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ABSTRACT Prosumer microgrids (PMGs) are considered as active users in smart grids. These units are
able to generate and sell electricity to aggregators or neighbor consumers in the prosumer market. Although
the optimal scheduling and operation of PMGs have received a great deal of attention in recent studies,
the challenges of PMG’s uncertainties such as stochastic behavior of load data and weather conditions (solar
irradiance, ambient temperature, and wind speed) and corresponding solutions have not been thoroughly
investigated. In this paper, a new energy management systems (EMS) based on weather and load forecasting
is proposed for PMG’s optimal scheduling and operation. Developing a novel hybrid machine learning-based
method using adaptive neuro-fuzzy inference system (ANFIS), multilayer perceptron (MLP) artificial neural
network (ANN), and radial basis function (RBF) ANN to precisely predict the load and weather data is one
of the most important contributions of this article. The performance of the forecasting process is improved
by using a hybrid machine learning-based forecasting method instead of conventional ones. The demand
response (DR) program based on the forecasted data and considering the degradation cost of the battery
storage system (BSS) are other contributions. The comparison of obtained test results with those of other
existing approaches illustrates that more appropriate PMG’s operation cost is achievable by applying the
proposed DR-based EMS using a new hybrid machine learning forecasting method.

INDEX TERMS Prosumer microgrid (PMG), demand response-based energy management system, optimal
scheduling and operation, hybrid machine learning-based forecasting method, load forecasting, weather
forecasting.

NOMENUCLATURE
PARAMETERS
SOC0 initial battery storage system’s state of

charge (kWh)
SOC24 final battery storage system’s state of

charge (kWh)
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SOCmax upper bound of battery storage system’s
state of charge (kWh)

SOCmin lower band of battery storage system’s
state of charge (kWh)

Pmin
charge lower bound of battery storage system’s

charging rate (kW)
Pmax
charge upper bound of battery storage system’s

charging rate (kW)
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Pmin
discharge lower bound of battery storage system’s

discharging rate (kW)
Pmin
discharge upper bound of battery storage system’s

discharging rate (kW)
ηcharge efficiency of battery storage system’s

charging (%)
ηdischarge efficiency of battery storage system’s

discharging (%)
NPV number of photovoltaic modules
APV area of the solar panels (m2)
Crep replacement cost of battery storage system

(US$)
Pbl battery storage system’s lifetime (yr)
ηrt square root of both ways of battery storage

system’s efficiency (%)
Cbd battery storage system’s degradation cost

coefficient (1/kWh)
γ processing cost consists of CO2, NOX , and

SO2 costs (US$/kWh)
λe equivalent emission coefficient for electricity
e demand-price elasticity coefficient
ηPV−rated reference photovoltaic module’s efficiency

at 25◦C (%)
NOCT normal cell operation temperature (◦C)
Tref reference temperature (◦C)
α temperature coefficient for cell

efficiency (1/◦C)
Vci cut-in speed (m/s)
Vr rated speed (m/s)
Vco cut-out speed (m/s)
Psmax upper bound of exchanged power with

the grid (kW)
Psmin lower bound of exchanged power with

the grid (kW)
x, y input values
f output value
N number of samples
Xp the p-th component of the forecasted output
Yp the p-th component of the target output
Xave,Yave average of whole forecasted and desired

outputs
Oij cells outputs
µAi , µBi membership functions
Ai,Bi linguistic variable associated with node

functions
ai, bi, ci premise parameters
pi, qi, ri adaptive neuro-fuzzy inference system’s

design parameters, which could be
determined in the training phase

ωi firing strength

VARIABLES
ηPVt efficiency of photovoltaic module (%)
Gt solar irradiance (kWh/m2)
Tt ambient temperature (◦C)

Vt wind speed (m/s)
PLt prosumer load profile (kW)
Drealt actual daily pattern
Dforecastedt forecasted daily pattern
DBestt the best predicted daily pattern
Kt electricity price (US$/kWh)
KTOU
t hourly time of use electricity price

(US$/kWh)
KRTP
t real-time electricity price (US$/kWh)

KRTP,min
t lower bound of electricity in the real-time

pricing (US$/kWh)
KRTP,max
t upper bound of electricity in the real-time

pricing (US$/kWh)
PDR load demand after implementing the demand

response program (kW)
Pcharget charging power of battery storage

system (kW)
Pdischarget discharging power of battery storage

system (kW)
Pst exchanged power from/to the grid (kW)
Pimt imported power from the grid (kW)
PPVt photovoltaic unit’s output power (kW)
PWTt wind turbine unit’s output power (kW)
Pcontractt contracted power with consumers (kW)
Tload total load demand (kW)
Pave average load demand (kW)
SOCt battery storage system’s state of

charge (kWh)
SOCmin

n minimum battery storage system’s state of
charge at the end time interval (kWh)

SOCmax
n maximum battery storage system’s state of

charge at the end time interval (kWh)
CGEX exchanged power cost (US$)
CDEG battery storage system’s degradation

cost (US$)
CGEM grid emission cost (US$)
U charge
t binary variable of battery storage system’s

charging
Udischarge
t binary variable of battery storage system’s

discharging

INDICES AND UPPERCASES
t index of time
n index of day
i index of node {1, 2}
j index of layers {1,. . . ,5}
p index of load pattern
- uppercase of normalization
∼ uppercase of prediction

ABBREVIATIONS
ANN artificial neural network
ANFIS adaptive neuro-fuzzy inference system
AT ambient temperature

VOLUME 8, 2020 157285



J. Faraji et al.: Optimal Day-Ahead Self-Scheduling and Operation of Prosumer Microgrids

BP back propagation
BSS battery storage system
DER distributed energy resource
DG distributed generation
DOD depth of charge
DR demand response
EMS energy management system
ESS energy storage system
FCM fuzzy c-means
FIS fuzzy inference system
GP grid-partitioning
LD load demand
MILP mixed-integer linear programming
MLP multilayer perceptron
MSE mean squared error
OF objective function
PMG prosumer microgrid
PV photovoltaic
R linear regression
RBF radial basis function
RES renewable energy source
RMSE root mean squared error
RTP real-time pricing
SC subtractive clustering
SI solar irradiance
OC operation cost
STD standard deviation
SOC state of charge
TOU time of use
WS wind speed
WT wind turbine

I. INTRODUCTION
Sustainable development and environmental issues are
crucial objectives of the energy sector. Re-structure of the
electrical power market, diffusion of the renewable energy
technologies, promotion of distributed generation (DG), and
transmission integration are some leading tools for the energy
sector to sustainable development as its ultimate goal. The
deployment of DG units has received a great deal of attention.
For instance, renewable energy sources (RESs) accounted for
26.5% of the global electrical power demand in 2017, and it
is predicted to increase in next years [1].

As a result of fast population growth and excessive electri-
cal power consumption, energy security, as well as electric
power supply, have become crucial issues that need to be
appropriately addressed. The expanding centralized power
plants and renewable energy supply could be considered as
a solution. However, there are several barriers for generation
expansion planning based on conventional centralized fossil
fuel power plants due to various environmental and economic
problems. The resistance and opposition from the citizenry
as well as environmental activists/organizations have led to
significant delays or cancellations in construction of new
large-scale fossil fuel power plants by government authori-
ties. Moreover, a prerequisite for such power plants would

be the new transmission systems, which their investment and
operation costs are quite costly and expensive [1], [2].

Therefore, for addressing the problems associated
with conventional centralized power generation systems,
the increasing deployment of renewable DG units could
be emerging as a realistic option to supply clean energy.
The DG units could provide the electricity near or at the
place of energy consumers. Hence, the transmission distance
in DG-based energy systems would be less than central-
ized power generation systems. Accordingly, transmission
losses could be minimized, while a reliable energy supply
is guaranteed. [3]. In addition, toward the establishment of
a sustainable energy sector, RESs such as photovoltaic (PV)
and wind turbine (WT) units are often utilized as distributed
energy resources (DERs). To facilitate the development of
DG units, a novel concept called prosumer microgrid (PMG)
(a consumer who produces and consumes the energy simul-
taneously) has been introduced [4]. The emergence of PMG
concept has created an energy management change in the
energy sector.More specifically, it has intensified consumers’
flexibility and energy provider’s diversity requirements [5].
In cases that the electricity produced by PMGs is higher than
electricity consumption, a substantial amount of additional
electrical energy could be produced. The energy system’s
designers would be assured of consistent electricity gener-
ation and consumption levels at all times through using the
energy storage system (ESS).

Toward improving operational efficiency, PMGs need a
local energy management system (EMS) to manage ESSs,
e.g. battery storage system (BSS), and maximize profits [3].
The EMS operational procedures have the objective of
minimizing electricity imports at peak hours, also provid-
ing electricity to consumers under contract. Also, the opti-
mal scheduling of BSS charging and discharging power
is needed, particularly for residential PMG under contract
to supply the designated level of power during contracted
periods. Moreover, the renewable-based energy, as well as
cheap energy from the grid at off-peak periods, should be
reserved [6].

Many recent studies have focused on the optimal schedul-
ing and operation of PMGs. The optimal operation of PMGs
might be adversely affected due to the uncertainties of load
consumptions and renewable DG units’ output power due
to weather conditions. Hence, predicting weather parameters
and load demand to improve the PMGs’ optimal operation
has been interested in recent research works [7], [8]. It is
possible to utilize historical values to forecast future load
values by executing an autoregressive or machine learn-
ing model. For instance, El-Hendawi et al. [9] developed a
Wavelet Neural Network (WNN) for day-ahead load demand
prediction to minimize the PMGs’ operation cost. In [10],
the Artificial Neural Networks (ANNs) were used to forecast
the PV unit generation for the PMGs’ day-ahead operation.
Sujil et al. [11] presented an adaptive neuro-fuzzy inference
system (ANFIS)-based PV and WT generation forecasting
model for the PMGs’ EMS.
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Liu et al. [12] reported optimal day-ahead scheduling for
the RES-based PMG, which considered intermittence and
fluctuations of RESs as system uncertainties, while no analy-
sis was performed on load demand’s uncertainties. Although
reference [13] utilized multilayer perceptron (MLP) ANN to
predict day-ahead weather conditions for optimal scheduling
of PMGs, the load uncertainties have been neglected. On the
other hand, several studies like [14] exist, which developed
load forecasting methods to concern load demand uncertain-
ties and did not consider the uncertainties of RES-based DG
units due to weather conditions. There are a few studies in
the literature such as [15], which considered both weather
and load uncertainties for optimal operation of PMGs. Hence,
there is a research gap about developing the optimal operation
of PMGs based on comprehensive forecasting of load and
weather data, which concerns the uncertainties of both supply
and demand sides.

Moreover, some energy management schemes such as
demand response (DR) programs could be useful for PMGs
to consume the electricity more efficiently, while peak shav-
ing and peak load shifting would be achievable [16]. For
large electricity consumers, a stochastic energy procurement
problem was presented in [17] by taking into account the
effects of DR programs on the system’s operation cost.
Nojavan and Aalami [17] showed that the expected system’s
operation cost could be decreased byDR programs because of
the energy consumptions shifts from high price periods to low
price ones. In [18], a detailed DR framework was established,
and a new concept called electricity shifting potential was
unveiled with the objective of identifying and quantifying
DG potential toward participation in real-time DR programs.
Ma et al. [19] analyzed the DR-based optimal energy dispatch
strategies for multiple energy systems, while the uncertainties
of renewable-based DG units’ output power have not been
concerned in [19]. In [20], a DR program has been introduced
for the day-ahead operation of RES-based system considering
environmental perspectives. Cao et al. [20] neglected the load
demand uncertainties, and solutions such as load forecasting
to minimize the impacts of load uncertainties have not been
reported. Mazidi et al. [21] developed incentive DR-based
PMG’s optimal scheduling, which studied the uncertainties
of load and weather data. However, no solution, e.g. fore-
casting method, was not provided in [21] to overcome the
system uncertainties and their negative impacts on the PMG’s
operation. This literature review shows that a great deal of
attention has been received on DR-based EMS of energy sys-
tems and PMGs. However, substantial work is still required
on the simultaneous concerning system uncertainties and DR
programs, which have not been acknowledged.

In this research work, a new method for PMG’s DR-based
optimal operation is proposed, which is developed based on a
novel hybrid machine learning-based method using adaptive
neuro-fuzzy inference system (ANFIS), multilayer percep-
tron (MLP) artificial neural network (ANN), and radial basis
function (RBF) ANN. The proposed optimization method
considers the precise forecasted load and weather data.

Test results illustrate the accuracy of the proposed hybrid
forecasting method in comparison to other existing algo-
rithms. Also, simulation results infer that the proposed
DR-based optimal scheduling of PMGs based on load and
weather data’s forecasting is useful to overcome the uncer-
tainties problems. Moreover, considering the BSS degrada-
tion and grid emission costs are other advantages of the
proposed method.

The novelties and contributions to state of the art have been
developed based on the literature review and existing research
gaps in the field of optimal operation of PMGs. The essential
contributions of this article could be listed as follows:
• Proposing a novel optimal operation of PMGs using
simultaneous forecasting of demand and supply side’s
parameters;
Although several papers in the literature, such as
[9]–[11], [22]–[25], have reported different forecasting
methods to predict load and weather parameters sepa-
rately to optimize the operation of PMGs, a few stud-
ies could be found that simultaneously considered all
stochastic behaviors of essential uncertain parameters
such as load demand, solar irradiance, ambient tem-
perature, and wind speed. This paper tries to fill such
a research gap by simultaneous forecasting all men-
tioned parameters for having an accurate operation and
scheduling of PMGs, which consider uncertainties of
both demand and supply sides. Hence, different machine
learning algorithms are used to forecast the essential
parameters of PMGs, and the precise forecasted data is
used to optimize the PMGs’ operation.
As discussed, the simultaneous forecasting of weather
and load data is one of the main contributions of this
paper, which fills the existing knowledge gap in the
literature.

• Introducing a new hybrid machine learning-based
method using adaptive neuro-fuzzy inference system
(ANFIS), multilayer perceptron (MLP) artificial neural
network (ANN), and radial basis function (RBF) ANN
for forecasting the essential stochastic parameters of
PMGs;
Most of the existing research works like [24] have intro-
duced different methods to forecast only one parameter,
e.g. load demand and solar irradiance, using different
forecasting algorithms. In some references like [13], dif-
ferent stochastic parameters have been forecasted using
a single forecasting algorithm. The forecasting of differ-
ent PMGs’ parameters using a new hybrid method based
on various features of different machine learning algo-
rithms has not received a great deal of attention. In this
paper, a new hybrid machine learning-based method is
developed to precisely forecast the PMGs’ parameters.
Also, a selection criterion is introduced, which evaluates
the accuracy and performance of different algorithms
and selects the best pattern of PMGs’ forecasted data.
Therefore, the accuracy of the forecasted data and the
optimality of the suggested scheduling and operation
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could be guaranteed using the proposed hybrid machine
learing-based method.

• Developing a DR program based on the best-selected
load pattern using the proposed new hybrid machine
learning-based method;
The third and important novelty of this paper is devel-
oping a DR program based on the best-selected load
pattern. The proposed model for DR program requires
the precise load demand data. Similar studies are avail-
able in the literature, which implemented DR program
to smooth the load consumption by the user [19], [20].
However, they considered a ‘‘pre-defined’’ load
pattern without any particular load forecasting method-
ology. This would deviate optimization results in
realistic applications. Therefore, the implemented DR
program using the forecasted load demand data, which
has been obtained by the proposed selection criterion is
the third contribution of the paper.

• Consideration of the BSS degradation in optimal
operation of PMG.
The fourth novelty of this paper is developed based
on future works introduced in [13]. The third term of
the proposed objective function of this paper includes
a model for the degradation of the BSS. This model
is defined based on minimizing the gap between the
highest and lowest SOC of BSS in each operational day.

The remainder of this paper is organized in the following
manner: Section 2 represents an overview of the understudy
system. Section 3 presents the mathematical formulation of
the proposed forecasting approach and optimization prob-
lem. The forecasting and optimization results are shown in
Section 4, and the final section draws the conclusions.

II. SYSTEM OVERVIEW
A. SYSTEM ARCHITECTURE
Fig. 1a shows the conceptual structure of the understudy
energy system, including the prosumer interactions and EMS.
Fig. 1b also illustrates the single line diagram of the test
system. In Fig. 1b, the data lines have been shown in addition
to power lines.

The forecasting module in the proposed PMG’s EMS
performs the day-ahead load forecasting based on a hybrid
machine learning-based forecasting method using ANFIS
model, MLP-ANN, and RBF-ANN. On the other side, the
utility grid transfers predicted weather parameters (solar
irradiance, ambient temperature, and wind speed) to the
EMS through an interface link. Similar to load demand,
weather parameters are also forecasted with the same hybrid
machine learning-based method. After monitoring the overall
predicted data (solar irradiance, ambient temperature, wind
speed, and load demand), the best-selected daily pattern for
each parameter is used for solving the optimization problem
of PMG’s operation cost. Afterwards, optimization and fore-
casting results, as well as input data of PMG, are stored in the
data storage for further analysis.

FIGURE 1. Architecture of the understudy energy system based on PMG
concepts: (a) conceptual structure; (b) Single line diagram of the test
system with data lines.

B. LOAD AND WEATHER FORECASTING
Forecasting PMG’s load demand profile is an important task
of each EMS, especially when the consumption patterns
becomemore complex and dynamic.Moreover, depending on
priorities and operational objectives of each PMG, perform-
ing accurate weather predictions would be necessary [26].
In this regard, one of the significant origins of uncertainties
in the optimization process is weather forecasting inaccu-
racies, which are also responsible for deviations in optimal
scheduling of PMGs. Different time-scales such as day-ahead
and hour-ahead are used for load and weather forecasting.
The forecasted values are applied in the PMG operation pro-
cess through EMS. Several challenges are attributed to load
demand andweather parameters prediction due to operational
properties of PMGs, namely Spatio-temporal uncertainties
in load demand and inherent variability and intermittency
in RESs. However, this paper considers load demand and
weather parameters forecasting for day-ahead scheduling of
PMG using a hybrid machine learning-based method.

C. OPTIMIZATION PROBLEM
The PMG’s aim is to minimize its day-ahead operation cost.
Therefore, the considered EMS should adopt control deci-
sions to adjust electricity exchange with the utility grid and
storage systems. Hence, for particular applications such as
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DR and energy management programs, various optimiza-
tion decisions are adopted, which could be formulated as a
mixed-integer linear programming (MILP) problem.

D. DATA MONITORING AND DATA STORAGE SYSTEMS
A large amount of data, including electricity price, electrical
loads, and RESs generation, are collected by the EMS [6].
To get more insights and a better understanding of the
energy system’s activities, it is necessary to analyze the col-
lected data properly. An exact assessment of collected data
would lead to an improvement in prediction performance and
optimization models.

E. DERs
According to the proposed EMS structure, DERs including
RESs and BSS are having a significant role in power bal-
ancing of the PMG. The resources, e.g. PV and WT units,
could generate the electricity and the BSS could store the
energy to enhance the system’s economy features. The RESs
and BSS are connecting to EMS through an interface link for
day-ahead optimization of the PMG.

F. PMG AND CONSUMERS CONTRACTED LOAD
In the proposed method, the optimization problem is solved
from the viewpoint of PMG. Hence, PMG attempts to maxi-
mize its profits in the energy market. The EMS of the PMG
tries to store electricity in BSS during low-price periods
with surplus electricity from RESs, and utilizes the stored
electricity during peak hours. In most cases, peak electricity
prices are coinciding with peak load consumptions, espe-
cially in residential sectors. Therefore, PMG also performs
peak-shaving simultaneously. On the other side, the PMG is
usually contracted to supply a specific amount of power to the
neighbor consumers in the PMGmarket during the contracted
hours of the operational day. In this way, an energy business
model is established based on the contribution of the PMG
and consumers, which is the primary motivation of the under-
study prosumer market. The PMG benefits from the contract
with the consumers. On the other hand, consumers are also
enjoying low-rate electricity compared to the main grid.

III. MATHEMATICAL MODELING
In the following subsections, methodologies for weather
and load forecasting as well as proposed energy scheduling
for the day-ahead operation of the PMG are presented.
Generally, the proposed optimization method considers inter-
mittency and uncertainty of RESs and load demand in optimal
day-ahead operation.

A. FORECASTING WEATHER AND LOAD DATA USING
MACHINE LEARNING ALGORITHMS
The advantages of machine learning algorithms have been
utilized for forecasting short-term load or weather data,
separately [22], [23]. The time-series forecasting methods
for prediction of load demand and weather conditions have
received a great deal of attention [13], [14], [24], [25].

However, most of them merely focused on one or two param-
eters (e.g. wind speed, solar irradiation, etc.) for performing
short-term forecasting. In PMG context, very few studies are
available that performed short-term forecasting on different
uncertain variables such as weather parameters and load
demand, which indeed have severe impacts on the operation
cost of the PMG [15].

As mentioned above, time-series forecasting is interested
in recent studies. Generally, time-series is a set of samples,
which have been arranged in uniform time intervals [13].
In time-series forecasting approaches, a model is utilized to
forecast future samples based on historical data [27].

In this study, three of the most potent and well-known
machine learning algorithms, i.e. ANFIS model, MLP-ANN,
and RBF-ANN are used for predicting time-series values
of load demand and weather parameters. The main reasons
for choosing these particular machine learning algorithms
are mature technology and simplicity of implementation
compared to hybrid algorithms, which could be sophisti-
cated for other researchers who want to pursue the proposed
approach. Forecasting results of the utilized machine learn-
ing algorithms are compared to analyze the performance of
each method. This approach has been used in many recent
studies where specific parameters are forecasted, and results
are discussed accordingly [24], [25]. However, in day-ahead
scheduling and operation of PMGs, monitoring daily pre-
dicted load and weather data should be considered as one of
the important tasks of the PMGEMS. The EMS is responsible
for the optimal operation of the PMG. This paper proposes a
comparative approach for the EMS of the PMG to precisely
select the best-predicted pattern by different machine learn-
ing algorithms for each parameter (solar irradiance, ambient
temperature, wind speed, and load demand). The selected
best-pattern is 24-h (daily) values of forecasted load demand
and weather parameters. To obtain the best pattern, each
of the predicted patterns by machine learning algorithms
is compared with the corresponding actual patterns by (1).
The patterns with the least mean squared error (MSE) are
selected for day-ahead PMG optimization. Fig. 2 show the
overall steps of the proposed approach and pattern selection
structure.

DBestt = Min
{
MSE

(
Dforecastedt ,Drealt

)}
,

∀D = {G,T ,V ,PL} (1)

In the proposed method, the ANFISI model is used for the
proposed forecasting method, and the corresponding mathe-
matical modellings are presented in this section.

Fig. 3a shows the structure of the ANFIS model, which
has two inputs and one output. As expressed in (2-3), there
are two base rules as Takagi-Sugeno in the form of if/then
rules [24].

If
{
x = A1
y = B1

⇒ f = p1x + q1 + r1 (2)

If
{
x = A2
y = B2

⇒ f = p2x + q2 + r2 (3)
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FIGURE 2. The proposed hybrid machine learning-based method for selecting the best-forecasted pattern: (a) Overall steps for obtaining the
best-forecasted pattern; (b) Structure of the proposed approach.

A typical ANFIS structure has five layers, which their
summary could be given as follows [24]:

Layer 1: In this layer, the obtained signal of any node is for-
warded to the other layer. This layer is called the fuzzification
layer. The cells outputs are shown in (4):

O1
i = µAi(x) i = 1, 2 (4)

In the implemented ANFIS model, µA is selected accord-
ing to (5):

µAi (x) = exp

[
−

(
x − ci
2ai

)2
]

(5)

Layer 2: This layer is obtained by the degrees of mem-
bership, which the output of any node indicates the firing
strength of each rule. This layer is called the rule layer, and

the calculation is done based on (6).

ωi = µAi(x)× µBi(x) i = 1, 2 (6)

Layer 3: Each node in this layer would be a fixed N
labeled node. The i-th node calculates the ratio of rule’s
firing strength concerning the summation of all rules’ firing
strength as (7). This layer is called the normalization layer.

ω̄i =
ω

ω1 + ω
′

2
i = 1, 2 (7)

Layer 4: The outputs of different defined rules are deter-
mined according to the previous layer value as (8). This layer
is called defuzzification layer.

O4
i = ω̄ifi = ω̄i (pi + qiy+ ri) (8)

Layer 5: In this layer, the ANFIS model output would
be obtained as (9) based on output values different rules.
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FIGURE 3. (a) A typical ANFIS model for time-series forecasting; ANFIS
model characteristics: (b) Generated rules for different types of ANFIS
model; (c) three typical gaussian membership functions (MFs).

This layer is called the sum layer.

O5
i =

∑
i

ω̄ifi =

∑
i ωifi
ωi

(9)

In the proposed method, the following ANFISmodels have
been used to forecast time-series data [24]:
• The first considered ANFIS model is a fuzzy c-means
clustering (ANFIS-FCM), which generates a fuzzy
inference system (FIS) structure.

• The second type of ANFIS model is subtractive cluster-
ing (ANFIS-SC), creating a Sugeno-type FIS structure.

• The third type of used ANFIS model creates a FIS
structure based on grid-partition (ANFIS-GP) data.

All the generated rules under different types of ANFIS
model are demonstrated in Fig. 3b. The ANFIS-GS is

implemented based on the Sugeno-type FIS structure [28].
As can be seen, three rules are generated for ANFIS-GP,
which lead to accurate results. Three Gaussian membership
functions (MFs) [29] are generated for inputs and outputs
based on the designated rules, as shown in Fig. 3c. Gaussian
membership functions are suitable for the available dataset in
this study. It is possible to select constant or linear type for the
output MFs. Hence, the output MF type is selected as a linear
MF in this study. Since a single time-series dataset would
be considered for forecasting, only one input (input1) could
be defined in the rules. Based on the MFs, if the input data
belongs to input MF1, MF2, and MF3, it could be concluded
that the output data belongs to output MF1, MF2, and MF3,
respectively.

For ANFIS-SC, as the second type of ANFIS model in
this paper, two rules are considered. Therefore, Mamdani
FIS structure [30] is generated for the ANFIS model, which
contains one rule for each cluster. As can be seen, if the
input data (in1) belongs to the first cluster (in1cluster1) and
the second cluster (in1cluster2), then the output data belongs
to output cluster 1 (output1cluster1) and output cluster 2
(output1cluster2), respectively.

After generating input and output data in ANFIS-FCM
type, Mamdani FIS structure is specified. Three clusters are
considered, and three rules are generated based on the clus-
ters, as shown in Fig. 3b. As demonstrated, generated FIS
contains one rule for each cluster. Hence, if the input data
(in1) belongs to the first cluster (in1cluster1), the second
one (in1cluster2), and third cluster (in1cluster3), then the
output data belongs to output cluster 1 (output1cluster1),
cluster 2 (output1cluster2), and cluster 3 (output1cluster3),
respectively.

In this paper, four statistical criteria have been used to
examine the forecasting performance of the machine learning
algorithms. The utilized statical criteria are linear regres-
sion (R), standard deviation (St.D.), mean squared error
(MSE), and root mean squared error (RMSE). The formula-
tions of the considered statical criteria are shown in (10-13).
These criteria are most commonly used to report the accuracy
of forecasting in the literature [31]–[33]. However, the pro-
posed approach uses MSE to determine the best-forecasted
pattern.

R =

√√√√√√√√√
N∑
p=1

(Yp − Xp)2

N∑
p=1

(Xp − Yave)2
(10)

MSE =
1
N

N∑
p=1

(
Yp − Xp

)2 (11)

RMSE =

√√√√√ 1
N

N∑
p=1

(
Yp − Xp

)2 (12)
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STD =

√√√√√ N∑
p=0

(
Xp − Xave

)2
N − 1

(13)

In addition, MLP-ANN and RBF-ANN have been used in
this paper. However, they are not expressed in details, and
corresponding theories and mathematical expressions could
be found in other references like [34], [35].

B. PROBLEM DEFINITION
The proposed day-ahead optimization problem considering
the DR program is described in this subsection.

1) PV UNIT
The PV unit converts solar energy to electrical energy via the
photoelectric effect. The output power of the PV cell is strictly
related to weather conditions such as ambient temperature
and solar irradiance. The output power of the PV unit could
be calculated as (14) based on the forecasted solar irradiance
and ambient temperature [36]:

P̃PVt = Apv × G̃t × Npv × η̃PVt (14)

where ηPVt is calculated using (15):

η̃PVt = ηpvrated

[
1− α

(
T̃t + G̃t ×

NOCT − 20
800

− Tref

)]
(15)

2) WT UNIT
WT blades are able to transform the captured energy from the
wind into electricity. The generated energy by WT unit could
be used in a direct way. The output power of aWT unit gener-
ally depends on two important factors: output characteristics
of WT and the local wind speed. TheWT output power could
be determined based on the forecasted wind speed, as shown
in (16) [36]:

P̃WTt =


0 Vco < Ṽwind

t < Vr

Pnom

(
Ṽwind
t − Vci
Vr − Vci

)3

Vci < Ṽwind
t < Vr

Pnom Vr < Ṽwind
t < Vco

(16)

3) BSS
In this study, the BSS is used for storing surplus electricity
from RESs as well as low-price purchased electrical energy
from the utility grid during off-peak times. The stored elec-
tricity is injected into the system when the electricity price
is at its highest rate (peak-hours). Therefore, the BSS plays
a crucial role in power balancing and the PMG’s operation
stability.

The BSS state of charge (SOC) indicates the ratio of the
remaining electricity to the nominal capacity of the BSS.
As described in (17), the BSS SOC at t + 1t is specified
by the SOC at the t-th time interval and the BSS charging/
discharging power at the t-th time interval [37].

The upper and lower limits of the BSS SOC could be math-
ematically expressed in (18-19). According to (20), the initial
and final BSS SOC’s values must be the same in the BSS’s
day-ahead scheduling. Due to the significant investment of
BSS, it is essential to prevent charge and discharge of BSSs
fully because it would degrade the BSS lifetime. Therefore,
(21-24) are considered for prohibiting the BSS to be fully
charged and discharged. Since it is not possible to charge and
discharge the BSS at the same operational time interval, it is
necessary to apply (25), which shows the binary value for
charging and discharging of BSS.

SOCt = SOCt−1 + ηcharge × P
charge
t −

Pdischarget

ηdischarge
(17)

SOCt ≤ SOCmax (18)

SOCt ≥ SOCmin (19)

SOC0 = SOC24 (20)

Pcharget ≥ Pchargemin (21)

Pcharget ≤ Pchargemax (22)

Pdischarget ≥ Pdischargemin (23)

Pdischarget ≤ Pdischargemax (24)

U charge
t + Udischarge

t ≤ 1 (25)

4) BSS DEGRADATION MODELING
The BSS’s lifetime is directly influenced by its depth of
discharge (DOD). In this regard, PMGs might face major
charging/discharging of BSS, since they are obligated to
provide specific power to fulfill the energy contracts. This
process, in the long term, may lead to BSS degradation. It is
possible to consider the BSS degradation based on the cost of
BSS DOD at the end of the operational day [38], [39].

According to [13], [39], degradation cost of BSS can be
achieved by multiplying the minimum level of SOC at the
last time interval of the understudy day by degradation cost
coefficients. However, it was recommended to consider a
comprehensive model for the depreciation cost of BSS by
optimizing the gap between the maximum and minimum
BSS’ SOC values in the PMG’s daily operation. Hence, two
distinct decision variables need to be considered, including
the highest and lowest values of BSS SOC in the operational
day. The gap between the expressed formula (26-27) could be
minimized.

SOCt − SOCminn ≥ 0, ∀t,

∀t ∈ n = {[(n−1)×24+1] , . . . , [(n−1)×24+23]} (26)

SOCt − SOCmax
n ≥ 0, ∀t,

∀t ∈ n = {[(n−1)×24+1] , . . . , [(n−1)×24+23]} (27)

C. DR MODELING BASED ON FORECASTED LOAD
DEMAND DATA
The DR program is able to enhance the demand side’s flexi-
bility through decreasing peak load consumptions or tempo-
rary peak shifting as a response to the signals of the market
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price. The DR program is also applicable using incentive
mechanisms as lead to avoidance of capacity investment and
costly electricity procurement [40]. One of the most sig-
nificant components for prosperous DR implementations is
real-time pricing mechanism. In this study, according to the
forecasted load data of PMG, a real-time pricing model is
proposed. This pricing model will be used to implement the
DR program. Derivations could be found in [19], [20].

The total load demand of PMG based on the forecasted
load demand data would be determined as (28).

Tload =
24∑
t=1

(
P̃Lt

)
(28)

The average load demand should be calculated using (29).

Pave =
Tload
24

(29)

Also, real-time pricing (RTP) could be defined according
to (30-31).

KRTP
t =

(
Tload
Pave

)
× KTOU

t (30)

KRTP,min
t ≤ KRTP

t ≤ KRTP,max
t (31)

where,
(
Tload
Pave

)
,KRTP,min

t , andKRTP,max
t are float factor, lower

bound, and upper bound of RTP, respectively.
In the proposed method, the price-based DR program has

been considered to assess the impacts of DR on the PMG’s
optimal scheduling, as (32).

PDR = P̃Lt + e× P̃Lt ×
(KRTP

t − KTOU
t )

KTOU
t

(32)

D. PROPOSED OPTIMIZATION PROBLEM
The main purpose of the proposed method is to optimize
the operation and scheduling of the PMG, which results
in the minimized operation cost. Hence, it is necessary to
explain the proposed optimization problem, including the OF,
constraints, and details about how the proposed optimization
problem is solved. The proposed OF consists of three cost
terms:
• Power exchange cost;
• Emission cost; and
• BSS’s loss of life (degradation) cost.
The mathematical expression of the proposed OF has been

shown in (33).

OF = Min (CGEX + CGEM − CDEG) (33)

The proposed optimization problem is solved subject to
technical constraints, e.g. power balance condition and lower
and upper bounds of sub-systems. In this paper, the intro-
duced MILP problem is solved using CPLEX solver in
GAMS. Moreover, because of short-term load and weather
forecasting in MATLAB, the forecasted data would be linked
to GAMS by GDXMRW interface [41].

E. PROPOSED OF’S TERMS
1) POWER EXCHANGE COST
The cost of purchased electricity should be optimized in this
term. The same prices are considered for exported electricity
from PMG to the main grid. According to (34), Pst shows
real values of imported/injected electricity from/to the main
grid. The positive and negative values refer to purchasing and
selling electricity, respectively.

CGEX =
24∑
t=1

(
Pst × Kt

)
(34)

2) EMISSION COST
Different countries in the Paris Agreement have committed
to pursue their plans to reduce carbon emissions. Further-
more, it has been recommended to divert the finance flow
in the direction of robust development which could be an
encouragement to reduce carbon emissions. In this study,
the equivalent emission costs for purchasing electricity from
the main grid could be considered as the emission cost term
using (35-36) [19]. In this way, γ is processing cost per kW
and is composed of CO2, NOX, and SO2. Also, λe and Pimt
denote the equivalent emission coefficient for electricity and
the purchased electricity from the main grid.

CGEM = γ ×
24∑
t=1

(
λe × Pimt

)
(35)

γ = [CO2 + NOX + SO2] (36)

3) BSS DAILY DOD DEGRADATION COST
The gap optimization is added to the OF in the proposed
method, as shown in (37).Whenever the BSS total throughput
would be equal to its throughput lifetime, it should be substi-
tuted with a new one. According to (38), the BSS degradation
cost per kWh could be determined. This cost should be con-
cerned whenever the battery is discharged.

CDEG =
∑
n

(
SOCmax

n − SOCmin
n

)
× Cbd ∀n (37)

Cbd =
Crep

Pbl × ηrt
(38)

F. POWER BALANCE CONDITION
The power balance condition between supplied and
demanded energy could be shown as (39). According to
(40-41), the PMG is restricted to upper and lower bands in
importing/exporting of electricity.

Pst+P̃
PV
t +P̃

WT
t +P

discharge
t = Pcharget +Pcontractt +P̃Lt (39)

Psmin ≤ Pst (40)

Pst ≤ Psmax (41)

IV. TEST RESULTS AND DISCUSSION
A. FORECASTING RESULTS
The solar irradiance, ambient temperature, wind speed, fore-
casting are implemented based on previous year historical
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FIGURE 4. Hourly historical data: (a) Solar irradiance; (b) Ambient
temperature; (c) Wind speed; (d) Load demand.

data of Kerman province, which is located in Iran [13].
Also, the historical load data has been gathered from [14].
Fig. 4 indicates hourly historical data from 2007/1/1 to
2007/31/12. More deviations could be seen in wind speed
compared to others, which makes it hard for the machine
learning algorithms to predict the trend accurately.

As early mentioned, three types of ANFIS model, as well
as MLP-ANN and RBF-ANN, have been used for forecasting
time-series data. The measurement at the time (t-24) was
used to forecast the weather parameters and load data at
the time (t+24) [14]. For each machine learning algorithm,

TABLE 1. Initialization parameters of MLP-ANN.

TABLE 2. Initialization parameters of RBF-ANN.

i

70 % of all data is used for training, and the other 30 % is
used for testing [24]. More details of initialization parameters
ofMLP-ANN and RBF-ANN are presented in Tables 1 and 2,
respectively. Table 3 also shows the considered specifications
of each ANFIS model type.

Forecasting results have been indicated in Fig. 5 and
Tables 4-9. As can be seen, all the considered machine learn-
ing algorithms have satisfying results in forecasting solar
irradiance, ambient temperature, and load demand data. How-
ever, none of the implemented algorithms could predict wind
speed accurately. This is due to high hourly variability of
wind speed which does not follow a specific pattern [13].

Table 9 shows the execution time of the forecasting of
weather and load parameters using different machine learn-
ing algorithms. All the predictions have been performed in
MATLAB 2018b environment. As can be seen, ANN-MLP
has the fastest performance in comparison to other available
algorithms. On the other hand, ANF-RBF has the lowest
execution time among the other algorithms.

Moreover, the appropriate level of model complexity is
one of the most crucial challenges in the field of forecast-
ing by ANNs [42]. In Table 10, the complexity analyses of
different algorithms for load forecasting are presented. The
complexity analysis results infer that more complex models
could not significantly improve the performance of the fore-
casting algorithms. The complexity analysis also illustrates
that the appropriate models of forecasting algorithms have
been selected.

Forecasted and actual weather parameters and load
demand data for a typical operational day in December are
shown in Fig. 6. The best-forecasted patterns are presented
in Table 11, which have been obtained based on the pro-
posed method in (1). As can be seen, the Fuzzy-GP could
predict the ambient temperature and wind speed better than
other algorithms, while RBF-ANN and MLP-ANN are the
most successful algorithms in predicting solar irradiance and
load demand data, respectively. Therefore, predicted patterns
based on the successful machine learning algorithms are
utilized for PMG’s optimal day-ahead scheduling.
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FIGURE 5. Forecasting results using machine learning algorithms: (a) ANFIS-FCM for solar irradiance data; (b) ANFIS-GP for solar irradiance
data; (c) ANFIS-SC for solar irradiance data; (d) MLP-ANN for solar irradiance data; (e) RBF-ANN for ambient temperature data; (f) ANFIS-FCM
for ambient temperature data; (g) ANFIS-GP for ambient temperature data; (h) ANFIS-SC for ambient temperature data; (i) MLP-ANN for
ambient temperature data; (j) RBF-ANN for ambient temperature data; (k) ANFIS-FCM for load demand data; (l) ANFIS-GP for load demand
data; (m) ANFIS-SC for load demand data; (n) MLP-ANN for load demand data; (p) RBF-ANN for load demand data; (q) ANFIS-FCM for wind
speed data; (r) ANFIS-GP for wind speed data; (s) ANFIS-SC for wind speed data; (t) MLP-ANN for wind speed data; (u) RBF-ANN for wind
speed data.
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TABLE 3. Initialization parameters of different types of ANFIS model.

TABLE 4. ANFIS-FCM forecasting results for weather parameters load demand data.

TABLE 5. ANFIS-GP forecasting results for weather parameters load demand data.

TABLE 6. ANFIS-SC forecasting results for weather parameters load demand data.

TABLE 7. MLP-ANN forecasting results for weather parameters load demand data.

TABLE 8. RBF-ANN forecasting results for weather parameters load demand data.

In this paper, three case studies have been considered for
analyzing the proposed day-ahead scheduling of the PMG as
below:
• Case 1: Day-ahead scheduling using real data and TOU
pricing.

• Case 2: Day-ahead scheduling of the PMG using load
and weather forecasting and TOU pricing.

• Case 3: Day-ahead scheduling of the PMG using
weather forecasting and forecasting-based DR
program.
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TABLE 9. Execution time of solar irradiance, temperature, wind speed, and load demand’s forecasting, using different machine learning algorithms.

FIGURE 6. Forecasted and actual data of a typical day: (a) Solar irradiance; (b) Ambient temperature; (c) Wind speed; (d) Load demand.

B. CASE STUDIES
The overall structure of the study based on the proposed case
studies is depicted in Fig. 7.

In this study, distribution loss is neglected because the
PMG has relatively short electrical lines. PV and WT spec-
ifications are provided in Table 12 [36]. The BSS technical
parameters are shown in Table 13. The considered PMG is
optimized under two different pricing regimes, i.e. time of
use (TOU) and real-time pricing (RTP).

TOU prices are considered based on actual electricity rates
in Iran’s electricity market [43]. The utilized rates are illus-
trated in Fig. 8a. As can be seen, three different price rates are
considered for a day. The peak rate belongs to 17:00 to 22:00,
while the off-peak rate has been assigned for 7:00 to 16:00.
Also, eight hours are reserved for off-peak rates in a day.

The value of e is considered as -0.5 [21]. Also, the upper
and lower bands of RTP are set as 0.01 US$ and 0.002 US$,
respectively. Moreover, the values of γ and λe are consid-
ered as 0.09704 US$ and 0.1, respectively. According to
BSS specifications, the Cbd value is assumed to be 0.6 US$
for BSS [13]. Moreover, the operation horizon of the BSS,
as introduced in (37-38), is considered as one day.

As discussed in previous sections, the PMG is contracted
to supply specific power to the neighbor consumers in
pre-defined periods. Fig. 8b shows the details of this contract.
As revealed by Fig. 8b, the PMG is contracted to provide
electricity in four time intervals during a day. At each interval,
which typically lasts two hours, the PMG provides 2 kW
electrical power to the neighbor consumers. Based on the time
intervals, consumers intended to import power in mid-peak
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TABLE 10. Complexity analysis of different forecasting methods.

and peak times. Consumers also pay for this electricity to
the PMG. However, energy trading is constructed between
consumers and the PMG, while both sides benefit from the
energy business.

In this study, the introduced MILP problem is solved using
CPLEX solver in GAMS 24.8 environment. Additionally,
a 64-bit personal computer with 8GB RAM and Intel CPU
(Core i5) has been used. The proposed method for short-term
load and weather parameters forecasting is implemented in
MATLAB 2018b. The forecasted data of weather parame-
ters and load demand are linked to GAMS by GDXMRW
interface [41].

In this study, the introduced MILP problem is solved using
CPLEX solver in GAMS 24.8 environment. Additionally,

TABLE 11. Best predicted patterns by different machine learning
algorithms.

FIGURE 7. The overall structure of the study based on the proposed case
studies.

TABLE 12. Technical parameters of the PV and WT units.

a 64-bit personal computer with 8GB RAM and Intel CPU
(Core i5) has been used. The proposed method for short-term
load and weather parameters forecasting is implemented in
MATLAB 2018b. The forecasted data of weather parame-
ters and load demand are linked to GAMS by GDXMRW
interface [41].

C. RESULTS AND DISCUSSION
In this section, the optimization results are presented. The
simulation results under various introduced case studies
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TABLE 13. Technical parameters of the BSS.

FIGURE 8. (a) Contracted power based on the requirement of customer;
(b) TOU electricity prices.

are evaluated, and the merits of the proposed method are
discussed.

1) CASE 1
In case 1, the actual load and weather data (solar irradi-
ance, ambient temperature, and wind speed) are utilized for
PMG’s day-ahead operation. Figs. 9a and b shows the PV and

FIGURE 9. Output power of DG units based on actual/forecasted weather
data: (a) Actual PV output power; (b) Actual WT output power;
(c) Forecasted PV output power; (d) Forecasted WT output power.
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WT units’ output power based on the actual weather data.
As can be seen, the PV unit generates electricity between
7:00 and 18:00, where sufficient solar irradiance is available.
The electricity generation by WT unit is quite different from
the PV unit due to high intermittency of wind speed. TOU
electricity prices have been shown in Fig. 8a, which are
considered in this case study. The optimization results of this
case study have been depicted in Fig. 10. It is concluded
based on results shown in Fig. 10a that more electricity is
imported from the main grid during the hours that the PMG
is contracted to provide electricity to the neighbor consumers.
For instance, the purchasing power from the main grid is

FIGURE 10. Optimization results of PMG under Case 1: (a) Exchanged
power with the main grid; (b) Charging/discharging power of BSS;
(c) BSS SOC.

increased between 5:00 and 8:00, and then, it is dropped
to a lower level. All the generated electricity by RESs are
used for supplying load demand. Therefore, no electricity
id sold to the main grid. According to Fig. 10b, the BSS is
charged during off-peak hours of the day because of lower
electricity rate in these hours. Also, the BSS is discharged
in peak hours because both electricity rate and consumption
are significantly increased. The operation cost of the system
is also achieved at 1.115 US$. The optimal operation of the
BSS clearly had a positive effect on the operation cost of
the system because the BSS was able to alleviate imported
electricity during peak times by injecting the stored electricity
in peak hours.

2) CASE 2
In case 2, the forecasted load and weather data, which have
been predicted using the proposed pattern selection approach,
are used to achieve precise results. The forecasted output
power of PV and WT units are depicted in Figs. 9b and c.
Due to the high accuracy of the proposed pattern selection
approach for load and weather forecasting, similar patterns
are achieved for both forecasted and actual values of RESs
output power and PMG load demand. However, more devia-
tions could be seen in theWT output power. Electricity prices
are based on the defined TOU rates in Fig. 8a. Optimization
results including exchanged power from the main grid, BSS
charging and discharging power, and BSS SOC are shown
in Fig. 11.

As can be seen in Fig. 13a, the imported power by PMG
is increasing during contracted time intervals. Similar to
the previous case study, the PMG was not able to sell any
electricity to the main grid. Moreover, the BSS was charged
in off-peak hours and is discharged in peak hours the same
as the previous case study (Fig. 13b). The operation cost of
the system is achieved by 1.349 US$, which shows a minor
increase in comparison with the previous case study. Since
actual load/weather data is ideal, and there are some inherent
deviations in forecasting results, it is reasonable to have
deviations in operation cost of the system using forecasted
load/weather data. However, due to the high accuracy of the
proposed approach for selecting the best-forecasted pattern,
the difference between operating costs based on actual and
forecasted data is not significant (0.234 US$).

To validate the proposed pattern selection approach, a com-
parison has been made with the conventional method of
selecting predicted patterns. In the conventional method, each
machine learning algorithm is used for forecasting all the
four parameters. Then, prediction values (i.e. solar irradiance,
ambient temperature, wind speed, and load demand) by each
individual machine learning algorithm are used for calculat-
ing the operation cost of the PMG.

Comparison results are indicated in Table 14. As can be
seen, the operation cost based on the proposed method has
the minimum value in comparison with the conventional
method. Although the difference between the operation cost
of the proposed approach and the other conventional methods
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FIGURE 11. Optimization results of PMG under Case 2: (a) Exchanged
power with the main grid; (b) Charging/discharging power of BSS;
(c) BSS SOC.

is not significant for a single day, the proposed approach
in a longer period such as one month would significantly
decrease the PMG’s operation cost by accurate forecasting
results. Moreover, optimization results, including the system
operation cost, are severely dependent on uncertainties of
weather and load values.

Hence, the PMG’s operation cost might be affected due to
inaccurate predicted uncertain data. Therefore, the proposed
method always results in optimum results in comparison with
other conventional approaches.

TABLE 14. Comparison results for calculating the operation cost of the
PMG using predicted values by each machine learning algorithm.

3) CASE 3
In case 3, the proposed DR program based on the forecasted
load demand is used for PMG’s optimal scheduling. In this
case, instead of using TOU pricing directly, the RTP mecha-
nism is established based on the TOU pricing equipped with
RTP’s float factor. The forecasting-based DR program inte-
grates forecasted load data, RTP, and TOU pricing for peak
load shaving. It is worth mentioning that both case 2 and 3 use
the same forecasted weather data and the main differences
are in electricity prices and electrical load profiles. Fig. 12a
shows RTP and TOU pricing values during the understudy
day. In contrast to TOU pricing, RTP is changing hourly
depending on the load consumption pattern.

Moreover, Fig. 12b displays hourly load data before/after
implementing forecasting-based DR program. The first result
that claims the attention is that the load pattern has been
shaved especially in peak times (18:00 to 22:00). The mod-
ified load pattern would positively affect the operation of
the PMG. Therefore, to investigate the exact impacts of DR
program on day-ahead scheduling of PMG, the RTP and
modified load values are applied.

FIGURE 12. Electricity price values based on RTP mechanism; (b) Load
demand profile considering DR program.
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In fact, during the hours with high consumption of electric
power, the rates are climbing up, and in hours with lower
power consumption, the electricity price is even less than
TOU rates. It shows that the RTP mechanism has a direct
relationship with hourly load consumption.

Optimization results based on the proposed methods are
shown in Fig. 13. As revealed by Fig. 13a, less electricity is
purchased from the main grid during peak hours of the day,

FIGURE 13. Optimization results of PMG under Case 3: (a) Exchanged
power with the main grid; (b) Charging/discharging power of BSS;
(c) BSS SOC.

which has brought financial profits to the PMG. Basically,
this is due to the modification considered by DR program.
Moreover, the BSS is charged mainly in off-peak hours where
the electricity price is at the minimum level and is discharged
when the electricity prices are at the highest rates (19:00 to
21:00). The operation cost of the system is obtained 1.07US$,
which is less than the operation costs of cases 1 and 2. Based
on the data given in Table 15, the total imported power by
the PMG in this case study is less than case 2, where no DR
is considered. In other means, considering DR program in
PMG’s day-ahead scheduling would reduce emission cost.

TABLE 15. Imported power from the main grid in all cases.

Moreover, according to Table 15, the PMG has mini-
mum exchanged power with the grid in case 3 because the
forecasting-based DR program has been considered. This has
resulted in the least operation cost of the system in com-
parison with other cases. Therefore, utilizing DR program
has enhanced the optimal operation of the PMG in different
aspects including economically and environmentally.

Table 16 shows the summary of operation costs and exe-
cution time of optimizations by GAMS software. It is clear
that CPLEX solver in GAMS software is adequately fast
in solving optimization problems. Therefore, it is a suitable
choice for solving MILP problems.

The proposed forecasting method is compared with other
similar available studies such as [6], [13], [14] to highlight its
advantages. In [6], it has been neglected to consider both load
and weather forecasting, and the PMG scheduling has been
optimized based on the pre-defined historical data. In [13], a
forecasting method based on MLP-ANN has been reported
to predict weather data and conducted the scheduling and
operation of the PMG based on the predicted weather data.
On the other side, Ref [14] neglected to consider weather
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TABLE 16. Summary of operation costs and execution time for solving
the optimization problem by GAMS.

parameters and focused on load demand forecasting using
a typical MLP-ANN. Both [13], [14] did not evaluate the
implemented ANN-MLP with another available machine
learning algorithm.

In Table 17, the forecasting results of load and weather
parameters using the proposed method and other available
ones are described. As can be seen, obtained forecasting
results of this study and those of others [13], [14] are
consistent.

TABLE 17. Comparison of forecasting based on the method of this
studyand other existing ones.

Besides, in this study, different machine learning algo-
rithms are compared through two-stage evaluations, which
improves the accuracy of the forecasting parameters. More-
over, considering both weather and load forecasting would
lead to more realistic optimization results because uncertain-
ties of weather and load are considered accordingly.

The proposed method of [13] for modeling loss of life
cost of the BSS merely optimized the minimum level of
BSS SOC, while the proposed method of this study opti-
mizes the gap between maximum and the minimum level
of BSS SOC (SOCmax

n and SOCminn ). Based on the results,
the proposed method of this paper results in more reduc-
tion of PMG operation cost than other methods. In contrast,
the proposed method of [13] reduced a small amount of PMG
operation cost because they only considered SOCminn in their
minimization model. Table 18 compares operation and BSS
degradation cost of the PMG based on the proposed method
of this study and those of introduced in [13]. As can be seen,
the proposed method of this study resulted in lower operation
cost of the system.

TABLE 18. Comparison of operation and BSS degradation costs based on
the proposed method and the method of [13].

By comparing BSS charging/discharging results based on
the introduced method in [13] and the proposed method (as
discussed in three cases), it could be concluded that the BSS
is discharged when there is a peak-load/peak-price in the

day. Another important factor is the amount of RESs pro-
ductions, which could be effective in discharging of the BSS.
According to the results of [13], the BSS is charged when the
electricity prices are in off-peak or mid-peak periods. In this
study, however, the BSS is charged merely on off-peak hours.
Moreover, previous studies [6], [13], [14] have neglected to
consider grid emission cost, which is an important term to
be applied in the PMG scheduling and operation. In this
paper, an emission cost term is added to the objective function
based on the processing cost per kW and equivalent emission
coefficient.

V. CONCLUSION
In this paper, the DR-based optimal operation of PMG has
been proposed using weather parameters and load demand
forecasting. A new hybrid machine learning-based fore-
casting method consists of ANFIS model, MLP-ANN, and
RBF-ANN has been developed to forecast the weather and
load data. In the proposed hybrid machine learning-based
method, the best-predicted pattern among the prediction
results of machine learning algorithms is selected, which
results in more precise results. Test results inferred that the
Fuzzy-GP model, MLP-ANN, and RBF-ANN had a better
performance for prediction of both ambient temperature
and wind speed, load demand, and solar irradiance, respec-
tively. The day-ahead optimization results based on the best-
selected patterns implied that an improvement in PMG’s
operating cost was achieved in comparison to the conven-
tional machine learning-based forecasting algorithms. Also,
the value of operation cost regarding the proposed forecast-
ing approach resulted in the most accurate value. In this
regard, the value of operation cost considering best-selected
patterns was achieved equal to 1.349 US$. The compar-
ative test results illustrated that a significant inaccuracy
(around 20.98%) might occur due to simplified assumptions
for uncertain parameters such as load and weather data.
Moreover, by applying the DR-based optimal operation of
PMG using the developed hybrid machine learning-based
forecasting as well as RTP, the PMG’s operation cost could
be decreased about 4.2%. The value of operation cost con-
sidering the implemented DR program was achieved as
1.07 US$. Furthermore, the proposed DR-based optimal
operation results in reducing the power purchased from the
main grid, which minimizes the emission cost. The total
amount of purchasing power is achieved as 257.5649 US$ in
the case with the DR program, which shows 8.55 % decrease
in purchasing power in comparison to Case 2 without the
DR program.
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