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ANNOTATION 
 

 The bachelor's thesis Control system design for unmanned aerial vehicle autopilot is divided 

into six sections. First, development of the onboard controller is described. Second, the functionality of 

the ground control app is introduced together with its capabilities. It is followed by the description of 

the flight simulation and the equations used in this simulation. Later, these equations are utilized in the 

creation of the mathematical model which makes a part four. A non-linear mathematical model of the 

aircraft is obtained in this part. In the fifth part of this thesis this non-linear model is linearized using 

MATLAB. As the final part of this thesis 3 PID controllers are designed using the linearized model. The 

functionality of these controllers is verified using hardware in the loop simulation using the onboard 

controller with PID controllers implemented and the flight simulation mentioned in part three of this 

thesis. 

KEYWORDS 
 

 UAV, aircraft, control system design, controller, PID, model, linear model, non-linear model, 

control software, aerodynamics 

 

ANOTACE 

 
 Bakalářská práce na téma Návrh systému autonomního řízení pro bezpilotní letoun je rozdělena 

do šesti sekcí. Nejprve je popsán vývoj palubního ovladače. Za druhé, aplikace ground control je 

představena spolu s jejími schopnostmi. Následuje popis simulace letu a rovnic použitých v této 

simulaci. Následně jsou tyto rovnice využity při tvorbě matematického modelu, který tvoří čtvrtou část. 

V této části je získán nelineární matematický model letadla. V páté části této práce je tento nelineární 

model linearizován pomocí programu MATLAB. V závěrečné části této práce jsou navrženy 3 PID 

regulátory pomocí linearizovaného modelu. Funkčnost těchto regulátorů je ověřována pomocí hardware 

in the loop simulace palubního ovladače s implementovanými regulátory PID propojeného s letové 

simulace popsané ve třetí části této práce. 
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CHAPTER 1: INTRODUCTION 

 
 This project is divided into three different sections. The first goal of this project is to design a 

solution for an autopilot out of commonly available parts. After their integration together the working 

prototype must be able to sustain a stable flight in a simulation and has to have the option of being 

deployed into a real-life airplane model. Therefore, the ability to control servomotors and BLDC electric 

motor is also required.  

Second goal of this project is to enhance previous project (Flight simulation and Telemetry 

visualization) and implement specific features allowing “hardware-in-the-loop” simulation in order to 

verify the functionality of the hardware solution in form of Onboard Computer (OC) and its ability to 

sustain a stable flight. That means to ensure efficient enough both ways communication of the OC with 

the flight simulation. Also, Telemetry visualization must be able communicate with the OC wirelessly 

in order to ensure its purpose of delivering relevant data to the user. Therefore it does not function only 

as a visualization but as a full ground control (GC).  

The third goal is to design a mathematical model in MATLAB and Simulink that can be used 

to precisely simulate the physical behavior of the aircraft which can be later used to design an efficient 

form of control of the aircraft.  

 

  

Figure 1: Overall structure 
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CHAPTER 2: ONBOARD COMPUTER 

 
2. 1 INTRODUCTION 

 
Onboard computer (OC) is essential part of any aircraft not only if autonomous operation mode 

is required. In order to ensure user-friendly experience, there are 3 operation modes: DISABLED – 

aircraft is unarmed and control outputs have default values (zero control surface deflection angle and 

zero thrust), MANUAL – aircraft is armed and control outputs can be changed manually and 

AUTOPILOT - aircraft is armed and control outputs are driven by the output of the flight controllers 

which reference values can be changed manually. OC consists of main MCU which purpose is to read 

data from the sensors and provide correct input for the driver of the actuators, communicate with the 

ground control and if in a simulation mode, also send and receive data to and from the flight simulation.  

 

Figure 2: Onboard computer structure 
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2. 2 MASTER – NODE MCU 

  
 This board is the center and the main part of the OC. It reads and processes the data from the 

IMU and Barometric sensor, handles data exchange with both the GC and the simulation, if in simulation 

mode. It also sends data containing information about current control surfaces and thrust setting to the 

secondary MCU (this data can be read from the simulation to duplicate the current state of actuators in 

the simulation environed). If in manual mode, it reads data containing information about joystick 

channel from the secondary MCU (if joystick is enabled). This board can be either set up as WIFI AP 

or can connect to another AP. It runs a server to which ground control app can connect. 

 If autopilot is engaged, it computes the input for the actuators using 3 PID controllers (pitch, 

roll and velocity). The PID parameters and setpoints for all 3 PID controllers can be set up from the GC 

app over WIFI.  

 In order to process all the mentioned above, powerful enough MCU must be chosen. The current 

MCU is Node MCU. It can run by default on 80 MHz with the possibility of 160 MHz. For stability 

reasons, all testing so fast has been done using the clock speed of 80 Mhz. In most cases that proved to 

be sufficient enough but for future development, ESP32 with the 160 MHz up to 240 MHz clock speed 

would be more fitting. Both Node MCU and ESP32 are very budged friendly and they come with a build 

in WIFI capabilities, unlike for example Teensy 4.1 which has clock speed of 600 MHz [1] but costs 

way more and doesn’t come with WIFI module.  

 

Figure 3: NodeMCU illustration [5] 
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2. 3 SECONDARY MCU 

 
 This board has two purposes: actuator driver and RF handler. It receives information containing 

current desired actuator settings from the main MCU in from of serial data feed. This data is read and 

both servos and ESC 1 is setup accordingly. Both, servos and ESC accept 5V PWM signal generated by 

this board. The second purpose of this board is to read data from the RF receiver which outputs it also 

in the form of PWM signal for each channel. Currently 3 channels are used.  By measuring the duty 

cycle if each of these signals, corresponding value is calculated and can be send to the main MCU over 

serial port. This task can be tricky and has to be done precisely and efficiently by reading directly from 

the registers in order to work reliably.  

 Arduino Leonardo Micro Pro running at 16 MHz is dedicated to being used only for these two 

tasks in order to eliminate possible timing issues.  

 

Figure 4: Arduino Leonardo Micro Pro illustration [4] 

 

2. 4 RF RECEIVER 
  

 In case manual control is selected and joystick is enabled, data from the transmitter is wirelessly 

transmitted to the RF receiver. It outputs this data in form of PWM signal for each channel. Currently, 

3 channels are used (pitch, roll and throttle) and this specific receiver allows up to 4 channels. 3 PWM 

signals are then processed by the secondary MCU as described above. This allows the aircraft to be 

controlled in manual mode using a radio transmitter. 

 

1 Electronic speed controller controls the BLDC motor by outputting 3 phase AC power.  
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Figure 5: RF transmitter[2]    Figure 6: RF receiver[3]    

 

2. 5 INERTIAL MEASUREMENT UNIT, 

BAROMETRIC SENSOR 

 
 In order to calculate the orientation in space and the altitude of the airplane, inertial 

measurement unit and barometric sensor must be present. It communicates with the main MCU over 

I2C. Using the data from IMU (MPU9250 module is used), pitch, roll and heading angles can be 

calculated. This is done using trigonometry so far. Kalman filter could be used to ensure better 

robustness. 

 To calculate the altitude above the sea level barometric sensor is necessary. It communicates 

with the main MCU over I2C the same as the IMU. The current altitude is calculated from the barometric 

pressure using the barometric formula. 

 

Figure 7: IMU (MPU9250 )[6]   Figure 8: Barometric sensor (BMP388)[7] 

  



12 

 

CHAPTER 3: GROUND CONTROL 
 

3. 1 INTRODUCTION 
 

 The purpose of the application is to display flight telemetry data and control the aircraft. 

Communication with the main MCU that controls the aircraft is established via WIFI. The user is 

allowed to set various flight parameters (direction, speed, etc.) and also to change MCU settings (PID 

controller parameters, etc.). The application is developed in the Unity3D Engine and the code is written 

in C#. 

 

Figure 9: Ground control layout 

 

3. 2 COMMUNICATION 
 

 Two-way communication with the MCU is established over WIFI and works as follows. A byte 

with the ID of the command to be executed (for example, telemetry data request or setting a parameter) 

is sent from the application to the MCU. After it is received, the MCU executes the corresponding 

command and sends the information on whether the execution was successful. (if telemetry data from 

the MCU is requested, it is sent instead of executing command.) 
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Figure 10: Communication overview 

 A command and its parameter separated with a space can be typed into the CMD panel in GC 

app for it to be executed. Available commands are described in the following table: 

Table 1: Command list 

Command Reference Parameter ID Description 

--- READ_CMD --- 82 Send data 

D DISCONNECT_CMD --- 68 Terminate connection 

M SET_MODE {0, 1, 2} 1 Change mode 

AH SET_ALT_HLD {0, 1} 2 Altitude hold (YES/NO) 

ILED SET_IND_LED {0, 1} 3 MCU LED (ON/OFF) 

LS SET_LEFT_SERVO (0;180) 4 Left servo deflection 

RS SET_RIGHT_SERVO (0;180) 5 Right servo deflection 

T SET_THROTTLE (0;100) 6 Throttle level 

J SET_USE_JOYSTICK {0, 1} 7 Use joystick (YES/NO) 

P SET_DES_PITCH (-180;180) 8 Pitch angle setpoint 

R SET_DES_ROLL (-180;180) 9 Roll angle setpoint 

V SET_DES_VEL (0;50) 10 Velocity setpoint 

PPP SET_PPP (0;inf) 11 Set pitch PID controller P term 

PPD SET_PPD (0;inf) 12 Set pitch PID controller D term 

PPI SET_PPI (0;inf) 13 Set pitch PID controller I term 

RPP SET_RPP (0;inf) 14 Set roll PID controller P term 

RPD SET_RPD (0;inf) 15 Set roll PID controller D term 

RPI SET_RPI (0;inf) 16 Set roll PID controller I term 

VPP SET_VPP (0;inf) 17 Set throttle PID controller - P term 

VPD SET_VPD (0;inf) 18 Set throttle PID controller - D term 

VPI SET_VPI (0;inf) 19 Set throttle PID controller - I term 

SIM SET_USE_SIM {0, 1} 20 Hardware-in-the-loop mode - simulation 
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 After a command is received by the main MCU the ground control app receives command 

execution result based on a following table: 

Table 2: Command execution result list 

Reference ID Description 

RES_OK 100 Execution successful 

RES_FAIL 101 Execution failed 

 

 After GC app startup, attempt to connect to the control MCU via WIFI is made immediately. 

Then, telemetry data is started to be pulled from the MCU using Unity Coroutine named 

HandlePullingData and the READ_CMD command. Telemetry data is received as a byte array from 

which structure named FlightData is created using System.Buffer.BlockCopy method. This structure 

contains the following variables: pitch, bank, hdg, alt, velX, velY, velZ, accX, accY, accZ, 

gyroX, gyroY, gyroZ, magX, magY, magZ, batt, temp, posX, posY, posZ, sgnl, upTime, lsDef, 

rsDef, throtlle, mode. 

 

Figure 11: Data pulling coroutine 

 To send the command, wrapper method SendCmd is used, which runs the corresponding 

Coroutine, converts the command and parameter to a byte array, and sends it using Socket.Send (byte 

[] buffer). Coroutine waits for a response containing information about the result of the execution of 

the given command and writes the result to the CMD panel. 
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Figure 12: Data sending coroutine 

 

3. 3 DATA DISPLAYS 

 
3. 3. 1 ATTITUDE PANEL 

 

 This panel is mostly used to display angular information of aircraft. These are: pitch angle, roll 

angle and yaw angle. The value of angle of attack can also be found here. All angular values are 

outputted in degrees and defined as represented by following figure: 

 

Figure 13: Attitude of the aircraft 

  

Artificial horizon is also used in the GC app to represent the orientation: 
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Figure 14: Artificial horizon in GC app 

3. 3. 2 MVMT PANEL 
 

 This panel is used to display more detailed information about the characteristics of movement 

of the aircraft in general. Those are: current flight altitude (in meters), velocity of the aircraft, its 

horizontal and vertical element (in 𝑚𝑠−1) and linear acceleration exerted currently exerted on the 

aircrafts body. This information is supplied as a g-force measurement.  

 

3. 3. 3 MISC PANEL 
 

 This panel displays other important information. That is: remaining battery power, temperature 

inside of the drone (measured by IMU and barometric sensor and averaged afterwards), distance from 

takeoff location, WIFI signal strength and time since main MCU startup. (Some of those couldn’t been 

implemented yet due to the current situation in the world resulting in logistics and supply delivery 

issues.) 

 

3. 3. 4 CMD PANEL 

 
 The purpose of this panel is to allow the user to enter commands to be executed by the main 

MCU. This panel is active while the app is running and is waiting for keyboard input. Detailed 

description of the commands is available above the chapter Communication.  
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Figure 15: CMD Panel example use 

 

3. 3. 5 CTRL SRF PANEL 

 
 This panel shows and overview of the current actuator status of the aircraft. This includes 

information about current control surfaces deflection and current thrust level. Aircraft status is also 

displayed.  

 

Figure 16: CTRL SRF Panel description 

 Panels shows left control surface deflection (1), right control surface deflection (3) and current 

thrust level in percentage (2) 
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3. 4 ENHANCED CONTRAST MODE 

 
 Due to the possibility of the GC app being used outside in bright light environment, enhanced 

contrast mode can be toggled using F1 key on the keyboard. Following figure illustrates the difference 

between normal and enhanced contrast mode. 

 

Figure 17: Comparison (normal contrast mode - left, high contrast mode - right) 
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CHAPTER 4: FLIGHT SIMULATION 
 

4. 1 INTRODUCTION 

 
 The idea behind this application is to simulate real life flight dynamics in order to test the 

reliability and stability of the onboard controller. The simulation runs in real time and provides graphical 

output allowing user to understand what scenario of the simulation the OC is undergoing. Engine 

Unity3D is used and the code is written in C#. Thanks to that, real life environment graphics is included 

in order to provide better experience and better visual reference.  

 

Figure 18: Flight simulation visual overview 

 

4. 2 AIRFOIL MODEL 

 
 In order to create a flight simulation a certain amount of simplification must be considered. In 

this simulation, simple shaped wings only are considered which is precise enough for the purpose of this 

application. As stated above, the simulation is written in C# and built using Unity3D.   

 In the simulation, two main airfoil designs are used: NACA0015 which produces no lift at angle 

of attack of 0 and AG36 which produces a positive lift at the same angle of attack. (The lift and drag 

datapoints were obtained at webpage: airfoiltools.com where data of various wing designs is available 

for download in a form of a CSV table that can be loaded in code. Charts are also included on the page 
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so that data can be easily interpreted.) This data in a form of relations of lift coefficients and drag 

coefficients on angle of attack is then used in lift and drag force calculations for each airfoil.  

 The lift coefficients and drag coefficients data set values also depends on Reynolds number of 

the environment where the winglet characteristics were measured.  

 In order to choose the right lift coefficient and drag coefficient values, current angle of attack 

must be calculated as an angle between a vector of relative velocity of the airfoil and a vector that points 

the same direction as the airfoil.  

In order to obtain correct lift forces, following formulas must be used: 

𝐹𝐿 =
1

2
𝐶𝐿𝜌𝑣

2𝐴 

where 𝐶𝐿 is the coefficient of lift obtained from the table mentioned above, 𝜌 is air density, 𝑣 is the 

current velocity of the airfoil and 𝐴 is its wing area. To get the direction of the force it is necessarily to 

cross multiply the world velocity vector with a vector which points to the right of the airfoil. 

 Drag force can be calculated in a similar way: 

𝐹𝐷 =
1

2
𝐶𝐷𝜌𝑣

2𝐴 

where 𝐶𝐷 is the drag coefficient also obtained from the table mentioned above and the direction is the 

opposite as the direction of the world velocity vector. 

Figure 2: AG36 winglet cross section 

Figure 3: NACA0015 winglet cross section 
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 As mentioned above, Unity3D provides a built-in physics engine. Each object that physically 

interacts with its environment, it needs to have a Rigidbody component attached to it. This component 

provided by the Unity API brings various functionality and allows developer to directly define forces 

applied to this Rigidbody. For this, the most important method is: AddForceAtPosition(Vector3 force, 

Vector3 position, ForceMode mode). This function takes two vectors and one enum describing the way 

the force will being applied. Vector called force describes the direction and the magnitude of the force 

and vector position defines at what point in the world coordinates the force is applied. Enum mode 

specifies in which mode the force should be applied. It depends on what the result should be. In this case 

it’s set to ForceMode.Force. After method mentioned above is called for every wing surface, the physics 

engine calculates position, rotation, velocity and angular velocity for the next physics frame. The physics 

engine runs on a separate thread. The physics update is fixed and independent from visual update 

(graphics render). To ensure higher precision, the physics fixed update runs with a period of 2ms that 

means 500 times per second.  

 

4. 3 DATA TRANSFER 
 

 In order to ensure hardware-in-the-loop simulation capabilities, the data transfer between the 

OC and the simulation is necessary. OC (main MCU exactly) can be connected using two serial ports. 

(The main MCU – Node MCU is capable of only 2 serial connections – debug, secondary board 

communication) This could be solved by either disabling debug option and use the debug serial port for 

the two-way communication with the simulation or by using for example ESP32 board, which allows 

more hardware serial connections. Unfortunately, debug capabilities proved to be too valuable and due 

Figure 4: Forces acting on a wing 
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to logistic problems, ESP32 couldn’t be acquired either. The communication had to be designed as 

follows. The debug serial port is used only one way (Sim -> main MCU) in order to send data from the 

simulation to the OC so it can be used instead of data from the real sensors, therefore not interrupting 

debug messaged from the Node MCU. And the data containing the current actuators settings can be 

acquired directly by reading the Main MCU -> Secondary MCU data stream. Following figure explains 

the data traffic.  

 

Figure 19: Hardware in the loop overview 
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CHAPTER 5: MATHEMATICAL 

MODEL 
 

5. 1 INTRODUCTION 

 
 In order to implement functional autopilot solution including flight controllers, mathematical 

model must be developed. MATLAB and Simulink can be used to develop a nonlinear model which 

later can be linearized using Control systems toolbox. In order to verify the models accuracy, already 

developed Unity flight simulation can be used. In order to perform verification the data from MATLAB 

must be stored and loaded by the Unity engine. Following schematics shows the Simulink subsystem 

simulating the flight dynamics: 

 

Figure 20: Flight dynamics subsystem 

 

 Following table describes which input block corresponds to which actuator: 

Table 3: Subsystem inputs 

Input # Description 

1 Right aileron input 

2 Left aileron input 

3 Right elevator input 
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4 Left elevator input 

5 Rudder input 

6 Throttle input 

 

Following table describes which output block corresponds to which information: 

Table 4: Subsystem outputs 

Input # Description 

1 Linear position vector (x, y, z ) 

2 Linear velocity vector (x, y, z) 

3 Angular position vector (Euler angles) 

4 Angular velocity vector (Euler angles) 

5 Force vector (right front wing) 

6 Force vector (left front wing) 

7 Force vector (right rear wing) 

8 Force vector (left rear wing) 

9 Force vector (rudder) 

 

5. 2 COORDINATE SYSTEM 
 

 In order to describe the orientation of any vessel in general a coordinate system must be defined. 

In order to be able to used Newtons laws of motion, this coordinate system must be inertial. For that, 

coordinate system connected with ground can be used. The origin of this global coordinate system is the 

takeoff location. The individual axes are defined as follows:  
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Figure 21: MATLAB model coordinates 

  

This figure shows how the aircraft is positioned at the beginning of the simulation and how the 

coordinate system is defined. The positive x-axis points forward, positive y-axis points right and positive 

z-axis points up. The coordinate system in Unity3D is defined as follows, that’s why in order to view 

and verify data obtained from MATLAB in Unity the must be converted into a correct format. Unity3D 

defined its coordinate system by default as follows: 

 

Figure 22: Unity sim coordinates 

The positive z-axis points forward, positive x-axis points right and positive y-axis points up. 
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 In order to perform transformation between the global coordinate system and a local 

coordinate system connected with the aircraft, rotational transformation matrix 𝑅 can be used as 

illustrated in the following graphics: 

 

Figure 23: Coordinate transformation 

 Matrix 𝑅 can be defined as follows: 𝑅 = 𝑅1𝑅2𝑅3, where 𝑅1,2,3 are individual rotation matrices. 

These matrices can be defined as follows:  

𝑅1 = (

1 0 0
0 cos (𝜑) sin (𝜑)
0 sin (𝜑) cos (𝜑)

) 

𝑅2 = (
cos (𝜃) 0 sin (𝜃)
0 1 0

sin (𝜃) 0 cos (𝜃)
) 

𝑅3 = (
cos (𝜓) sin (𝜓) 0
−sin (𝜓) cos (𝜓) 0

0 0 1

) 

Where 𝜑, 𝜃, 𝜓 described angular orientation of the aircraft. In order to perform transformation from the 

aircrafts local coordinate system to global coordinate system 𝑅𝐼𝑁𝑉 = 𝑅
−1 matrix can be used. 
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5. 3 LINEAR/ANGULAR ACCELERATION 

FUNCTIONS 
 

 Based on Newtons laws of motion, linear acceleration is calculated as a following ratio: 𝑎 =
𝐹

𝑀
 

and angular acceleration as follows: 𝛼𝑖 =
𝜏𝑖

𝐼𝑖
, where 𝐹 is a vector of sum of all forces acting on the 

rigidbody, 𝜏 is a vector of sum of all moments acting on the rigidbody. 𝐹 a 𝜏 are supplied by blocks 

names as “Forces” and “Moments”. 𝑀 is mass of the rigidbody and 𝐼 is its moment of inertia in a 

corresponding axis 𝑖. Matrix of inertia 𝐼 is defined as 𝐼 = (

𝐼𝑥𝑥 0 0
0 𝐼𝑦𝑦 0

0 0 𝐼𝑧𝑧

) and its values are calculated 

in MATLAB for a specific aircraft geometry. 

 

5. 4 FORCES/MOMENTS FUNCTIONS 

 
 These blocks only add up vectors of gravitation force 𝐹𝐺,  aerodynamic force 𝐹𝐴 and thrust force 

𝐹𝑇. Respective moments are added up as well. The rotational center is defined as a center of mass, 

therefore gravitational moment is zero.  

 

5. 5 GRAVITY FUNCTION 

 
 Based on Newtons second law, the gravitational force 2vector is calculated as follows: 𝐹𝐺 =

[
0
0

−𝑚𝑔
], where 𝑚 is the mass of the rigidbody and 𝑔 is gravitational acceleration defined as 𝑔 =

 9.81 𝑚𝑠−1. 

 

5. 6 AERODYNAMICS FUNCTION 

 
 This function is responsible for calculating the aerodynamics effects of the airfoils of the 

aircraft. For each airfoil, it runs CalcWingEffect function. This function takes airfoil deflection, lift offset 

 

2 In a global coordinate system 
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taken from the airfoil characteristics graph, airfoil Euler rotation in local aircraft space, airfoil area, 

airfoil position in local aircraft space, aircraft linear and angular velocities and aircraft Euler rotation in 

global space. Based on these data it calculates and outputs the force and momentum exerted by the 

airfoil. It uses the same aerodynamics formulas for lift and drag magnitude as the Unity flight simulation. 

Direction of lift can be obtained as a cross product of velocity vector and wing direction vector 𝐹𝐴𝑑𝑖𝑟 =

𝑣 × 𝐷𝑤. Wing direction vector is defined as 𝐷𝑤 = [0 1 0] relative to the wing. The direction of drag 

is opposite the velocity: 𝐹𝐷𝑑𝑖𝑟 = −𝑣. The total force acting on the wing is the sum of lift and drag: 𝐹 =

𝐹𝐴 + 𝐹𝐷. The total moment is also calculated with the cross product (using wing position and the total 

force). 

 

Figure 24: Forces acting on an airfoil 

 

In order to obtain correct lift force magnitude, following formula must be used: 

𝐹𝐴 =
1

2
𝐶𝐿𝜌𝑣

2𝐴 

where 𝐶𝐿 is the coefficient of lift described in more detail below, 𝜌 is air density, 𝑣 is the current velocity 

of the airfoil and 𝐴 is its wing area. Drag force magnitude can be calculated in a similar way: 

𝐹𝐷 =
1

2
𝐶𝐷𝜌𝑣

2𝐴 

where 𝐶𝐷 is the drag coefficient. In order to supply the right lift coefficient and drag coefficient values, 

current angle of attack must be calculated as an angle between a vector of relative velocity of the airfoil 

and a vector that points the same direction as the airfoil.  Depending on AoA and the geometry of the 

airfoil, corresponding value of coefficient of lift and drag is obtained. 
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5. 7 CONTROL SURFACES FUNCTION 

 
 This function supplies the model with information about the current deflection of the control 

surfaces. It remaps and clamps the values inputted into the subsystem based on the physical 

characteristics of the modeled aircraft. More advanced dynamics or the control surfaces could also be 

implemented. For each control input 𝑖, the function performs following operation and outputs value 𝑜.  

𝑜 = 𝐶𝑙𝑎𝑚𝑝(𝑅𝑒𝑚𝑎𝑝(𝑖, −1,1,−𝑑, 𝑑 ), −𝑑, 𝑑) 

(for ailerons and rudder), 

𝑜 = 𝐶𝑙𝑎𝑚𝑝(𝑅𝑒𝑚𝑎𝑝(𝑖, 1, −1,−𝑑, 𝑑 ), −𝑑, 𝑑) 

(for elevons). Where value 𝑑 is the max deflection, function Clamp is defined as follows: 

𝐶𝑙𝑎𝑚𝑝(𝑣,𝑚𝑖𝑛,𝑚𝑎𝑥) = {

min 𝑖𝑓   𝑣 < 𝑚𝑖𝑛
max 𝑖𝑓   𝑣 > 𝑚𝑎𝑥
v 𝑖𝑓   𝑒𝑙𝑠𝑒

, 

And function Remap is defined as follows: 

𝑅𝑒𝑚𝑎𝑝(𝑣, 𝑎1, 𝑎2, 𝑏1, 𝑏2) = 𝑏1 +
(𝑣 − 𝑎1)(𝑏1 − 𝑏2)

𝑎2 − 𝑎1
 

 

5. 8 THRUSTER/THRUST FUNCTION 

 
 Similarly to the Control surfaces function, Thruster function utilizes the Clamp and Remap 

functions to calculate the correct thrust force depending on the throttle input. Thrust function takes into 

consideration the aircrafts rotation and using transformation matrix transforms the thrust force vector 

accordingly. It outputs the calculated global thrust force and moments into the model. 

 

5. 9 MODEL VERIFICATION 

 
 Unity3D has a robust and versatile physics engine capable of simulating motion of rigid bodies. 

Its robustness proved to be useful when creating the flight simulator, when only after defining the lift 

and drag forces the whole flight dynamics could be utilized.  
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 As mentioned above, Unity3D has a built in physics engine and therefore Unity flight simulation 

can be used to verify the functionality of the MATLAB mathematics model. Using a simple script, data 

containing information about the global position and global orientation in Euler angles of the rigidbody 

can be obtained and stored in a CSV file. 

 The comparison on the global position of the rigidbody in MATLAB model and Unity 

simulation is possible from the three figures below (one figure for each axis): 

 

Figure 25: Data comparison - position 

 In the first figure (corresponding with the x-axis – forward direction) the value increases over 

time – aircraft is moving forward. In the third figure (corresponding with the z-axis – upward direction) 

the value first increased and then quickly starts dropping – the aircraft ascends slightly but as soon as 

the speed is dropped it starts losing altitude and gliding down. The only visible difference in the data is 

in the seconds figure. The difference is caused by a floating point inaccuracies in Unity engine, but the 

scale of this plot is 10−4, therefore the effect is minimal and for this application negligible. Aircraft 

doesn’t move left or right. 
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 The comparison on the global orientation in Euler angles of the rigidbody in MATLAB model 

and Unity simulation is possible from another three figures below (one figure for each axis): 

 

Figure 26: Data comparison - rotation 

 In the first figure (corresponding with the y-axis – pitch). Aircraft first pitches up (negative 

values) and then pitches down (and starts losing altitude). The inaccuracies in the first and the third 

figure are again cause by floating point math in Unity3D. But the scale of this plot is 10−4, therefore 

the effect is minimal and for this application again negligible. 
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CHAPTER 6: LINEAR MODEL 

 
6. 1 INTRODUCTION 

 

 In real life, most of the processes we observe have a non-linear characteristic. In order to be able 

to analyze them in a simpler way and use modern controller design techniques, non-linear model must 

be substituted with a linearized model around an operating point. The linearized model behaves the same 

(or very similar) around this point and offers controller design options that would not be possible with 

the non-linearized model.  

 In general, we have a following non-linear system in a following form: 

𝑥̇(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡)) 

𝑦(𝑡) = ℎ(𝑥(𝑡), 𝑢(𝑡)) 

Where 𝑥 is its state at time 𝑡, 𝑦 is its output and 𝑢 is its input. 

 First, we need to specify a an operating point of the system around which the process of 

linearization will be performed.  We set 𝑥̇(𝑡) = 0, 𝑥(𝑡) = 𝑥𝑟 and the input and output is constant. With 

that in mind, equations above can be rewritten into a following form [8]:  

𝑥̇(𝑡) =

(

 
 

𝜕𝑓1
𝜕𝑥1

⋯
𝜕𝑓1
𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝑓𝑛
𝜕𝑥1

⋯
𝜕𝑓𝑛
𝜕𝑥𝑛)

 
 
𝑥 +

(

 
 

𝜕𝑓1
𝜕𝑢1

⋯
𝜕𝑓1
𝜕𝑢𝑚

⋮ ⋱ ⋮
𝜕𝑓𝑛
𝜕𝑢1

⋯
𝜕𝑓𝑛
𝜕𝑢𝑚)

 
 
𝑢 

𝑦(𝑡) =

(

 
 

𝜕ℎ1
𝜕𝑥1

⋯
𝜕ℎ1
𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝑓𝑝
𝜕𝑥1

⋯
𝜕𝑓𝑝
𝜕𝑥𝑛)

 
 
𝑥 +

(

 
 

𝜕ℎ1
𝜕𝑢1

⋯
𝜕ℎ1
𝜕𝑢𝑚

⋮ ⋱ ⋮
𝜕ℎ𝑝
𝜕𝑢1

⋯
𝜕ℎ𝑝
𝜕𝑢𝑚)

 
 
𝑢 

Where the derivatives are taken at the equilibrium point. This can be rewritten using a state space 

representation: 

𝑥̇(𝑡) = 𝐴𝑥 + 𝐵𝑢 

𝑦(𝑡) = 𝐶𝑥 + 𝐷𝑢 
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6. 2 LINEARIZATION USING MATLAB 
 

 In case the mathematical equations are more complicated linearization tool which is part of 

MATLAB system control toolbox. It uses a similar approach as described above but is solves it 

numerically. For this to work, the target non-linear system must be present in Simulink and open loop 

input and output correctly chosen. The non-linear system has multiple inputs and multiple inputs. The 

goal of this thesis is to derive 3 SISO linear systems which represent behavior of the aircraft in pitch 

and roll axis and also the velocity of the aircraft. In the future, this could be improved by obtaining 

MIMO linear system in order to design more robust and intelligent controller considering more complex 

inner interactions inside of the model.  

 

6. 2. 1 PITCH MODEL 

 
 The input of this model is a left and right elevator input (cs3 and cs4). The output is the value 

of pitch (angular position around y axis). Values for the other inputs are set to zero with the exception 

of throttle in order for the aircraft not to stall. Model layout for linearization is shown on the figure 

below: 

 

Figure 27: Model schematics in Simulink 
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 Using MATLAB Linear Analysis tool, following step response corresponding to the pitch 

behavior can be obtained (aircraft is stable in pitch): 

 

Figure 28: Pitch model step response 

 

6. 2. 2 ROLL MODEL 

 
 The input of this model is also left and right elevator input (cs3 and cs4), but in order to control 

roll, following must true: 𝑐𝑠3 = −𝑐𝑠4. At the end, the overall input to cs3 and cs4 will be combination 

from pitch and roll controller. The output of the roll model is the value of roll (angular position around 

x axis). Values for the other inputs are set to zero with the exception of throttle for the same reason as 

with pitch model. Model layout for linearization is shown on the figure below: 

 

Figure 29: Model schematics in Simulink 
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Again, using MATLAB Linear Analysis tool, following step response corresponding to the 

roll behavior can be obtained (aircraft is unstable in pitch): 

 

Figure 30: Roll model step response 

 

6. 2. 3 VELOCITY/THROTTLE MODEL 

 
 The input of this model is the throttle of the aircraft. The output is the magnitude of the velocity 

vector. Values for the other inputs are set to zero with the exception of cs3 and cs4. These inputs are set 

to the stable value using which the aircraft pitch angle is approximately 0. Model layout for linearization 

is shown on the figure below: 

 

Figure 31: Model schematics in Simulink 
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Again, using MATLAB Linear Analysis tool, following step response corresponding to the 

behavior of velocity can be obtained (aircraft is unstable in pitch): 

 

Figure 32: Velocity model step response 

 

 

CHAPTER 7: CONTROLLER DESIGN 
  

Using the linear models derived above, controllers for pitch, roll and throttle can be obtained. 

In order to design each controller, SISOTOOL, which is part of MATLAB can be used. This tool allows 

to use controller design methods such as loop-shaping, which is beneficial in this case. This method 

allows directly changing the frequency characteristics of the important transfer functions. The two most 

important once are the sensitivity function and complementary sensitivity function. In an ideal case, the 

value of the sensitivity function would be zero, in order to suppress output disturbances. Unfortunately, 

due to the Bode's sensitivity integral, this cannot be achieved and optimal solution based on the current 

problems characteristics must be used. The complementary sensitivity function is useful to ensure 

controller precision (lower frequencies) and based on its maximum amplitude, resonant frequencies 

must be taken into consideration.  

The controller is obtained in a form of a transfer function. It can be transformed into the form if 

a PID controller with its coefficients. These coefficients can be entered into the Simulink model or later 

into the onboard controller. 
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7. 1 PITCH CONTROLLER 
 

 SISOTOOL allows to design following controller: 

𝐶𝑝𝑖𝑡𝑐ℎ = 2.4613 ∗
(1 + 1.4𝑠)(1 + 0.33𝑠)

𝑠(1 + 0.01𝑠)
 

 Root locus and step response with this controller are shown on the figure below: 

 

Figure 33: Pitch controller design 

  

Using Simulink, linear and non-linear model behavior inside of the closed loop with a 

corresponding controller can be compared. For that, following Simulink schematics can be used: 
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Figure 34: Model schematics in Simulink 

 

 The comparison itself is shown in a figure below: 

 

Figure 35: Pitch model comparison 

 

7. 2 ROLL CONTROLLER 
 

 SISOTOOL allows to design following controller: 

𝐶𝑝𝑖𝑡𝑐ℎ = 0.3 ∗
(1 + 2𝑠)(1 + 0.16𝑠)

𝑠(1 + 0.01𝑠)
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 Root locus and step response with this controller are shown on the figure below: 

 

Figure 36: Roll controller design 

 

Using Simulink, linear and non-linear model behavior inside of the closed loop with a corresponding 

controller can be compared. For that, following Simulink schematics can be used: 
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Figure 37: Model schematics in Simulink 

 

The comparison itself is shown in a figure below: 

 

Figure 38: Roll model comparison 

 

7. 3 VELOCITY CONTROLLER 
 

 SISOTOOL allows to design following controller: 

𝐶𝑝𝑖𝑡𝑐ℎ = 1.977 ∗
(1 + 0.031𝑠)(1 + 0.74𝑠)

𝑠(1 + 0.01𝑠)
 

 Root locus and step response with this controller are shown on the figure below: 
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Figure 39: Velocity controller design 

 

Using Simulink, linear and non-linear model behavior inside of the closed loop with a 

corresponding controller can be compared. For that, following Simulink schematics can be used: 
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Figure 40: Model schematics in Simulink 

 

The comparison itself is shown in a figure below: 

 

Figure 41: Velocity model comparison 

 

7. 4 TEST WITH ALL 3 CONTROLLERS 
  

To verify the functionality of all three controllers and the same time and to ensure that the inner 

interactions will not significantly influence the behavior of the system inside of the closed loop, 

following schematic is used. It includes all 3 controllers (for pitch, roll and velocity). 
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Figure 42: Model schematics in Simulink 

 Initially, model starts with a slight offset from the operating point and at time of 20s, the 

setpoints for the PID controllers are changed to verify the stability. Following figure show values of the 

pitch and roll angle in time: 

 

Figure 43: Pitch and roll process values 

 

The next figure show the value of the velocity vector magnitude. (It also displays the value of z 

linear position which corresponds to altitude. With higher pitch angle and higher velocity, the aircraft 

ascends much faster.) 
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Figure 44: Velocity process value 

 

7. 5 HARDWARE IN THE LOOP TEST 
 

 The last verification of the obtained controllers can be performed in the Unity simulation with 

onboard MCU connected in the simulation mode. Aircraft undergoes series of pitch, roll and velocity 

setpoint changes. The attitude and speed of the aircraft is recorded into a csv file which can we viewed 

in MATLAB. This test is affected by the real data transfer speed between the simulation and the OC and 

the clock speed of the onboard controller itself. Based on the IDE used to debug the OC, the period with 

which the data is obtained and calculated with the current MCU is more that 0.1s, that corresponds to a 

frequency less than 10 per second which is quite slow. This could be easily solved by using a faster 

MCU as suggested above. Following figure shows the behavior of the aircraft during this test: 
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Figure 45: Unity flight simulation process value data 

  

Responses differ from the mathematical model, that is caused by the limited data transfer speed 

from the simulation to the OC and from the OC to the simulation and by the limited processing power 

of the OC. Even though the real world limitations, aircraft is stable and is able to follow commands 

given by the user using the ground control app.  
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CHAPTER 8: CONCLUSION 

 
 The onboard computer designed for this purpose works as required. It is able to control the 

model in the flight simulation and process data obtained by the virtual sensors. The ground control 

application is capable of displaying crucial flight telemetry data and control the aircraft based on the 

user needs.  

 Developed mathematical model allows to simulate required geometry of the aircraft. It can be 

used to precisely simulate different flight conditions and to obtain linearized model in order to design a 

controller. Mathematical model was verified using Unity3D built in physics system as a reference and 

showed to be even more precise. (Unity3D as a game engine uses floating point math.)  

 In order to sustain a stable flight, 3 PID controllers were designed. This was done using the 

mathematical model of the aircraft and the tools provided by MATLAB. Hardware in the loop simulation 

was used to verify the functionality of the autopilot as a whole. Aircraft is able to sustain a stable flight 

and responds to the input given by user via the ground control app. 

 In the future, the on board controller could be improved by using a faster and more robust MCU 

as a master instead of the current NodeMCU allowing it to perform computation in the autopilot mode 

with a higher frequency. Also, custom PCB design would be necessarily before deploying in a real life 

UAV. In order to ensure higher robustness, instead of 3 SISO models it would be beneficial to develop 

1 MIMO model increasing the model precision and allowing use of mode advanced control design 

techniques.  
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