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Dept. of Mathematics and NTIS
University of West Bohemia
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Abstract. We study two coupled discrete-time equations with different (asyn-
chronous) periodic time scales. The coupling is of the type sample and hold,

i.e., the state of each equation is sampled at its update times and held until it is

read as an input at the next update time for the other equation. We construct
an interpolating two-dimensional complex-valued system on the union of the

two time scales and an extrapolating four-dimensional system on the intersec-

tion of the two time scales. We discuss stability by several results, examples
and counterexamples in various frameworks to show that the asynchronicity

can have a significant impact on the dynamical properties.

1. Introduction. The notion of asynchronous control system [10, 19] often denotes
models for asynchronously occurring discrete events which trigger a continuous time
system, e.g., control systems in which signals are transmitted over an asynchronous
network. In this paper we coin the notion of time scale-induced asynchronous dis-
crete dynamical system to denote models with two inherently different discrete time
scales. Numerous authors from different disciplines have created an interesting body
of literature about systems having components which are updated asynchronously.
A comprehensive survey [19, §4] lists three main groups of problems: (i) compu-
tational mathematics and its need for converging iteration algorithms which are
run on asynchronous multi-processors [2, 3, 5, 9, 11, 15]; (ii) control theory and its
considerations of stability behavior under asynchronous data transmission between
its different components [10, 21, 22], and (iii) robustness of qualitative behavior of
linear systems in synchronous and asynchronous update mode [6, 7, 18, 29, 32].
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Models for these systems often arise in the discussion of multiprocessor systems,
distributed digital networks or e.g. discrete-time models of market economy. Such
a model can e.g. be of the following form [19]

x(k + 1) = fω(k)(x(k)), (k ∈ N0)

with fω (the so-called ω-mixture of a mapping f) defined by

fω,i(x) :=

fi(x), if i ∈ ω,

xi, if i 6∈ ω,

with a non-empty ω ⊆ {1, . . . , N}. I.e. for k ∈ N0 the set ω(k) represents the
components of x(k+ 1) ∈ RN which are updated by the corresponding components
of f(x(k)) =

(
f1(x(k)), . . . , fN (x(k))

)
at time k. Such systems are motivated by

simple numerical iteration schemes like the Gauss-Seidel method. For example
linear systems with f(x) = Ax have already been quite extensively investigated
more than 50 years ago [6].

More generally, one can introduce delays and investigate linear asynchronous
systems of the form [32]

xi(k+ 1) =


∑N
j=1Aijxj(k − d(i, j, k)), if i ∈ ω(k),

xi(k), if i 6∈ ω(k),
(i ∈ {1, . . . , N}, k ∈ N0),

(1)
where d(i, j, k) ∈ N0 represents the delay for the j-th component when updating
the i-th component at time k ∈ N0.

In this paper we consider a nonautonomous extension of (1) given by

xi(k + 1) =

N∑
j=1

Aij(k)xj(k − d(i, j, k)) (i ∈ {1, . . . , N}, k ∈ N0). (2)

Note that due to the fact that A(k) =
(
Aij(k)

)
i,j=1,...N

is allowed to depend on

k, it is possible to incorporate also times with no update by setting A(k) = I and
d(·, ·, k) = 0.

More specifically, we consider a special subclass which arises naturally from ap-
plications in economics and biology in which the asynchronicity is induced by the
presence of multiple asynchronous time scales of individual components.

For example, in economics, asynchronous time scales arise naturally since [33]
“decisions by economic agents are reconsidered daily or hourly, while others are
reviewed at intervals of a year or longer”. These intervals are driven by various
costs and benefits that individuals, companies and governments face if they want to
reconsider their decisions [17]. Therefore there exist doubts about the prevalence
of a synchronous approach and it has been argued [20] that “. . . the synchronized
move is not an unreasonable model of repetition in certain settings, but it is not
clear why it should necessarily be the benchmark setting.”

Similarly, in biology, [26] examined, e.g., wolf activities occurring over yearly,
seasonal and daily time scales, which significantly affects the modeling of wolf-deer
interactions. Interestingly, periodically varying insect populations with distinct life
cycle periods coexist in many regions around the world. Their periods range from
the most commonly observed one year, through many species with periods of two
or three years to periods of 13 and 17 years of periodic cicadas of genus Magicada,
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see the survey paper [12]. For other examples of coupled systems and models with
different time scales in social and natural sciences, see, e.g., [20, 23, 24, 30].

From the mathematical point of view, there has been a considerable interest in
the role of timing structures both from the numerical as well as analytical point
of view. A well-developed mathematical theory on dynamic equations on a single
time-scale can be found, e.g., in [4, 14]. Note that even the elementary notion of
stability depends strongly on the underlying time scale [28]. This effect is apparent
when we explore asynchronous linear systems below, focusing on two periodic time
scales with different periods in particular.

There exist sporadic continuous-time approaches in which distinct periodic phys-
ical processes (e.g., mechanical, thermal, diffusion, chemical) are considered. The
temporal homogenization technique [1, 34] considers such continuous phenomena
in the special case when there co-exist fast and slow oscillatory processes with sig-
nificantly different periods. The large ratio of the two periods allows to split the
analysis in local and global problems. Our approach not only considers discrete time
instead but is more general in the sense that arbitrary (not necessarily significantly
different) periods are taken into account.

The paper is organized as follows. In §2 we formulate two-dimensional asynchro-
nous dynamical systems and introduce the necessary notation. In §3 we associate
an extended four-dimensional system to the asynchronous linear one and study the
solution operator of the system. In §4 we analyze an interpolated dynamical system
on a finer time scale. Consequently, we provide results and examples for various
special cases in §5-§7. We conclude by formulating open questions and identifying
directions for further research in §8.

2. Problem formulation – 2 equations. For ρ > 0, we define the periodic (or
regular) one-sided discrete time scale

Tρ := {0, ρ, 2ρ, . . .} ,
and the (forward) difference operator ∆ρ : RTρ → RTρ by

∆ρx(t) =
x(t+ ρ)− x(t)

ρ
(t ∈ Tρ),

for x : Tρ → R. The lag operator ·∗ρ : R≥0 → Tρ on R≥0 := {x ∈ R |x ≥ 0} is
defined by

t 7→ t∗ρ := ρ

⌊
t

ρ

⌋
= max {s ∈ Tρ : s ≤ t} (t ∈ R≥0),

and satisfies t− t∗ρ ∈ [0, ρ) for t ∈ R≥0.
Let ν > 0. Using the lag operator ·∗ν , a function zTν : Tν → R on Tν can

naturally be extended to a function zR≥0
: R≥0 → R on R≥0 by defining

zR≥0
(t) := zTν (t∗ν) (t ∈ R≥0).

The extended function zR≥0
realizes the principle of sample and hold in systems

theory [27, Section 1.4] and can be used in the analysis of discrete-time equations
[31]. For every τ ∈ Tν the value zTν (τ) is sampled and held constant for one period
ν, i.e.,

zR≥0
(t) = zTν (τ) (t ∈ [τ, τ + ν)).

Let µ > 0. The restriction zTµ := zR≥0
|Tµ of zR≥0

to Tµ, satisfies

zTµ(t) = zTν (t∗ν) (t ∈ Tµ),
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Figure 1. Time scales T3 and T5 of a (3, 5)-asynchronous discrete
dynamical system (3).

and reads the value of zTν which was sampled at t∗ν and held until t ∈ Tµ.
We define an asynchronous discrete dynamical system in the following way. Con-

sider periods µ, ν > 0 and the matrix

P =

(
α β

γ δ

)
∈ R2×2.

Then the two coupled equations on the time scales Tµ and Tν∆µx(t) = αx(t) + βy(t∗ν ), t ∈ Tµ,

∆νy(t) = γx(t∗µ) + δy(t), t ∈ Tν ,
(3)

are called (µ, ν)-asynchronous difference equation (or (µ, ν)-asynchronous discrete
time dynamical system) with parameters P . See Figure 1 for an illustration of Tµ
and Tν .

A tuple (x, y) of sequences x : Tµ → R, y : Tν → R, is called solution of (3), if it
satisfies (3).

Throughout the paper we use the notation σ(t), σ : T → T, to denote the
successor of an element t of a given time scale T. This operator is commonly known
as the forward-jump operator in the theory of time scales [4]. Naturally, its value
depends strongly on the considered time scale, e.g., σ(0) = ρ for T = Tρ.

Example 2.1. In economics, dynamics of variables naturally includes data of dif-
ferent frequencies. A typical problem arises from different natural time scales. Let
us consider a simplistic model of fiscal spending involving gross domestic product
(GDP) and government spending. GDP data are usually observed quarterly and
would naturally imply a time scale T3 with µ = 3 months. On the other hand,
the government spending is determined by a time series with yearly frequency as
government budget is approved once a year. In this case the natural time scale T12

has a frequency of ν = 12 months.
Denoting GDP by x and government spending by y, a synchronized simplistic

fiscal model has the form:∆x(t) = αx(t) + βy(t), t ∈ T12,

∆y(t) = γx(t) + δy(t), t ∈ T12,
(4)

Alternatively, we could consider the asynchronous model (3) and allow GDP x
and government spending y to follow their own time scales - quarterly T3 for x and
annually T12 for y.
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Apparently, the asynchronous model is closer to how economic agents observe
macroeconomic data. In this paper we are mainly interested in qualitative differ-
ences between the synchronous model (4) and the asynchronous model (3). Nat-
urally, from the point of view of macroeconomic applications there are numerous
other questions, which we do not discuss here. Are the real data time series better
explained by the asynchronous model (3)? Can the asynchronous formulation (3)
provide better forecasts of the future?

We illustrate by a simple example that system (3) (as illustrated in Figure 1)
is a special case of an extended nonautonomous version of the asynchronous linear
system (2) on a more general time scale which replaces the time set N of (2).

Remark 1. Consider the following generalized version of (2) on a discrete time
scale T ⊂ R

xi(σ(t)) =

N∑
j=1

Aij(t)xj(t− d(i, j, t)), (i ∈ {1, 2}, t ∈ T). (5)

By setting T = Tµ ∪Tν with µ = 3 and ν = 5 (see Figure 1) and carefully choosing
A(k) =

(
Aij(k)

)
i,j=1,2

and d(·, ·, k) =
(
dij(·, ·, k)

)
i,j=1,2

, every solution x : T → R2

of (5) gives rise to a solution (x1|Tµ , x2|Tν ) of∆µx1(t) = αx1(t) + βx2(t∗ν ), t ∈ T3,

∆νx2(t) = γx1(t∗µ) + δx2(t), t ∈ T5.
(6)

A direct computation shows that one of the possibilities to extend solutions of
(6) to solutions of (2) on the periodically repeating time scale T = T3 ∪ T5 =
{0, 3, 5, 6, 9, 10, 12, . . . } is realized by setting

A(0) =
(

3α+1 3β
0 1

)
, d(·, ·, 0) = ( 0 0

0 0 ), A(3) =
(

1 0
5γ 1+5δ

)
, d(·, ·, 3) = ( 0 3

3 3 ),

A(5) =
(

3α+1 3β
0 1

)
, d(·, ·, 5) = ( 2 2

2 0 ), A(6) =
(

3α+1 3β
0 1

)
, d(·, ·, 6) = ( 0 1

1 1 ),

A(9) =
(

1 0
5γ 1+5δ

)
, d(·, ·, 9) = ( 0 4

4 4 ), A(10) =
(

3α+1 3β
0 1

)
, d(·, ·, 10) = ( 1 1

1 0 ),

A(12) =
(

3α+1 3β
5γ 1+5δ

)
, d(·, ·, 12) = ( 0 2

2 2 ).

The following sections provide a way to study trajectories of (3) and the corre-
sponding stability properties in a systematic way.

3. Linear system representation. It is well-known that for difference equations
a delay can be eliminated by increasing the dimension of the system (see, e.g., [8]).
We associate a 4-dimensional linear system to (3) by storing appropriate delayed
values of x(t), y(t) in auxiliary variables x(t), y(t). For this to work, we need to
incorporate all times on which dynamics happens in (3), i.e., we consider the union

T := Tµ ∪ Tν

of the two time scales of (3).

Theorem 3.1 (Linear system representation). Let µ, ν > 0 and T = Tµ ∪ Tν .
Then there exists a unique A : T → R4×4 and the corresponding four dimensional
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dynamic equation
u

u

v

v

 (σ(t)) = A(t)


u

u

v

v

 (t), t ∈ T,


u

u

v

v

 ∈ R4, (7)

such that for arbitrary sequences x : Tµ → R and y : Tν → R the following state-
ments are equivalent:

(i) (x, y) is a solution of (3),
(ii) the solution (u, u, v, v) : T → R4 of (7) with u(0) = x(0), u(0) = 0, v(0) =

y(0), v(0) = 0 satisfies u|Tµ = x and v|Tν = y.

Proof. Consider the following difference equation on T:

u(σ(t)) =


u(t) if σ(t) /∈ Tµ, (8a)

(1 + αµ)u(t) + βµv(t) if σ(t) ∈ Tµ ∧ t ∈ Tµ ∩ Tν , (8b)

(1 + αµ)u(t) + βµv(t) if σ(t) ∈ Tµ ∧ t /∈ Tµ ∩ Tν , (8c)

u(σ(t)) =

{
u(t) if t ∈ Tµ ∩ Tν ∨ (t /∈ Tν ∧ σ(t) ∈ Tν), (8d)

u(t) otherwise, (8e)

v(σ(t)) =


v(t) if σ(t) /∈ Tν , (8f)

(1 + δν)v(t) + γνu(t) if σ(t) ∈ Tν ∧ t ∈ Tµ ∩ Tν , (8g)

(1 + δν)v(t) + γνu(t) if σ(t) ∈ Tν ∧ t /∈ Tµ (8h)

v(σ(t)) =

{
v(t) if t ∈ Tµ ∩ Tν ∨ (t /∈ Tµ ∧ σ(t) ∈ Tµ), (8i)

v(t) otherwise. (8j)

It is of the form (7). We first prove the following statement:

(u, u, v, v) solves (8) ⇒ (u|Tµ , v|Tν ) solves (3). (9)

To this end, let (u, u, v, v) : T → R4 be a solution of (8). In order to prove (9), we
show that

u(t+ µ) = (1 + αµ)u(t) + βµv(t∗ν ) (t ∈ Tµ), (10)

v(t+ ν) = γνu(t∗µ) + (1 + δν)v(t) (t ∈ Tν). (11)

We only show (10), the latter relation (11) is proved analogously. To show (10),
assume that t ∈ Tµ, then t+ µ ∈ Tµ, too. Define

r := max{s ∈ T : s < t+ µ}.

Obviously, t ≤ r < t+ µ. We distinguish between the following cases.
Case 1: If r ∈ Tµ ∩ Tν , then clearly r = t = t∗ν and (10) follows from (8b).
Case 2: If r 6∈ Tµ ∩ Tν , then we can either have r ∈ Tµ \ Tν or r ∈ Tν \ Tµ:
Case 2.1: If r ∈ Tµ \ Tν , then r = t and (8i)-(8j) imply that

v(r) = v(t) = v(t∗ν). (12)

Case 2.2: If r ∈ Tν \ Tµ, then (8j) yields

v(σ(t)) = v(s) = v(r),
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for all s ∈ Tν with σ(t) < s < r. Consequently, (8i) implies that

v(r) = v(σ(t)) = v(t∗ν). (13)

By assumptions of Case 2 and (8a), u(r) = u(t). Relations (12) and (13) yield that
v(r) = v(t∗ν). Hence (8c) implies that

u(t+ µ) = (1 + αµ)u(r) + βµv(r)

= (1 + αµ)u(t) + βµv(t∗ν),

i.e., (10) holds in this case as well.
(i) ⇒ (ii). Let (x, y) be a solution of (3) and let (u, u, v, v) : T → R4 be the

solution of (8) with u(0) = x(0), u(0) = 0, v(0) = y(0), v(0) = 0. Then by (9),
(u|Tµ , v|Tν ) solves (3). Since u(0) = x(0), v(0) = y(0), it follows that u|Tµ = x and
v|Tν = y.

(ii)⇒ (i). Let x : Tµ → R and y : Tν → R be given and let (u, u, v, v) : T→ R4

be the solution of (8) with u(0) = x(0), u(0) = 0, v(0) = y(0), v(0) = 0. Then by
(ii), u|Tµ = x and v|Tν = y, and (9) implies that (x, y) solves (3).

Using the indicator function 1M : R→ {0, 1} for a set M ⊆ R,

1M (t) :=

1 if t ∈M,

0 if t 6∈M,

we get the following explicit representation of the coefficient matrix A(t) of the
linear system representation (7).

Corollary 1 (Explicit form of linear system representation). Under the assump-
tions of Theorem 3.1 the coefficients A : T→ R4×4 are given by

A(t) := Aijk`

with (i, j, k, `) =
(
1Tµ(t),1Tµ(σ(t)),1Tν (t),1Tν (σ(t))

)
and Aijk` as defined by one

of the 9 cases listed in Table 1.

Proof. For each t ∈ T = Tµ ∪ Tν there are 3 possible disjoint cases, either

t ∈ Tµ ∩ Tν or t ∈ Tµ \ Tν or t ∈ Tν \ Tµ.

Similarly, there are 3 cases for σ(t) ∈ T. Consequently, there are 9 possible combi-
nations for the values of the indicator functions in the quadruple

(i, j, k, `) :=
(
1Tµ(t),1Tµ(σ(t)),1Tν (t),1Tν (σ(t))

)
which are listed and illustrated in Table 1. For each of those cases, we can use the
linear system representation (8) to compute Aijk` as listed in Table 1.

Consequently, we are able to introduce a solution operator of (3).

Corollary 2 (Solution operator for asynchronous discrete time dynamical system).
Let T = Tµ ∪ Tν , (T)2

≥ := {(t, t0) ∈ T × T : t ≥ t0} and let Φ: (T)2
≥ → R4×4,

(t, t0) 7→ Φ(t, t0), denote the evolution operator (2-parameter process) of (8), i.e.,
for t0 ∈ T

(t, t0) 7→ Φ(t, t0)(x0, x0, y0, y0
)>
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is the solution of the initial value problem (8), (x(t0), x(t0), y(t0), y(t0)) = (x0, x0, y0, y
0
).

Define the solution operator for (3) as Ψ: (T)2
≥ → R2×2, (t, t0) 7→ Ψ(t, t0),

Ψ(t, t0) :=

(
Φ11(t, t0) Φ13(t, t0)

Φ31(t, t0) Φ33(t, t0)

)
.

Then for (x0, y0) ∈ R2 and x, y : T→ R with(
x(t)

y(t)

)
:= Ψ(t, 0)

(
x0

y0

)
,

the tuple (x|Tµ , y|Tν ) of restrictions is a solution of (3).

Proof. Let t ∈ T. The set T ∩ [0, t] contains finitely many elements 0 = t0 < t1 <
· · · < tk = t. Theorem 3.1 implies that with the matrices A(ti) from Corollary 2
and Table 1,

(x(t), x(t), y(t), y(t))> := Φ(t, 0)(x0, 0, y0, 0)>

= Φ(tk, tk−1) · · ·Φ(t2, t1)Φ(t1, t0)(x0, 0, y0, 0)>

= A(tk−1) · · ·A(t1)A(t0)(x0, 0, y0, 0)>

is a solution of (8). Writing Φ = (Φij)i,j=1,...,4, we get for t ∈ T

Φ(t, 0) =


Φ11 Φ12 Φ13 Φ14

Φ21 Φ22 Φ23 Φ24

Φ31 Φ32 Φ33 Φ34

Φ41 Φ42 Φ43 Φ44

 (t, 0)

and hence (
x(t)

y(t)

)
=

(
π1 ◦ Φ(t, 0) · (x0, 0, y0, 0)>

π3 ◦ Φ(t, 0) · (x0, 0, y0, 0)>

)

=

(
Φ11 Φ13

Φ31 Φ33

)
(t, 0) · (x0, y0)>

= Ψ(t, 0) · (x0, y0)>.

By Theorem 3.1, the tuple (x|Tµ , y|Tν ) solves (3).

Remark 2. Note that Ψ(t, t0) is not a 2-parameter process on T, since for arbitrary
t, τ, s ∈ T,

Ψ(t, τ)Ψ(τ, s) = Ψ(t, s) (14)

does not necessarily hold. However, (14) holds for all t, τ, s ∈ Tµ ∩Tν . Moreover, if
µ and ν are commensurable, i.e., Tµ ∩ Tν = TT with T = lcm(µ, ν), then for k ∈ Z

Ψ(T, 0) = Ψ((k + 1)T, kT ).

Consequently, Ψ(kT, 0) =
∏k
i=1 Ψ(T, 0) for k ∈ N in this case.

We conclude this section with a simple illustration of Corollary 2.

Example 3.2. Let us consider asynchronous dynamics with µ = 1 and ν = 2, i.e.,

Tµ = {0, 1, 2, . . .},
Tν = {0, 2, 4, . . .},
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T = Tµ ∪ Tν = {0, 1, 2, . . .}.

Since 0, 2 ∈ Tµ ∩Tν and 1 ∈ Tµ \Tν we get that Φ(2, 0) = A1101 ·A1110 where (see
Table 1):

A1110 =


1 + α 0 β 0

1 0 0 0

0 0 1 0

0 0 1 0

 , A1101 =


1 + α 0 0 β

1 0 0 0

0 2γ 1 + 2δ 0

0 0 0 1

 .

Consequently,

Φ(2, 0) =


(1 + α)2 0 (1 + α)β + β 0

1 + α 0 β 0

2γ 0 1 + 2δ 0

0 0 1 0

 , Ψ(2, 0) =

(
(1 + α)2 (1 + α)β + β

2γ 1 + 2δ

)
.

4. Interpolated dynamics. Recall that for p ∈ N a nonsingular matrix M ∈
Rn×n has a complex p-th root p

√
M ∈ Cn×n [13, Section 7.1, pp. 173-174]. More

generally, a possibly singular matrix M ∈ Rn×n has a complex p-th root p
√
M ∈

Cn×n if and only if the (increasing) sequence d1, d2, . . . defined by

di := dim(null(Ai))− dim(null(A(i−1)))

has the property that for every ξ ≥ 0 no more than one element of the sequence
lies strictly between pξ and p(ξ + 1) [13, Theorem 7.3, p. 174]. See [13] and the
references therein for more information on roots of matrices and how to construct
them.

If µ, ν > 0 are commensurable, i.e., Tµ∩Tν = TT with T > 0, there exist k, ` ∈ N
with kµ = `ν = T . We define the time scale Tτ with

τ := T
k` = µ

` = ν
k .

Tτ refines or interpolates Tµ as well as Tν , since Tµ ⊆ Tτ and Tν ⊆ Tτ . We can
construct an associated complex difference equation(

u(t+ τ)

v(t+ τ)

)
= B

(
u(t)

v(t)

)
(t ∈ Tτ ), (15)

which interpolates (3), by defining

B := k
√̀

Ψ(T, 0) ∈ C2×2,

and
Ψ(t, s) := B

t−s
τ for t, s,∈ Tτ , t ≥ s. (16)

By (16), B = Ψ(τ, 0) and Ψ(T, 0) = Bk`.
For every solution (x, y) of (3) and solution (u, v) of (15) with x(0) = u(0),

y(0) = v(0), we have (
x(t)

y(t)

)
=

(
u(t)

v(t)

)
for all t ∈ TT .

Note that in general x(t) = u(t) does not necessarily hold for t ∈ Tµ \ TT , also
y(t) = v(t) is not necessarily true for t ∈ Tν \ TT .

We illustrate these notions by going back to Example 3.2.



1020 STEFAN SIEGMUND AND PETR STEHLÍK

i := 1Tµ (t) j := 1Tµ (σ(t)) k := 1Tν (t) ` := 1Tν (σ(t)) Pictogram Aijk`

1 1 1 1

( 1+µα 0 µβ 0
1 0 0 0
νγ 0 1+νδ 0
0 0 1 0

)
=: A1111

1 1 1 0

(
1+µα 0 µβ 0

1 0 0 0
0 0 1 0
0 0 1 0

)
=: A1110

1 1 0 1

( 1+µα 0 0 µβ
1 0 0 0
0 νγ 1+νδ 0
0 0 0 1

)
=: A1101

1 1 0 0

(
1+µα 0 0 µβ

0 1 0 0
0 0 1 0
0 0 0 1

)
=: A1100

1 0 1 1

(
1 0 0 0
1 0 0 0
νγ 0 1+νδ 0
0 0 1 0

)
=: A1011

1 0 0 1

(
1 0 0 0
1 0 0 0
0 νγ 1+νδ 0
0 0 0 1

)
=: A1001

0 1 1 1

( 1+µα 0 0 µβ
0 1 0 0
0 νγ 1+νδ 0
0 0 1 0

)
=: A0111

0 1 1 0

(
1+µα 0 0 µβ

0 1 0 0
0 0 1 0
0 0 1 0

)
=: A0110

0 0 1 1

(
1 0 0 0
0 1 0 0
0 νγ 1+νδ 0
0 0 0 1

)
=: A0011

Table 1. 9 possible forms of the one-step evolution operator
A(t), t, σ(t) ∈ T associated with the system (8), see Corol-
lary 2. The pictograms illustrate each quadruple (i, j, k, `) =(
1Tµ(t),1Tµ(σ(t)),1Tν (t),1Tν (σ(t))

)
, squares correspond to Tµ,

circles to Tν , the left symbols to time t ∈ T and the right sym-
bols to σ(t) ∈ T.

Example 4.1. Let us consider the asynchronous discrete time dynamical system
(3) with µ = 1, ν = 2 and parameters α = 2, β = 1, γ = −1 and δ = 1. Following
Example 3.2, we observe that

Ψ(2, 0) =

(
9 4

−2 3

)
.
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Since T = lcm(1, 2) = 2, we compute the matrix square root of Ψ(2, 0) and deter-
mine that

B := Ψ(1, 0) :=
√

Ψ(2, 0) =

(
−
√

5 + 2
√

7 −2
√

5 + 2
√

7
√

5−
√

7 2
√

5−
√

7

)
≈

(
3.05543 0.819367

−0.409683 1.82638

)
.

5. Synchronous case µ = ν. Let us consider the standard synchronous setting
µ = ν as a benchmark case first. We have T = Tµ = Tν and the system (3) can be
rewritten as ∆µx(t) = αx(t) + βy(t),

∆µy(t) = γx(t) + δy(t),
(t ∈ T). (17)

In order to be able to compare various asynchronous dynamics later, we use special
notation for the solution operator Ψ which indicates the periodicities via upper
indices

Ψµ,µ(µ, 0) :=

(
1 + µα µβ

µγ 1 + µδ

)
.

We can rewrite system (17) as(
x(t+ µ)

y(t+ µ)

)
=

(
1 + µα µβ

µγ 1 + µδ

)(
x(t)

y(t)

)
= Ψµ,µ(µ, 0)

(
x(t)

y(t)

)
.

Denoting by λ(M) the set of all eigenvalues of a matrix M , we can claim the
following result, an alternative of a well-known result from the theory of discrete-
dynamical systems, see [16].

Theorem 5.1. Let λ(Ψµ,µ(µ, 0)) ⊂ B(0, 1) or, equivalently, λ(P ) ⊂ B
(
− 1

µ ,
1
µ

)
.

Then o := (0, 0) ∈ R2 is a globally asymptotically stable solution of (17), i.e., every
solution (x, y) of (17) satisfies

lim
t→∞

x(t) = 0 = lim
t→∞

y(t).

6. Special case µ ∈ N and ν = 1. Next, we consider the case when either µ = kν
or ν = kµ for some k, µ, ν ∈ N, i.e., either Tµ ⊂ Tν or Tν ⊂ Tµ. Without loss of
generality we only focus on the case µ ∈ N and ν = 1, i.e.,

Tµ = {0, µ, 2µ, . . .} = µTν ,

and problem (3) could be rewritten as (similarly as in Examples 3.2 or 7.3)(
x(t+ µ)

y(t+ µ)

)
=

(
1 + µα µβ∑µ−1

i=0 γ(1 + δ)i (1 + δ)µ

)(
x(t)

y(t)

)
= Ψµ,1(µ, 0)

(
x(t)

y(t)

)
, (18)

with the solution operator

Ψµ,1(µ, 0) :=

(
1 + µα µβ∑µ−1

i=0 γ(1 + δ)i (1 + δ)µ

)
.

We have the following result regarding the stability of the origin in this case:

Theorem 6.1. Let λ(Ψµ,1(µ, 0)) ⊆ B(0, 1). Then o is a globally asymptotically
stable solution of the (µ, 1)-discrete dynamical system (3), i.e., every solution (x, y)
of (18) satisfies

lim
t→∞

x(t) = 0 = lim
t→∞

y(t).
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Proof. We divide the proof into two parts. First, we show that

lim
t→∞
t∈Tµ

(
x(t)

y(t)

)
=

(
0

0

)
, (19)

and next we show that this is also true for t ∈ Tν .
The assumption λ(Ψµ,1(µ, 0)) ⊆ B(0, 1) implies that the spectral radius of Ψµ,1(µ, 0)

satisfies
ρ(Ψµ,1(µ, 0)) = max{|λ1|, |λ2|} < 1.

Consequently, a standard argument (e.g., [16, Theorem 4.4]) implies that for κ with
ρ(Ψµ,1(µ, 0)) < κ < 1 there exists K > 0 so that for each t ∈ {0, µ, 2µ, 3µ, . . .} we
have ∥∥∥∥(x(t)

y(t)

)∥∥∥∥ =

∥∥∥∥(x(nµ)

y(nµ)

)∥∥∥∥ ≤ Kκn ∥∥∥∥(x(0)

y(0)

)∥∥∥∥ , (n ∈ N). (20)

This implies that (19) holds.
Assume now that t /∈ Tµ, i.e., t = nµ+m, with n ∈ N and m ∈ {1, 2, . . . , µ− 1}.

Apparently, x(nµ) = x(nµ+ 1) = x(nµ+ 2) = · · · = x(nµ+ µ− 1) and we have

y(nµ+ 1) = γx(nµ) + (1 + σ)y(nµ)

y(nµ+ 2) = γx(nµ+ 1) + (1 + σ)y(nµ+ 1)

= (γ + γ(1 + σ))x(nµ) + (1 + σ)2y(nµ)

...

y(nµ+m) =

(
m−1∑
i=0

γ(1 + δ)i

)
x(nµ) + (1 + σ)my(nµ).

Consequently, we can write(
x(t)

y(t)

)
=

(
x(nµ+m)

y(nµ+m)

)
=

(
1 0∑m−1

i=0 γ(1 + δ)i (1 + δ)m

)(
x(nµ)

y(nµ)

)
.

Then we have1∥∥∥∥(x(t)

y(t)

)∥∥∥∥ =

∥∥∥∥(x(nµ+m)

y(nµ+m)

)∥∥∥∥ ≤
∥∥∥∥∥
(

1 0∑m−1
i=0 γ(1 + δ)i (1 + δ)m

)∥∥∥∥∥ ·
∥∥∥∥(x(nµ)

y(nµ)

)∥∥∥∥
≤ L

∥∥∥∥(x(nµ)

y(nµ)

)∥∥∥∥ ,
where L is a constant defined by

L = max
m=1,2,...,µ−1

∥∥∥∥∥
(

1 0∑m−1
i=0 γ(1 + δ)i (1 + δ)m

)∥∥∥∥∥ .
Consequently, the estimate (20) implies that∥∥∥∥(x(t)

y(t)

)∥∥∥∥ =

∥∥∥∥(x(nµ+m)

y(nµ+m)

)∥∥∥∥ ≤ LKκn ∥∥∥∥(x(0)

y(0)

)∥∥∥∥ ,
which finishes the proof.

1For M ∈ RN×N we use the spectral matrix norm ‖M‖ which is induced by the Euclidean

norm ‖ · ‖
‖M‖ = ‖M‖spec := sup{‖Mx‖ : ‖x‖ = 1}

and which is equal to the largest singular value of the matrix M , see Lütkepohl [25, Chapter 8].
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The following counterexamples show that neither the asymptotic stability of
(µ, µ)-dynamics (17) implies the asymptotic stability of (µ, 1)-dynamics (18) with
the same parameters α, β, γ, δ, nor vice versa.

Example 6.2. If

P =

(
− 1

16
1
8

− 1
8 − 1

16

)
and µ = 7, then the origin in the (7, 7)-dynamics (17) is not asymptotically stable,
since

Ψ7,7(7, 0) =

(
9
16

7
8

− 7
8

9
16

)
,

and both eigenvalues satisfy |λ12| ≈ 1.04 > 1. However, the origin in the (7, 1)-
dynamics (18) is asymptotically stable, since the eigenvalues of

Ψ7,1(7, 0) =

(
9
16

7
8

− 97 576 081
134 217 728

170 859 375
268 435 456

)
satisfy |λ12| ≈ 0.997 < 1.

Example 6.3. If

P =

(
− 1

11
1
10

− 2
15

1
15

)
and µ = 3, then the origin in the (3, 3)-dynamics (17) is asymptotically stable, since

Ψ3,3(3, 0) =

(
8
11

3
10

− 2
5

6
5

)
,

and both eigenvalues satisfy |λ12| ≈ 0.996 < 1. However, the origin in the (3, 1)-
dynamics (18) is not asymptotically stable, since the eigenvalues of

Ψ3,1(3, 0) =

(
8
11

3
10

− 1 442
3 375

4 096
3 375

)
satisfy |λ12| ≈ 1.006 > 1.

In the same spirit, neither the asymptotic stability of (1, 1)-dynamics (17) implies
the asymptotic stability of (µ, 1)-dynamics (18) with the same parameters α, β, γ, δ,
nor vice versa.

Example 6.4. If

P =

(
−8 −1
1089
40 4

)
then the origin in the (2, 1)-dynamics (18) is asymptotically stable, since the eigen-
values of

Ψ2,1(2, 0) =

(
−17 −2
1089

8 16

)
are both equal to − 1

2 . At the same time, the origin is unstable in the (1, 1)-dynamics
(18), since one of the eigenvalues of

Ψ1,1(1, 0) = P =

(
−8 −1
1089
40 4

)
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is 1
20

(
−40− 3

√
390
)
≈ −4.96.

Example 6.5. Finally, we can trivially observe that for

P =

(
− 7

4 0

0 − 7
4

)
the origin of the (µ, 1)-dynamics, µ ∈ N, is stable if and only if µ = 1, since

Ψµ,1(µ, 0) =

(
1− 7µ

4 0

0
(
− 3

4

)µ
)

and 1− 7µ
4 < −1 for µ = 2, 3, . . .

7. Commensurability case µ, ν ∈ N. In this section we consider a general sit-
uation in which µ, ν ∈ N are not multiples of each other, i.e., T = lcm{µ, ν} >
max{µ, ν}. We consider the following time scales

Tµ = {0, µ, 2µ, . . .} ,
Tν = {0, ν, 2ν, . . .} ,
T = Tµ ∪ Tν ,

TT = {0, T, 2T, . . .} = Tµ ∩ Tν .

For given parameters P =

(
α β

γ δ

)
we can use the matrices Aijkl from Table 1

to construct the evolution operator (see Corollaries 1 and 2):

Φµ,ν(T, 0) =
∏

m∈T∩[0,T )

Aimjmkmlm ,

and the solution operator (matrix) Ψµ,ν(T, 0) defined by

Ψµ,ν(T, 0) :=

(
Φµ,ν11 (T, 0) Φµ,ν13 (T, 0)

Φµ,ν31 (T, 0) Φµ,ν33 (T, 0)

)
.

We have the following result.

Theorem 7.1. Let µ, ν ∈ N and λ(Ψµ,ν(T, 0)) ⊆ B(0, 1). Then o is a globally
asymptotically stable solution of (3), i.e., every solution of (3) satisfies

lim
t→∞

x(t) = 0 = lim
t→∞

y(t).

Proof. The proof follows the ideas of the proof of Theorem 6.1.
First, we show that

lim
t→∞
t∈TT

(
x(t)

y(t)

)
=

(
0

0

)
. (21)

First, we choose κ such that ρ(Ψµ,ν(T, 0)) < κ < 1. Then, there exists K > 0 so
that for each t ∈ TT ∩ N we have∥∥∥∥(x(t)

y(t)

)∥∥∥∥ =

∥∥∥∥(x(nT )

y(nT )

)∥∥∥∥ ≤ Kκn ∥∥∥∥(x(0)

y(0)

)∥∥∥∥ , n ∈ N, (22)

which implies (21).
Next, we focus on the values of x(t) and y(t) on the intervals (mT, (m+ 1)T )∩T

for some m ∈ N. Since the evolution operator Φµ,ν is defined as a product of
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matrices Aijkl from Table 1 and the solution operator Φµ,ν as the submatrix of
Ψµ,ν , we observe that with the constant

L = max
t∈T∩(0,T )

‖Ψµ,ν(t, 0)‖,

we have for all t ∈ T ∩ (0, T ) and n ∈ N,∥∥∥∥(x(nT + t)

y(nT + t)

)∥∥∥∥ ≤ L∥∥∥∥(x(nT )

y(nT )

)∥∥∥∥ .
Employing the estimate (22) we get∥∥∥∥(x(nT + t)

y(nT + t)

)∥∥∥∥ ≤ LKκn ∥∥∥∥(x(0)

y(0)

)∥∥∥∥ ,
and the proof is complete.

Before we illustrate Theorem 7.1 we introduce the notion of dynamically equiv-
alent asynchronous dynamical systems.

Definition 7.2. Let µ, ν, µ̂, ν̂ be commensurable, i.e., there exists T = lcm{µ, ν, µ̂, ν̂}.
We say that a (µ, ν)-asynchronous discrete dynamical system with parameters P

and a (µ̂, ν̂)-discrete dynamical system with parameters P̂ are dynamically equiva-
lent if the solution operators satisfy

Ψµ,ν(T, 0) = Ψ̂µ̂,ν̂(T, 0).

Example 7.3. The following two asynchronous discrete dynamical systems are dy-
namically equivalent because in both cases they lead to the dynamics with solution
operator

Ψµ,ν(6, 0) =

(
− 7

10
1
10

− 9
16

29
80

)
.

Since λ(Ψµ,ν(6, 0)) =
{

1
160

(
−27−

√
5785

)
, 1

160

(√
5785− 27

)}
≈ {−0.644, 0.306},

the origin is asymptotically stable in both cases.

(a) (2, 3)-asynchronous discrete dynamics. If we consider parameters

P =

(
α β

γ δ

)
=

(
−1 1

5
1
4 − 1

4

)
,

we have in this case (see Figure 2 and Table 1) the evolution operator

Φ
2,3

(6, 0) = A1101A0110A1001A1110

=


(2α + 1)3 + 6βγ 0 (2α + 1)(2(2α + 1)β + 2β) + 2β(3δ + 1) 0

(2α + 1)2 0 2(2α + 1)β + 2β 0

3(2α + 1)γ + 3(3δ + 1)γ 0 (3δ + 1)2 + 6βγ 0

3γ 0 3δ + 1 0

 .

Consequently, the solution operator is

Ψ2,3(6, 0) =

(
(2α+ 1)3 + 6βγ (2α+ 1)(2(2α+ 1)β + 2β) + 2β(3δ + 1)

3(2α+ 1)γ + 3(3δ + 1)γ (3δ + 1)2 + 6βγ

)

=

(
− 7

10
1
10

− 9
16

29
80

)
.
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Figure 2. Time scales related to dynamically equivalent (2,3)-
and (6,1)-asynchronous discrete dynamical systems from Example
7.3.

(b) (6, 1)-asynchronous discrete dynamics. If we consider parameters

P̂ =

(
α̂ β̂

γ̂ δ̂

)
=

 − 17
60

1
60

−
−9
16∑5

i=0( 6
√

29
60 )i

−1 + 6

√
29
60

 ≈ (−.283 .017

−.137 −.156

)
,

then we have (see Figure 2 and Table 1)

Φ̂6,1(6, 0) = Â0111(Â0011)4Â1011 =


1 + 6α̂ 0 6β̂ 0

1 0 0 0

γ̂
∑5
i=0(1 + δ̂)i 0 (1 + δ̂)6 0

γ̂
∑4
i=0(1 + δ̂)i 0 (1 + δ̂)5 0

 .

Consequently, the solution operator is

Ψ̂6,1(6, 0) =

(
1 + 6α̂ 6β̂

γ̂
∑5
i=0(1 + δ̂)i (1 + δ̂)6

)
=

(
− 7

10
1
10

− 9
16

29
80

)
.

Observant readers may have noted that the parameters P̂ can be derived backwards
so that the solution matrices Ψ2,3(6, 0) and Ψ̂6,1(6, 0) have the same form. Similarly,
one could find parameter sets P̄ for, e.g., dynamically equivalent (1, 1)-, (2, 1)-,
(3, 2)-, (1, 3)-asynchronous discrete dynamical systems.

Remark 3. Note that the notion of dynamical equivalence of asynchronous discrete
dynamical systems could have been alternatively introduced via the induced time-1
dynamics. (µ, ν)-asynchronous discrete dynamical system with parameters P and

a (µ̂, ν̂)-discrete dynamical system with parameters P̂ are dynamically equivalent if
the induced time-1 operators defined by (16) are equal, i.e.,

Ψµ,ν(1, 0) = Ψ̂µ̂,ν̂(1, 0).

Note that in Example 7.3 both asynchronous discrete dynamical systems are
associated with the complex time-1 solution operator

Ψ(1, 0) = 6
√

Ψµ,ν(6, 0) ≈

(
0.804 + 0.492i 0.002 − 0.049i

−0.01 + 0.275i 0.822 − 0.027i

)
.
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8. Final remarks. Our ideas can in principle be extended to dynamical systems
with more equations, e.g., 3 asynchronous discrete equations. Naturally, such a
process could be computationally demanding.

However, there are two essential questions which remain open even in the case
of two asynchronous equations (3).

First, note that the most general case we have studied was the case of com-
mensurable µ, ν, i.e., the situation in which there exists T = lcm{µ, ν}. However,
the cornerstone of our approach, the construction of a solution operator Ψ(T, 0)
on the intersection time scale TT = Tµ ∩ Tν cannot be used in the situation when
µ, ν ∈ R+ are incommensurable (for example µ = 1 and ν = π, etc.). In this
case, there is no least common multiple T . The open question is how to study
such (µ, ν)-asynchronous discrete dynamical systems. Under which condition is the
origin of a (µ, ν)-asynchronous discrete dynamical system with incommensurable
µ, ν asymptotically stable? Does the solution depend continuously on µ and ν, e.g.
in the ‖ · ‖∞ norm for piecewise constant extensions (x, y) : R+

0 → R2 of solutions
(x, y) : Tµ × Tν → R2?

The second question is motivated by counterexamples in Section 6 where we
showed that for a given set of parameters P the asymptotic stability of the origin
in (µ, 1)-asynchronous discrete dynamical systems, µ ∈ N neither implies nor is
implied by the asymptotic stability of the origin of (µ, µ)- or (1, 1)-synchronous
discrete dynamical system. Under which assumptions does the asymptotic stability
of the origin in (µ, ν)-dynamics imply the asymptotic stability of the origin in (µ̂, ν̂)-
dynamics?

From the point of view of applications, there are also natural questions. We
can illustrate one of the key ones by our little Example 2.1. In the case of macro-
economic time series, can we show that in some specific instances, a variant of
our asynchronous model (3) explains the real asynchronous time series better than
standard synchronous fiscal models (4)? Naturally, asynchronous systems would
create a realm of questions in econometrics related to the estimation of parameters,
etc.
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