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Abstract

The presented research article deals with the classical fundamental flows (Poiseuille and Couette) of an incompres-
sible hyperbolic tangent fluid while considering the Navier slip at the walls. The governing equations are solved
using the homotopy analysis method. The velocity expressions are obtained for each problem and the effect of
the flow parameters are discussed while being supplemented by graphical displays. Increasing the slip parameter
reduces the fluid velocity for both problems, respectively. An increase in the Weissenberg number shows that skin
friction at the lower wall reduces. This shows that a dominant elastic force is crucial in reducing the skin friction.
c© 2020 University of West Bohemia. All rights reserved.
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1. Introduction

The contact point between a fluid and a solid surface poses interesting questions. Many investi-
gations have been undertaken and yet plenty of questions remain unanswered. As in the case of
many engineering problem approximations, no-slip condition at the contact point of a moving
fluid and a solid boundary has been found to be impractical for many cases [27]. Hence, the
Navier slip at the contact point of fluid and solid body have been used prominently for theoretical
studies as it has been found to be more realistic in view of real life applications. The Navier slip
condition shows that the velocity of the moving fluid is directly proportional to the shear stress
at the contact point of the fluid and solid boundary. The constant of proportionality is called the
slip length. The non-dimensional slip parameter have been observed to be related to the direction
of the fluid flow [24]. Usage of non-Newtonian fluids in industrial settings have slowly gained
prominence in the last few decades. The hyperbolic tangent fluid is a subclass of non-Newtonian
fluid which offers a shear thinning behavior and plays an important role in chemical engineering
applications. Fluids such as paints, blood, ketchup or cream are examples of tangent hyperbolic
fluid. Compared to other types of non-Newtonian fluids, the tangent hyperbolic fluid is rather
simple, easily computable and is physically robust. Investigations in the present literature have
reported few results of Navier slip on hyperbolic tangent fluid flows. However, the flow regimes
have mostly been based on peristaltic flows [11–13], while a few others have been on flows
over flat surfaces [4, 7, 21]. Skin friction has been reported to be diminished when the power
law index was increased [15]. While the Weissenberg number has been reported to increase the
hyperbolic tangent fluid flow in a channel [3]. Non-Newtonian fluid flow problems poses highly
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nonlinear differential equations and must be tackled intricately. The homotopy analysis method
(HAM) [17, 19] has been developed for such purposes. The HAM has been used successfully
to solve numerous types of equations [1, 2, 9, 18, 20, 23, 28, 29, 31] and has been found to be
extremely reliable [6, 26].

In light of the presented literature review, the gap in the literature of Poiseuille and Couette
flows of a tangent hyperbolic fluid is studied in the presented article. The Navier slip effect is
assumed at the walls of the channel. For the Poiseuille flow, the flow is pressure driven and the
walls are assumed to be stationary. For the case of the Couette flow, the flow is pressure driven
while also being supplemented by the movement of the upper channel wall in the direction
of the flow. The article is divided into several sections each focusing on a different aspect of
the investigation. The second section focuses on the mathematical formulation of the tangent
hyperbolic fluid in the Cartesian coordinates for the present problem in consideration. In the
third section, the homotopy analysis method is introduced which is used to solve the nonlinear
differential equation governing the flow. Section 4 is dedicated to the discussion of the results
which are obtained in the previous section. The concluding remarks of the study are presented
in the last section.

2. Governing equation formulation

Let us consider an incompressible non-Newtonian hyperbolic tangent fluid. A hyperbolic tangent
fluid is a four constant fluid model describing the shear thinning effects of the fluid. The Cauchy
stress tensor for the non-Newtonian hyperbolic tangent fluid can be written as [14, 25]

τ = [κ∞ + (κ0 + κ∞) tanh
n(Γβ)]β, (1)

where τ is the extra stress tensor, κ∞ is the shear rate viscosity at infinity, κ0 is the initial shear
rate viscosity, Γ is the time dependent material constant, n is the power law index and β is the
shear rate. As the hyperbolic tangent fluid is a shear thinning fluid, we can conclude that κ∞ = 0
and Γβ � 1 such that tanh(Γβ) ≈ (Γβ). Thus, the Cauchy stress tensor (1) takes the form

τ = κ0[(Γβ)
n]β = κ0[(1 + Γβ − 1)n]β = κ0[1 + n(Γβ − 1)]β. (2)

For a laminar, fully developed fluid flow, the velocity field is reduced to U = (u(y), 0, 0).
In the absence of external body forces and a constant pressure gradient acting along the flow
direction, the momentum equation of a hyperbolic tangent fluid can be written as [32]

μf(1− s)
d2u
dy2
+
√
2sμfΓ

(
du
dy

)
d2u
dy2
=
dp
dx

. (3)

Introducing the non-dimensional terms as

U =
u

U0
, Y =

y

L
, We =

ΓU0
L

, P = − L2

U0μf

dp
dx

, (4)

we have

(1− s)
d2U
dY 2

+
√
2sWe

(
dU
dY

)
d2U
dY 2

+ P = 0, (5)

where s is the power law index, We is the Weissenberg number, and P is the dimensionless
pressure gradient.
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An important aspect of fluid flows is the skin friction at the fluid–solid interface. The skin
friction is the resistance exerted by a solid body on a moving fluid. For the present analysis, the
skin friction offered by the channel wall on the flowing hyperbolic tangent fluid is expressed in
the non-dimensional form as

Cf = U ′(−1). (6)

2.1. Poiseuille flow

For the Poiseuille fluid flow, consider the hyperbolic tangent fluid flowing between two infinitely
long parallel horizontal plates which are at a distance 2L apart. The lower wall is taken to be
at y = −L, while the upper wall is at y = L. The Navier slip at the walls are also considered.
Thus, the conditions of the velocity at the walls of the channel can be written as [8]

u(−L) = −α
du
dy

∣∣∣∣
y=−L

, u(L) = α
du
dy

∣∣∣∣
y=L

. (7)

Invoking (4), we have

U(−1) = −γ
dU
dY

∣∣∣∣
Y=−1

, U(1) = γ
dU
dY

∣∣∣∣
Y=1

, (8)

where γ = α/L is the dimensionless slip parameter.

2.2. Couette flow

For the Couette flow, again consider the hyperbolic tangent fluid flowing between two infinitely
long horizontal plates kept at a distance 2L apart such that the upper wall is at y = L and the
lower wall is at y = −L. For the general Couette flows, the fluid flow is aided by the movement
of the upper plate in the direction of the flow. Hence, considering the existence of the Navier
slip, the condition of the velocity at the lower wall and upper moving wall of the channel can
be described as [8]

u(−L) = −α
du
dy

∣∣∣∣
y=−L

, u(L) = α
du
dy

∣∣∣∣
y=L

+ uw. (9)

Invoking (4), we have

U(−1) = −γ
dU
dY

∣∣∣∣
Y=−1

, U(1) = γ
dU
dY

∣∣∣∣
Y=1

+ Uw, (10)

where Uw = uw/U0 is the wall velocity parameter.
The general expression of the fluid flow velocity can be obtained by taking s = 0 and γ = 0

and integrating (5) for both cases.

3. Analytical solution by HAM

We define a set of base functions as
{Y n|n � 0} (11)

to define the velocity expression in the form

U(Y ) =
∞∑

n=0

CnY n, (12)
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where Cn is a coefficient. Using the boundary conditions for each problem, the initial guess
approximations [18] are chosen as

U0(Y ) =

{
0 for the Poiseuille flow,(
1 + Y

1−γ

)
Uw

2 for the Couette flow.
(13)

The linear operator
d2

dY 2
= L (14)

such that
L[K1 +K2Y ] = 0, (15)

where K1 and K2 are unknown constants. Let h be the convergence controlling parameter and
q ∈ [0, 1] be the embedding parameter. With reference to (5), the nonlinear operator is defined
as

N [ψ(Y ; q)] = (1− s)
d2ψ(Y ; q)
dY 2

+
√
2sWe

(
dψ(Y ; q)
dY

)
d2ψ(Y ; q)
dY 2

+ P. (16)

The zero-order deformation equation is defined using L, h, q and N as

(1− q)L[ψ(Y ; q)− U0] = hqN [ψ(Y ; q)] (17)

along with the boundary equations corresponding to each problem

ψ(−1; q) = −γ
dψ(−1; q)
dY

, ψ(1; q) = γ dψ(1;q)dY for the Poiseuille flow,

ψ(−1; q) = −γ
dψ(−1; q)
dY

, ψ(1; q) = γ dψ(1;q)dY + Uw for the Couette flow.
(18)

When q = 0, the solution is the initial guess approximation

ψ(Y ; 0) = U0 (19)

and at q = 1, the final solution is obtained provided h �= 0

ψ(Y ; 1) = U(Y ). (20)

Thus, it may be observed that as the value of q grows from 0 to 1, ψ(Y ; q) varies steadily from
the initial guess U0 to he final exact expression U(Y ). Using Taylor’s series, ψ(Y ; q) is expanded
in a power series of the embedding parameter q as shown below

ψ(Y ; q) = U0 +
∞∑

m=1

Um(Y )q
m (21)

such that

Um(Y ) =
1
m!
dmψ(Y ; q)
dqm

∣∣∣∣
q=0

. (22)

Using (21) and (20) and assuming that the series converges for q = 1, we have

U(Y ) = U0(Y ) +
∞∑

m=1

Um(Y ). (23)
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The following vectors are defined

Um = {U0, U1, U2, . . . , Um}. (24)

Differentiating (17) with respect to q, m-times and then dividing it by m! and setting q = 0, the
mth-order deformation equation is obtained as

L[Um − χmUm−1(Y )] = hRm(Y ). (25)

Accordingly, the boundary equations are reduced to

ψ(−1; q)m−1 = −γ
dψ(−1; q)m−1

dY
, ψ(1; q) = γ

dψ(1; q)m−1

dY
. (26)

It may be noted that the boundary conditions for both the Poiseuille and Couette flows are now
equal as the constant terms are now eliminated. Also

Rm(Y ) = (1− s)U ′′
m−1 +

√
2sWe

m−1−i∑
i=0

U ′
iU

′′
m−1−i + (1− χm)P, (27)

where

χm =

{
0 for m � 1,
1 for m > 1.

(28)

The number of terms in the series solution should be such that the solution converges suffici-
ently. In order to achieve that the series is convergent sufficiently and quickly, the convergence
control parameter has to be chosen carefully. As already defined in the literature [17], the q va-
lues have been narrowed down to the range [−2, 0]. To get the optimum value of q in the given
range, we check the minimum residual error using the expression [16]

EU,m =
1
K

K∑
i=0

[
N

(
m∑

j=0

Uj(iΔt)

)]2
, (29)

where K is a positive integer and Δt = 1/K. In the present analysis, the value of K is taken
as 20. Fig. 1 shows the best range of h values that may be considered for the present analysis.
It is apparent that the optimal range for the h value coincide for both the Poiseuille and Couette
flows. Consequently, the optimum value for h with the least amount of error coincide for both
the flows. The h−values for different order of approximation is shown in Table 1. For the present
analysis, the optimum value of h has been taken as −1.32.

Fig. 1. h – curve
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Table 1. h values corresponding to the Poiseuille and Couette flows for different approximations

order m
Poiseuille flow Couette flow

h minimum error h minimum error

10 −1.32 7.34× 10−18 −1.32 2.82× 10−18

12 −1.32 5.73× 10−21 −1.32 1.86× 10−21

15 −1.32 1.82× 10−24 −1.32 1.51× 10−24

4. Discussion

From Figs. 2 and 3, we can observe the effect of slip parameter on the velocity profile for
both the Poiseuille and Couette flows, respectively. A high value of slip parameter γ indicates
that there is a high interaction between the fluid particles and the solid wall. Hence, we can
see that an increase in the slip parameter reduces the flow velocity significantly. This is a
common phenomenon in flows with the Navier slip and has been discussed at length in the
literature [5, 10, 22]. We can see the impact of the dimensionless Weissenberg number on the
Poiseuille and Couette flows from Figs. 4 and 5, respectively. The Weissenberg number is the
ratio of elastic forces and viscous forces. For both flows, we can see a slight decline in the flow

Fig. 2. Poiseuille flow: Effect of slip parameter on
velocity

Fig. 3. Couette flow: Effect of slip parameter on
velocity

Fig. 4. Poiseuille flow: Effect of Weissenberg num-
ber on velocity

Fig. 5. Couette flow: Effect of Weissenberg number
on velocity
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Fig. 6. Poiseuille flow: Effect of power law index
on velocity

Fig. 7. Couette flow: Effect of power law index on
velocity

velocity when the Weissenberg number is increased. However, an increase in velocity is noted
in the upper half of the channel with the Weissenberg number. For the flow reversal region near
the upper wall in the Poiseuille flow, it can be seen that the flow reversal velocity increases with
the Weissenberg number. For the Couette flow, flow reversal was noted near the upper wall of
the channel for large Weissenberg number. For Poiseuille flow, the deviation in velocity was
greater in the upper half of the channel while it is larger in the lower half of the channel for
Couette flow. An increase in the power law index and its influence on the flow velocity of the
Poiseuille and Couette flows can be observed from Figs. 6 and 7, respectively. It is apparent that
the increase in power law index enhances the flow velocity significantly.

Figs. 8 and 9 display the effect of slip parameter on the skin friction on the lower wall. For
the Poiseuille flow, we can see that the increase in slip parameter reduces the skin friction while
the skin friction for the Couette flow is increased significantly. However, the reaction of skin
friction to the increase in power law index by the Poiseuille and Couette flows is similar as shown
in Figs. 10 and 11, respectively. We can see that there is a prominent increase in skin friction
when the power law index is increased. The skin friction displayed in Figs. 8–11 are taken as a
function of the Weissenberg number. It can be seen that the increase in the Weissenberg number
reduces the friction at the wall. This shows that with the dominance of elastic forces over the
viscous forces, friction at the walls of the channel may be reduced accordingly.

Fig. 8. Poiseuille flow: Effect of slip parameter on
skin friction

Fig. 9. Couette flow: Effect of slip parameter on
skin friction
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Fig. 10. Poiseuille flow: Effect of power law index
on skin friction

Fig. 11. Couette flow: Effect of power law index
on skin friction

5. Conclusions

The investigation focused on the Poiseuille and Couette flows of a pressure driven non-
Newtonian hyperbolic tangent fluid flow while considering the effect of the Navier slips at
the walls. The momentum equation of the flow was reduced to a non-dimensional form after
appropriate transformation. The homotopy analysis method was applied to solve the nonlinear
second order governing differential equation. The velocity expression was obtained and the
effect of pertinent flow parameters for both the Poiseuille and Couette flows was studied and
discussed. The increase in value of the power law index significantly enhanced the velocity
and skin friction of both flows. However, the effects of varying the value of the Weissenberg
number on the velocity and skin friction were not too significant although they were noticeable.
As noticed in the case of Newtonian fluids, flow reversal has also been observed in the present
investigation. This is caused by the deceleration of flow due to the presence of the Navier slip
at the walls [30].
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