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a b s t r a c t 

A star edge-coloring of a graph G is a proper edge-coloring without bichromatic paths or 

cycles of length four. The smallest integer k such that G admits a star edge-coloring with 

k colors is the star chromatic index of G . In the seminal paper on the topic, Dvo ̌rák, Mohar, 

and Šámal asked if the star chromatic index of complete graphs is linear in the number 

of vertices and gave an almost linear upper bound. Their question remains open, and con- 

sequently, to better understand the behavior of the star chromatic index, this parameter 

has been studied for a number of other classes of graphs. In this paper, we consider star 

edge-colorings of square grids; namely, the Cartesian products of paths and cycles and 

the Cartesian products of two cycles. We improve previously established bounds and, as 

a main contribution, we prove that the star chromatic index of graphs in both classes is 

either 6 or 7 except for prisms. Additionally, we give a number of exact values for many 

considered graphs. 

© 2020 Elsevier Inc. All rights reserved. 

 

 

 

 

 

1. Introduction 

A proper edge-coloring of a graph G is called a star edge-coloring if there is neither bichromatic path nor bichromatic

cycle of length four. The minimum number of colors for which G admits a star edge-coloring is called the star chromatic

index and we denote it by χ ′ 
st (G ) . 

The star edge-coloring was defined in 2008 by Liu and Deng [8] , and was motivated by the vertex version introduced

by Grünbaum [4] . Despite a number of papers have already been published about this coloring, we have a very limited

knowledge about it. In particular, the exact value of the star chromatic index of complete graphs is still not known, although

some relatively strong lower and upper bounds have been determined by Dvo ̌rák et al. in their seminal paper [3] . 

Theorem 1 (Dvo ̌rák, Mohar, Šámal, 2013) . The star chromatic index of the complete graph K n satisfies 

2 n (1 + o(1)) ≤ χ ′ 
st (K n ) ≤ n 

2 

2 
√ 

2 (1+ o(1)) 
√ 

log n 

( log n ) 1 / 4 
. 

In particular, for every ε > 0 there exists a constant C such that χ ′ (K n ) ≤ C n 1+ ε for every n ≥ 1 . 
st 

∗ Corresponding author. 

E-mail addresses: holubpre@kma.zcu.cz (P. Holub), borut.luzar@gmail.com (B. Lužar), erika.mihalikova@student.upjs.sk (E. Mihaliková), 

mmockov@ntis.zcu.cz (M. Mockov ̌ciaková), roman.sotak@upjs.sk (R. Soták). 

https://doi.org/10.1016/j.amc.2020.125741 

0 096-30 03/© 2020 Elsevier Inc. All rights reserved. 

https://doi.org/10.1016/j.amc.2020.125741
http://www.ScienceDirect.com
http://www.elsevier.com/locate/amc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.amc.2020.125741&domain=pdf
mailto:holubpre@kma.zcu.cz
mailto:borut.luzar@gmail.com
mailto:erika.mihalikova@student.upjs.sk
mailto:mmockov@ntis.zcu.cz
mailto:roman.sotak@upjs.sk
https://doi.org/10.1016/j.amc.2020.125741


P. Holub, B. Lužar, E. Mihaliková et al. Applied Mathematics and Computation 392 (2021) 125741 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

They proved the upper bound using a nontrivial result about sets without arithmetic progressions, and up till now, it 

is still the best known. For the lower bound, they used an elegant double counting approach. The authors of [1] observed

a small improvement in their proof and obtained the bound χ ′ 
st (K n ) ≥ 3 n (n − 1) / (n + 4) (see [10] for a proof), which gives

the exact values for the chromatic index of K n , for n ∈ {1, 2, 3, 4, 8}. However, despite all effort s, the asymptotic behavior of

the star chromatic index of complete graphs is not known, and in [3] the following question has been asked. 

Question 1 (Dvo ̌rák, Mohar, Šámal, 2013) . What is the true order of magnitude of χ ′ 
st (K n ) ? Is χ ′ 

st (K n ) = O (n ) ? 

Another class of graphs with highly regular structure are complete bipartite graphs. They are important for better under- 

standing of the coloring already on their own, and also, as Dvo ̌rák et al. [3] observed, the bounds for their star chromatic

index provide bounds for the index of complete graphs. 

χ ′ 
st (K n,n ) − n ≤ χ ′ 

st (K n ) ≤
� log 2 n 	 ∑ 

i =1 

2 

i −2 χ ′ 
st (K � n/ 2 i 	 , � n/ 2 i 	 ) . 

Recently, Casselgren et al. [2] considered complete bipartite graphs and proved the tight upper bound for K 3, r , r ≥ 5, derived

a lower and upper bound for K 4, s , s ≥ 4, and, using computer, they also determined the star chromatic index for some

complete bipartite graphs of small order. 

Star edge-coloring has been studied also for other classes of graphs, e.g., graphs with maximum degree 3 [3,6,7] and

4 [14] , subcubic Halin graphs [2] , outerplanar graphs [1,13] , and planar graphs with various constraints [13] . Moreover, the

list version of the star edge-coloring has also been investigated (see, e.g., [5,9] ). Finally, there is also a complexity result on

the topic; namely, it is NP-complete to decide whether 3 colors suffice for a star edge-coloring of a subcubic multigraph [6] .

Since most of the obtained upper bounds for the star chromatic index are not tight and many questions remain open,

we focus our attention to graphs with a relatively simple structure, i.e. to the Cartesian products of graphs. 

The star edge-coloring of the Cartesian products of graphs has already been considered by Omoomi and Dastjerdi [11] .

They established an upper bound for the star chromatic index of the Cartesian product of two arbitrary graphs, proved its

exact values for the Cartesian product of two paths ( Theorem 4 ), and they started investigation on the Cartesian products

of a path and a cycle, and the Cartesian product of two cycles (i.e., square grids). They further proved upper bounds for

d -dimensional grids and d -dimensional hypercubes. 

Motivated by the results presented in [11] , in this paper, we consider star edge-coloring of square grids; in particular,

the Cartesian products of two cycles and the Cartesian products of paths and cycles. Apart from the usual combinatorial

methods, due to the complexity of the problems considered in this paper, we have used computer to obtain star edge-

colorings of small graphs and to establish some of the lower bounds. Standard (formal) mathematical proofs would require 

enourmous amount of case analysis, while their contribution to the theory would be minimal. We establish exact bounds for 

the star chromatic index of many graphs from the two considered classes, and show that the upper bound for the chromatic

index of both Cartesian products is 7. 

The paper is structured as follows. We give our notation and prove some auxiliary results in Section 2 . Section 3 contains

the algorithm used in our computations and describes the preprocessing procedures used in them. In Section 4 , we present

the main results of this paper, and we list some open problems in Section 5 . 

2. Preliminaries 

In this section, we present some additional terminology used in the paper and give auxiliary results. We abbreviate a 

‘star edge-coloring with k colors’ to a ‘star k -edge-coloring’, and, if it is clear from the context, sometimes we just write

‘coloring’ instead of ‘star edge-coloring’. 

The Cartesian product of graphs G and H , denoted by G � H, is the graph with the vertex set V ( G ) × V ( H ) and edges

between the vertices ( u, v ) and ( u ′ , v ′ ) if: 

• uu ′ ∈ E ( G ) and v = v ′ (a G-edge ), or 
• u = u ′ and vv ′ ∈ E ( H ) (an H-edge ). 

We call the graphs G and H the factor graphs . The G-fiber with respect to v ∈ V ( H ), denoted by G v , is the copy of G in

G � H induced by the vertices having v as the second component. Analogously, the H-fiber with respect to u ∈ V ( G ), denoted

by H u , is the copy of H in G � H induced by the vertices having u as the first component. 

Since the Cartesian product of two paths is a subgraph of the Cartesian product of a path and a cycle, and the Carte-

sian product of a path and a cycle is a subgraph of the Cartesian products two cycles, we have the following sequence of

inequalities. 

Observation 1. For every pair of positive integers m and n , where m ≥ 3 and n ≥ 3, we have 

χ ′ 
st (P m 

� P n ) ≤ χ ′ 
st (C m 

� P n ) ≤ χ ′ 
st (C m 

� C n ) . 

Having a star edge-coloring of the Cartesian product of an n -cycle and a graph H , we can extend it to a coloring of the

Cartesian product of a cycle of length k · n and H . 
2 
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Lemma 1. For every integers k and m, where k ≥ 2 and m ≥ 3, and for every graph H, we have 

χ ′ 
st (C k ·m 

� H) ≤ χ ′ 
st (C m 

� H) . 

Proof. Let C m 

= u 1 . . . u m 

u 1 , C k ·m 

= v 1 . . . v k ·m 

v 1 , and V (H) = { w 1 , . . . , w n } . Moreover, let p : { 1 , . . . , k · m } → { 1 , . . . , m } be an

assignment given by p(t) = s if and only if (t − s ) is divisible by m . 

Let σ be a star edge-coloring of C m 

� H. Consider an edge e = (v i , w a )(v j , w b ) of C k ·m 

� H. By the definition of the Carte-

sian product, we have i = j or a = b. Note that if a = b, then | i − j| = 1 , and thus we may assume j = i + 1 . We define a

proper edge-coloring τ of C k ·m 

� H as follows. If i = j, then set τ ((v i , w a )(v i , w b )) = σ ((u p(i ) , w a )(u p(i ) , w b )) . In the case

a = b, we set τ ((v i , w a )(v j , w a )) = σ ((u p(i ) , w a )(u p( j) , w a )) . 

Now we show that τ is also a star edge-coloring. For an integer s , where 1 ≤ s ≤ k · m , let G s be the graph induced by

the vertices {( v � , w )}, where � ∈ { s + 1 , . . . , s + m } (the values s + 1 , . . . , s + m are taken modulo k · m ) and all w ∈ V ( H ), i.e.,

G s is the graph induced on m consecutive H -fibers. Observe that the coloring τ on G s corresponds to a coloring σ of the

subgraph of C m 

�H without the edges (u p(s + m ) , w )(u p(s +1) , w ) , for all w ∈ V ( H ). Therefore, every 4-path and every 4-cycle in

 k ·m 

� H, contained in some G s , is not bichromatic. 

Finally, if a 4-path or a 4-cycle is not contained in any G s , then it contains at least m edges of type ( v i , w a )( v j , w a ) (i.e.,

only when m ∈ {3, 4}). However, in the case of m = 3 , three consecutive edges on every C m 

-fiber receive three distinct colors,

and hence no 4-path with three consecutive edges on a C m 

-fiber is bichromatic. If a 4-path has two consecutive edges on a

C m 

-fiber, an edge in an H -fiber, and the fourth edge in another C m 

-fiber, then its coloring corresponds to a coloring of some

4-path in C m 

� H, which is not bichromatic. In the case of m = 4 , we only have 4-cycles, whose colorings correspond to a

coloring of a 4-cycle by σ in some C m 

-fiber, and hence they are not bichromatic. �

We continue by showing how star edge-colorings of two Cartesian products, each having at least one cycle as a factor,

can be combined. Let m and n be a pair of integers, where 3 ≤ m < n , and let v 1 , . . . , v n be consecutive vertices of the

cycle C n . We say that a star edge-coloring σ of C n � H includes a star edge-coloring of C m 

� H if the coloring σ ∗ of the

subgraph of C n � H induced by the vertices of m consecutive H -fibers H v 1 , . . . , H v m , together with the additional edges e w 

=
(v 1 , w )(v m 

, w ) , for all w ∈ V ( H ), where we set σ ∗(e w 

) = σ ((v 1 , w )(v n , w )) , is a star edge-coloring. 

Symmetrically, we can say that a star k -edge-coloring of H �C n includes a star edge-coloring of H � C m 

. Note that the

star edge-coloring of C k ·m 

� H, constructed in the proof of Lemma 1 , includes a star edge-coloring of C m 

� H. 

Lemma 2. If for a pair of positive integers m and n, where m < n, a star k-edge-coloring of C n � H includes a star edge-coloring

of C m 

� H, then, for every pair of non-negative integers p and q, we have 

χ ′ 
st (C p·m + q ·n � H) ≤ k. 

Proof. Let σ be a star k -edge-coloring of C n � H which includes a star edge-coloring σ ∗ of C m 

� H. Let C n = v 1 . . . v n v 1 ,
 m 

= v 1 . . . v m 

v 1 , and C pm + qn = u 1 . . . u pm + qn u 1 . Furthermore, we define an assignment r : { 1 , . . . , pm + qn } → { 1 , . . . , n } such

that, if t ≤ pm , then r ( t ) ≤ m and t − r(t) is divisible by m , and, if t > pm , then t − pm − r(t) is divisible by n . 

Now, similarly as in the proof of Lemma 1 , we define an edge-coloring τ of C pm + qn � H. We combine p copies of σ ∗

followed by q copies of σ . More precisely, for w a , w b ∈ H , 

τ ((u i , w a )(u j , w b )) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

σ ∗((v r(i ) , w a )(v r(i ) , w b )) , for i = j ≤ pm ;
σ ((v r(i ) , w a )(v r(i ) , w b )) , for i = j > pm ;
σ ∗((v r(i ) , w a )(v r( j) , w a )) , for i = j − 1 ≤ pm ;
σ ((v r(i ) , w a )(v r( j) , w a )) , for i = j − 1 > pm. 

Note that, by the definition of σ ∗, we have σ ∗((v m 

, w )(v 1 , w )) = σ ((v n , w )(v 1 , w )) . 

It remains to show that τ is a star edge-coloring. For an integer s , where 1 ≤ s ≤ pm + qn, let G s be the graph induced by

the vertices of m + 1 consecutive H -fibers H u s +1 
, . . . , H u s + m +1 

(the indices s + i are taken modulo pm + qn ). Since the coloring

of each G s is a part of two consecutive copies of σ ∗ or a part of two consecutive copies of σ , no 4-path and no 4-cycle in

G s is bichromatic (using Lemma 1 for k = 2 ). 

Finally, if a 4-path is not contained in any G s , then it contains 4 edges of type ( v i , w a )( v j , w a ) and m = 3 . Moreover, such

a 4-path traverses the H v i -fibers, for i ∈ { pm, . . . , pm + 4 } or i ∈ { pm + qn, 1 , . . . , 4 } . In both cases, colors of three consecutive

edges of the 4-path correspond to colors of a C 3 -fiber of σ ∗ and therefore they are distinct. This completes the proof. �

We will use Lemma 2 to prove results for arbitrary lengths of cycles. To do that, we will use the following result on

Frobenious numbers [12] . 

Theorem 2 (Sylvester, 1882) . Let positive integers n and m be relatively prime. Then for every integer k ≥ (n − 1)(m − 1) there

exist non-negative integers α and β such that 

k = α · n + β · m. 

We also recall the result of Dvo ̌rák et al. [3] about star edge-coloring of subcubic graphs, which we will use when

considering prisms. 

Theorem 3 (Dvo ̌rák, Mohar, Šámal, 2013) . 
3 
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a) If G is a subcubic graph, then χ ′ 
st (G ) ≤ 7 . 

b) If G is a simple cubic graph, then χ ′ 
st (G ) ≥ 4 , and the equality holds if and only if G covers the graph of the 3-dimensional

hypercube. 

Here, a graph G is said to cover a graph H if there is a graph homomorphism from G to H that is locally bijective. In other

words, there is a mapping f : V ( G ) → V ( H ) such that whenever uv is an edge of G , the image f ( u ) f ( v ) is an edge of H , and, for

each vertex v ∈ V ( G ), f is a bijection between the neighbors of v and the neighbors of f ( v ). 

At this point, we remark the following, somehow hidden, corollary of the above result. Hexagonal grids are subcubic 

graphs and they cover the graph of the 3-dimensional hypercube. Thus: 

Corollary 1. For an infinite hexagonal grid G, we have 

χ ′ 
st (G ) = 4 . 

3. Computer computations and algorithm 

For our computations, we used a simple backtracking algorithm (see Algorithm 1 ), which, together with some prepro- 

cessing, enabled us to compute exact lower bounds for some important cases on one hand, and on the other hand, provided

star edge-colorings with required properties for some graphs. 

Algorithm 1 Star edge-coloring algorithm. 

1: procedure StarColor ( G, k, P) � Graph G , number of colors k , precolored edges P 

2: edgeOrder ← GetEdgeOrdering( G , P) 

3: edgeColors ← InitEdgeColors( P ,edgeOrder) 

4: triedColors ← InitTriedColors(edgeOrder) � Dictionary of empty lists for all edges 

5: for i in 1 . edgeOrder.Count do � Try to color edges according to the ordering 

6: e ← edgeOrder[ i ] 

7: isColored ← false 
8: for color c in { 1 .k } \ triedColors[ e ] do 

9: edgeColors[ e ] ← c 

10: if Conflict( c, G , edgeColors) then � Check if a conflict occurs 

11: edgeColors[ e ] ← ∅ 
12: else 

13: add c to triedColors[ e ] 

14: isColored ← true 
15: goto 18 

16: end if 

17: end for 

18: if !isColored and i > 1 then � If no color is found, continue if not at first edge 

19: edgeColors[edgeOrder[ i − 1 ]] ← ∅ 
20: i = i − 2 � Step up, −2 handles automatic loop increment 

21: else if !isColored and i == 1 then 

22: return “No coloring found”

23: else if isColored and i == edgeOrder.Count then 

24: return edgeColors � A star edge-coloring is found 

25: end if 

26: end for 

27: end procedure 

The main coloring algorithm takes three input parameters: the graph to be colored, the number of colors, and a possible

precoloring of some edges, in order to avoid testing some isomorphic partial colorings; e.g., one may fix the colors on the

edges incident to a vertex of maximum degree. Note also that before calling the function StarColor , we first verify that

the precoloring of the edges is a star edge-coloring. 

Another important part of our algorithm is determining the order of edges (the function GetEdgeOrdering ), in which 

it tries to color them. We order the edges (ignoring the precolored edges) by the number of precolored neighbors (incident

edges) and the number of neighbors appearing earlier in the ordering in a descending order. 

The function Conflict checks if assigning a color to the current edge introduces a conflict, namely, it checks if two

adjacent edges receive the same color, and if a bichromatic 4-path or 4-cycle appears. In some cases, we manually controlled

the different cases of precolored edges. If we established some additional property of a required coloring, e.g., that no 4-path

can be colored with just three colors, we included that in the procedure. 
4 
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Table 1 

The star chromatic index of 

the Cartesian products of two 

paths χ ′ 
st (P m � P n ) . 

m \ n 2 3 4 5 + 

2 3 4 4 4 

3 4 5 5 6 

4 4 5 6 6 

5 + 4 6 6 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

C  
Finally, we also adopted the algorithm to output all possible colorings of a given graph, and in the case of symmetric

graphs, e.g., cycles, we eliminated isomorphic colorings. The remaining colorings were used to test if they can be extended 

to graphs on more vertices. 

4. Cartesian products of paths and cycles 

4.1. Cartesian products of paths 

In a recent paper, Omoomi and Dastjerdi [11] established tight bounds for the star chromatic index of two paths (see

Table 1 ). 

Theorem 4 (Omoomi and Dastjerdi, 2019) . For the graph P m 

� P n , where m and n are integers with 2 ≤ m ≤ n, we have 

χ ′ 
st (P m 

� P n ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

3 , if m = n = 2 ; 
4 , if m = 2 and n ≥ 3 ; 
5 , if m = 3 and 3 ≤ n ≤ 4 ; 
6 , otherwise. 

As a corollary, we establish the lower bound of 6 colors for the Cartesian products, where one factor is a cycle and the

other is a path of length at least 2. 

Corollary 2. For every pair of integers m and n, where m ≥ 3 and n ≥ 3, we have 

χ ′ 
st (C m 

� P n ) ≥ 6 . 

Proof. We first note that the graph C 3 � P 2 is one of the two known examples of simple bridgeless cubic graphs that have

star chromatic index equal to 6 [9] . Then, for m = 3 , by Observation 1 , we have χ ′ 
st (C 3 � P n ) ≥ χ ′ 

st (C 3 � P 2 ) = 6 . 

If m = 4 , we proceed by a contradiction. Suppose that χ ′ 
st (C 4 � P n ) ≤ 5 . Then, by Lemma 1 , χ ′ 

st (C 4 � � P n ) ≤ 5 , for any

integer � , and hence also χ ′ 
st (P 5 � P n ) ≤ 5 , a contradiction. Finally, if m ≥ 5, then we have χ ′ 

st (C m 

� P n ) ≥ χ ′ 
st (P 5 � P 3 ) = 6 by

Theorem 4 and Observation 1 . �

4.2. Cartesian products of cycles 

Having the Cartesian products of paths resolved, the logical direction of research is consideration of cylinders and toroidal 

grids, i.e., the Cartesian products of cycles and paths, and the Cartesian products of two cycles. We begin by giving some

results about the latter. 

Corollary 2 implies that the Cartesian product of any two cycles will need at least 6 colors for a star edge-coloring. On

the other hand, as we will show in this section, the star chromatic index of the Cartesian product of two cycles is at most

7. We first investigate the Cartesian products of C 3 with another cycle. 

Theorem 5. For every integer n, where n ≥ 3, we have 

χ ′ 
st (C 3 � C n ) = 

{
6 , if n = 3 k , 
7 , otherwise 

Proof. By Corollary 2 , χ ′ 
st (C 3 �C n ) ≥ 6 . Now suppose that n = 3 k for some integer k ≥ 1. If k = 1 , then there is a star 6-

edge-coloring of C 3 � C 3 (one is depicted in Fig. 1 (a)). Next, by Lemma 1 , we have χ ′ 
st (C 3 �C n ) = 6 . 

Using Algorithm 1 , we infer that the Cartesian product C 3 � P 3 has only one star 6-edge-coloring up to a permutation of

colors. Namely, three colors, say 0, 1, and 2, appear on C 3 -fibers, and the colors 4, 5, and 6 on the P 3 -fibers. Since C 3 � P 3 
is a subgraph of every graph C 3 � C n , it follows that such Cartesian products admit a star 6-edge-coloring only when n is

divisible by 3. 

Therefore, if n  = 3 k for every integer k , then χ ′ 
st (C 3 �C n ) ≥ 7 . In Fig. 1 (d) and 1 (e), a star 7-edge-coloring of C 3 � C 7 and

 �C , respectively, is depicted. Observe that, in both colorings, a star 6-edge-coloring of C �C is included. Hence, by
3 8 3 3 

5 



P. Holub, B. Lužar, E. Mihaliková et al. Applied Mathematics and Computation 392 (2021) 125741 

Fig. 1. Cartesian products of C 3 with cycles. 

 

 

 

C  
Lemma 2 and Theorem 2 , we have χ ′ 
st (C 3 �C n ) = 7 for every n, n ≥ 7, not divisible by 3. The remaining two cases, namely

n = 4 and n = 5 , are depicted in Fig. 1 (b) and 1 (c), respectively. �

Similarly as in the proof of Theorem 5 , we can use Lemma 1 (twice) to extend the star edge-coloring of C 3 �C 3 to

products of cycles of lengths divisible by 3. 

Corollary 3. For every pair of positive integers k and � , we have 

χ ′ 
st (C 3 k � C 3 � ) = 6 . 

We proceed with a result about the Cartesian products of C 4 with another cycle. 

Theorem 6. For every pair of positive integers k and � , where k ≥ 1 and � ≥ 2, we have 

χ ′ 
st (C 4 k � C 2 � ) = 6 . 

Proof. We use the star 6-edge-coloring σ 10 of C 4 �C 10 depicted in Fig. 3 . Note that σ 10 includes a star 6-edge-coloring

 4 �C 4 , and a star 6-edge-coloring C 4 � C 6 . Therefore, by Lemma 2 and Theorem 2 , we have χ ′ 
st (C 4 � C 2 � ) = 6 for every

integer � ≥ 4. Finally, we use Lemma 1 to infer χ ′ 
st (C 4 k �C 2 � ) = 6 for every integer k . �
6 
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Proposition 1. For n ∈ {5, 7, 9, 11}, we have 

χ ′ 
st (C 4 � C n ) = 7 . 

Proof. Using Algorithm 1 , we established that χ ′ 
st (C 4 � C n ) > 6 for every n ∈ {5, 7, 9}. The bounds χ ′ 

st (C 4 �C n ) = 7 follow

from the star 7-edge-colorings depicted in Fig. 2 (a), 2 (c), and 2 (d). 

In the case of n = 11 , we split the computation in two steps. First, using Algorithm 1 , we determined that if the edges

of some C 11 -fiber are colored in such a way that a same color appears twice on some 4-path, then the coloring cannot

be extended to a star 6-edge-coloring of C 4 �C 11 . In the second step, the algorithm checked only the colorings in which

every 4-path in each C 11 -fiber had four colors on its edges. It turned out that such a coloring does not exist. Therefore,

χ ′ 
st (C 4 �C 11 ) = 7 by the star edge-coloring depicted in Fig. 2 (c) and Lemma 1 . �

Theorem 7. For any odd integer n, where n ≥ 13, we have 

χ ′ 
st (C 4 � C n ) ≤ 7 . 

Proof. In Fig. 2 (c), we present a star 7-edge-coloring of C 4 � C 7 with a star 7-edge-coloring of C 4 � C 4 included. Thus, by

Lemma 2 and Theorem 2 , we infer that χ ′ 
st (C 4 �C n ) ≤ 7 for every odd n , where n > 18. Colorings for n ∈ {13, 15, 17} can be

obtained by using Lemma 2 and the colorings depicted in Fig. 2 (a) (for n = 15 ) and 2 (d) (for n ∈ {13, 17}). �

Theorem 8. For every integer n, where n ≥ 3, we have 

χ ′ 
st (C 5 � C n ) = 7 . 

Proof. The lower bounds χ ′ 
st (C 5 �C n ) > 6 for 3 ≤ n ≤ 6, were established using Algorithm 1 . For n ≥ 7, using Algorithm 1 ,

we infer that χ ′ 
st (C 5 � P n ) ≥ 7 . Therefore, by Observation 1 , we have χ ′ 

st (C 5 �C n ) ≥ 7 . 

Star 7-edge-colorings of C 5 �C m 

, for m ∈ {3, 4, 5, 7, 11}, are depicted in Figs. 1 (c), 2 (a), 4 (a), 4 (b), and 4 (c), respectively. By

Lemma 1 , we also infer star 7-edge-colorings of C 5 �C m 

for m ∈ {6, 8, 9, 10}. Finally, since in Fig. 4 (b), a star 7-edge-coloring

of C 5 �C 3 is included, by Lemma 2 and Theorem 2 , we obtain χ ′ 
st (C 5 � C n ) = 7 for every integer n ≥ 12. �

Theorem 9. For every integer n, where n ≥ 3, we have 

χ ′ 
st (C 6 � C n ) = 

{
6 , if n ≡ 0 mod 3 or n ≡ 0 mod 4 , 
7 , otherwise. 

Proof. By the star 6-edge-colorings depicted in Figs. 1 (a) and 2 (b), and by Lemma 1 , we have χ ′ 
st (C 6 � C n ) = 6 , for every

integer n divisible by 3 or 4. 

Now we show that χ ′ 
st (C 6 �C n ) > 6 if n is not divisible by 3 or 4. First, we consider the graph C 6 � P 31 , where

P 31 = v 1 . . . v 31 . We start with a precolored C 6 -fiber at the vertex v 16 (i.e., the middle C 6 -fiber) using each of the nine pos-

sible star 6-edge-colorings of C 6 (up to symmetries and permutations of colors). Using Algorithm 1 , we tried to extend

such a precoloring to the whole C 6 � P 31 . For five colorings of the C 6 -fiber, namely for (0,1,0,2,0,3), (0,1,0,2,1,2), (0,1,0,2,1,3),

(0,1,2,0,1,3), and (0,1,2,0,3,4), we obtain that such precolorings cannot be extended. 

For the remaining four precolorings, namely (0,1,0,2,3,2), (0,1,0,2,3,4), (0,1,2,0,1,2), and (0,1,2,3,4,5), we obtain 27 078 col- 

orings of C 6 � P 31 in total. Some of them are either 4-, or 6-periodical, i.e., the initial coloring repeats on every 4-th or 6-th

fiber, except at the final three fibers on both sides, where the coloring restrictions are relaxed. 

The remaining 26 ,448 colorings correspond to the precoloring (0,1,2,3,4,5), and moreover, all C 6 -fibers are colored by 

shifts of this precoloring, and every pair of adjacent C 6 -fibers is either colored with the same sequence of colors, or the

coloring of one is the coloring of the other shifted by 1. In a more detailed analysis of these colorings, we find that, if they

are periodic, then the period must be a multiple of 6. 

Thus, for the graphs C 6 �C n , it follows that they are star 6-edge-colorable if n is divisible by 3 or 4. Otherwise they are

not star 6-edge-colorable. �

Theorem 10. For every integer n, where n ≥ 3, we have 

χ ′ 
st (C 7 � C n ) = 7 . 

Proof. The lower bounds χ ′ 
st (C 7 �C n ) > 6 , for n ∈ {3, 4, 5, 6}, were established using Algorithm 1 . For n ≥ 7, using

Algorithm 1 , we infer that χ ′ 
st (C 7 � P n ) ≥ 7 . Therefore, by Observation 1 , we have χ ′ 

st (C 7 �C n ) ≥ 7 . 

Star 7-edge-colorings of C 7 �C n , for n ∈ {3, 4, 5, 7}, are depicted in Figs. 1 (d), 2 (c), 4 (b), and 5 , respectively. By Lemma 1 ,

from these colorings, we also infer star 7-edge-colorings of C 7 �C n for n ∈ {6, 8, 9, 10}. Moreover, in the coloring depicted in

Fig. 6 , a star 7-edge-coloring of C 7 � C 11 is included, and hence we also have χ ′ 
st (C 7 �C 11 ) = 7 . Finally, since in the coloring

depicted in Fig. 5 , a star 7-edge-coloring of C 7 �C 3 is included, by Lemma 2 and Theorem 2 , we have χ ′ 
st (C 7 �C n ) = 7 for

every n ≥ 12. �

Proposition 2. For C 8 �C 9 , we have 

χ ′ 
st (C 8 � C 9 ) = 7 . 
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Fig. 2. Cartesian products of C 4 with cycles. 
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Fig. 3. A star 6-edge-coloring of C 4 � C 10 combined of star edge-colorings of C 4 � C 4 (lighter vertices) and C 4 � C 6 (darker vertices). 

Fig. 4. Cartesian products of C 5 with cycles. 

9 



P. Holub, B. Lužar, E. Mihaliková et al. Applied Mathematics and Computation 392 (2021) 125741 

Fig. 5. A star 7-edge-coloring of C 7 � C 7 including a star edge-coloring of C 3 � C 7 (darker vertices in horizontal direction) and a star edge-coloring of C 7 � C 3 
(darker vertices in vertical direction). 

 

 

 

 

 

 

 

 

Proof. We determined that χ ′ 
st (C 8 � C 9 ) ≥ 7 by exhaustive computer search. Namely, we generated all 147 non-isomorphic 

star 6-edge-colorings of C 9 and tried to extend each of them to the graph C 8 � C 9 . None of them could be extended, thus

χ ′ 
st (C 8 �C 9 ) ≥ 7 . The equality follows from Lemma 1 and the fact that χ ′ 

st (C 4 � C 9 ) = 7 . �

Finally, we give a general result, showing that 7 is the upper bound for the star chromatic index of the Cartesian products

of any two cycles. 

Theorem 11. For every pair of positive integers m and n, where 3 ≤ m ≤ n, we have 

χ ′ 
st (C m 

�C n ) ≤ 7 . 

Proof. By Theorems 5 –10 , we have χ ′ 
st (C m 

� C n ) ≤ 7 for 3 ≤ m ≤ 7 and n ≥ 3. Furthermore, by Lemma 1 , we can

use Theorem 7 to obtain a star 7-edge-coloring of C 8 � C n , Theorem 5 to obtain a star 7-edge-coloring of C 9 � C n , and

Theorem 8 to obtain a star 7-edge-coloring of C 10 � C n , for every n ≥ 3. The star 7-edge-coloring of C 11 � C 11 is depicted

in Fig. 6 . 

We complete the proof by showing that χ ′ 
st (C m 

� C n ) ≤ 7 if m, n ≥ 12. Note that the star 7-edge-coloring of C 7 � C 7 
depicted in Fig. 5 , includes a 7-edge-coloring of C 3 �C 7 and a 7-edge-coloring of C 7 � C 3 . Furthermore, the latter two col-

orings include a common star 7-edge-coloring of C 3 �C 3 . This fact enables us to use Lemma 2 and Theorem 2 to obtain

χ ′ 
st (C m 

� C n ) ≤ 7 for m, n ≥ 12. �

The above results are summarized in Table 2 . 

4.3. Cartesian products of cycles and paths 

In the last part of this section, we give results about the Cartesian products of paths and cycles. We begin with proving

the cases for specific lengths of cycles. 
10 
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Fig. 6. A star 7-edge-coloring of C 11 � C 11 including a star edge-coloring of C 7 � C 11 (all darker vertices), which furthermore includes a star edge-coloring 

of C 3 � C 11 (the darkest vertices above). 

Table 2 

The star chromatic index of the Cartesian products of cycles 

χ ′ 
st (C m � C n ) . In red, we denote the cases, where the exact bounds 

are not established yet. The value 7 − means that the exact value 

of the star chromatic index is either 6 or 7. 

m \ n 3 4 5 6 7 8 9 10 11 12 

3 6 7 7 6 7 7 6 7 7 6 

4 7 6 7 6 7 6 7 6 7 6 

5 7 7 7 7 7 7 7 7 7 7 

6 6 6 7 6 7 6 6 7 7 6 

7 7 7 7 7 7 7 7 7 7 7 

8 7 6 7 6 7 6 7 6 7 − 6 

9 6 7 7 6 7 7 6 7 − 7 − 6 

10 7 6 7 7 7 6 7 − 7 − 7 − 6 

11 7 7 7 7 7 7 − 7 − 7 − 7 − 7 −

12 6 6 7 6 7 6 6 6 7 − 6 
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Theorem 12. For every pair of integers k and n, where k ≥ 2 and n ≥ 3, we have 

χ ′ 
st (C 2 k � P n ) = 6 . 

Proof. By Corollary 2 , we have χ ′ 
st (C 2 k � P n ) ≥ 6 . On the other hand, 6 colors also suffice by Theorem 6 , since C 2 k � P n is a

subgraph of C 2 k � C 4 � for every � ≥ n /4. �

Theorem 13. For every pair of integers k and n, where n ≥ 3, we have 

χ ′ 
st (C 3 k � P n ) = 6 . 

Proof. By Corollary 2 , we have χ ′ 
st (C 3 k � P n ) ≥ 6 . On the other hand, 6 colors also suffice by Corollary 3 , since C 3 k � P n is a

subgraph of C 3 k � C 3 � for every � ≥ n /3. �

Theorem 14. For every integer n, where n ≥ 3, we have 

χ ′ 
st (C 5 � P n ) = 

{
6 , if n ∈ { 3 , 4 , 5 , 6 } , 
7 , if n ≥ 7 . 

Proof. Let G = C 5 � P n for some integer n ≥ 3. Suppose first that n ∈ {3, 4, 5, 6}. By Theorem 4 , we have χ ′ 
st (P 3 � P 5 ) = 6 ,

and thus, since P 5 � P 3 is a subgraph of G , it follows that χ ′ 
st (G ) ≥ 6 . On the other hand, in Fig. 7 (a), we give a star 6-

edge-coloring of C 5 � P 6 , hence establishing χ ′ 
st (C 5 � P n ) = 6 for every n ∈ {3, 4, 5, 6}. Now, suppose that n ≥ 7. Using

Algorithm 1 , we infer that χ ′ 
st (C 5 � P n ) ≥ 7 . The upper bound χ ′ 

st (C 5 � P n ) ≤ 7 follows from the fact that χ ′ 
st (C 5 �C 5 k ) = 7 for

every positive integer k (see Theorem 8 and Fig. 4 (a)). �

Theorem 15. For every integer n, where n ≥ 3, we have 

χ ′ 
st (C 7 � P n ) = 

{
6 , if n ∈ { 3 , 4 , 5 , 6 } , 
7 , if n ≥ 7 . 

Proof. Let G = C 7 � P n for some integer n ≥ 3. Suppose first that n ∈ {3, 4, 5, 6}. Since χ ′ 
st (P 3 � P 5 ) = 6 , we again have

χ ′ 
st (G ) ≥ 6 . On the other hand, in Fig. 7 (b), we give a star 6-edge-coloring of G , and hence χ ′ 

st (G ) = 6 for every n ∈ {3,

4, 5, 6}. Suppose now that n ≥ 7. Using Algorithm 1 , we infer that χ ′ 
st (C 7 � P 7 ) = 7 , and hence χ ′ 

st (G ) ≥ 7 . The equality is

established by Fig. 1 (d), where a pattern for a star 7-edge-coloring of C 7 � C 3 k is presented. Since G is a subgraph of C 7 � C 3 k ,

for k large enough, the statement follows. �

We now turn our attention to the Cartesian products of cycles and paths P m 

, for m ∈ {2, 3, 4}. 

Theorem 16. For every integer m, where m ≥ 3, we have 

χ ′ 
st (C m 

� P 2 ) = 

{ 

6 , if m = 3 , 
4 , if m ≡ 0 mod 4 , 
5 , otherwise. 

Proof. For m = 3 , recall that χ ′ 
st (C 3 � P 2 ) = 6 . If m ≡ 0 mod 4 , then the graph C m 

� P 2 covers the graph Q 3 , and hence its

star chromatic index equals 4 by Theorem 3 . Finally, if m ≡ 0 mod 4 , by Theorem 3 , we have χ ′ 
st (C m 

� P 2 ) ≥ 5 . The equality

follows from Theorem 7 in [11] . �

Theorem 17. For every pair of integers m and n, where m ≥ 3 and n ∈ {3, 4, 5, 6}, we have 

χ ′ 
st (C m 

� P n ) = 6 . 

Proof. First, recall that 6 colors are needed in all the cases by Corollary 2 . Next, since C m 

� P 6 contains all the graphs C m 

� P n ,

for n ∈ {3, 4, 5}, it suffices to show that there exists a star 6-edge-coloring of C m 

� P 6 . 

By Lemma 1, Theorems 5 and 6 , we have χ ′ 
st (C 3 k � P 6 ) = χ ′ 

st (C 4 k � P 6 ) = 6 , for any positive integer k . Similarly, the star

6-edge-colorings depicted in Fig. 7 (a) and 7 (b) together with Lemma 1 imply χ ′ 
st (C 5 k � P 6 ) = χ ′ 

st (C 7 k � P 6 ) = 6 . Furthermore,

using the star 6-edge-coloring of C 10 � P 6 depicted in Fig. 7 (c), which includes a star 6-edge-coloring of C 3 � P 6 , we ob-

tain χ ′ 
st (C m 

� P 6 ) = 6 for every m ∈ {10, 13, 16}. Moreover, together with Lemma 2 and Theorem 2 , this coloring implies

χ ′ 
st (C m 

� P 6 ) = 6 for every m ≥ 18. For the remaining two cases, namely m ∈ {11, 17}, the corresponding colorings are de-

picted in Fig. 8 (a) and 8 (b) (note that, in fact, we have even more, namely, we give a star 6-edge-coloring of C 11 � P 8 and a

star 6-edge-coloring of C 14 � P 8 which includes a star 6-edge-coloring of C 3 � P 8 ). �

We collect known and our new results in Table 3 . 

5. Conclusion 

In this paper, we have established tight upper bounds for the Cartesian product of cycles and paths, and the Cartesian

products of two cycles. We proved that 7 colors always suffice for star edge-colorings of these graphs, which is, in a way, a

surprising bound, especially because at least 6 colors are always needed as soon as one of the factors is not isomorphic to
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Table 3 

The star chromatic index of the Cartesian products of cycles and paths χ ′ 
st (C m � P n ) . In red, 

we denote the cases, where the exact bounds are not established yet. The value 7 − means 

that the exact value of the star chromatic index is either 6 or 7. 

m \ n 2 3 4 5 6 7 8 9 + 

3 6 6 6 6 6 6 6 6 

4 4 6 6 6 6 6 6 6 

5 5 6 6 6 6 7 7 7 

6 5 6 6 6 6 6 6 6 

7 5 6 6 6 6 7 7 7 

8 4 6 6 6 6 6 6 6 

9 5 6 6 6 6 6 6 6 

10 5 6 6 6 6 6 6 6 

11 5 6 6 6 6 6 6 7 −

12 4 6 6 6 6 6 6 6 

13 5 6 6 6 6 7 − 7 − 7 −

14 5 6 6 6 6 6 6 6 

15 5 6 6 6 6 6 6 6 

16 4 6 6 6 6 6 6 6 

17 5 6 6 6 6 6 6 7 −

18 5 6 6 6 6 6 6 6 

19 + and m ≡ 0 mod 4 4 6 6 6 6 6 6 6 

19 + and m ≡ r mod 12 , r ∈ {2, 3, 6, 9, 10} 5 6 6 6 6 6 6 6 

19 + and m ≡ r mod 12 , r ∈ {1, 5, 7, 11} 5 6 6 6 6 7 − 7 − 7 −

 

 

 

 

 

 

 

 

P 2 . Although we improved existing bounds and proved a number of exact values, there are still some open questions. We

are very confident that the following conjecture is true. 

Conjecture 1. There exist constants K 1 and K 2 such that for every pair of integers m and n, where m ≥ K 1 and n ≥ K 2 , we

have 

χ ′ 
st (C m 

� P n ) = 6 . 

Note that Conjecture 1 is equivalent to the following. 

Conjecture 2. There exists a constant K such that for every integer m, where m ≥ K, there exists an integer n such that 

χ ′ 
st (C m 

�C n ) = 6 . 

In fact, we believe (with a bit lower confidence) that the following stronger version of Conjecture 1 can also be con-

firmed. 

Conjecture 3. There exists a constant L such that for every pair of integers m and n, where m, n ≥ L, we have 

χ ′ 
st (C m 

�C n ) = 6 . 

The above conjectures seem to be challenging, since we were not able to observe any straightforward pattern in colorings 

of different Cartesian products, despite the help of computer in our constructions. 

There are also some (maybe) less complicated open questions regarding the Cartesian product of the cycles C m 

, m ∈ {11,

13, 17}, with paths of arbitrary lengths. 

Question 2. What is the star chromatic index of C m 

� P n for m ∈ {11, 13, 17} and n ≥ 7? 

As we observed in Theorems 14 and 15 , the star chromatic index increases for the Cartesian products of the cycles C 5 
and C 7 with paths on at least 7 vertices. We expect this phenomenon will repeat also for some cycle C m 

, where m ∈ {11, 13,

17}, although, in the case of C 11 and C 17 , we found star 6-edge-colorings of C 11 � P 8 and C 17 � P 8 , which could indicate that

6 colors are sufficient in these cases. 

To conclude, as in the case of complete graphs, also for the Cartesian products of paths and cycles (and two cycles), it

is hard to determine their chromatic index with our current methods. However, it seems that the latter will be easier to

resolve as the former. 
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Appendix A. Cartesian products of two cycles 

Fig. 7. Cartesian products of cycles and P 6 . 
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Appendix B. Cartesian products of paths and cycles 

Fig. 8. Cartesian products of cycles and P 8 . 
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