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Abstract: We obtain a generalization of the Picone inequality which, in combination with the classical
Picone inequality, appears to be useful for problems with the ( )p q, -Laplace-type operators. With its help,
as well as with the help of several other known generalized Picone inequalities, we provide some
nontrivial facts on the existence and nonexistence of positive solutions to the zero Dirichlet problem for
the equation − − = ( ∇ )u u f x u uΔ Δ , ,p q μ in a bounded domain �⊂Ω N under certain assumptions on the

nonlinearity and with a special attention to the resonance case ( ∇ ) = ( )| | + | |− −f x u u λ p u u μ u u, ,μ
p q

1
2 2 ,

where ( )λ p1 is the first eigenvalue of the p-Laplacian.
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1 Picone inequalities

Throughout this section, we denote by Ω a nonempty connected open set in �N , ≥N 1. The current
classical version of the Picone inequality (also commonly referred to as the Picone identity) for the
p-Laplacian can be stated as follows.

Theorem 1.1. [1, Theorem 1.1] Let >p 1 and let u v, be differentiable functions in Ω such that >u 0, ≥v 0.
Then
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|∇ | ∇ ∇ ≤ |∇ |−
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u u v
u

v .p
p

p
p2

1 (1.1)

Moreover, the equality in (1.1) is satisfied in Ω if and only if ≡u kv for some constant >k 0.

In the linear case =p 2, inequality (1.1) is a direct consequence of the simple identity
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(1.2)

whose one-dimensional version was used by M. Picone in [2, Section 2] to prove the Sturm comparison
theorem. Subsequently, due to the nontrivial and convenient choice of the test function −

v
u

p

p 1 , identity (1.2)
and inequality (1.1) appeared to be effective in the study of many other properties of various ordinary and
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partial differential equations and systems of both linear and nonlinear nature. In particular, one can
mention the uniqueness and nonexistence of positive solutions, Hardy-type inequalities, bounds on
eigenvalues, Morse index estimates, etc. Such a wide range of applications particularly motivated a search
of reasonable generalizations of the Picone inequality, see, e.g., the works in [3–11], although this list is far
from being comprehensive.

On the other hand, during the last few decades, there has been growing interest in the investigation of
various composite-type operators such as the sum of the p- and q-Laplacians with ≠p q, the so-called
( )p q, -Laplacian. The motivation for corresponding studies comes from both the intrinsic mathematical
interest and applications in natural sciences, see, for instance, [12–19] and references therein, to mention
a few. Clearly, most of the properties indicated above can be posed for problems with such operators, too.
It is then natural to ask which generalizations of the Picone inequality are favourable to be applied to the

( )p q, -Laplacian. If one tries to use −

v
u

p

p 1 or −

v
u

q

q 1 as a test function, then, taking into account (1.1), the

following two quantities have to be estimated:
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There are at least two known generalized Picone inequalities in this regard. The first one was obtained in
[7], where its equivalence to two convexity principles for variational integrals is also shown. Its particular
form can be stated as follows.

Theorem 1.2. [7, Proposition 2.9 and Remark 2.10] Let >p q, 1 and let u v, be differentiable functions in Ω
such that >u 0, ≥v 0. If ≤q p, then


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|∇ | ∇ ∇ ≤ |∇ | +
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|∇ |−
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1 (1.3)

Remark 1.3. Although the case of equality in (1.3) is not discussed in [7], one can show that if <q p, then
the equality in (1.3) is satisfied in Ω if and only if ≡u v.

The second generalization of (1.1) was obtained in [8] in the context of study of an equation with
indefinite nonlinearity. Later, this result was also applied in [5] to an eigenvalue problem for the
( )p q, -Laplacian.

Theorem 1.4. [8, Lemma 1] Let >p q, 1 and let u v, be differentiable functions in Ω such that >u 0, ≥v 0. If
≤p q, then
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Moreover, the equality in (1.4) is satisfied in Ω if and only if ≡u kv for some constant >k 0.

Remark 1.5. For convenience of further applications of (1.4), we rewrite it, assuming ≤q p, as follows:
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(1.5)

Note that both (1.3) and (1.4) turn to the Picone inequality (1.1) when =p q. Moreover, we emphasize
that (1.3) requires ≤q p, while (1.4) asks for ≤p q. Our main result, Theorem 1.8, posits the fact that
inequality (1.4) remains valid for some >p q, although the set of feasible values of p and q is not of a
trivial structure (Figure 1). This set is defined and characterized in the following lemma.
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Lemma 1.6. Let >q 1 be fixed. Let the function �[ +∞) × ( +∞) →g : 0, 1, be defined as

( ) = ( − ) + − ( − ) + ( − + )−g s p q s qs p q s q p; 1 1 ,p p 1

let

( ) ≔ { >   ( ) ≥     ≥ }I q p g s p for all s1 : ; 0 0 ,

and set = ( ) ≔ { > ∈ ( )}p p q p p I q˜ ˜ sup 1 : . Then { } < < +q p qmax 2, ˜ 1. Moreover, there exists ∈ ( ]q̃ 1, 2 such
that the following assertions hold:
(i) if <q q̃, then there exist = ( )∗ ∗p p q and = ( )∗ ∗p p q satisfying < < <∗

∗q p p 2 such that ( ] ∪ [ ] ⊂∗
∗p p p1, , ˜

( )I q and ( ) ⊄ ( )∗
∗p p I q, ;

(ii) if ≥q q̃, then ( ) = ( ]I q p1, ˜ .

Furthermore, if < <q q1 1 2 and ∈ ( )p I q1 , then ∈ ( )p I q2 , i.e., ( ) ⊂ ( )I q I q1 2 .
In particular, each of the following two explicit assumptions is sufficient to guarantee that ∈ ( )p I q :

(I) < < ≤q p1 2 and ≤ + ( − )− −p q q q 1p p1 2 ;
(II) ≤ < +p q2 1 and ( + − ) ≥ ( − )− −q p q p q1 p p2 1.

Remark 1.7. Assertions (i) and (ii) of Lemma 1.6 yield ∈ ( )I q2 for any >q 1. A numerical investigation of
the function g indicates that = …q̃ 1.051633991 and that ∗

∗p p, in assertion (i) can be chosen such that

( ) ∩ ( ) = ∅∗
∗p p I q, , that is, if <q q̃, then ( ) = ( ] ∪ [ ]∗

∗I q p p p1, , ˜ (Figure 1).

Now we are ready to state our main result.

Theorem 1.8. Let >p q, 1 and let u v, be differentiable functions in Ω such that >u 0, >v 0. Assume that
one of the following assumptions is satisfied:
(i) ∈ ( )p I q , where ( )I q is given by Lemma 1.6;
(ii) ≤ +p q 1 and ∇ ∇ ≥u v 0.

Then
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(1.6)

Moreover, if < +p q 1 and ∇ ∇ ≥u v 0, then the equality in (1.6) is satisfied in Ω if and only if ≡u kv for some
constant >k 0.

Furthermore, assumptions (i) and (ii) are optimal in the following sense:
(I) if ∉ ( )p I q , then there exist u v, and a point ∈x Ω such that (1.6) is violated at x;
(II) if > +p q 1, then there exist u v, with ∇ ∇ ≥u v 0 and a point ∈x Ω such that (1.6) is violated at x.

Figure 1: The grey set schematically depicts the set of points p q,( ) with p I q∈ ( ).
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A closer look at the proof of Theorem 1.8(ii) reveals that inequality (1.6) remains valid under
assumption (ii) also for =q 1. In fact, even the following stronger result, which reduces to the
commutativity of the scalar product in ( )W Ω1,2 at =p 2, can be obtained by the same method of proof.

Proposition 1.9. Let u v, be differentiable functions in Ω such that >u 0, >v 0, and ∇ ∇ ≥u v 0. Then the
following assertions hold:
(i) if ∈ ( ]p 1, 2 , then

|∇ | ∇ ∇ ≤ |∇ | ∇ ∇( )− − − −u u v v v u v ;p p p p2 2 1 2 (1.7)

(ii) if ≥p 2, then

|∇ | ∇ ∇ ≥ |∇ | ∇ ∇( )− − − −u u v v v u v .p p p p2 2 1 2 (1.8)

Moreover, if ≠p 2, then the equality in (1.7) or (1.8) is satisfied in Ω if and only if ≡u kv for some constant
>k 0.

Apart from the choice of −

v
u

p

p 1 or −

v
u

q

q 1 as a test function, one could also consider more general test

functions of the form
( )

v
f u

p
or

( )

v
f u

q
. In this direction, the following partial case of a generalized Picone

inequality obtained in [10] by applying an inequality from [9, Lemma 2.1] can be effectively used.

Theorem 1.10. [10, Theorem 2.2] Let >p 1 and let u v, be differentiable functions in Ω such that >u 0,
≥v 0. Assume that ∈ ( +∞)f C 0,1 satisfies ( ) ′( ) >f s f s, 0 for all ∈ ( +∞)s 0, . Then
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Moreover, the equality in (1.9) is satisfied in Ω if and only if ( ) ≡ −f u kvp 1 for some constant >k 0.

Remark 1.11. Let >q 1. Since = ( )/v vp p q q, we get from (1.9) the complementary inequality
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Note that the term |∇( )|/vp q is well-defined if either ≤q p and ≥v 0, or ≠q p and >v 0. In particular, under
any of these assumptions, taking ( ) = −f s sp 1, we obtain
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Moreover, under the assumption <q p, the application of Young’s inequality gives
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Evidently, (1.11) and (1.12) reduce to the Picone inequality (1.1) if =q p.

As a complementary fact, we provide the following optimal refinement of a generalized Picone
inequality obtained in [5, Proposition 8], by analysing the right-hand sides of inequalities (1.9) and (1.10).

Proposition 1.12. Let >p q, 1, >α β, 0, and let u v, be differentiable functions in Ω such that >u 0, ≥v 0. If
<q p, then









|∇ | ∇ ∇

+
≤ |∇ |−

− −
u u v

αu βu αC
v1p
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p q
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1 1
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and




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
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where =C 1 if ≤ +p q 1, and =
( − ) ( − )
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−

−C q p q
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2

2 if ≥ +p q 1.

Finally, let us note that the Picone inequality (1.1) can be used to derive the Díaz-Saa inequality [20]:









∫ − + ( − ) ≥

− −

w
w

w
w

w w x
Δ Δ

d 0,p
p
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p p
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1

1
1

2

2
1 1 2 (1.13)

which, in particular, holds (in the sense of distributions) for all ∈ ( )w w W, Ωp
1 2 0

1, such that >w 0i a.e. in Ω,
and ∈ ( )∞L, Ωw

w
w
w

1

2

2

1
, assuming that Ω is smooth and bounded, see [21, Theorem 2.5]. Inequality (1.13)

appeared to be a useful tool in the study of uniqueness of positive solutions to boundary value problems
with the p-Laplacian. Its generalization to the ( )p q, -Laplacian, together with the corresponding
applications, was obtained in [17], see also [3,21]. Under the same assumptions on w w,1 2 and Ω as
above, it can be stated as follows. If < <q p1 and >μ 0, then









∫ −

+
+

+
( − ) ≥

− −

w μ w
w

w μ w
w

w w x
Δ Δ Δ Δ

d 0.p q
q

p q
q

q q

Ω

1 1

1
1

2 2

2
1 1 2 (1.14)

Inequality (1.14) can be established by applying the generalized Picone inequality (1.3).
The rest of the article is organized as follows. In Section 2, we prove Theorem 1.8 and Lemma 1.6. In

Section 3, we provide several applications of Theorem 1.8, as well as of Theorems 1.2 and 1.4, to problems
with the ( )p q, -Laplacian.

2 Proofs of Theorem 1.8 and Lemma 1.6

Proof of Theorem 1.8. Since the case ≤p q is covered by Theorem 1.4, we will assume hereinafter that
>p q. Moreover, under any of the assumptions (i) and (ii), p has the upper bound ≤ +p q 1 (see Lemma

1.6 in the case of assumption (i)).
By straightforward calculations, we get

   

















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and
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We see from (2.1) and (2.2) that the desired inequality (1.6) is equivalent to
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(2.3)

Dividing by −v uq p q, we reduce (2.3) to
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1 1 .
p p p p2 2

(2.4)
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Recalling that − + ≥q p 1 0, we see that (2.4) is satisfied if its left-hand side is nonpositive. Therefore, let
us assume that the left-hand side of (2.4) is positive. In particular, we have ∇ ∇ ≠u v 0, and hence
|∇ | |∇ | >u v, 0. We consider two separate cases.

(1) Suppose that

  












∇ ∇ >
|∇ |

− ( − )
|∇ |

>
− −

u v q u
u

p q v
v

0 and 0.
p p2 2

In this case, in order to validate (2.4) it is sufficient to prove that

      
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
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
























|∇ ||∇ | |∇ |
− ( − )

|∇ |
≤ ( − )

|∇ |
+ ( − + )

|∇ |− −u v
uv

q u
u

p q v
v

q u
u

q p v
v

1 1 .
p p p p2 2

(2.5)

Denoting =
|∇ |

|∇ |
s u

u
v
v , we see that (2.5) holds provided

( ) ≔ ( − ) − + ( − ) + ( − + ) ≥   ≥−f s q s qs p q s q p s1 1 0 for all 0.p p 1 (2.6)

Let us show that (2.6) is satisfied. We have









″( ) = ( − )( − ) − ( − )( − ) > >
( − )

( − )
− −f s p p q s q p p s s q p

p q
1 1 1 2 0 if and only if max 0, 2

1
.p p2 3

Combining this strict convexity of f with the facts that ( ) = ′( ) =f f1 1 0 and <
( − )

( − )
1q p

p q
2
1 , we see that









( ) ≥ ≥
( − )

( − )
f s s q p

p q
0 for all max 0, 2

1
,

and the equality ( ) =f s 0 for such s happens if and only if =s 1. In particular, ( ) ≥f s 0 for all ≥s 0

provided ≤p 2. Assume that >p 2. Since f is concave on 





( − )

( − )
0, q p

p q
2
1 , ( ) >

( − )

( − )
f 0q p

p q
2
1 , ( ) >f 0 0 for

< +p q 1, and ( ) =f 0 0 for = +p q 1, we conclude that









( ) ≥ ∈

( − )

( − )
f s s q p

p q
0 for all 0, 2

1
,

and the equality ( ) =f s 0 for such s happens if and only if =s 0 and = +p q 1. Thus, we have derived
that ( ) ≥f s 0 for all ≥s 0 provided ≤ +p q 1. In particular, this implies that (1.6) is satisfied under
assumption (ii). Moreover, we have shown that if < +p q 1, then ( ) =f s 0 if and only if =s 1.
Therefore, if < +p q 1, ∇ ∇ ≥u v 0, and the equality in (1.6) is satisfied in Ω, then we conclude that

∇ ∇ = |∇ ||∇ |u v u v and =
|∇ | |∇ |u

u
v

v , which yields ( )∇ = 0v
u in Ω, that is, ≡u kv for some constant >k 0.

(2) Suppose that

  












∇ ∇ <
|∇ |

− ( − )
|∇ |

<
− −

u v q u
u

p q v
v

0 and 0.
p p2 2

(2.7)

To establish (2.4) under assumption (2.7), it is sufficient to show that

      


































|∇ ||∇ |
−

|∇ |
+ ( − )

|∇ |
≤ ( − )

|∇ |
+ ( − + )

|∇ |− −u v
uv

q u
u

p q v
v

q u
u

q p v
v

1 1 .
p p p p2 2

(2.8)

Introducing again the notation =
|∇ |

|∇ |
s u

u
v
v , we see that inequality (2.8) holds if

( ) ≔ ( − ) + − ( − ) + ( − + ) ≥ ≥−g s p q s qs p q s q p s; 1 1 0 for all 0.p p 1 (2.9)

Applying Lemma 1.6, we deduce that (2.9) is satisfied whenever ∈ ( )p I q .

Combining cases (1) and (2), we conclude that (1.6) holds under assumption (i), which finishes the
proof of the first part of the theorem.
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Let us now obtain the optimality of assumptions (i) and (ii) stated in (I) and (II), respectively. Assume
first that ∉ ( )p I q and let ≥s 00 be such that ( ) <g s p; 00 . Consider

( … ) = − ( … ) = +u x x αx v x x x, , 1 and , , 1N N1 1 1 1

for some ≥α 0. Noting that =
|∇ ( )|

( )

( )

|∇ ( )|
αu

u
v
v

0
0

0
0 and taking =α s0, we conclude that the violation of (2.9) at s0

implies the violation of (2.8) at =x 0. On the other hand, we have ∇ ∇ = −|∇ ||∇ |u v u v . Thus, the violation of
(2.8) at =x 0 is equivalent to the violation of (2.4) at =x 0, which, in its turn, is equivalent to the violation
of (1.6) at =x 0. This establishes case (I).

Assume now that > +p q 1. Set ≡ >u const 0 and let >v 0 be any differentiable function not
identically equal to a constant. We readily see that ∇ ∇ ≡u v 0 and (2.3) is violated at points where |∇ | >v 0,
which establishes case (II). □

Now we provide the proof of Lemma 1.6.

Proof of Lemma 1.6. To prove that { } < < +q p qmax 2, ˜ 1, we first note that

( ) = ( − ) + ( − ) + ( − ) ≥ − >g s q s q s q q;2 1 2 1 1 1 0,2 (2.10)

( ) = ( − ) + + ≥−g s q q s qs; 1 1 1,q q 1

for all ≥s 0. This yields ∈ ( )q I q2, , and hence { } ≤q pmax 2, ˜. Second, we have ( ) = − + <g p q p0; 1 0 for
any > +p q 1, which implies that ≤ +p q˜ 1. Third, we see that

( + ) = ( − ) + − < >+g s q q s qs s s; 1 1 0 for all sufficiently small 0,q q1

and

( ) ≥ ( − ) + ( − ) + ( − + ) > ≥ ≤ ≤ +g s p q s q p s q p s p q; 1 2 1 0 for all 1 and 2 1.p (2.11)

Therefore, since g is uniformly continuous on compact subsets of [ ] × ( +∞)0, 1 1, , we conclude that
{ } < < +q p qmax 2, ˜ 1. Moreover, the continuity of g gives ∈ ( )p I q˜ .
Let us prove assertions (i) and (ii). To this end, we note that

( ) > ( ) ∈ [ ] < <g s p g s p s p p; ; for every 0, 1 provided 1 .1 2 1 2 (2.12)

In view of this monotonicity, inequalities (2.10) and (2.11) yield [ ] ⊂ ( )p I q2, ˜ . At the same time, we see that
if ≤p q, then

( ) ≥ ( − ) + − ( − ) ≥ ( − ) + ≥ ≥− −g s p q s qs p q s q s qs s; 1 1 0 for all 0,p p p p1 1

which shows, in particular, that ( ] ⊂ ( )q I q1, . Thus, we deduce that ( ) = ( ]I q p1, ˜ provided ≥q 2. Let us now
define the critical value

= { >   ( ) = ( ]}q q I q p˜ inf 1 : 1, ˜ .

Clearly, ≤q̃ 2. Since q is presented in the function g only as a positive coefficient, we see that ∈ ( )p I q1
implies ∈ ( )p I q2 provided <q q1 2, i.e., ( ) ⊂ ( )I q I q1 2 . Combining this fact with the already obtained
inclusion [ ] ⊂ ( )p I q2, ˜ , we conclude that if >q q̃, then ( ) = ( ]I q p1, ˜ . Note that if q is sufficiently close to 1,
then ( ) ≠ ( ]I q p1, ˜ , and so >q̃ 1. Indeed, choosing, for instance, =q 1.05, we have ( ) = − …g 60;1.3 0.417508 ,
which yields ∉ ( )I q1.3 , and hence ≥ >q̃ 1.05 1. This implies, by the continuity of g, that ( ) = ( ]I q p1, ˜ also
for =q q̃, and this completes the proof of assertion (ii).

Assume now that < <q q1 ˜. In particular, recalling that ≤q̃ 2, we have < <q1 2. We start by showing
that, in addition to (2.11), there exists ∈ ( )p q, 2⁎ with the property that ( ) ≥g s p; 0 for all ≥s 1 and

∈ [ ]∗p p , 2 . Indeed, suppose, by contradiction, that for any �∈n one can find ∈ ( )p q, 2n and ≥s 1n such
that ( ) <g s p; 0n n , and →p 2n as → +∞n . Then { }sn must be bounded, since otherwise ( ) → +∞g s p;n n as

→ +∞n . Therefore, passing to the limit along appropriate subsequences of { }pn and { }sn , we get a
contradiction to (2.11). Thus, the monotonicity (2.12) in combination with (2.10) and (2.11) yields
[ ] ⊂ ( )∗p p I q, ˜ , which establishes the existence of ∗p from assertion (i).
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Now, we show the existence of ∈ ( )∗p q, 2 such that ( ) ≥g s p; 0 for all ≥s 0 and ∈ ( ]∗p q p, . Suppose,
by contradiction, that for any �∈n one can find ∈ ( )p q, 2n and >s 0n satisfying ( ) <g s p; 0n n , and →p qn
as → +∞n . Since the term ( − )p q sn n is the only term in ( )g s p;n n with negative sign, we conclude that

→ +∞sn as → +∞n . But then we deduce that

> ( ) ≥ ( − ) + − ( − ) + ( − ) >−g s p q s qs q s q0 ; 1 2 1 0n n n
q

n
q

n
1

for all sufficiently large n, since ( − )q s1 n
q is the leading term as → +∞sn , which is impossible. Recalling

that ( ] ⊂ ( )q I q1, , we conclude that ( ] ⊂ ( )∗p I q1, . Since <q q̃, we deduce that < < <∗
∗q p p 2 and

( ) ( ) ≠ ∅∗
∗p p I q, \ , which completes the proof of assertion (i).

Finally, we justify the sufficient assumptions (I) and (II).
(I) Let < < ≤q p1 2. Considering the sum of the second and third terms of ( )g s p; , we see that if

≤−

−
s p q

p q
2 , then ( ) ≥g s p; 0. Thus, let us assume that >−

−
s p q

p q
2 and <p 2. Then we have













































( ) ≥ ( − ) − ( − ) =
−

( − )
−

− >
−

( − )
−

− ≥−

+
−

−

g s p q s p q s s p q
q

q s q
p q

q s p q
q

q q
p q

q; 1 1 1 0,p p 1
1p

p
1

2

where the last inequality is satisfied if and only if ≤ + ( − )− −p q q q 1p p1 2 .
(II) Let ≤ < +p q2 1. As in the previous case, we see that if ≥− −sp p q

q
2 , then ( ) ≥g s p; 0. Hence, we

assume that <− −sp p q
q

2 and >p 2. Then we have

( ) ≥ −( − ) + ( − + ) > −
( − )

+ ( − + ) ≥

−

−

−

g s p p q s q p p q
q

q p; 1 1 0,
p
p

p

1
2

1
2

where the last inequality is satisfied if and only if ( + − ) ≥ ( − )− −q p q p q1 p p2 1. □

3 Applications to (p,q)-Laplace equations

Throughout this section, we always assume that < <q p1 and that �⊂Ω N is a smooth bounded domain
with boundary ∂Ω, ≥N 1.

Denote by ∥⋅∥r the standard norm of ( )L Ωr , ≤ ≤ +∞r1 . Let ( )λ r1 with < < +∞r1 stand for the first
eigenvalue of the Dirichlet r-Laplacian in Ω, and let φr be the corresponding first eigenfunction which we
assume to be positive and normalized as ∥∇ ∥ =φ 1r r . That is,













∫

∫
( ) =

|∇ |

| |
  ∈ ( ) { } ( )∥ ∥ = ∥∇ ∥ =λ r

u x

u x
u W λ r φ φinf

d

d
: Ω \ 0 and 1.

r

r
r

r r
r

r r
r

1
Ω

Ω

0
1,

1

Note that ( )λ r1 is simple and ∈ ( )+φ Cint Ω̄r 0
1 , where

{ }
( ) ≔ { ∈ ( )   ( ) = ∈ ∂ }

( ) ≔ ∈ ( )   ( ) > ∈  
∂

∂
( ) < ∈ ∂+

C u C u x x

C u C u x x u
ν

x x

Ω̄ Ω̄ : 0 for all Ω ,

int Ω̄ Ω̄ : 0 for all Ω, 0 for all Ω ,

0
1 1

0
1

0
1

and ν is the unit exterior normal vector to ∂Ω. Finally, for a weight function ∈ ( )m L Ω1 satisfying
∫ ( ) >m x φ xd 0p

q
Ω

, we define

∫

∫

∫

∫
=

|∇ |

( )
=

|∇ |

∗ ∗β
φ x

m x φ x
β

φ x

φ x

d

d
and

d

d
.m p

q

p
q

p
q

p
q

Ω

Ω

Ω

Ω

(3.1)

We remark that > ( )∗β λ q1 , which follows from the simplicity of ( )λ q1 and linear independence of φp and φq,
see [22, Proposition 13].
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3.1 General problem with (p,q)-Laplacian

Consider the boundary value problem





− − = ( ∇ )

= ∂

u u f x u u
u

Δ Δ , , in Ω,
0 on Ω,

p q μ (3.2)

where the function � � �( ) × × →f x s ξ, , : Ωμ
N is sufficiently regular in order that (3.2) possesses a weak

formulation with respect to ( )W Ωp
0
1, and satisfies the following assumption:

(A) there exist �⊆M and ∈ ( )m L Ω1 satisfying ∫ ( ) >m x φ xd 0p
q

Ω
such that

( ) > ( ) + ( )−
∗

−f x s ξ λ p s β m x s, ,μ
p m q

1
1 1

for all ∈μ M , >s 0, �∈ξ N , and a.e. ∈x Ω, where
∗

βm is given by (3.1).

We obtain the following nonexistence result in the class of ( )+Cint Ω̄0
1 -solutions.

Theorem 3.1. Let ∈ ( )p I q , where ( )I q is defined in Lemma 1.6, and let (A) be satisfied. If ∈μ M , then (3.2)
has no solution in ( )+Cint Ω̄0

1 .

Proof. Suppose, by contradiction, that (3.2) possesses a solution ∈ ( )+u Cint Ω̄0
1 for some ∈μ M . Noting

that ∈ ( )∞L Ω
φ
u

p since ∈ ( )+φ u C, int Ω̄p 0
1 , we choose −

φ
u

p
q

q 1 as a test function for (3.2). Applying Theorems 1.1

and 1.8, we get

































∫ ∫

∫ ∫ ∫

∫ ∫

∫ ∫

( ) + ( )

< ( ∇ ) = |∇ | ∇ ∇ + |∇ | ∇ ∇

≤ |∇ | ∇ ∇ + |∇ |

= ( ) + ( )

−
∗

−
−

−
−

−

−

− +

−

−
∗

λ p u φ x β m x φ x

f x u u
φ

u
x u u

φ
u

x u u
φ

u
x

φ φ
φ
u

x φ x

λ p u φ x β m x φ x

d d

, , d d d

d d

d d ,

p q
p
q m

p
q

μ
p
q

q
p p

q

q
q p

q

q

p
p

p
p
q p

q p p
q

p q
p
q m

p
q

1

Ω Ω

Ω
1

Ω

2
1

Ω

2
1

Ω

2
1

Ω

1

Ω Ω

which is impossible. □

Note that we cannot claim that each weak solution of (3.2) belongs to ( )+C Ωint ¯0
1 since we do not

impose suitable “good” assumptions on the function fμ apart from those stated above; see, e.g., [23] for a
related discussion. We also remark that neither of the generalized Picone inequalities (1.3), (1.4), and (1.9)
can be used (at least, as directly as (1.6)) to establish Theorem 3.1.

3.2 Eigenvalue-type problem

In the special case ( ) = ( )| | + | |− −f x s ξ λ p s s μ s s, ,μ
p q

1
2 2 , (3.2) can be seen as an eigenvalue problem for the

( )p q, -Laplacian:





− − = ( )| | + | |

= ∂

− −u u λ p u u μ u u
u

Δ Δ in Ω,
0 on Ω,

p q
p q

1
2 2

(3.3)
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see, e.g., [5,18,22,24]. Note that any nonzero and nonnegative solution of (3.3) belongs to ( )+C Ωint ¯0
1 , see,

for instance, [5, Remark 1] or [18, Section 2.4]. Although in the works in [5,22] by the present authors the
structure of the set of positive solutions to a general version of (3.3) with two parameters has been
comprehensively studied, we were not able to characterize completely the range of values of μ for which
(3.2) possesses a positive solution. Thanks to our generalized Picone inequality (1.6), as well as to
inequalities (1.3) and (1.4), we can provide additional information in this regard.

First, the same reasoning as in Theorem 3.1 allows us to show the following result.

Theorem 3.2. Assume that one of the following assumptions is satisfied:
(i) ∈ ( )p I q , where ( )I q is defined in Lemma 1.6;
(ii) ≤ +p q 1 and Ω is an N-ball.
Then (3.3) has no positive solution for > ∗μ β , where ∗β is given by (3.1). Moreover, if < +p q 1 and Ω is an
N-ball, then (3.3) has no positive solution also for = ∗μ β .

Proof. Let u be a positive solution of (3.3). Recall that ∈ ( )+u C Ωint ¯0
1 . Moreover, under assumption (ii),

both u and φp are radially symmetric with respect to the centre of Ω and nonincreasing in the

corresponding radial direction (see [25, Theorem 3.10]), which yields ∇ ∇ ≥u φ 0p in Ω. Clearly,

( ) = ( )| | + | |− −f x s ξ λ p s s μ s s, ,μ
p q

1
2 2 satisfies (A) with ≡m 1 (so =

∗ ∗β βm ) and = ( +∞)∗M β , . Therefore,
applying Theorem 1.8 as in the proof of Theorem 3.1, we obtain the desired nonexistence for > ∗μ β . On the
other hand, if = ∗μ β , < +p q 1, and Ω is an N-ball, then Theorem 1.8 yields ≡u kφp for some >k 0. Since u
is a solution of (3.3), we see that u must also be an eigenfunction of the q-Laplacian associated with the
eigenvalue ∗β , which is impossible in view of [22, Proposition 13]. □

Note that Theorem 3.2 is optimal for the considered range of p and q in the sense that for any
∈ ( ( ) )∗μ λ q β,1 problem (3.3) possesses a positive solution, see [22, Theorem 2.5 (i)]. Nevertheless, we are

not aware of the corresponding existence result for = ∗μ β under assumption (i) of Theorem 3.2, or if
= +p q 1 and Ω is an N-ball.
Second, we provide the following general result without restrictions on p and q apart from the default

assumption < <q p1 , whose proof is based on a nontrivial application of Picone’s inequalities (1.3) and
(1.4), and on the usage of results from [5,22].

Theorem 3.3. Let

�≔ { ∈  ( ) }μ μ has a positive solution˜ sup : 3.3 .

Then ≤ < +∞∗β μ̃ .Moreover, (3.3) has at least one positive solution if ( ) < <λ q μ μ̃1 , and no positive solution
if ≤ ( )μ λ q1 or >μ μ̃. Furthermore, if > ∗μ β˜ , then (3.3) has at least one positive solution if and only if

( ) < ≤λ q μ μ̃1 .

In order to prove Theorem 3.3, we need the following auxiliary information on the behaviour of
positive solutions.

Proposition 3.4. Let �{ } ⊂μn be a sequence, and let un be a positive solution of (3.3) with =μ μn, �∈n .
Then the following assertions hold:
(i) if ∥∇ ∥ = +∞

→+∞
ulim

n
n p , then =

→+∞
∗μ βlim

n n and, up to a subsequence,

≔
∥∇ ∥

→ ( ) → +∞v u
u

φ in C as nΩ̄ ;n
n

n p
p 0

1 (3.4)

(ii) if ∥∇ ∥ =
→+∞

ulim 0
n

n p , then = ( )
→+∞

μ λ qlim
n n 1 .
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Proof. We start with the observation that (3.3) has no nonzero solution for ≤ ( )μ λ q1 , see [5, Proposition 1]
and [22, Proposition 13]. Thus, throughout the proof, we will assume that > ( )μ λ qn 1 for all �∈n . In
particular, we have ≥ ( )

→+∞
μ λ qlim inf

n n 1 .

(i) Let ∥∇ ∥ → +∞un p as → +∞n . Note first that > ( )
→+∞

μ λ qlim inf
n n 1 . Indeed, suppose, by contradiction, that

→ ( )μ λ qn 1 , up to a subsequence. Setting =
∥∇ ∥

vn
u
u

n

n p
and taking un as a test function for (3.3) with

=μ μn, we have













∫ ∫ ∫− ( ) = ∥∇ ∥ − |∇ | ≥−λ p v x u μ v x v x1 d d d 0,n

p
n p

q p
n n

q
n

q
1

Ω Ω Ω

where the inequality follows from the definition of ( )λ p1 . Since <q p, ∥∇ ∥ → +∞un p , and → ( )μ λ qn 1 ,
we conclude that, simultaneously, →v φn p and →v kφn q strongly in ( )L Ωq , up to a subsequence, where

>k 0 is some constant. However, this contradicts the linear independence of φp and φq, see [22,
Proposition 13], and hence > ( )

→+∞
μ λ qlim inf

n n 1 .

Now we prove the convergence (3.4). Let ∈ ( )v W Ωp
0 0

1, be such that →v vn 0 weakly in ( )W Ωp
0
1, and

strongly in ( )L Ωp , up to a subsequence. First, we show that ≡v 00 in Ω. Suppose, by contradiction, that
≡v 00 in Ω. Then, by Egorov’s theorem, vn converges to 0 uniformly on a subset of Ω of positive

measure. In particular, we have

∫ → +∞ → +∞−v φ x nd as .n
q p

q
p

Ω
(3.5)

Note that the integral in (3.5) is well-defined since ∈ ( )∞L Ω
φ
v

q

n
due to the ( )+Cint Ω̄0

1 -regularity of vn and
φq. Using now the Picone inequalities (1.1) and (1.5), we get from (3.3) with =μ μn and the test function

∈ ( )− W Ω
φ

u
p

0
1,q

p

n
p 1 that

































∫ ∫ ∫ ∫

∫ ∫

∫ ∫

( ) + = |∇ | ∇ ∇ + |∇ | ∇ ∇

≤ |∇ | + |∇ | ∇ ∇

= |∇ | + ( )

− −
−

−
−

−

− +

−

−

λ p φ x μ u φ x u u
φ

u
x u u

φ

u
x

φ x φ φ
φ
u

x

φ x λ q u φ x

d d d d

d d

d d .

q
p

n n
q p

q
p

n
p

n
q
p

n
p n

q
n

q
p

n
p

q
p

q
q

q
q
p q

n
p q

q
p

n
q p

q
p

1

Ω Ω Ω

2
1

Ω

2
1

Ω Ω

2
1

Ω

1

Ω

(3.6)

This implies that

∫ ∫ ∫( − ( )) ≤ |∇ | − ( ) < +∞−μ λ q u φ x φ x λ p φ xd d d ,n n
q p

q
p

q
p

q
p

1

Ω Ω

1

Ω
(3.7)

and hence, since > ( )
→+∞

μ λ qlim inf
n n 1 , there exists a constant >C 0 independent of n such that

∫ ≤ ∥∇ ∥− −μ v φ x C ud .n n
q p

q
p

n p
p q

Ω
(3.8)

On the other hand, choosing un as a test function for (3.3) with =μ μn, we get













∫ ∫ ∫− |∇ | = ∥∇ ∥ − ( )−μ v x v x u λ p v xd d 1 d .n n

q
n

q
n p

p q
n
p

Ω Ω

1

Ω

Since we suppose that ≡v 00 in Ω, we have →v 0n strongly in ( )L Ωp and ( )L Ωq , which yields
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�∫ ≥ ∥∇ ∥ ∈−μ v x u n2 d for sufficiently large .n n
q

n p
p q

Ω
(3.9)

Combining (3.8) and (3.9), we obtain

�∫ ∫≥ ∈−C v x v φ x n2 d d for sufficiently large ,n
q

n
q p

q
p

Ω Ω

which gives a contradiction to (3.5) and the strong convergence →v 0n in ( )L Ωq . Therefore, ≢v 00 in Ω.
Second, we show that =v φp0 . Since un is a solution of (3.3) with =μ μn, we see that vn satisfies

∫ ∫

∫ ∫

|∇ | ∇ ∇ +
∥∇ ∥

|∇ | ∇ ∇

= ( ) +
∥∇ ∥

∈ ( )

−
−

−

−
−

−

v v φ x
u

v v φ x

λ p v φ x
μ

u
v φ x φ W

d 1 d

d d for any Ω .

n
p

n
n p

p q n
q

n

n
p n

n p
p q n

q p

Ω

2

Ω

2

1

Ω

1

Ω

1
0
1,

(3.10)

Taking =φ vn and recalling that ∥∇ ∥ =v 1n p and that vn converges in ( )L Ωp to a nonzero function v0, we
conclude that there exists a constant ≥B 0 such that

≔
∥∇ ∥

→ → +∞
−

B
μ

u
B nas .n

n

n p
p q

Taking now = −φ v vn 0 in (3.10), we see that the boundedness of Bn implies

∫ |∇ | ∇ (∇ − ∇ ) =
→+∞

−v v v v xlim d 0,
n

n
p

n n

Ω

2
0

which guarantees that →v vn 0 strongly in ( )W Ωp
0
1, , see, e.g., [26, Lemma 5.9.14]. Passing to the limit in

(3.10), we deduce that v0 is a nonzero and nonnegative solution of the problem





− = ( )| | + | |

= ∂

− −u λ p u u B u u
u

Δ in Ω,
0 on Ω.

p
p q

1
2 2

The standard regularity result [27] and the strong maximum principle yield ∈ ( )+v Cint Ω̄0 0
1 , and so

∈ ( )− W Ω
φ

v
p

0
1,p

p

p
0

1 . Thus, applying the Picone inequality (1.1), we get









∫ ∫ ∫ ∫ ∫( ) + = |∇ | ∇ ∇ ≤ |∇ | = ( )− −

−
λ p φ x B v φ x v v

φ

v
x φ x λ p φ xd d d d d ,p

p q p
p
p p p

p

p p
p

p
p

1

Ω Ω

0

Ω

0
2

0
0

1
Ω

1

Ω

which yields =B 0, and hence ≡v φp0 in Ω.
Now we are ready to prove that →v φn p in ( )C Ω̄0

1 . Thanks to the boundedness of Bn, using the

Moser iteration process in (3.10), we can find >M 01 independent of n such that ∥ ∥ ≤∞v Mn 1 for all n.
Thus, since /∥∇ ∥ −u1 n p

p q is also bounded, applying to Eq. (3.10) the regularity results [28, Theorem 1.7]
and [27], we derive the existence of ∈ ( )θ 0, 1 and >M 02 , both independent of n, such that ∈ ( )v C Ω̄n

θ
0
1,

and ∥ ∥ ≤( )v Mn C Ω̄ 2θ
0
1, for every sufficiently large n. Since ( )C Ω̄θ

0
1, is compactly embedded into ( )C Ω̄0

1 , we

conclude that →v φn p in ( )C Ω̄0
1 , up to a subsequence.

Finally, let us show that =
→+∞

∗μ βlim
n n . First, let { }μnk

be a subsequence such that

=
→+∞ →+∞

μ μlim lim inf
k n n nk

. Taking unk as a test function for (3.3) with =μ μnk
, we get













∫ ∫ ∫− |∇ | = ∥∇ ∥ − ( ) ≥−μ v x v x u λ p v xd d 1 d 0,n n

q
n

q
n p

p q
n
p

Ω Ω

1

Ω
k k k k k

and hence the convergence of vnk to φp along a sub-subsequence yields
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∫

∫
≥

|∇ |
=

→+∞
∗μ

φ x

φ x
βlim inf

d

d
.

n n
p

q

p
q

Ω

Ω

Second, we choose a subsequence { }μnk
such that =

→+∞ →+∞

μ μlim lim sup
k n

n
nk
and denote it, for simplicity, as

{ }μk . Using Picone’s inequalities (1.1) and (1.5) with =v φp, we get from (3.3) with =μ μk that

































∫ ∫ ∫ ∫

∫ ∫

( ) + = |∇ | ∇ ∇ + |∇ | ∇ ∇

≤ |∇ | + |∇ | ∇ ∇

− −
−

−
−

−

− +

−

λ p φ x μ u φ x u u
φ

u
x u u

φ

u
x

φ x φ φ
φ
u

x

d d d d

d d ,

p
p

k k
q p

p
p

k
p

k
p
p

k
p k

q
k

p
p

k
p

p
p

p
q

p
p
p q

k
p q

1

Ω Ω Ω

2
1

Ω

2
1

Ω Ω

2
1

which implies that











∫ ∫≤ |∇ | ∇ ∇− −

− +

−
μ u φ x φ φ

φ
u

xd d .k k
q p

p
p

p
q

p
p
p q

k
p q

Ω Ω

2
1

(3.11)

Note that both sides of (3.11) share the same homogeneity with respect to uk, and hence we can replace
uk by the normalized function vk:











∫ ∫≤ |∇ | ∇ ∇− −

− +

−
μ v φ x φ φ

φ
v

xd d .k k
q p

p
p

p
q

p
p
p q

k
p q

Ω Ω

2
1

(3.12)

The convergence →v φk p in ( )C Ω̄0
1 along a sub-subsequence yields the existence of a constant >C 0

such that ( ) ≤ ( )φ x Cv xp k for all ∈x Ω and all sufficiently large �∈k . Therefore, since < ≤ C0
φ
v

p

k
in Ω,

and → 1
φ
v

p

k
pointwise in Ω, the Lebesgue dominated convergence theorem guarantees











∫ ∫ ∫ ∫→ |∇ | ∇ ∇ → |∇ |− −

− +

−
v φ x φ x φ φ

φ
v

x φ xd d and d d .k
q p

p
p

p
q

p
q

p
p
p q

k
p q p

q

Ω Ω Ω

2
1

Ω

Here, the latter convergence can be easily seen from the expansion































∫ ∫ ∫|∇ | ∇ ∇ = ( − + ) |∇ | − ( − ) |∇ | ∇ ∇−

− +

−

−

−

− +

φ φ
φ

v
x p q φ

φ
v

x p q φ φ v
φ
v

xd 1 d d .p
q

p
p
p q

k
p q p

q p

k

p q

p
q

p k
p

k

p q

Ω

2
1

Ω Ω

2
1

Thus, letting → +∞k in (3.12), we obtain

∫

∫
= ≤

|∇ |
=

→+∞ →+∞
∗μ μ

φ x

φ x
βlim sup lim

d

d
.

n
n k k

p
q

p
q

Ω

Ω

Consequently, the proof of assertion (i) is complete.

(ii) Let ∥∇ ∥ →u 0n p as → +∞n . This implies that →u 0n a.e. in Ω. Consequently, by Egorov’s theorem,
→u 0n uniformly on some subset of Ω of positive measure, which yields

∫ → +∞ → +∞−u φ x nd as .n
q p

q
p

Ω

Thus, using the Picone inequalities (1.1) and (1.5) as in (3.6), we get (3.7):

∫ ∫ ∫( − ( )) ≤ |∇ | − ( ) < +∞−μ λ q u φ x φ x λ p φ xd d d ,n n
q p

q
p

q
p

q
p

1

Ω Ω

1

Ω
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and therefore ≤ ( )
→+∞

μ λ qlim sup
n

n 1 . Recalling now that ≥ ( )
→+∞

μ λ qlim inf
n n 1 , we finish the proof of assertion

(ii). □

Proof of Theorem 3.3. First, we recall that (3.3) has a positive solution if ∈ ( ( ) )∗μ λ q β,1 , see [22, Theorem
2.5 (i)]. Therefore, ≥ ∗μ β˜ . Let { }μn be a sequence convergent to μ̃ such that (3.3) with =μ μn has a positive

solution un. Fixing any ∈ ( )v C Ω̄0
1 and applying Picone’s inequalities (1.3) and (1.1), we get from (3.3) with

=μ μn that



















∫ ∫ ∫ ∫

∫ ∫ ∫

( ) + = |∇ | ∇ ∇ + |∇ | ∇ ∇

≤ |∇ | +
−

|∇ | + |∇ |

− −
−

−
−

λ p u v x μ v x u u v
u

x u u v
u

x

q
p

v x p q
p

u x v x

d d d d

d d d .

n
p q q

n
q

n
p

n
q

n
q n

q
n

q

n
q

p
n

p q

1

Ω Ω Ω

2
1

Ω

2
1

Ω Ω Ω

(3.13)

If we suppose that = +∞μ̃ , then Proposition 3.4(i) guarantees the boundedness of ∥∇ ∥un p, whence we get
a contradiction to (3.13). Thus, < +∞μ̃ .

By the definition of μ̃, (3.3) has no positive solution for any >μ μ̃. Moreover, there is no nonzero
solution if ≤ ( )μ λ q1 , see [5, Proposition 1] and [22, Proposition 13]. Furthermore, [5, Theorem 2.2(i)] implies
that (3.3) has at least one positive solution for any ∈ ( ( ) )μ λ q μ, ˜1 .

It remains to prove that if > ∗μ β˜ , then (3.3) with =μ μ̃ possesses a positive solution. Choose a
sequence { }μn such that →μ μ̃n and (3.3) with =μ μn has a positive solution un. Proposition 3.4(i)
guarantees the boundedness of ∥∇ ∥un p. So, we may assume, by passing to a subsequence, that un

converges to some nonnegative function u0 weakly in ( )W Ωp
0
1, and strongly in ( )L Ωp . Letting → +∞n in

∫ ∫ ∫ ∫|∇ | ∇ ∇( − ) + |∇ | ∇ ∇( − ) = ( ) ( − ) + ( − )− − − −u u u u x u u u u x λ p u u u x μ u u u xd d d d ,n
p

n n n
q

n n n
p

n n n
q

n

Ω

2
0

Ω

2
0 1

Ω

1
0

Ω

1
0

we get













∫ ∫|∇ | ∇ (∇ − ∇ ) + |∇ | ∇ (∇ − ∇ ) =

→+∞

− −u u u u x u u u u xlim d d 0,
n

n
p

n n n
q

n n

Ω

2
0

Ω

2
0

which yields the strong convergence →u un 0 in ( )W Ωp
0
1, , see [22, Remark 3.5]. At the same time, since

> > ( )∗μ β λ q˜ 1 , Proposition 3.4(ii) gives ∥∇ ∥ = ∥∇ ∥ >
→+∞

u ulim 0p
n

n p0 , and hence u0 is nonzero. Thus, u0 is a
positive solution of (3.3) with =μ μ̃. □
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