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Abstract

The investigation is carried out to study steady Stokes axisymmetrical Reiner-Rivlin streaming flow over a fixed
viscous droplet, and this droplet to be deformed sphere in shape. As boundary conditions, vanishing of radial
velocities, continuity of tangential velocities and shear stresses at the droplet surface are used. The very common
configuration of approximate sphere governed by polar equation r̃ = a[1 + αmϑm(ζ)] has been considered for
the study to O(αm) describing the distortion. Based on the Stokes approximation, an analytical investigation is
achieved in the orthogonal curve linear framework in an unbounded region of a Reiner-Rivlin fluid. In constraining
cases, some earlier noted outcomes are obtained. Also, the yielded outcomes for the drag have been compared with
solution existing in the literature. Further, the change for both force and pressure are evaluated showing deflection
w.r.t. the parameters of interest and shown through table and graphs.
c© 2020 University of West Bohemia. All rights reserved.
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1. Introduction

The transport process of a deformed solid or liquid particle immersed in an arbitrary fluid
at very low Reynolds number (Re) is much of practical and fundamental interest as well.
In the microscale domain of dynamic cells (motile), inertia is insignificant and the effect of
viscous dissipation dominates the fluid forces on swimming bodies. To propel forwarding in
such regime, many micro-organism deform their body shapes periodically by converting cell’s
chemical energy into mechanical work.

The classical theoretical solution of fluid flow problems is the viscous flow around a spherical
body by Stokes [42] who himself derived the outcome of a spherical shaped body in an infinite
fluid expanse. The solution given by Stokes accurately predicted drag force on a sphere. It is
fact that, over the decades, creeping flow problems (Stokes flow) problems have been solved
for the bodies which do not have the shape as sphere by plenty of researchers. But a few
of the investigators reached to the solution for the non-spherical bodies like ellipsoid [21],
hemisphere [23], and hemispherical cap [4] only. Sampson [36] was the first one who studied
and carried out the creeping flow problem for the case of symmetrical flow for translation motion
of a deformed body spherical in shape immersed in unbounded fluid phenomenon. Since the
Sampson’s work [36], several other researchers have achieved to formulate the flow phenomenon
for such deformed spherical particles. Rybczynski [35] and Hadamard [12] researched desolately
the fluid flow problems regarding translation movement of a fluid body in some other immiscible
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fluid and is given in their dissertation by Happel and Brenner [14]. Acrivos and Taylor [1]
demonstrated the very common result of a steady viscous flow for an absolute particle of any
shape in a vast liquid medium. The analytical approach to an arbitrary shape is quite difficult.
Brenner [3] used perturbation technique to generalize the solution to such slightly distorted
spheroids.

For very small Re, the inertia terms of the encompassing fluid proves to be unimportant
contrasted with creeping effect and, commonly, receded. The Navier-Stokes (N-S) equations
of fluid flow reduces to the Stokes equations to the 1st order of approximation and flow con-
sidered to become Stokes flow. There are many examples in our day-to-day life phenomenon
in science like physical and biological, and in chemical engineering where deformed geometry
plays a significant role in movement of the obstacle placed in fluid media. Indeed, the body with
complex geometry in science and technology is less encountered in practice. In the later half of
the nineteenth century, an intensive advanced development has happened ahead the application
of creeping/Stokes flow over the body of arbitrary shape. Many different approaches have been
developed and adopted to evaluate Stokes hydrodynamic drag force on an isolated axisymmetric
body. Such an approach is sought by Datta and Srivastava [6] and the sequel of drag force on
either of flow phenomenon (axial and transverse flow) were effectively calibrated for spheroids,
prolates and spherical bodies. Using prolate spheroidal framework, Deo and Dutta [9] inves-
tigated the Stokes flow problems for a fluid prolate spheroid [9]. In addition to these bodies,
some other shapes like egg-shaped, cycloidal, deformed sphere, and bodies of revolution under
bearable error.

Rao and Rao [32] investigated the problem of slow motion of non-Newtonian micro-polar
fluid streaming over a solid sphere, and evaluated the drag to be more on the spherical body
as compared in the case of Newtonian fluid. Likewise, a similar kind of observation has been
made by Aero et al. [2] and Stokes [43]. Jain [16] got the results for the Stokes flow motion
of non-Newtonian fluid with invariable μ and μc by implementing the process of ‘Synthe-
tic division’. Sharma [38] contemplated the slow viscous movement of a non-Newtonian 2nd

order fluid over a body of spherical in shape. Rathna [33] examined the creeping flow of
Reiner-Rivlin liquid streaming over a rigid spherical body, and acquired a solution by uti-
lizing the approximation given by Stokes. Later, the similar kind of technique utilized and
implemented by Ramkissoon [25] to consider the fundamentally the same problem for a
fluid sphere, and deduced that sphere encounters very much drag as compared Newtonian
case.

The problem of creeping flow over an approximate deformed solid (stick) sphere is in-
vestigated by Happel and Brenner [13], and later this analysis has been, furthermore, carried
out by Ramkissoon [24] for case of an approximate fluid sphere. In the analysis Ramkissoon
has also justified the streaming over a spheroidal oblate particle as unique example. Also,
it has additionally seen that for equivalent volume of both liquid sphere and fluid spheroid,
liquid sphere encounters to a lesser extent obstruction. Ramkissoon and Majumadar [30] also
observed the case of micro-polar fluid stream past a Newtonian liquid spheroid whose shape
changes marginally from that of a sphere. Ramkissoon [29] examined the Stokes’ case streaming
over a non-Newtonian liquid spheroid. Stokes flow of a steady micro-polar liquid surpassing a
deformed sphere has been examined [15], as well.

By employing blended slip-stick type conditions, an investigation was carried out by Pala-
niappan [22] and, later, solved the problem of viscous streams over a spheroid utilizing the very
same conditions. In his study, the author got the conclusive mathematical demonstration for ψ,
characterizing flow field to the O(ε) in terms of Gegenbauer function and eccentricity of the
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spheroid, and analyzed that the slip-stick parameter expressively influences the drag force on the
deformed sphere and, also observed a comparatively reduced drag on the approximate sphere as
compared the drag on an oblate spheroid by Ramkissoon. Using the semi-separable technique,
Dassios et al. [5] got the solution of axisymmetric creeping flow problem satisfying Stokes’
equation in spheroidal coordinates and carried out an analysis over the problem of viscous flow
streaming over spheroidal cell encompassing prolate spheroid. Recently, [20] examined the
Stokes flow problem of Newtonian fluid over a micropolar liquid spheroid. In the right above
discussed problems, the corresponding authors found that an increment in spin parameter results
in a decreament to the drag force to micropolar fluid spheroid. The Stokes flow problem caused
by a approximately spherical droplet in microstretch fluid was analytically explained by [39]
and researched that the drag coefficients, all in all, are increasing functions of the micro-polarity,
and decreasing with spin parameter.

Recently, an analysis was conducted to study viscous flow problem streaming over a defor-
med porous sphere implanted in some other permeable medium [11]. Following the numerous
applications in different branches of engineering and science, the role of deformed particles
in an assemblage has increased to a greater extent. Investigations regarding the symmetrical
viscous flow past and through an assemblage of deformed porous spheroidal particles employing
Happel boundary condition [7] and Kuwabara boundary condition [10]; using particle-in-cell
technique [45, 46] and also influence of magnetic field on the Stokes flow problems [44] have
been carried out.

Steady Stokes’ flow about an approximate sphere was examined [40]. Srivastava et al. [41]
discussed an analytical methodology for complete N-S equations by utilizing Oseen’s relations
for steady flow problems streaming over a spheroidal body. In all the literature mentioned above,
the investigation was done only for flow assuming no-slip condition on the liquid-solid interface.
The authors in [26, 27] studied the slip flow problems of Stokes’ flow about a deformed sphere
and viscoelastic fluid flow over a spheroid, respectively. Later, [28] investigated the similar
type of polar flow problem streaming over a spheroid. The problem of slow viscous movement
of a Reiner-Rivlin fluid (RRF) sphere immersed in an envelopment full of Newtonian fluid
was envisioned and solved by [31]. Using prolate spheroidal coordinates, Deo and Dutta [8]
investigated the Stokes flow problems for rigid prolate spheroidal with slip at the spheroidal
surface. As of late, [18,19] separately visioned the research on Reiner-Rivlin approximate fluid
spheroid in confined and infinite expanse of fluids. Most recently, [17] examined Reiner-Rivlin
streaming flow over a fluid spheroid, and assessed drag force experienced. The inspirations of
these explorations, findings and availability of literature concerning deformed bodies(fluid and
solid) enlivened to study the ongoing problem.

The literature suggests that no authors have considered previously deformed Newtonian
fluid spherical body immersed in an unbounded Reiner-Rivlin fluid media. There are instances
in literature where the study is greatly confined to the cases of viscous and micropolar fluids
only. In the present brief note, to bridge the gap I have observed while going through the
literature, I have considered the case of Reiner-Rivlin fluid and further extended the previous
work by [17] to the fluid spheroid case and demonstrated how the results of Ramkissoon [25]
can be employed to govern the Reiner-Rivlin fluid flow over a fluid spheroid analytically. The
analytical expressions, to the O(ε) of deformation parameter, for the stream function and other
physical quantities are derived in closed forms as power series approximation. As a specific
case, an oblate spheroidal fluid particle is taken for verification and then some distinctive and
well-known outcomes including the modified expression for drag formula and pressure are
derived for [25].
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2. Formulation of the Problem

Consider the steady Stokes flow of an incompressible non-Newtonian Reiner-Rivlin fluid strea-
ming over an approximate liquid spheroid. As the configuration of flow phenomenon delineated
in Fig. 1, a system of spherical polar coordinates (r̃, θ, φ) is taken with −ve in z-axis as direction
of the flow. The Reiner-Rivlin fluid is characterized by its rheological behavior in the form of
constitutive equation (stress-strain relationship [34,37]) governed by (1) over a Newtonian fluid
spheroid. Let the radius of the fluid spheroid be r̃ = a[1 + χ(θ)], where χ(θ) = αmϑm(ζ)
with ζ = cos θ, and the fluid spheroid held stationary in an unbounded flowing Reiner-Rivlin
fluid with uniform velocity U away from obstacle. The flow fields are to be determined in the
absence of body forces assuming the motion to be axially symmetric and fluids considered are
immiscible in nature. The fluid viscosities are taken as (μe, μc) and μi for external and internal
fluids, respectively. The parameters and constraints associated to the exterior and interior of the
fluid spheroid to be denoted by the subscript/superscript ‘e’ and ‘i’ over an entity, respectively.

For an isotropic non-Newtonian Reiner-Rivlin fluid, the constitutive rheological equations
for which the stress tensor τ̃ij is related to the rate of strain tensor ẽij as

τ̃ij = −p̃δij + μe ẽij + μc ẽik ẽkj, (1)

where p̃ is denoting the pressure, μe the coefficient of viscosity and μc is the coefficient of
cross-viscosity, and

2ẽij = ṽi,j + ṽj,i, (2)

here ṽi denotes ith component of the fluid velocity.

Fig. 1. Geometric delineation of flow domain and co-ordinate system

For the steady flow, the equations of continuity and momentum are as follows:

ṽk,k = 0, (3)
τ̃ij,j = ρ ṽk ṽi,k. (4)
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It is natural to describe the flow phenomenon in spherical polar coordinates (r̃, θ, φ). In view of
translational axis-symmetry, ∂

∂φ
≡ 0, we can express the velocity Ṽ as

Ṽ = Ṽ(r̃, θ) =
(
ṽr̃(r̃, θ), ṽθ(r̃, θ), 0

)
, (5)

where ṽr̃ and ṽθ denote the normal and tangential velocities to the surface of spheroid, respecti-
vely. Taking into consideration the condition of incompressibility (3) and introducing ψ̃(r̃, θ)
by the subsequent relations

ṽr̃ =
−1

r̃2 sin θ

∂ψ̃

∂θ
, ṽθ =

1
r̃ sin θ

∂ψ̃

∂r̃
, ṽφ = 0, (6)

the following dimensional substitutionary parameters are used to make the quantities dimensi-
onless

r̃ = a r, ṽr̃ = U vr, ṽθ = U vθ, τ̃ij = μ
U

a
τij ,

ẽij =
U

a
eij, p̃ = μ

U

a
p, ψ̃ = U a2ψ, λ =

μe

μi
,

where U is the fluid velocity far away from the obstacle, whereas a represents the radius of the
sphere in exact form r̃ = a and r, vr, qθ, eij , τij , p, ψ, . . . are non-dimensional parameters. The
shear-stress components in non-dimensional forms reduce to

τrr = −p + err + S (e2rr + e2rθ) ,

τθθ = −p + eθθ + S (e2θθ + e2rθ) ,

τφφ = −p+ eφφ + S e2φφ,

τrθ = erθ − S erθ eφφ,

(7)

where S = μc U
μe a

. The momentum equations and continuity equation reduce to the following
component forms under the Stokes approximation

∂τrr

∂r
+
1
r

∂τrθ

∂θ
+
1
r
(2trr − τθθ − τφφ + τrθ cot θ) = 0, (8)

∂τrθ

∂r
+
1
r

∂τθθ

∂θ
+
3
r
τrθ +

1
r
(τθθ − τφφ) cot θ = 0, (9)

1
r2

∂

∂r
(r2 vr) +

1
r sin θ

∂

∂θ
(vθ sin θ) = 0. (10)

Expanding the parameters vr, vθ, eij, τij , p, ψ, . . . in terms of power series of S as follows:

ψ(e)=ψ0 + ψ1S + ψ2S
2 + . . . ,

p(e)= p0 + p1S + p2S
2 + . . . , etc.

(11)

The subscript in (11) symbolize the 0th, 1st, 2nd order approximations of the related quantities,
and retaining the terms in the power series expansion of S up to 2nd order only. Therefore, the
stream functions ψ0, ψ1 and ψ2 satisfy the following differential equations [25, 33]:

E4ψ0 = 0, E4ψ1 = 54

(
1
r5

− 2
r7

)
ϑ3(ζ),

E4ψ2 =

(
8
5
S2h2(r) + 2S

2h1(r)

)
ϑ2(ζ)−

8
5
S2h2(r)ϑ4(ζ),

(12)
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where

h1(r) =
27
2r6

(
−7 + 20

r5
− 21

r3
− 22

r2
+
31
r

)
, h2(r) =

27
4r6

(
16− 39

r5
+
33
r3
+
60
r2

− 72
r

)
.

The differential equations given by (12) yield the following solutions for stream function
corresponding 0th, 1st and 2nd order of approximations as

ψ0 =

(
r2 +

1
2r

− 3
2
r

)
ϑ2(ζ), ψ1 =

3
4

(
1− 1

r

)3
ϑ3(ζ),

ψ2 =

[
8
5
S2f(r) + 2S2g(r)

]
ϑ2(ζ)−

8
5
S2f(r)ϑ4(ζ),

(13)

where

f(r) =
9
2 464

[
46
r

− 616
r2
+
52
r3
+
462
r4
+
77
r5

− 21
r7
+
1 056
r3
log(r)

]
,

g(r) =
1

30 800

[
132r − 3 469

r
+
51 975

r2
− 1 413

r3
− 40 425

r4
− 9 075

r5
+
2 275
r7

− 95 040
r3

log(r)

]

and Stokes operator E2 has the following form

E2 ≡ ∂2

∂r2
+
sin θ

r2
∂

∂θ

( 1
sin θ

∂

∂θ

)
. (14)

By Ramkissoon [25], we can take ψ(e) as

ψ(e) = ψ0 + ψ1S + ψ2S
2 +

∞∑
n=2

(
Cnr−n+1 +Dnr−n+3

)
ϑn(ζ). (15)

Simplifying (15) by utilizing (13) yields the external flow field as

ψ(e) =

[
r2 − 3

2
r +

1
2r
+
1
r
c2 + rd2 +

8
5
S2f(r) + 2S2g(r)

]
ϑ2(ζ) +[

3
4
S

(
1− 1

r

)3
+
1
r2

c3 + d3

]
ϑ3(ζ) +

[
1
r3

c4 +
1
r
d4 −

8
5
S2f(r)

]
ϑ4(ζ) +

∞∑
n=5

(
Cnr−n+1 +Dnr−n+3

)
ϑn(ζ). (16)

While for the Newtonian fluid in the inner region, the steady momentum equation for incom-
pressible fluid with non-linear or inertia term neglected is given as

∇p = μi∇2V(i). (17)

Taking curl of (17) and substituting (6) in non-dimensional form, the following Stokes equation
is obtained:

E4ψ(i) = 0. (18)
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The general solution to (18) for internal flows within the liquid spheroid is given as [13]

ψ(i) =
(
a2r

2 + b2r
4
)
ϑ2(ζ) +

∞∑
n=3

(
Anrn +Bnrn+2

)
ϑn(ζ), (19)

where ζ = cos θ and ϑn(ζ) is the Gegenbauer function of 1st kind of order n and degree −1/2
connected to the Legendre polynomials Pn(ζ) by

ϑn(ζ) =
Pn−2(ζ)− Pn(ζ)

2n − 1 , n ≥ 2, Pn(ζ) =
1
2nn!

∂n

∂ζn

(
ζ2 − 1

)n

with

P0(ζ) = 1, P1(ζ) = ζ, P2(ζ) =
1
2

(
−1 + 3ζ2

)
, P3(ζ) =

1
2
ζ

(
−3 + 5ζ2

)
,

P4(ζ) =
1
8

(
3− 30ζ2 + 35ζ4

)
, P5(ζ) =

1
8
ζ
(
15− 70ζ2 + 63ζ4

)
,

P6(ζ) =
1
16

(
−5 + 105ζ2 − 315ζ4 + 231ζ6

)
.

Also, these relations have the accompanying special identities framed by Happel and Bren-
ner [13] relevant to our work

ϑm(ζ)ϑ2(ζ)=λm−2 ϑm−2(ζ) + λm ϑm(ζ) + λm+2 ϑm+2(ζ),

ϑm(ζ)ϑ4(ζ)=φm−4 ϑm−4(ζ) + φm−2 ϑm−2(ζ) + φm ϑm(ζ)+
φm+2 ϑm+2(ζ) + φm+4 ϑm+4(ζ),

(20)

where

λk+2=− (1 + k)(2 + k)
2(−1 + 2k)(1 + 2k) , λk =

k(−1 + k)
(1 + 2k)(−3 + 2k) ,

λk−2=− (−3 + k)(−2 + k)
2(−3 + 2k)(−1 + 2k) ,

φk+4=− 5(k + 1)(2 + k)(3 + k)(k + 4)
8(5 + 2k)(−1 + 2k)(3 + 2k)(1 + 2k) ,

φk+2=
k(1 + k)(2 + k) (16k3 + 48k2 + 44k + 12)

8(−3 + 2k)(−1 + 2k)(3 + 2k)(1 + 2k)2(5 + 2k) ,

φk=
k2 (8k5 − 28k4 + 30k3 − 5k2 − 8k + 3)

4(−3 + 2k)2(−1 + 2k)(3 + 2k)(1 + 2k)2(−5 + 2k) ,

φk−2=
(k − 2)(k − 3) (4k4 − 28k3 + 71k2 − 77k + 30)
2(−7 + 2k)(−1 + 2k)(−3 + 2k)2(1 + 2k)(−5 + 2k) ,

φk−4=− 5(k − 3)(−2 + k)(−5 + k)(k − 4)
8(−7 + 2k)(−5 + 2k)(−3 + 2k)(−1 + 2k) .

(21)

Here, the coefficients contributing to the flow streaming a fluid sphere [25] are c2, d2, c4, d4,
a2, b2, a4, b4 only, and consequently, all other coefficients in (16) and (19) are of the first order
in αk. In this manner, with the exception of where the coefficients c2, d2, c4, d4, a2, b2, a4, b4
appeared, we may take the surface to be r̃ = a or r = 1 rather than its exact form (22).
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Let r̃ = a[1 + χ(θ)] be the equation of spheroidal surface Sd in polar form approximating
the sphere r̃ = a. The orthogonality of Gegenbauer polynomials, commonly, enables us to take
χ(θ) as the following form

χ(θ) =
∞∑

k=2

αkϑk(ζ).

Hence, we can take the surface Sd [30]

r̃ = a[1 + αkϑk(ζ)], (22)

where αk to be adequately minute so that the higher powers may be over looked, i.e.,

(
r̃

a

)�

≈ 1 + � αk ϑk(ζ),

where � is +ve or −ve.

3. Employment of boundary conditions to evaluate arbitrary unknown

The arbitrary constants encountering in (16) to be evaluated by employing boundary conditions
over the spheroidal surface r = 1 + αkϑk(ζ). In terms of stream function, these boundary
conditions reduce to

Impenetrability condition: ψ(e) = 0, ψ(i) = 0, (23)

Continuity of tangential velocities:
∂ψ(e)

∂r
=

∂ψ(i)

∂r
, (24)

Continuity of tangential stresses: λ
∂

∂r

(
1
r2

∂ψ(e)

∂r

)
=

∂

∂r

(
1
r2

∂ψ(i)

∂r

)
, (25)

where λ = μe/μi. Application of the boundary conditions (23)–(25) yields the following system
of linear equations

(c2 + d2)ϑ2(ζ)(c2 − d2)αkϑk(ζ)ϑ2(ζ) + (d3 + c3)ϑ3(ζ)+

(c4 + d4)ϑ4(ζ)− (3c4 + d4)αkϑk(ζ)ϑ4(ζ) +
∞∑

n=5

(Dn + Cn)ϑn(ζ) = 0, (26)

(a2 + b2)ϑ2(ζ) + 2(a2 + 2b2)αkϑk(ζ)ϑ2(ζ) + (a3 + b3)ϑ3(ζ)+

(a4 + b4)ϑ4(ζ) + (4a4 + 6b4)αkϑk(ζ)ϑ4(ζ) +
∞∑

n=5

(An +Bn)ϑn(ζ) = 0, (27)

−(2a2 + 4b2 + c2 − d2)ϑ2(ζ)+(
3 +
3S2

700
− 2a2 − 12b2 + 2c2

)
αkϑ2(ζ)ϑk(ζ)−

(3a3 + 5b3 + 2c3)ϑ3(ζ)− (4a4 + 6b4 + 3c4 + d4)ϑ4(ζ)+
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1
770
(−9S2 + 9 240c4 + 1 540d4)ϑ4(ζ)ϑk(ζ)αk+

∞∑
n=5

[−nAn − (2 + n)Bn − (−3 + n)Dn − (−1 + n)Cn]ϑn(ζ) = 0, (28)

[
2a2 − 4b2 + λ

(
3 +

3
700

S2 + 4c2 − 2d2
)]

ϑ2(ζ)+{
−4a2 + λ

[
−20c2 + 3

(
−5 + 1

70
S2 + 2d2

)]}
αkϑ2(ζ)ϑk(ζ)−

10(b3 − λc3)ϑ3(ζ)−
[
4a4 + 18b4 + λ

(
9
770

S2 − 18c4 − 4d4
)]

ϑ4(ζ)+

λ

(
9
110

S2 − 126c4 − 20d4
)

αkϑ4(ζ)ϑk(ζ)+

∞∑
n=5

{−(−3 + n)nAn − (−2 + n + n2)Bn+

λ[(−3 + n)nDn + (−2 + n + n2)Cn]}ϑn(ζ) = 0. (29)

The leading terms, i.e., the coefficients ϑ2, ϑ3, ϑ4 appearing in equations (26)–(29) must be
vanished, i.e.,

c2 + d2 = 0, c3 + d3 = 0, c4 + d4 = 0, a2 + b2 = 0, a3 + b3 = 0,

a4 + b4 = 0, 2a2 + 4b2 + c2 − d2 = 0, 3a3 + 5b3 + 2c3 = 0,

4a4 + 6b4 + 3c4 + d4 = 0, 2a2 − 4b2 + λ

(
3 +

3
700

S2 + 4c2 − 2d2
)
= 0,

b3 − λc3 = 0, 4a4 + 18b4 + λ

(
9
770

S2 − 18c4 − 4d4
)
= 0.

(30)

Solving (30) gives

c2 = − 700λ+ S2λ

1 400(1 + λ)
, d2 =

700λ+ S2λ

1 400(1 + λ)
, c4 =

9S2λ
10 780(1 + λ)

, d4 = − 9S2λ
10 780(1 + λ)

,

a2 = − 700λ+ S2λ

1 400(1 + λ)
, b2 =

700λ+ S2λ

1 400(1 + λ)
, a4 =

9S2λ
10 780(1 + λ)

, b4 = − 9S2λ
10 780(1 + λ)

,

a3 = 0, b3 = 0, c3 = 0, d3 = 0. (31)

These are the same values of unknowns which were also noticed by Ramkissoon [25] for the
case of fluid sphere. Therefore, equations (26)–(29) now reduce to

χ11 αkϑk(ζ)ϑ2(ζ) + χ13 αkϑk(ζ)ϑ4(ζ)−
∞∑

n=5

(Dn + Cn)ϑn(ζ) = 0, (32)

χ21 αkϑk(ζ)ϑ2(ζ) + χ23 αkϑk(ζ)ϑ4(ζ) +
∞∑

n=5

(An +Bn)ϑn(ζ) = 0, (33)

χ31 αkϑ2(ζ)ϑk(ζ) + χ33 ϑ4(ζ)ϑk(ζ)αk+
∞∑

n=5

{−nAn − (2 + n)Bn − (−3 + n)Dn − (−1 + n)Cn}ϑn(ζ) = 0, (34)
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χ41 αkϑ2(ζ)ϑk(ζ) + χ43 αkϑ4(ζ)ϑk(ζ)+
∞∑

n=5

[
−(−3 + n)nAn −

(
−2 + n + n2

)
Bn+

λ
{
(−3 + n)nDn +

(
−2 + n+ n2

)
Cn

}]
ϑn(ζ) = 0, (35)

where

χ11=−700λ+ S2λ

700(1 + λ)
, χ13 =

9S2λ
5 390(1 + λ)

, χ21 =
700λ+ S2λ

700(1 + λ)
,

χ23=− 9S2λ
5 390(1 + λ)

, χ31 = −3(700 + S2)(−1 + λ)
700(1 + λ)

, χ33 = −9S
2(7 + 2λ)

5 390(1 + λ)
,

χ41=
λ (−700(13 + 2λ) + S2(32 + 43λ))

700(1 + λ)
, χ43 = −9S

2λ(−49 + 4λ)
5 390(1 + λ)

.

(36)

Solving (32)–(35) with the aid of the relations (20), we see that the coefficients become identically
zero for all n except n = k − 4, k − 2, k, k + 2, k + 4. And hence, the non-vanishing constants
yield the following expressions

An =
1

2(−1 + 2n)(1 + λ)
αk

[
λn{

(
3− 4n+ n2

)
λχ11 − (2 + n)(−1 + n − λ+ 2nλ)χ21 +

λχ31 − 2nλχ31 − χ41}+ φn{
(
3− 4n+ n2

)
λχ13 − (2 + n)(−1 + n − λ + 2nλ)×

χ23 + λχ33 − 2nλχ33 − χ43}
]
, (37)

Bn = − 1
2(−1 + 2n)(1 + λ)

αk

[
λn{

(
3− 4n+ n2

)
λχ11 + n(3− n+ λ − 2nλ)χ21 + λχ31 −

−2nλχ31 − χ41}+ φn{
(
3− 4n+ n2

)
λχ13 + n(3− n + λ − 2nλ)χ23 + λχ33 −

−2nλχ33 − χ43}
]
, (38)

Cn = − 1
2(−1 + 2n)(1 + λ)

αk

[
λn{(−3 + n)(−1 + n(2 + λ))χ11 − n(2 + n)χ21 + χ31 −

−2nχ31 + χ41}+ φn{(−3 + n)(−1 + n(2 + λ))χ13 − n(2 + n)χ23 + χ33 −
−2nχ33 + χ43}

]
, (39)

Dn =
1

2(−1 + 2n)(1 + λ)
αk

[
λn{(−1 + n)(−1 + 2λ+ n(2 + λ))χ11 − n(2 + n)χ21 +

χ31 − 2nχ31 + χ41}+ φn{(−1 + n)(−1 + 2λ+ n(2 + λ))χ13 − n(2 + n)χ23 +

χ33 − 2nχ33 + χ43}
]
. (40)

Hence, we know all the coefficients now. Therefore, the flow fields characterizing the motions
are now determined as

ψ(e) =

[
r2 − 3

2
r +

1
2r
+
1
r
c2 + r d2 +

8
5
S2f(r) + 2S2g(r)

]
ϑ2(ζ) +[

3
4
S

(
1− 1

r

)3]
ϑ3(ζ) +

[
1
r3

c4 +
1
r
d4 −

8
5
S2f(r)

]
ϑ4(ζ) +
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Ck−4r

−k+5 +Dk−4r
−k+7

)
ϑk−4(ζ) +

(
Ck−2r

−k+3 +Dk−2r
−k+5

)
ϑk−2(ζ) +(

Ckr
−k+1 +Dkr

−k+3
)
ϑk(ζ) +

(
Ck+2r

−k−1 +Dk+2r
−k+1

)
ϑk+2(ζ) +(

Ck+4r
−k−3 +Dk+4r

−k−1)ϑk+4(ζ) (41)

and

ψ(i) =
(
a2r

2 + b2r
4
)
ϑ2(ζ) +

(
a4r

4 + b4r
6
)
ϑ4(ζ) +

(
Ak−4r

k−4 +Bk−4r
k−2)ϑk−4(ζ) +(

Ak−2r
k−2 +Bk−2r

k
)
ϑk−2(ζ) +

(
Akr

k +Bkr
k+2

)
ϑk(ζ) +(

Ak+2r
k+2 +Bk+2r

k+4
)
ϑk+2(ζ) +

(
Ak+4r

k+4 +Bk+4r
k+6

)
ϑk+4(ζ), (42)

where all An, Bn, Cn and Dn were determined previously. And consequently yields the solution
for the proposed problem.

4. Application to an oblate spheroid

We now take an example of oblate spheroidal body to validate the analysis. The flow is assumed
to be in the direction to its symmetrical axis (see Fig. 2). Our main objective is to evaluate the
force on it. The equation in Cartesian co-ordinates (x, y, z) of spheroidal particle can be taken
as

x2 + y2

b2
+

z2

b2(1− ε)2
= 1, (43)

where b is the equatorial radius, ε is a deformation parameter such that its powers higher than
unity may be disregarded and ε > 0 for the considered geometry. Thus, equation (43) in polar
co-ordinates (ρ, ζ) yields the following

r̃ = a[1 + 2ε ϑ2(ζ)], (44)

where a = b(1− ε). To utilize the outcomes, inserting k = 2, αk = 2ε in the previous section.
Therefore, the non-vanishing coefficients are gotten just when n = k, k+2, k+4. In this manner,
stream functions characterizing outer and inner flow fields yield the accompanying expressions:

ψ(e) = {r2 − 3
2
r +

1
2r
+
1
r
c2 + r d2 +

8
5
S2f(r) + 2S2g(r) + C2r

−1 +D2r}ϑ2(ζ) +

3
4
S

(
1− 1

r

)3
ϑ3(ζ) + { 1

r3
c4 +

1
r
d4 −

8
5
S2f(r) + C4r

−3 +D4r
−1}ϑ4(ζ) +(

C6r
−5 +D6r

−3)ϑ6(ζ) (45)

Fig. 2. Geometric sketch and co-ordinate system of an oblate spheroidal particle in meridian plane
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and

ψ(i) =
(
a2r

2 + b2r
4 + A2r

2 +B2r
4
)
ϑ2(ζ) +

(
A4r

4 +B4r
6
)
ϑ4(ζ) +(

A6r
6 +B6r

8
)
ϑ6(ζ). (46)

5. Assessment of drag force on oblate fluid spheroid

For flow phenomenon, the most important physical highlights is the drag experienced by the
obstacle immersed in fluid. To assess this, we utilize a straightforward elegant formula [23], and
for the present case, this reduces to

Fz = 8πμe lim
r̃→∞

ψ̃e − ψ̃∞

2r̃ ϑ2(ζ)
, (47)

where ψ̃∞ represents a flow field far away from the body and is equivalent to

ψ̃∞ = r̃2Uϑ2(ζ) (48)

and

ψ̃e = Ub2
[{

r̃2

b2
+ (1− ε)

(
−3
2
+ d2 +D2

) (
r̃

b

)
+ (1− 3ε)

(
1
2
+ c2 + C2

) (
b

r̃

)
+

2εS2
(
4
5
f ′

(
r̃

b

)
+ g′

(
r̃

b

)) (
r̃

b

)
+ 2(1− 2ε)S2

(
4
5
f

(
r̃

b

)
+ g

(
r̃

b

))}
ϑ2(ζ) +

3
4
S

{(
1− b

r̃

)3
+ ε

(
5
b

r̃
− 2

) (
1− b

r̃

)2}
ϑ3(ζ) +

{
(1− 5ε) (c4 + C4)

(
b3

r̃3

)
+

(1− 3ε) (d4 +D4)

(
b

r̃

)
− (1− 2ε)8

5
S2f

(
r̃

b

)
− 8
5
S2εf ′

(
r̃

b

) (
r̃

b

)}
ϑ4(ζ) +{

(1− 7ε)
(

b5

r̃5

)
C6 + (1− 5ε)

(
b3

r̃3

)
D6

}
ϑ6(ζ)

]
. (49)

Substitution of (48) and (49) into (47) yields

Fz = − 2
175

bπU(−1 + ε)
(
−525 + 3S2 + 350d2 + 350D2

)
μe, (50)

where

d2 =
700λ+ S2λ

1 400(1 + λ)
,

D2 =
ε {−377 300 (3 + 5λ+ 2λ2) + S2 (−1 932 + 4 520λ+ 7 007λ2)}

943 250(1 + λ)2
. (51)

Hence, from (50) which yields the expression for drag experienced by Newtonian fluid spheroid
immersed in a Reiner-Rivlin fluid, the accompanying well familiar cases can be extracted
immediately:

1. When ε = 0, Ramkissoon’s formula [25] in corrected form for Reiner-Rivlin flow past a
fluid sphere

Fz = −6bπμeU

{(
1 + 2

3λ
)

1 + λ
− S2

(
12

700(1 + λ)
+

13
700(1 + λ)

λ

)}
. (52)
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2. When λ = 0, new result [17] for Reiner-Rivlin liquid over a rigid spheroid

Fz = −6bπμeU
{(
1− ε

5

)
+ S2(−0.005 7 + 0.007 1ε)

}
. (53)

3. When S = 0, famous Ramkissoon’s formula [24] for a Newtonian fluid past a Newtonian
fluid spheroid

Fz = −6bπU
(
1− ε

5

) (
1 + 2

3λ
)
μe

(1 + λ)
. (54)

4. When λ = 0, ε = 0, Rathna’s formula [33] in corrected form for Reiner-Rivlin liquid past
a rigid sphere

Fz = −6bπμeU
(
1− 0.005 7S2

)
. (55)

5. When S = 0, λ = 0 renowned Stokes’ formula [42] for a viscous fluid past a rigid
spheroid

Fz = −6bπμeU
(
1− ε

5

)
. (56)

Figs. 3–7 show the effect of cross viscosity S, relative viscosity λ as well as the deformation
parameter ε on hydrodynamic drag and pressure, and the corresponding numerical values are
listed in Table 1. One can easily determine the impact of S, λ and ε on Fz and pressure.

Table 1. Comparisons of Fz/(−6aπμeU) calculated for solid and liquid spheroid for S = 0 and S = 0.5

Fz/(−6aπμeU) −→
ε λ = 0 λ = 0.5

↓ S = 0 S = 0.5 S = 0 S = 0.5

0.00 1.000 0.998 571 429 0.888 888 889 0.887 420 635

0.01 0.998 0.996 589 128 0.887 111 111 0.885 655 906

0.20 0.960 0.958 925 417 0.853 333 333 0.852 126 065

0.40 0.920 0.919 279 406 0.817 777 778 0.816 831 496

0.60 0.880 0.879 633 395 0.782 222 222 0.781 536 926

0.80 0.840 0.839 987 384 0.746 666 667 0.746 242 357

0.99 0.802 0.802 323 673 0.712 888 889 0.712 712 515

1.00 0.800 0.800 341 373 0.711 111 111 0.710 947 787

The changes on Fz/(−6aπμeU) for spheroid w.r.t. ε are exhibited in Fig. 3 for numerous
values of S. From this figure, it is seen that the drag Fz/(−6aπμeU) on a liquid sphere is more
than such force acknowledged by an oblate fluid spheroid. For lesser deformation, the force is
more. Also, when the disfigurement expands, the force continues to diminishing with identical
intensity of ε at later stages. We likewise witness that force on spheroid for viscous case is less
as compared to the Reiner-Rivlin fluid case.

Fig. 4 shows the dependence of dimensionless hydrodynamic drag force on deformation
parameter ε at S = 0.75 and for different values of relative viscosity λ. The drag force decreases
with deformity ε. This decrease in drag force is sharp for higher deformation.
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Fig. 3. The drag force on viscous droplet for different parameter S and λ = 0.5
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Fig. 4. The drag force on viscous droplet for different parameter λ and S = 0.5

The variation of drag force w.r.t. relative viscosity λ is depicted in Fig. 5 for various values
of cross-viscous parameter S. The graphs show that initially the drag decreases slowly and then
gets reducing sharply at subsequent stages. We also noticed a constant decrease in drag for
isolated values of S.

The influence of S on Fz is exhibited in Fig. 6. These graphs show that Fz diminishes as ε
increases. Also, it is observed and analyzed that Fz, for smaller S, turns out to be practically
consistent for an estimation of ε. Yet, for bigger estimations of cross-viscosity (greater than 0.9),
the drag diminishes quickly for some random estimation of ε.

The impact of deformation ε on the non-dimensional pressure p(e)/(μeU/a) on fluid sphe-
roid is exhibited by Fig. 7. This figure depicts that p(e)/(μeU/a) on fluid spheroid increases
with increasing cross viscosity S and deformity ε. The value of the hydrodynamic pressure
on the fluid spheroid by Reiner-Rivlin fluid is higher than Newtonian fluid for higher defor-
mation.
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Fig. 5. The drag force on viscous droplet for different parameter S and ε = 0.75
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Fig. 6. The drag force on Rviscous droplet for different parameter ε and λ = 0.5
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Fig. 7. The hydrodynamic pressure on viscous droplet for different parameter ε and λ = 0.75
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6. Conclusion

An analytical investigation for steady flow of Newtonian drop approximated to a deformed
spherical particle embedded in an infinite expanse of Reiner-Rivlin fluid is presented. The
constitutive equations of the flow fields yield to momentum equations which on transformation
and simplification get reduced to highly non-linear PDEs and, hence, solved using Stokes
approximation. Analytical outcomes regarding drag and other fluid parameters of interest are
depicted through sketches for numerous values of deformity ε, comparative viscosity λ and
cross-viscous parameter S.

It is observed how various parameters influence the flow characteristics. It is noted that
drag force is diminishing with respect to cross-viscous parameter (S) and relative viscosity (λ).
Some constraining instances of deformed spherical body have been independently explored,
and recently secured outcomes of Stokes’ drag, and revision to drag force on fluid sphere by
Ramkissoon’s outcome [25] have been reasoned to approve our model. In the exploration, we
have also found that the pressure of Reiner-Rivlin liquid on the spheroid increments both S
and ε increase, whereas drag on spheroid diminishes S and ε.

As discussed, the present exploration yields explicit, analytical solution for the flow of a
non-Newtonian Reiner–Rivlin fluid streaming over an approximate deformed Newtonian fluid
sphere using power expansion method. To the best of author’s knowledge neither Homotopy
Analysis Method (HAM) nor any numerical solution exists in literature for the considered flow
problem for Reiner-Rivlin fluid or for any other associated geometry. Thus, it can be concluded
that there are numerous possibilities for research communities taking different geometries and
methods to analyze many other non-linear problems of scientific and engineering significance
considering Reiner-Rivlin fluid.
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