
On Architecture of BodyInNumbers Exercise and Wellness
Health Strategy Framework

Petr Brůha
Department of Computer Science and

Engineering , Faculty of Applied
Sciences, University of West Bohemia

Univerzitní 8
Pilsen, Czech Republic

+420 377 632 412, 30100

pbruha@kiv.zcu.cz

Roman Mouček
Department of Computer Science and

Engineering , Faculty of Applied
Sciences, University of West Bohemia

Univerzitní 8
Pilsen, Czech Republic

30100

moucek@kiv.zcu.cz

P. Volf, L. Šimečková, O. Šťáva
Department of Computer Science and

Engineering , Faculty of Applied
Sciences, University of West Bohemia

Univerzitní 8
Pilsen, Czech Republic

30100

{volfpe,simeckol,
ostava }@students.zcu.cz

ABSTRACT

They are many risk factors decreasing overall human physical and

cognitive performance and increasing incidence of chronic

diseases. It is very beneficial for any society to map, discuss and

cope with these factors. This can be supported and evaluated by

designing, developing, testing and using suitable self-management

health systems. One of these systems is the BodyInNumbers

exercise and wellness health strategy framework that allows

experimenters to collect various heterogeneous health related data

in a highly organized and efficient way. Thanks to its success and

daily use, new requirements related to better security, scalability

and maintainability of its architecture have emerged. The aim of

this work is to present advances and changes in the architecture of

the BodyInNumbers health strategy framework mainly focusing

on new definition of user roles, optimization of the system

deployment, and orchestration of the system components. As a

proof of concept, a Kubernetes cluster prototype has been used to

demonstrate the improved architectural solution.

CCS Concepts

• Applied computing➝ Information systems➝Computer

systems organization➝Software and its engineering➝Security

and privacy

Keywords

health information systems; software architecture; body in

numbers software system; health related data; brain data; physical

performance; cognitive performance; data security

1. INTRODUCTION
Overeating, extreme drinking, smoking and physical and

cognitive inactivity are well-established risk factors decreasing

human physical and cognitive performance and increasing

incidence of chronic diseases that present an enormous burden on

society [1][2].

An essential question is how we can both effectively and

efficiently contribute to the prevention of chronic diseases and

how we can help people who have suffered from them or who

may suffer from the min the future. There are people who need

support to manage risk factors, and people who require motivation

to prevent these factors in the first place, while others are truly

healthy and need to stay that way. (Bustamante et al., 2012 [3])

claim that chronic disease management is highly complex because

multiple interventions are required to improve clinical outcomes.

From the patient’s perspective, their main problems deal with self-

management without support and their feeling that they are

isolated between clinical visits.

A strategy for providing continuous self-management support is

the use of communication technologies [3]. So-called health

coaching then offers various but targeted ways to better manage

one’s own health and communication and IT technologies support

this with software applications and wearable electronics for

acquiring health-related data, such as smartphones, tablets, IoT-

enabled mobile devices, smartwatches, and trackers.

This paper copes with both strategically conceptual and

technical/technological aspects in building successful self-

management health systems. More specifically, it deals with the

architectural improvement of the already existing BodyInNumbers

exercise and wellness health strategy framework (here-after called

the BodyInNumbers software system or BodyInNumbers) [2] to

achieve its security, scalability and maintainability.

BodyInNumbers is a modular software system primarily designed

to collect data and metadata related to users’ lifestyle, sports

activities, physical and cognitive condition, and diet [2]. These

data and metadata are then generally suitable for further analysis

of lifestyle and human cognitive and physical performance. The

system contains, for example, a well-annotated collection of data

from electric activity of the human brain [4].

During the BodyInNumbers system operation its architecture, as

originally designed and implemented, became partly obsolete. It

did not follow requirements experienced during the daily use of

the system (typically troubles with its security, scalability and

maintainability) and did not include some of the current generally

applicable design and development paradigms and techniques.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post

on servers or to redistribute to lists, requires prior specific permission and/or

a fee. Request permissions from Permissions@acm.org.

ICMHI 2020, August 14–16, 2020, Kamakura City, Japan

© 2020 Copyright is held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-7776-8/20/08…$15.00

https://doi.org/10.1145/3418094.3418102

145

mailto:Permissions@acm.org

Figure 1. The component model of the BodyInNumbers system. It consists of three subsystems: kernel, database, and user

applications. These subsystems consist of software components.

The advances we have achieved in building the BodyInNumbers

system architecture together with the underlying architectural and

technical concepts are presented in this paper.

The paper is organized as follows. First, new trends and

approaches in software architectures and software engineering

which are generally suitable for health related applications as well

as the original architecture of the BodyInNumbers system are

introduced. Then the architecture of the BodyInNumbers system

is revisited and new design and technical/technological solutions

are explained in more de-tail. As a proof of concept, a Kubernetes

cluster prototype has been used to demonstrate the advances of the

resulting solution.

2. TRENDS IN SOFTWARE

ARCHITECTURES
During the last decade new approaches in software engineering

and software architectures have emerged. These approaches

consider to model not just documentation artifacts, but also central

artifacts, al-lowing the creation or automatic execution of soft-

ware systems starting from those models. These proposals have

been classified generically as Model-Driven Engineering (MDE)

and share common concepts and terms that need to be abstracted,

discussed and understood [5].

Moreover, as development techniques, paradigms and platforms

evolve far more quickly than domain applications, software

modernization and migration are constant challenges to software

engineers [6]. Among these, docker-based containerization

techniques, container orchestration platforms, micro-service

architectures, cloud computing, and artificial intelligence (AI)

technologies play an essential role. Some of them have been used

to improve the BodyInNumbers system architecture and are

briefly introduced below.

A container is a piece of software that contains and packages

everything that software needs to run. Apart from virtual

machines (VMs), containers are lightweight, it makes them

flexible and fast. However, it means that they are naturally

designed to be short-lived and fragile. To solve this issue, instead

of making each software component bullet-proof (such as VMs),

the system can become more stable by assuming that each

component is going to fail and designing the overall process to

handle it [7]. Currently, Docker is considered to be the leading

container platform.

Efficient management and scheduling of containerized

applications is ensured by container orchestration platforms.

These can natively fulfill performance constraints and

requirements imposed by the management and orchestration

(MANO) standard [8]. Kubernetes, as atypical representative of

these platforms, is an open-source software for automating

deployment, scaling and management of applications. It manages

cluster of machines (nodes) and schedules containerized

applications at them. Managed containers can be monitored and if

any container seems to be faulty, it is killed and started again.

Kubernetes ensures that the application is in the desired state not

only at a single point in time, but continuously. The same

container can also be started multiple times and incoming traffic is

balanced between those containers. This ensures high availability

and easier scalability of the system. Declarative configuration

makes application resource management clearer and easier.

For example, it is documented that docker-based containerization

techniques along with a Kubernetes container orchestration

platform emphasize an efficient way to manage and monitor the

status and events in IoT applications in the scale of smart cities [9].

(Thurgood and Lennon [10]) emphasize that cloud computing and

artificial intelligence (AI) technologies are becoming increasingly

prevalent in the industry, necessitating the requirement for

advanced platforms to support their workloads through parallel

and distributed architectures. Then Kubernetes provides an ideal

platform for hosting various workloads, including dynamic

workloads based on AI applications that support ubiquitous

computing de-vices leveraging parallel and distributed

architectures. The rationale is that Kubernetes can be used to

support backend services running on parallel and distributed

architectures, hosting ubiquitous cloud computing workloads.

3. BODYINNUMBERS ARCHITECTURE
The modular architecture of the BodyInNumbers system is based

on the traditional MVC architectural pattern that enables

developers to work on its modules separately. The software

system consists of three main subsystems: kernel, database, and

user applications. In the original architecture the kernel and user

web application were more tightly interconnected. The current

Database

Database

Kernel

Authentication Module Data Access Module

Business Logic

Modules

REST Server
API

User Applications

BodyInNumbers

Web App

BodyInNumbers

Mobile App

146

architecture of these subsystems, their components and connectors

is depicted in Figure 1.

The MVC architectural pattern can be considered as a common

and suitable solution for such kinds of applications and this

pattern was preserved and improved (splitting of the kernel and

application user applications through REST API) in the current

architectural solution. However, during operation of the

BodyInNumbers system we encountered several in conveniences

related mostly to non-functional (security, scalability and

maintainability) parameters of the system. These inconveniences

included a limited set of user roles that was insufficient to

guarantee access only to the parts of the system the user should

xhave seen, the technologically obsolete authentication process,

difficulties to incorporate database model changes, troubles with

scalability of the system during big events when large amounts of

data were collected and overall difficulties with the system

deployment. A shutdown of the system during one of the data

collection events and its difficult recovery finally enforced the

changes in the system architecture. These changes include the

improvements of the system security (updated and more general

system of user roles and improvement of the authentication

process), scalability and manageability (database migration, user

interface concept and technology, containerization, orchestration

of the containers and overall optimization of the system

deployment). Both kinds of improvements

(architectural/conceptual and technical/technological)

supplemented with the necessary background information are

described in the following sections.

3.1 Kernel
The main task of the kernel is to provide computations over the

data stored in the database. Each component of the kernel

architecture defines its own controller with its key functionalities,

so called API endpoints. The kernel also provides authentication,

authorization and API services for web and mobile applications.

To communicate with these applications, the REST API has been

created. It provides data in the JSON format that can be

effectively used by the web application, as well as any other client

software that may be implemented in the future, like a mobile

application. For the communication with the database, the

framework SQLAlchemy is used; it provides an abstract database

layer for object-relational mapping (ORM).

The kernel is implemented in Python (version 3.7) using the Flask

micro framework (this framework is, for instance, used for

handling routing). However, Flask does not provide

functionalities common for other frameworks, such as a database

layer or form validations; for these purposes, other approaches de-

scribed later were used.

3.1.1 System of user roles
User access rights are managed by a system based on user roles.

Roles possess lists of string permission keys (simple character

strings identifying a user action), which signify which actions a

user with such a role can take. By default, all permissions are

denied to a role, and each permission is granted by giving it

permission keys of individual actions.

Each role may have a parent role, from which it inherits all

permissions that the parent role already has. By design, there is

no way to deny an inherited permission – child roles may only

extend their parent roles.

There is also a ”virtual” permission (i.e. it does not belong to any

specific user action) with the #all# key, which grants access to all

restricted endpoints. Itis typically meant for a super user role.

The ERA model in Figure 2 shows that the design and

implementation of such a system of user roles is relatively simple.

Currently, the system is powerful enough to allow complex

management of access rights.

3.1.2 Authentication
Users authenticate themselves using a combination of their e-mail

and password, which is a de-facto standard for basic web

application authentication. When the user provides their valid

credentials, the application server establishes a session, backed by

a JSON Web Token (JWT)

All JWT session data is stored completely client-side. The

application server holds no additional in-formation about a

particular session. The authenticity of a JWT is ensured by a

digital signature (using a secret key stored in the server’s

configuration) of the token – that way the server knows that a

session was indeed issued by it and has not been altered by the

client.

3.2 Database
The system data is stored in two relational databases. The first

database, exercise-wellness, stores local sys-tem data, whereas the

second one, exercise-wellness-test, serves as a data storage for

automated tests.

Because the schema of the database containing the system data

may need to change during the development, and it is undesirable

to wipe the database or adapt it manually for each deployment of

the version in which such a change occurred, database migration

shave been put in place. Migrations are handled by the Alembic

library, which uses a hierarchy of upgrade scripts to serve its

purpose. The database contains in-formation about the last

upgrade that has been applied to it. That way, every time a new

change to the schema is required, the server administrator only

needs to run a single command to apply the required changes.

3.3 Web Application
The client web application (as one of the designed and

implemented user applications) displays values of measured

health parameters as well as results of derived statistics. To make

these data transparent for end users the open-source Recharts

library containing chart components is used.

The web application is written in JavaScript using React, version

16.9.0. For requesting the kernel API endpoints, the axios HTTP

client is used.

Since version 16.8.0, React includes a stable implementation of

React Hooks giving local functional components the ability to use

a state. The web application represents data instances provided by

Figure 2. The part of the ERA model related to user

roles and permissions.

147

the Kernel API as state variables and uses Hooks to schedule

actions after rendering the page. Styling of the web application is

handled with the styled-components library and CSS.

4. BODYINNUMBERS DEPLOYMENT
The BodyInNumbers system runs in two (production and

development) instances. It is deployed using Docker containers in

a Kubernetes cluster.

4.1 Cluster
The BodyInNumbers system is currently split into two containers:

the Flask application and the PostgreSQL database. The system

runs in the Kubernetes cluster that consists of three nodes, each

with the following specification: 15GB HDD, 2GB RAM, 1×CPU.

To ensure that the containers are safely managed by Kubernetes,

several resource types have to be defined.

ConfigMap and Secret These resources describe the database

connection configuration (e.g.name and password). These values

are passed to the PostgreSQL and Flask containers as environment

variables.

Deployment The deployment resource defines the Flask

webserver container. The container image is defined here,

alongside with the number of replicas of the container. Kubernetes

ensures that the correct number of replicas are running (if

sufficient resources are available). Environment variables needed

for the database connection are passed from the ConfigMap and

Secret resources.

Stateful set The stateful set resource is used to define the

PostgreSQL database container. As in the case of the deployment

resource the container image, number of replicas and environment

variables are declared here. Besides deployment, a volume is

defined in this resource to persist data when the container is

destroyed. The relational database is a potential bottleneck to

system scalability. It could be replaced by a NoSQL database in

the future.

Service Containers can be created and destroyed dynamically and

the Service resource is the mechanism to assign a static unique IP

address to them in the cluster network. The definition of a service

is a set of selector rules, which target Pods (containers). Any

incoming traffic to service IP is than forwarded to the random

container defined by the service. The application has two defined

services – Flask and Postgres. The Postgres service is reachable

only from within the cluster. The Flask service is exposed to the

Internet by the external server outside the cluster. This server also

loads balances traffic between Kubernetes nodes.

4.2 Deployment Process
To deploy a new version of the system on the cluster, a new Flask

application image has to be built and pushed to the container

registry. Once the image is pushed, Kubernetes deployment can

be updated to use this new image. Kubernetes deployments have

several updating strategies to keep application availability high

even during updates

The deployment is made using the GitLab. CI/CD configuration is

made using three steps: Build, Test and Deploy. During the first

step, the Docker image is built and pushed to the GitLab

Container Registry. In the second step, tests are run from the

image that has been built. In the future, different kinds of tests can

be started concurrently. If the Build and Test stages are finished

successfully, the manual step Deploy can be started. This updates

Kubernetes deployment to use the new image from the Container

Registry.

5. TESTING
The kernel logic has been tested with a set of unit tests using the

standard unittest framework included in Python 3.

The whole BodyInNumbers health strategy framework has been

tested at two events during which larger heterogeneous data

collections were collected. No issues related to the system security,

scalability or maintainability have been reported.

6. CONCLUSION
The further progress has been made in the BodyInNumbers

system architecture and its implementation. The architecture has

been adapted to be more secure, scalable and maintainable. The

user application and kernel layers have been split, so any changes

in the user parts of the system do not require full access to the

system code. Thus, any change on the user inter-face does not

require additional security reviews.

A new system of user roles has been implemented. It allows more

users (user roles) to have access to the system and ensures that

they will be allowed to access only the parts of the system they

should see.

The authentication process was reviewed and technologically

upgraded as well as easy to perform database migrations were

technically/technologically enabled.

A new deployment has been prototyped using Docker containers,

Kubernetes and GitLab, which offer advanced automation tools.

Thanks to Kubernetes, the application configuration can be

organized and simplified. It allows better availability, scalability

and maintainability. The deployment process itself has been

automated and simplified.

There are still some opportunities to increase scalability in the

future, such as migrating persistent storage to a distributed

database.

7. ACKNOWLEDGMENTS
This publication was supported by the UWB grant SGS-2018-019

Data and Software Engineering for Advanced Applications.

8. REFERENCES
[1] Brůha, P., Mouček, R.,Šnejdar, P., Bohmann, D., Kraft, V.,

and Řehoř, P. 2017. Exercise and wellness health strategy

framework. BIOSTEC 2017, pages 477–483.

[2] Brůha, P., Mouček, R.,Šnejdar, P., Vařeka, L., Kraft, V., and

Řehoř, P. 2018. Advances in building bodyinnumbers

exercise and wellness health strategy framework. BIOSTEC

2018, pages 548–554.

[3] Bustamante, C., Alcayaga, C., Lange, I., and Inigo, M. 2012.

SIGSAC Software: A tool for the Management of Chronic

Disease and Telecare. Nursing informatics 2012: proceedings

of the 11th International Congress on Nursing Informatics,

2012:56.

[4] Brůha, P., Mouček, R., Vacek, V.,Šnejdar, P.,Černá, K., and

Řehoř, P. 2018. Collection of human reaction times and

supporting health related data for analysis of cognitive and

physical performance. Data in Brief, 17.

[5] Silva, A. 2015. Model-driven engineering: A survey

supported by A unified conceptual model. Computer

Languages, Systems & Structures, 20.

[6] Fleurey, F., Breton, E., Baudry, B., Nicolas, A., and Jézéquel,

J.-M. 2007. Model-Driven Engineering for Software

148

Migration in a Large Industrial Context. InMoDELS’07,

volume 4735.

[7] Rensin, D. K. 2015. Kubernetes. page 3.

[8] Gawel, M. and Zielinski, K. 2019. Analysis and evaluation of

kubernetes based nfv management and orchestration. In 2019

IEEE 12th International Conference on Cloud Computing

(CLOUD), pages 511–513.

[9] Muralidharan, S., Song, G., and Ko, H. 2019. Monitoring and

managing iot applications in smart cities using kubernetes.

CLOUD COMPUTING 2019, page 11.

[10] Thurgood, B. and Lennon, R. 2019. Cloud Computing

With Kubernetes Cluster Elastic Scaling. pages 1–7.

149

