUNCTIONS

These blocks only add up vectors of gravitation force F;, aerodynamic force F, and thrust force
Fr. Respective moments are added up as well. The rotational center is defined as a center of mass,

therefore gravitational moment is zero.

5.5 GRAVITY FUNCTION

Based on Newtons second law, the gravitational force 2vector is calculated as follows: F; =

0
0 |, where m is the mass of the rigidbody and g is gravitational acceleration defined as g =
9.81 ms~ 1.

5.6 AERODYNAMICS FUNCTION

This function is responsible for calculating the aerodynamics effects of the airfoils of the

aircraft. For each airfoil, it runs CalcWingEffect function. This function takes airfoil deflection, lift offset

2 In a global coordinate system

27

taken from the airfoil characteristics graph, airfoil Euler rotation in local aircraft space, airfoil area,
airfoil position in local aircraft space, aircraft linear and angular velocities and aircraft Euler rotation in
global space. Based on these data it calculates and outputs the force and momentum exerted by the
airfoil. It uses the same aerodynamics formulas for lift and drag magnitude as the Unity flight simulation.
Direction of lift can be obtained as a cross product of velocity vector and wing direction vector Fy ;,. =
v x D,,. Wing direction vector is definedas D,, = [0 1 0] relative to the wing. The direction of drag
is opposite the velocity: Fj, ;,. = —v. The total force acting on the wing is the sum of lift and drag: F =
F, + Fp. The total moment is also calculated with the cross product (using wing position and the total
force).

Figure 24: Forces acting on an airfoil

In order to obtain correct lift force magnitude, following formula must be used:

1
FA = ECL‘DUZA

where C; is the coefficient of lift described in more detail below, p is air density, v is the current velocity

of the airfoil and A is its wing area. Drag force magnitude can be calculated in a similar way:
1
FD = ECD‘OUZA

where Cj, is the drag coefficient. In order to supply the right lift coefficient and drag coefficient values,
current angle of attack must be calculated as an angle between a vector of relative velocity of the airfoil
and a vector that points the same direction as the airfoil. Depending on AoA and the geometry of the

airfoil, corresponding value of coefficient of lift and drag is obtained.

28

5. 7/ CONTROL SURFACES FUNCTION

This function supplies the model with information about the current deflection of the control
surfaces. It remaps and clamps the values inputted into the subsystem based on the physical
characteristics of the modeled aircraft. More advanced dynamics or the control surfaces could also be

implemented. For each control input i, the function performs following operation and outputs value o.
o = Clamp(Remap(i,—1,1,—d,d),—d,d)
(for ailerons and rudder),
o = Clamp(Remap(i,1,—1,—d,d), —d,d)
(for elevons). Where value d is the max deflection, function Clamp is defined as follows:
minif v <min
Clamp (v, min, max) = { maxif v > max,

vif else

And function Remap is defined as follows:

(v —ay)(by — by)
a; —a;

Remap(v; ag, ap, bll bZ) = bl +

5.8 THRUSTER/THRUST FUNCTION

Similarly to the Control surfaces function, Thruster function utilizes the Clamp and Remap
functions to calculate the correct thrust force depending on the throttle input. Thrust function takes into
consideration the aircrafts rotation and using transformation matrix transforms the thrust force vector

accordingly. It outputs the calculated global thrust force and moments into the model.

5.9 MODEL VERIFICATION

Unity3D has a robust and versatile physics engine capable of simulating motion of rigid bodies.
Its robustness proved to be useful when creating the flight simulator, when only after defining the lift

and drag forces the whole flight dynamics could be utilized.

29

As mentioned above, Unity3D has a built in physics engine and therefore Unity flight simulation
can be used to verify the functionality of the MATLAB mathematics model. Using a simple script, data
containing information about the global position and global orientation in Euler angles of the rigidbody

can be obtained and stored in a CSV file.

The comparison on the global position of the rigidbody in MATLAB model and Unity
simulation is possible from the three figures below (one figure for each axis):

X-axis position comparison
T I T

250 T T T
Matlab model
200 Unity sim
'E 150 - 4
@
A 100 _
50 a
0 L | L | L | | 1 |
0 1 2 3 4 5 6 7 8 9 10
Time [s]
%107 Y-axis position comparison
T T I T T T
4L Matlab model |_|
Unity sim
E°f I
Bot i
[m]
1+ _
——
0 — —t f t t t t t
0 1 2 3 4 5 6 7 8 9 10
Time [s]
Z-axis position comparison
20 T T T T T T
Matlab model
0 Unity sim
E 20
k7]
A -40
-60
-80 | | | | | | | | |

Time [s]

Figure 25: Data comparison - position

In the first figure (corresponding with the x-axis — forward direction) the value increases over
time — aircraft is moving forward. In the third figure (corresponding with the z-axis — upward direction)
the value first increased and then quickly starts dropping — the aircraft ascends slightly but as soon as
the speed is dropped it starts losing altitude and gliding down. The only visible difference in the data is
in the seconds figure. The difference is caused by a floating point inaccuracies in Unity engine, but the
scale of this plot is 107, therefore the effect is minimal and for this application negligible. Aircraft

doesn’t move left or right.

30

The comparison on the global orientation in Euler angles of the rigidbody in MATLAB model

and Unity simulation is possible from another three figures below (one figure for each axis):

4 X 107 X-axis rotation comparison
T T T T T T T T
Matlab model
— 2 Unity sim -
O}
|
e A pdd Y
=0
)
C
< 2t
-4 1 | 1 | | | | | |
0 1 2 3 4 5 6 7 8 9 10
Time [s]
Y-axis rotation comparison
40 T T T T T T T T T
Matlab model
o 30 Unity sim .
w
=) 20 - _
(O]
2 ok i
2
<
0 _
10 1 | | | | | | | |
0 1 2 3 4 5 6 7 8 9 10
Time [s]
6 = 107 Z-axis rotation comparison
T T T T T T T T T

Matlab model
Unity sim m

N
T

Angle [DEG]
o N
//\/I\
|

'
N

Time [s]

Figure 26: Data comparison - rotation

In the first figure (corresponding with the y-axis — pitch). Aircraft first pitches up (negative

values) and then pitches down (and starts losing altitude). The inaccuracies in the first and the third

figure are again cause by floating point math in Unity3D. But the scale of this plot is 10~#, therefore

the effect is minimal and for this application again negligible.

31

CHAPTER 6: LINEAR MODEL

6. 1 INTRODUCTION

In real life, most of the processes we observe have a non-linear characteristic. In order to be able
to analyze them in a simpler way and use modern controller design techniques, non-linear model must
be substituted with a linearized model around an operating point. The linearized model behaves the same
(or very similar) around this point and offers controller design options that would not be possible with

the non-linearized model.
In general, we have a following non-linear system in a following form:
x(t) = f(x(0), u(t))
y(t) = h(x(t), u(®))
Where x is its state at time ¢, y is its output and w is its input.

First, we need to specify a an operating point of the system around which the process of
linearization will be performed. We set x(t) = 0, x(t) = x, and the input and output is constant. With

that in mind, equations above can be rewritten into a following form [8]:

Sh . K oh . 9
0x4 0xy, duq Jupy,
x@®) = : ~ i |x+| : -~ i Ju
Ofn .. O Ofn ..
dx,q dx, Jduq du,,
dhy d0hy dhy dohy
0x,q dx, Ju,y ou,,
yit)=1] : Pox+| o lu
afp afp ahp ahp
0x4 0xy, duq ou,

Where the derivatives are taken at the equilibrium point. This can be rewritten using a state space

representation:
x(t) = Ax + Bu

y(t) = Cx + Du

32

6. 2 LINEARIZATION USING MATLAB

In case the mathematical equations are more complicated linearization tool which is part of
MATLAB system control toolbox. It uses a similar approach as described above but is solves it
numerically. For this to work, the target non-linear system must be present in Simulink and open loop
input and output correctly chosen. The non-linear system has multiple inputs and multiple inputs. The
goal of this thesis is to derive 3 SISO linear systems which represent behavior of the aircraft in pitch
and roll axis and also the velocity of the aircraft. In the future, this could be improved by obtaining
MIMO linear system in order to design more robust and intelligent controller considering more complex

inner interactions inside of the model.

6.2.1 PITCH MODEL

The input of this model is a left and right elevator input (cs3 and cs4). The output is the value
of pitch (angular position around y axis). Values for the other inputs are set to zero with the exception
of throttle in order for the aircraft not to stall. Model layout for linearization is shown on the figure

-

below:

sl

Vel

Rot

PosArray

i

i

W RotArray

e

33

Flight dynamics

Figure 27: Model schematics in Simulink

Vel Alt

o}
[}
F2 > > F2
F3 > F3
: l—bms
Fa ~| F4
throttie Scoet
F5 -l F5

A 3

Atttitude

Scoed

Using MATLAB Linear Analysis tool, following step response corresponding to the pitch

behavior can be obtained (aircraft is stable in pitch):

Step Response
From: Constant3 To: Gain2

-
T

Amplitude
o
o]

< <
'S o
T T

o
[N

(]

0 5 10 15 20
Time (seconds)

Figure 28: Pitch model step response

6.2.2 ROLL MODEL

The input of this model is also left and right elevator input (cs3 and cs4), but in order to control
roll, following must true: cs3 = —cs4. At the end, the overall input to cs3 and cs4 will be combination
from pitch and roll controller. The output of the roll model is the value of roll (angular position around
x axis). Values for the other inputs are set to zero with the exception of throttle for the same reason as

with pitch model. Model layout for linearization is shown on the figure below:

Pos
0.118
$
fen
n 1 Vel Alt
@ Rotvel
]
|
{3>— 7 .
: | o
I 4
» F2
> >
]
f— I
—»}
[~]
]
L]
—»]
-
pitch ;-{} »
% ml\—l{>b—>D
fe

‘Atttitude Scoed

Figure 29: Model schematics in Simulink

34

Again, using MATLAB Linear Analysis tool, following step response corresponding to the
roll behavior can be obtained (aircraft is unstable in pitch):

Step Response

25 <1028 From: Constant? To: Gain2
g |
|
o 15 I
-
=
= |
g |
1r [
|
|
I|
0.5 r .‘I
/
0 20 40 60 80 100

Time (seconds)

Figure 30: Roll model step response

6.2.3 VELOCITY/THROTTLE MODEL

The input of this model is the throttle of the aircraft. The output is the magnitude of the velocity
vector. Values for the other inputs are set to zero with the exception of ¢s3 and cs4. These inputs are set

to the stable value using which the aircraft pitch angle is approximately 0. Model layout for linearization

is shown on the figure below:

p

b

st

fon

cs2
Rot RotArray Mag
Vel Alt
RotVel
83 P
0.118
»os: |

>

b
N

4
B
@

AAL
o
'y

xt throttle ‘
F5 »
Flight dynamics
pitch 4%% D

v
|E|
]

Figure 31: Model schematics in Simulink

35

Again, using MATLAB Linear Analysis tool, following step response corresponding to the
behavior of velocity can be obtained (aircraft is unstable in pitch):

Step Response

From: ConstantS To: Mag

Amplitude

10 15 20
Time (seconds)

o
(2 =

Figure 32: Velocity model step response

CHAPTER 7: CONTROLLER DESIGN

Using the linear models derived above, controllers for pitch, roll and throttle can be obtained.
In order to design each controller, SISOTOOL, which is part of MATLAB can be used. This tool allows
to use controller design methods such as loop-shaping, which is beneficial in this case. This method
allows directly changing the frequency characteristics of the important transfer functions. The two most
important once are the sensitivity function and complementary sensitivity function. In an ideal case, the
value of the sensitivity function would be zero, in order to suppress output disturbances. Unfortunately,
due to the Bode's sensitivity integral, this cannot be achieved and optimal solution based on the current
problems characteristics must be used. The complementary sensitivity function is useful to ensure

controller precision (lower frequencies) and based on its maximum amplitude, resonant frequencies

must be taken into consideration.

The controller is obtained in a form of a transfer function. It can be transformed into the form if

a PID controller with its coefficients. These coefficients can be entered into the Simulink model or later

into the onboard controller.

36

7.1 PITCH CONTROLLER

SISOTOOL allows to design following controller:

(1+1.4s)(1+0.33s)
s(1+0.01s)

Cpiten = 24613 *

Root locus and step response with this controller are shown on the figure below:

Root Locus

~
=]
=1

T

1

150 |- | 8

w, 100 \ .
°

& ~

é 50 - — q
£ or o

< —x

g 501 -
c

£ Ve

@

E

-100 |- / -

-150 |- [:

-200 - |‘ ‘ B

-120 -100 -80 -60 -40 -20 0 20
Real Axis (seconds'1)

Step Response

Amplitude

Time (seconds)

Figure 33: Pitch controller design

Using Simulink, linear and non-linear model behavior inside of the closed loop with a
corresponding controller can be compared. For that, following Simulink schematics can be used:

37

M

E' - PosArray
D s Rorvel
B B IS
- U : ~HH)
[| =: sl
&
m ‘ E ST
‘ N e
PiOr (YI[_” e |
Figure 34: Model schematics in Simulink
The comparison itself is shown in a figure below:
I I I I I I I : No:w—linear
0.1k Linear
0.08 - b
0.06 - b
0.04 - b
0.02 - b
OP
-0.02k 1 1 1 1 1 1 1 1 1 -
0 5 10 15 20 25 30 35 40 45 50

7.2 ROLL CONTROLLER

O

Figure 35: Pitch model comparison

SISOTOOL allows to design following controller:

38

Cpiten = 0.3 *

(1 + 25)(1 + 0.165)

s(1+ 0.01s)

Gomparisan

Root locus and step response with this controller are shown on the figure below:

Root Locus

60 | 8

20 - q

Imaginary Axis (se cond5'1)
: o
L

40 -

-60 - n
I 1 I 1 I i

-120 -100 -80 -60 -40 -20 0 20
Real Axis (seconds‘1)

Step Response

0.8

0.6

Amplitude

02 n

0 1 1 1 !
0 5 10 156 20 25

Time (seconds)

Figure 36: Roll controller design

Using Simulink, linear and non-linear model behavior inside of the closed loop with a corresponding

39

controller can be compared. For that, following Simulink schematics can be used:

. [—
—ih [oy =
g%% -
—

e = SN

5 1s 0

E} = : F3

=
pa

Figure 37: Model schematics in Simulink

The comparison itself is shown in a figure below:

Non-linear
Linear 4

0.1

Figure 38: Roll model comparison

7.3 VELOCITY CONTROLLER

SISOTOOL allows to design following controller:

(1 + 0.0315)(1 + 0.74s)
s(1+0.01s)

Cpiten = 1.977 *

Root locus and step response with this controller are shown on the figure below:

40

Root Locus

) w N
=} =] =}
T T
®
| 1

=]
T
1

Imaginary Axis (seconds'1)
R hN
3 3 =)
T T
=3
1 Il

o
S
T
@
I

1 | 1
-150 -100 -50 0 50
Real Axis (seconds")

A
o
S
IS

Step Response
T T T

—]
|
\

0.9

0.8

0.7

0.6

0.5

Amplitude

0.4

0.3

L B B B s o m—
1

0.2

0.1 N

0 1 ! ! 1
0 5 10 156 20 25 30

Time (seconds)

Figure 39: Velocity controller design

Using Simulink, linear and non-linear model behavior inside of the closed loop with a
corresponding controller can be compared. For that, following Simulink schematics can be used:

41

-lansArr'ay
: '—»ﬂ
vai R
fon
=
RotAmay Mag
‘ AT
—
B \\\\\ 3
| -]
B = SN
st |—
F2
—]
]
F3 F3
j }—’m |
F F4
N
Q T =: gl
5
Ed PID
Fiigh dynamics
uimh—@—h
P M.A>I>—-[:]
fon
‘Altitude Scoe

Figure 40: Model schematics in Simulink

The comparison itself is shown in a figure below:

Non-linear
Linear

31r

306 [‘ 1

0 2 4 6 8 10 12 14 16 18 20

Figure 41: Velocity model comparison

7.4 TEST WITH ALL 3 CONTROLLERS

To verify the functionality of all three controllers and the same time and to ensure that the inner
interactions will not significantly influence the behavior of the system inside of the closed loop,

following schematic is used. It includes all 3 controllers (for pitch, roll and velocity).

42

i
+
1T

bl

|

Figure 42: Model schematics in Simulink
Initially, model starts with a slight offset from the operating point and at time of 20s, the

setpoints for the PID controllers are changed to verify the stability. Following figure show values of the

pitch and roll angle in time:

Pitch
0.251 Roll | 7

0.2
0.15-
01

0.05

J |
|
i

-0.1

-0.15

-0.2

_0.25 I I 1 I I 1 I 1 1 4

Offset=0

Figure 43: Pitch and roll process values

The next figure show the value of the velocity vector magnitude. (It also displays the value of z
linear position which corresponds to altitude. With higher pitch angle and higher velocity, the aircraft

ascends much faster.)

43

Alt
Vel

200 b

150 T

100 4

50 n

0 5 10 15 20 25 30 35 40 45 50

Figure 44: Velocity process value

7.5 HARDWARE IN THE LOOP TEST

The last verification of the obtained controllers can be performed in the Unity simulation with
onboard MCU connected in the simulation mode. Aircraft undergoes series of pitch, roll and velocity
setpoint changes. The attitude and speed of the aircraft is recorded into a csv file which can we viewed
in MATLAB. This test is affected by the real data transfer speed between the simulation and the OC and
the clock speed of the onboard controller itself. Based on the IDE used to debug the OC, the period with
which the data is obtained and calculated with the current MCU is more that 0.1s, that corresponds to a
frequency less than 10 per second which is quite slow. This could be easily solved by using a faster
MCU as suggested above. Following figure shows the behavior of the aircraft during this test:

44

Roll response
10 T T T T

T T

Angle [DEG]

15 1 1 1 | 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90
Time [s]
Pitch response
0 i T T T ¥

O 10 i
o 10
=}
Qo
2-20 E
<

-30¢ 1 | 1]

0 10 20 30 40 50 60 70 80 90
Time [s]
Velocity response

30 F T T DL D et B EEEIS—Us————— - I —
IU) |- -
§28
2
8
226 -
>

24 1 1 1 1 1 1 1

0 2 4 6 8 10 12 14 16
Time [s]

Figure 45: Unity flight simulation process value data

Responses differ from the mathematical model, that is caused by the limited data transfer speed
from the simulation to the OC and from the OC to the simulation and by the limited processing power
of the OC. Even though the real world limitations, aircraft is stable and is able to follow commands
given by the user using the ground control app.

45

CHAPTER 8: CONCLUSION

The onboard computer designed for this purpose works as required. It is able to control the
model in the flight simulation and process data obtained by the virtual sensors. The ground control
application is capable of displaying crucial flight telemetry data and control the aircraft based on the

user needs.

Developed mathematical model allows to simulate required geometry of the aircraft. It can be
used to precisely simulate different flight conditions and to obtain linearized model in order to design a
controller. Mathematical model was verified using Unity3D built in physics system as a reference and
showed to be even more precise. (Unity3D as a game engine uses floating point math.)

In order to sustain a stable flight, 3 PID controllers were designed. This was done using the
mathematical model of the aircraft and the tools provided by MATLAB. Hardware in the loop simulation
was used to verify the functionality of the autopilot as a whole. Aircraft is able to sustain a stable flight

and responds to the input given by user via the ground control app.

In the future, the on board controller could be improved by using a faster and more robust MCU
as a master instead of the current NodeMCU allowing it to perform computation in the autopilot mode
with a higher frequency. Also, custom PCB design would be necessarily before deploying in a real life
UAV. In order to ensure higher robustness, instead of 3 SISO models it would be beneficial to develop
1 MIMO model increasing the model precision and allowing use of mode advanced control design

techniques.

46

CHAPTER 9: REFERENCE

47

Teensy USB Development Board. [online] [2020-3-22, 22:04 UTC+01:00] Available at:
pjrc.com/teensy/

RC transmitter [online] [2020-4-06, 01:23 UTC+01:00] https://www.banggood.com/cs/RadioMaster-
TX16S-Hall-Sensor-Gimbals-2_4G-16CH-Multi-protocol-RF-System-OpenTX-Mode2-Transmitter-
for-RC-Drone-p-
1652191.html?gpla=1&gmcCountry=CZ¤cy=CZK&createTmp=1&utm_source=googleshoppin
g&utm_medium=cpc_bgs&utm_content=lijing&utm_campaign=ssc-cz-toys-
0313&ad_id=425205428295&gclid=CjwKCAjwk6P2BRAIEIiwAfVJOrHTzfOahZebylsg2ngYOTgIBD
O--F3Nkd1lketEtRIg6JzDmHUZ43RoCORUQAVD_BWE&ID=424826287800&cur_warehouse=CN -
radio transmitter photos

RC receiver [online] [2020-4-15, 23:41 UTC+01:00] https://www.banggood.com/css§DUMBORC-
X6FG-2_4G-6CH-Receiver-with-Gyro-for-RC-X6-Transmitter-Remote-Controller-p-
1520829.htmI?rmmds=search&p=X0110142748584201912&custlinkid=723808&cur_warehouse=CN
Arduino [online] [2020-4-18, 22:45 UTC+01:00] https://www.vokolo.cz/arduino-leonardo-pro-micro-
atmega32u4/?variantld=31617

Node MCU [online] [2020-4-23, 03:57 UTC+01:00] https://www.banggood.com/cs/Geekcreit-
NodeMcu-Lua-WIFI-Internet-Things-Development-Board-Based-ESP8266-CP2102-Wireless-Module-
p-
1097112.html?gpla=1&gmcCountry=CZ¤cy=CZK &create Tmp=1&utm_source=googleshoppin
g&utm_medium=cpc_bgs&utm_content=lijing&utm_campaign=ssc-cz-usw-all-
0313&ad_id=425206122393&gclid=CjwKCAjwk6P2BRAIEIWAfVJOrDcry4jYvrJiw9XYux15ByY76
LydocSHYHPN7fUQLKGIFZ80opv7OWhoC_bcQAvVD_BwE&cur_warehouse=CN

IMU [online] [2020-4-30, 16:19 UTC+01:00] https://www.laskarduino.cz/arduino-9dof-gyroskop-
akcelerometr-magnetometr-mpu-9250-spi-
iic/?gclid=CjwKCAjwk6P2BRAIEiwWATVJOrGVJ5trusLtpYa-

341ammPg32MSpjleDcY oflvevwHhbtUfFONcVH_hoC4u0QAvVD_BwE

Pressure sensor [online] [2020-5-01, 02:52 UTC+01:00] https://www.banggood.com/cs/CIMCU-388-
BMP388-Digital-Temperature-and-Atmospheric-Pressure-Sensor-with-Low-Power-Consumption-24-
Bits-Low-Noise-p-
1470290.html?gpla=1&gmcCountry=CZ¤cy=CZK&cur_warehouse=CN&createTmp=1&utm_s
ource=googleshopping&utm_medium=cpc_bgs&utm_content=lijing&utm_campaign=ssc-cz-usw-all-
0313&ad_id=425206122393&gclid=CjwKCAjwk6P2BRAIEIWAFVIOrGyVK4I3YQwkrHZ9zySG-
VvulH2-LJvgXiesuB_6Nap6MJ-800MrQQBoCucAQAvVD_BwE

GOUBEJ, Martin, MELICHAR, Jifi. LINEARNI SYSTEMY 1. Plzeii, 2017. (U&ebni text)

Zapadodeska univerzita v Plzni. Fakulta aplikovanych véd, KKY

CHAPTER 10: LIST OF FIGURES

FIQUIE 1: OVEIAIl SLIUCTUIE ...c.veevee ettt sttt sttt s beese e besaeestesteeeesbeenaenrenres 7
Figure 2: Onboard COMPULET SITUCTUIEc.viiuiiieiieiieee ettt st e et este e st sraenrenre s 8
Figure 3: NOdeMCU THTUSLrAtiON [5]...cviiieiiiiiiie ettt sre st resre s 9
Figure 4: Arduino Leonardo Micro Pro illuStration [4]........ccceveieiieieie e 10
Figure 5: RF transmitter[2] Figure 6: RF reCeIVEI[3]......coiviiiiieie i 11
Figure 7: IMU (MPU9250)[6] Figure 8: Barometric sensor (BMP388)[7]ccccvvvrvririiervennn 11
Figure 9: Ground CONTrOl TAYOULooviiiieicice s 12
Figure 10: COMMUNICALION OVEIVIEWc..euieiieiieiiiiiste ettt sttt 13
Figure 11: Data pulling COMOULING.ocviiiiieieieis e 14
Figure 12: Data SeNdiNg COMOULINEccviiviieieiieiiiiste sttt ettt 15
Figure 13: Attitude Of the @IrCraft............cooiviiiii s 15
Figure 14: Artificial NOriZON iN GC PP ..oveuverieieiiiisie sttt 16
Figure 15: CMD Panel eXamPle USE........cc.couiiiiiiiiiii i 17
Figure 16: CTRL SRF Panel deSCriPtioN.........ccuiiiiiiriiieiieieieieesi st 17
Figure 17: Comparison (normal contrast mode - left, high contrast mode - right)cccccoeviiienennnn, 18
Figure 18: Flight simulation VIiSUAl OVEIVIEBW...........cccciiiiiiiiiee et 19
Figure 19: Hardware in the 100D OVEIVIEW..........coi ittt s 22
Figure 20: Flight dynamics SUDSYSIEMcciiiiiiiiicie ettt sttt sae et 23
Figure 21: MATLAB mModel COOTAINALEScvoiiiiiiiieie et st s 25
Figure 22: UNity SIM COOMAINALEScciiieiiiecie ettt sttt st et sr e te et saeeneesre e 25
Figure 23: Coordinate transformMationccovveiiiiiii et 26
Figure 24: Forces acting on an airfoil...........ccooeiiiiiiii i e 28
Figure 25: Data COMParison = POSITIONcviiuiiieiecice et sre e re e e sreere e e 30
Figure 26: Data COMPAriSON = FOTATION.cueiiiiiiiiterieie et 31
Figure 27: Model schematics in SIMUIINK ..o s 33
Figure 28: PitCh MOdel SEP FESPONSEc.veieiieiieiiiti sttt et 34
Figure 29: Model schematics in SIMUIINK ..o s 34
Figure 30: ROIl MOdel STEP FESPONSE ..ottt et 35
Figure 31: Model schematics in SIMUIINK ..o s 35
Figure 32: Velocity MOdel STEP FESPONSEcuveuiiiiiiiitesieite ettt 36
Figure 33: PitCh CONtrOlIEr deSIgNooviiiieeet s 37
Figure 34: Model schematics in SIMUIINK ..o s 38
Figure 35: Pitch model COMPAIISON.cooiiiiie ettt st sae e 38

48

file:///C:/Users/malin/Dropbox/Documents/School/BP.docx%23_Toc44818483

Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:
Figure 44:
Figure 45:

49

ROII CONEFOIIEE AESIGN......oneiiieeeie ettt s en e nneas 39
Model schematics iN SIMUIINK ..o s 40
ROII MOUEI COMPATISONvevveiiiecie ettt st sr e re e steereeneenre s 40
VeloCity CONrOIIEr ABSIGN.....cviii it st re e re e 41
Model schematics iN SIMUIINKccoiiiiii s 42
Velocity MOdel COMPATISONcvciiiiiieeiece et be e re e 42
Model schematics iN SIMUIINK ..o s 43
Pitch and roll ProCess VAIUES...........civceeieie ettt st sttt sre s 43
VEIOCItY PrOCESS VAIUEoveeiie ettt st sae e nre e 44
Unity flight simulation process value data.............ccooevviieieieeie i 45

CHAPTER 11: LIST OF TABLES

Table 11 CoOMMEANG TIST ..o bbbttt nb e 13
Table 2: Command eXeCUtion FESUIL TIST.........ccoiiiiiiiiireie e 14
Table 3: SUDSYSIEM INPULS......cviiiiciiiiie ettt sb e te e e sbeess e tesreesrestaebesteereebenre s 23
Table 4: SUDSYSIEM OULPULS.......eiviciiiiieeie sttt sttt sttt e te e e sbeens e tesreesbesbeebesreeraenbenre s 24

50

