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Abstract. One of the most urgent problems concerning the design of inertial separation devices is the failure of the 
trapped liquid film from the contact surfaces due to the contact with the turbulent gas-liquid flow. For extension of the 
range of the effective inertial separation, a method of dynamic separation was proposed using the developed separation 
device with deformable sinusoidal walls. In this regard, the article is aimed at the development of the general 
methodology for the determination of the impact of hydrodynamic characteristics on the shape parameters for the 
deformed separation channel. The proposed approach is based on both physical and geometrical models. The first one 
allows obtaining compliance of deformable walls as a result of pressure distribution in the separation channel as a result 
of numerical simulation. The second one allows for obtaining variations of the main geometrical parameters of the 
proposed model using transfer functions. The relevancy of the proposed methodology was proved by the values of the 
relative errors for evaluating the variations of the amplitude and the radius of curvature. 
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1 Introduction 

At present, due to the specific energy consumption and 
separation efficiency, inertial and inertial-filtering 
separation approaches are widely used. However, one of 
the most common problems of their application is the 
failure of the trapped liquid film from the contact surfaces 
due to the contact with the turbulent gas-liquid flow. In this 
regard, the velocity and pressure fields are critical ones. 
An increase in the velocity of the gas-liquid flow leads to 
an increase in separation efficiency. After the velocity 
exceeds its critical value, the film of the trapped liquid 
breaks due to the appearance of waves on the interfacial 
surface and changes in the laminar mode to the turbulent 
one [1, 2]. 

There are following ways to solve the problem 
mentioned above [3]: 

1) an increase in cross-section area for a decrease in gas 
velocity; 

2) the use of nozzles with permanent drainage of a 
liquid; 

 
 
3) reducing the mass ratio of a liquid and gas using pre-

selection devices. 
In this case, the critical velocity of the gas flow varies 

insignificantly. Therefore, there is still no significant 
extension in a range of effective operation of separation 
devices. 

Due to the abovementioned, a method of dynamic 
separation is proposed. The corresponding separation 
equipment operates as an automatic control system, which 
is able to maintain the gas purification degree in a wide 
range of possible changes in the flow rate of the gas-liquid 
mixture. In this system, the object of regulation is 
hydraulic resistance, and the regulating impact is elastic 
forces. In this regard, the channel, which is bounded by 
sinusoidal walls, is proposed (Figure 1). These walls are 
fixed rigidly at the inlet of the gas-liquid flow. At the 
outlet, they have sliding fastening in the longitudinal 
direction. 
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Figure 1 – The dynamic separation device  
with deformable sinusoidal walls 

When the gas-liquid flow is passing through the 
separation channel, walls are changing their shape due to 
the hydrodynamic pressure. This affects the change of flow 
parameters and vice versa. Curved trajectories of liquid 
droplets, which are falling in the separation channel, are 
deviated from their initial ones. As a result, droplets are 
deposited on the walls with the formation of a liquid film. 
Finally, the deposited liquid flows out from the separation 
device through the drainage channels. 

Since the gas-liquid flow changes in the shape of the 
separation channel, which in turn causes a change in flow 
parameters, the problem of aeroelasticity should be solved. 

2 Literature Review 

The scientific significance of the carried out research is 
highlighted by the absence of the corresponding 
experience of many authors in the field of designing of 
corresponding technological equipment. Particularly, an 
analysis of the steady flow of a viscous incompressible 
fluid in a channel with sinusoidal walls was presented by 
V. Borisov [4]. A perturbation method is developed in 
order to study viscous laminar flows through wavy-walled 
channels was applied by S. Tsangaris and L. Leiter [5]. 
The motion of particles in a viscous flow through a channel 
with sinusoidal walls was studied by E. Hasewaga and 
M. Saikai [6]. The system of differential equations of the 
particle movement, along with the sinusoidal surface, was 
solved by S. Pylypaka et al. [7]. 

Two-dimensional Stokes flow between sinusoidal walls 
was investigated by G. Bizatti, V. Di Federico, and 
S. Cintoli [8]. Two-dimensional steady fluid flow and heat 
transfer through a periodic wavy channel with staggered 
walls were numerically studied by H. Bahaidarah [9]. 
Additionally, the heat transfer and flow characteristics in 
corrugated sinusoidal wavy channels for the different 
phase shifts between the upper and lower wavy plates with 
the same equivalent diameter have been numerically 
investigated by J. Yin, G. Yang, and Y. Li [10]. 

Ways for modeling of fluid flow in two-dimensional 
sinusoidal corrugated channels were developed by 
A. Abdulsayid [11]. Analysis of fluid flow and heat 
transfer characteristics in sharp edge wavy channels was 
presented by M. Pervez, A. Aziz, and S. Chaturvedi [12]. 

Unsteady laminar flow of a Newtonian fluid in a 
channel with sinusoidal walls was numerically studied by 
Z. Mills et al. [13]. 

The effects of the wavy-wall phase shift on the thermal-
hydraulic performance of fluid flow in the sinusoidal-
wavy channel were studied by M. Ahmed et al. [14]. 

A methodology for static calculation of the dynamic 
deflection elements for separation devices was developed 
in [15]. Additionally, an approach for solving the 
stationary hydroaeroelasticity problem for dynamic 
deflection elements of separation devices was developed 
in [16]. This approach is valid for the automatic control 
system with dynamic separation elements. In this case, the 
regulation object is the hydraulic resistance. 

An improvement of thermo-hydraulic performance, 
heat transfer, and pressure losses in a channel with the 
sinusoidal-wavy surface was provided by A. Boonloi and 
W. Jedsadaratanachai [17]. Finally, a parametric analysis 
of fluid flow through the heated corrugated channels was 
carried out by M. Salami, M. Khoshvaght-Aliabadi, and 
A. Feizabadi [18]. 

However, the approaches and methodologies 
mentioned above do not consider either deformation of 
walls or its automatic adjustment with the change in 
hydraulic losses during the operating process. 
Consequently, the presented research aims at the 
development of the general methodology for the 
determination of the impact of hydrodynamic 
characteristics on the shape parameters for the deformed 
separation channel. 

3 Research Methodology 

3.1 Mathematical modeling of wall’s deformation 

The development of the mathematical model of the 
wall’s deformation is based on both the physical and 
geometrical approaches. For the case of linear material, the 
first one is based on the Hooke’s law for isotropic material 
in compliance one-dimensional form [19] (Figure 2): 

 𝛥𝑙 = 𝛿 · 𝐹, (1) 

where Δl – displacement of the outer edge of the 
wall, m; δ – compliance, m/N. 

 

Figure 2 – The design scheme of a channel with deformable 
sinusoidal walls: h – average width, m; v0 – inlet velocity, m/s; 

l0, l – lengths of a single wave, m; n – number of waves;  
a0, a – amplitudes, m; R0, R – radiuses of curvature, m;  

F – the equivalent force, N 
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The equivalent force F (N) can be determined 
numerically from the following energy condition: 

 𝐴(𝐹) = 𝐴(𝑝), (2) 

where A(F) and A(p) – works of force F and 
hydrodynamic pressure p, respectively. 

The geometrical model is based on the analysis of the 
change in parameters of the following sinusoidal curve 
(Figure 2): 

 𝑦 = 𝑎 · 𝑠𝑖𝑛𝜆𝑥, (3) 

where x – longitudinal coordinate, m; a –amplitude, m; 

𝜆 =  – the wave parameter (m–1), which is inversely 

proportional to the length l, m. 
The total length of a single wave is determined as 

follows: 

 𝐿 = ∫ 1 +
( )

𝑑𝑥. (4) 

The use of the incomplete elliptic Legendre integral of 
the second kind [20]: 

 𝐸(𝑘) = ∫ √1 − 𝑘 𝑠𝑖𝑛𝜃𝑑𝜃 (5) 

allows rewriting the expression (4). In this case, after 
identical transformations, it should be written: 

 𝐿 = 𝐸(𝑘), (6) 

where k = [0, 1) – the following dimensionless 
parameter: 

 𝑘 =
( )

. (7) 

It should be noted that in the case of relatively small 
amplitudes or large wavelengths, the dimensionless 
parameter can be simplified as k ≈ a·λ. Consequently, the 
total length of a single wave is determined as follows: 

 𝐿 =
( )

. (8) 

The use of the small perturbation method allows writing 
the following: 

 𝐿 = 𝐿 + 𝛿𝐿, (9) 

where L0 = E(a0λ0)/λ0 – the initial length (m), which 
depends on the initial values of the amplitude a0 (m) and 
the wave parameter λ0 (m–1). 

Due to the fact that the length is unchangeable during 
the deformation of a curved plate, the initial length L0 
retains constant (L0 = L = const), and the infinitely small 
variation of the length is equal to zero. Consequently, the 
following equation can be written: 

 𝛿𝐿 = − · 𝛿𝑎 + · 𝛿𝜆 = 0, (10) 

where δa – the variation of amplitude, m; δλ – the 
variation of the wave parameter, m–1: 

 𝛿𝑎 = 𝑎 − 𝑎;  𝛿𝜆 = 𝜆 − 𝜆. (11) 

Equation (10) allows determining the variation of the 
amplitude: 

 𝛿𝑎 = 𝛷 · 𝛿𝜆, (12) 

where 𝛷 = 𝛷 (𝑎 , 𝜆 ) – the following transfer 
function: 

 𝛷 (𝑎 , 𝜆 ) = − . (13) 

3.2 Approximation of the developed model 

Since the Legendre integral E(k) is not integrable by 
quadratures, the following analytical expression is 
proposed for its approximation (Figure 3): 

 𝐸(𝑘) = √4𝜋 − 𝛼 𝑘 , (14) 

where α – the dimensionless parameter. 

 

Figure 3 – Graphical representation of the elliptical integral 
(pos. 1) and its approximations (pos. 2, 3) 

It should be noted that expression (14) should satisfy the 
following conditions: 𝐸(0) = 2𝜋; 𝐸(1) = 4. The first 
condition is satisfied automatically, but the last one allows 
for obtaining the value α = (4π2 – 16)1/2 ≈ 4.85. The 
corresponding approximating curve is marked in Figure 3 
as pos. 2. 

If the approximation accuracy is more valuable at the 
beginning part of the curve, the second condition is not 
accurately satisfied, and the parameter α mentioned above 
should be evaluated using the quasilinear regression 
approach [21]: 

 𝑅 = ∑ [4𝜋 − 𝛼 𝑘 − 𝐸 (𝑘 )] → 𝑚𝑖𝑛, (15) 

where R – the sum square error; i – index of 
experimental point; N – the total number of numerical 
experiments. 

Minimization of the functional R with respect to the 
parameter α2 

 
( )

= −2 ∑ [4𝜋 − 𝛼 𝑘 − 𝐸 (𝑘 )]𝑘 = 0 (16) 

allows determining the following regression dependence: 

 𝛼 =
∑ [ ( )]

∑
. (17) 
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In this case, after automatic tabulating values of E(ki) 
for a range of ki = [0, 1) using N = 1·104 numerical 
experiments (with a constant step 1/N), the following value 
of the evaluated parameter is obtained: α = 4.47. The 
corresponding approximating curve is marked in Figure 3 
as pos. 3. 

In the case of using expression (14), the transfer 
function can be approximately determined as follows: 

 𝛷 ≈ . (18) 

3.3 The radius of curvature 

The radius of curvature of the sinusoidal curve in its 
amplitude values (Figure 2) as a parameter, which 
determines the losses along with the separation channel, is 
defined as follows: 

 𝑅 =

( )
/

( )
= = 𝑅 + 𝛿𝑅, (19) 

where 𝑅 =  – the initial radius of curvature before 

deformations; δR – the variation of the radius of curvature, 
which is determined as follows: 

 𝛿𝑅 = · 𝛿𝑎 + · 𝛿𝜆. (20) 

The consequent consideration of expressions (20) and 
(18) allows obtaining the following variation from the last 
equation: 

 𝛿𝑅 = 𝛹 𝛿𝜆, (21) 

where 𝛹 = 𝛹 (𝑎 , 𝜆 ) – the following transfer 
function: 

 𝛹 (𝑎 , 𝜆 ) = 1 +
( )

. (22) 

Thus, the mathematical model is based on finding the 
transfer functions (13) and (22). 

4 Results and Discussion 

For numerical simulations of aeroelastic interaction of 
the gas flow with deformable sinusoidal walls, the 
“ANSYS Workbench” software with its modules “Fluent” 
and “Transient Structural” have been used. These modules 
are coupled by the module “System Coupling” and allow 
simulating hydrodynamics and studying elastic 
deformations of the system. 

For modeling, the following physical parameters have 
been used: inlet velocity v0 = 15 m/s; inlet and outlet 
hydraulic diameters are 0.12 m and 0.22 m, respectively; 
overpressure at the outlet 0 Pa; the turbulence model  
“k-ε”; the turbulence intensity 5 %. The material 
properties are as follows: density 910 kg/m3; Young’s 
modulus 1.1·106 Pa; Poisson’s ratio 0.42. The initial 
geometrical parameters are as follows: width h = 0.1 m; 
length l0 = 0.312 m; amplitude a0 = 0.052 m. 

The obtained numerical simulation results are presented 
in Figure 4. 

 
a 

 
b 

Figure 4 – The velocity field (a) and total deformations (b) 

As a result of numerical simulation, the following 
parameters have been obtained: the equivalent force 
F = 152 N; the total longitudinal displacement 
Δl = 4.6·10–3 m. 

The variation of the length for a single wave is equal to 
δl = Δl/n = 4.6·10–3/3 = 0.0015 (m). Compliance is equal 
to δ = Δl/F = 4.6·10–3/152 = 3.0·10–5 (m/N). 

The initial wave parameter λ0 = 20.138 m–1. The initial 
radius of curvature R0 = 0.0474 m. 

After deformations, the wave parameter λ = 20.04 m–1. 
The initial radius of curvature R = 0.0483 m. 
Consequently, the corresponding variations are equal to 
δλ = λ0 – λ = 20.1 – 20.0 = 0.1 (m–1), and 
δR = R – R0 = 0.0005 (m), respectively. Also, the 
amplitude a = 0.0515 m, and its variation 
δa = a0 – a = 5.17·10–4 (m). 

All the main parameters before and after deformations 
with the corresponding variations are summarized in 
Table 1. 

Table 2 – The evaluated parameters of the mathematical model 

Parameter 
Initial  
value 

Value after  
deformation 

Variation 

Displacement Δl/n, m 0.312 0.3135 0.0015 

Wave parameter λ, m–1 20.138 20.040 0.098 

Amplitude a, m 0.052 0.0515 0.0005 

Radius of curvature R, m 0.051 0.0474 0.0009 

It should be noted that the variation can be obtained 
from equation (13). In this case, the initial value of the 
transfer function is equal to Φ0 = 5.2·10–3 (m2), and the 
variation of the amplitude δa = Φ0·δλ = 5.19·10–4 (m). 
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Consequently, the relative error of evaluating the variation 
of the amplitude is equal to 1.2 %. 

Finally, the variation of the radius of curvature can be 
obtained from equation (21). In this case, the initial value 
of the transfer function is equal to Ψ0 = 9.0·10–3 (m2), and 
the variation of the radius of curvature 
δR = Ψ0·δλ = 8.82·10–4 (m). Consequently, the relative 
error of evaluating the variation of the amplitude is equal 
to 7.0 %. 

5 Conclusions 

Thus, the stationary aeroelasticity problem for a 
separation channel with deformable sinusoidal walls has 
been solved. As a result, the general methodology for the 
determination of the impact of hydrodynamic 
characteristics on the shape parameters for the deformed 
separation channel has been developed. This methodology 
is based on both physical and geometrical approaches. The 
first one allows obtaining compliance of deformable walls 
as a result of pressure distribution in the separation 
channel. The second one is based on the analysis of the 
change in parameters of a sinusoidal curve. 

As a result of numerical simulation for the inlet velocity 
of the gas flow 15 m/s, the equivalent force 152 N and the 
total longitudinal deformation 4.6·10–3 m have been 
obtained. These data have allowed evaluating the 
compliance 3.0·10–5 (m/N). 

Additionally, according to the proposed methodology, 
variations of the main geometrical parameters of the 

mathematical model have been calculated and summarized 
in Table 1. 

The relevancy of the proposed approach using the 
transfer function is proved by the values 1.2 % and 7.0 % 
of the relative errors for evaluating variations of the 
amplitude and the radius of curvature, respectively. 

Further research will be focused on studying the impact 
of the main parameters of the system “gas-liquid flow – 
deformable walls of the separation channel” to ensure the 
required separation efficiency, as well as on the 
identification of non-stationary hydrodynamic effects in 
this system. 
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