
University of West Bohemia
Department of Computer Science and Engineering

Univerzitní 8
30614 Plzeň

Czech Republic

Cross-Lingual Methods for Semantic
Representations
The State of the Art and the Concept of Ph.D. Thesis

Ondřej Pražák

Technical Report No. DCSE/TR-2020-06
September 2020
Distribution: public

Technical Report No. DCSE/TR-2020-06
September 2020

Cross-Lingual Methods for Semantic
Representations
The State of the Art and the Concept of Ph.D. Thesis

Ondřej Pražák

Abstract
Semantic analysis is the elementary task of Natural Language Processing. Nowadays,
there are many outstanding semantic models based on deep learning for English and
other high-resource languages. However, for languages with less data available, these
methods reach their limits. This work summarizes recent work in Deep Learning,
methods for creating semantic representation and transferring these representations
between languages.

This work was supported by Grant No. SGS-2019-018 Processing of heterogeneous
data and its specialized applications.

Copies of this report are available on
http://www.kiv.zcu.cz/en/research/publications/
or by surface mail on request sent to the following address:

University of West Bohemia
Department of Computer Science and Engineering
Univerzitní 8
30614 Plzeň
Czech Republic

Copyright c○ 2020 University of West Bohemia, Czech Republic

http://www.kiv.zcu.cz/en/research/publications/

Contents

1 Introduction 1
1.1 Outline . 1

2 Machine Learning 2
2.1 Feature Engineering and Simple Classifiers 2

2.1.1 Supervised Machine Learning 2
2.1.2 Gradient-Based Optimizers 2
2.1.3 Linear Regression . 2
2.1.4 Logistic Regression . 3

2.2 Neural Networks . 4
2.2.1 Mcculloch-Pitts Neuron . 4
2.2.2 Feed-Forward Neural Network 6
2.2.3 Forward Propagation and Loss 6
2.2.4 Backpropagation Algorithm 7
2.2.5 Deep Neural Network . 8
2.2.6 Activation Functions in Deep Learning 8
2.2.7 Initializing Weights . 10
2.2.8 Batch Normalization . 11
2.2.9 Regularization . 12
2.2.10 Parameter Sharing Relaxation 12
2.2.11 Convolutional Neural Network 13
2.2.12 Recurrent Neural Network 14
2.2.13 Encoder-Decoder . 17
2.2.14 Attention-Based Networks 18
2.2.15 Tree-Structured Networks 21

2.3 Multi-Task Learning . 22
2.3.1 Neural Networks for Multi-Task Learning 23
2.3.2 Hard Parameter Sharing . 23
2.3.3 Soft Parameter Sharing . 23

3 Semantics 24
3.1 Lexical Databases and Ontologies 24

3.1.1 Wordnet . 24
3.2 Distributed Representations . 25

3.2.1 LDA . 25
3.2.2 LSA . 25
3.2.3 Neural Networks’ Hidden States 27

i

3.2.4 Sentence Embeddings and Contextualized Word Embeddings 29
3.2.5 Document Embeddings . 35

3.3 Semantic Role Labeling . 37
3.3.1 Feature Engineering . 37
3.3.2 Deep Learning . 39

4 Cross-Lingual Semantics 41
4.1 Bilingual and Multilingual Semantic Vectors 41

4.1.1 Linear Transformations . 42
4.1.2 Joined Optimization . 44
4.1.3 Unsupervised Transfer . 45

4.2 Parallel Corpora and Machine Translation 46
4.3 Universal Dependencies and Other Cross-Lingual Resources 46
4.4 Cross-Lingual SRL . 47

4.4.1 Annotation Projection . 47
4.4.2 Unsupervised Approaches 48
4.4.3 Model Transfer . 48

5 Preliminary Experiments and Future Work 50
5.1 Aims of the PhD thesis . 51

ii

Chapter 1

Introduction

Semantic analysis (representing the meaning of texts) is one of the elementary
tasks of Natural Language Processing (NLP), which is very useful across almost
all NLP tasks. Generally, the task is about encoding the meaning of the language
(mostly text) in a machine-readable or machine-understandable format. For creat-
ing the formal representation of semantics automatically, a high amount of labeled
data is needed for training. Unfortunately, there is not enough data for supervised
training for many languages. That gave the motivation to create methods that
do not need any training data (unsupervised methods) and methods that can
use training data in one language to train the model for a different language
(Cross-lingual methods). This work focuses on cross-lingual methods of semantic
representations.

1.1 Outline
The structure of this report is as follows. The second chapter describes general
methods of machine learning, which are often used in Natural language processing
tasks. The most attention is paid to new neural network architectures, which are
used in the state of the art methods for semantic representations.

The third chapter covers semantic analysis from basic techniques to the current
state-of-the-art methods. Chapter 4 deals with cross-lingual methods, the methods
where we can use a single model across more languages. Chapter 5 concludes the
report and presents the aims of the Ph.D. thesis.

1

Chapter 2

Machine Learning

This chapter describes the basic principles of some historically used methods for
learning semantics and then the current state-of-the-art methods based on artificial
neural networks in detail.

2.1 Feature Engineering and Simple Classifiers
Before the rise of the popularity of the deep-learning methods, machine learning
in NLP had been done by feature engineering with simple classifiers such as SVM
or Maximum-Entropy. That means the developer of the learning algorithm had
to manually select and extract features that he considered helpful for the specific
task. The classifier only learns a score for every feature (how does the feature value
affect the output).

2.1.1 Supervised Machine Learning
The supervised learning is formally the function 𝑦 = 𝑑(𝑥, Θ), where Θ is a vector
of parameters to be learned, and , 𝑦 ∈ 𝑌 ⊂ N for classification, and 𝑦 ∈ R for
regression. The learning procedure can be formalized as: argmin Θ 𝐽(𝑑(𝑋, Θ), 𝑌),
where 𝐽 is the cost function, and 𝑌 is the vector of true classes for the examples
in 𝑋.

2.1.2 Gradient-Based Optimizers
Most of the optimization techniques used in machine learning are based on the
gradient descent. In the gradient descent, we initialize the model parameters ran-
domly, and then we iteratively move the parameters in the opposite direction of
the gradient of the cost function with respect to the parameters Θ.

2.1.3 Linear Regression
In the simplest case of linear regression, the task is to predict a continuous value
based on another one (a single feature). We want to find a linear dependence
between those two values.

2

3

A basic machine learning method is the least-squares optimization, which is
probably the most common method for simple linear regression. In the least-
squares optimization, we want to find the weight of each feature so that the sum
of squares of the error is minimal. More formally, we want to find:

argmin
Θ

∑︁
𝑖

(𝑥𝑖Θ𝑇
𝑖 − 𝑦𝑖)2 (2.1)

2.1.4 Logistic Regression
In logistic regression, we change the linear regression model so that its output can
be interpreted as a probability. We can then use such a model for classification. We
want the output to be in < 0, 1 > symmetric around functional value 0.5, and we
want the value to change more near the decision boundary. Previous requirements
lead to the sigmoid function for binary classification (see Figure 2.1). There is one
more problem. When a datapoint is misclassified, the gradient is decreasing with
increasing distance from the decision boundary, which leads to the non-convex
cost function. We can fix this by using the cross-entropy cost function:

𝐽(Θ) =
𝑚∑︁

𝑖=0
𝑐𝑜𝑠𝑡(𝑥𝑖, 𝑦𝑖, Θ) (2.2)

𝑐𝑜𝑠𝑡Θ(𝑥, 𝑦, Θ) =

⎧⎨⎩− log (1
1+𝑒−𝑋Θ), if 𝑦 = 1

− log (1 − 1
1+𝑒−𝑋Θ) if 𝑦 = 0

With the cross-entropy cost, the cost function with respect to the inputs and/or
weights looks like it is shown in Figure 2.2, where 𝑐𝑜𝑠𝑡1 is cost value in the case
there the true class is 1, and 𝑐𝑜𝑠𝑡0 for the true class 0.

-10 -5 0 5 10
x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

si
gm

oi
d(

x)

sigmoid function

Figure 2.1: Sigmoid function

4

-10 -5 0 5 10
0

2

4

6

8

10

12

x

J

cost0

-10 -5 0 5 10
0

2

4

6

8

10

12
cost1

x

J

Figure 2.2: Logistic Regression Cost Function

2.2 Neural Networks
Artificial neural networks are a group of machine learning algorithms inspired by
the human brain. The computation is done by a large group of neurons, which
are connected with synapses. Each neuron aggregates its inputs. If the inputs
aggregation exceeds a threshold, the neuron activates and sends the activation
(positive value, logical true) to other neurons.

2.2.1 Mcculloch-Pitts Neuron
McCulloch and Pitts (1943) formulated the mathematical model of the neuron,
which is being used (with some minor modifications) even today. The mathemat-
ical model looks as follows:

First, the inputs are aggregated, and the bias is added (or the threshold is
subtracted as in the original formulation), e.g.:

𝑧 =
𝑁∑︁

𝑖=1
𝑤𝑖 · 𝑥𝑖 + 𝑏 (2.3)

Then, the non-linear activation function is applied (to incorporate decision),
e.g.:

𝑎 = 𝜎(𝑧) (2.4)

5

Dendrite

Cell body

Node of
Ranvier

Axon Terminal

Schwann cell

Myelin sheath

Axon

Nucleus

Figure 2.3: Biological neuron

� = ∑ + �����

� =
1

1 + �−�

x1

x2

xn

a

b

Figure 2.4: McCulloch-Pitts artificial neuron

6

x1

x2

x3

Z2 A2

Z3 A3

A1

Figure 2.5: Feedforward neural network

The same model is being used today, however there are many different activa-
tion functions and several aggregation functions which are described later in the
text.

2.2.2 Feed-Forward Neural Network
Most of the current state-of-the-art neural network architectures are based on sim-
ple feed-forward neural network (FFNN)1. In this network, the neurons (Mcculloch-
Pitts neurons with various activation and aggregation functions) are arranged into
a layered network where each neuron can be directly connected only with neurons
in surrounding layers. The feed-forward network architecture is shown in Figures
2.4 and 2.5.

2.2.3 Forward Propagation and Loss
The forward propagation is a series of aggregation and activation functions. If the
aggregation function is weighted sum and the activation is sigmoid, the layer is
equivalent to the logistic regression.

The loss function is dependent on the concrete task, but the most common
loss function for classification tasks is cross-entropy with the softmax activation
function on the output layer:

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑋𝑖) = 𝑒𝑥
𝑖∑︀𝑙𝑒𝑛(𝑋)

𝑗=0 𝑒𝑥
𝑗

(2.5)

1sometimes referred to as the multi-layer perceptron

7

𝐽 =
𝑚∑︁

𝑖=0
𝑦𝑖 · 𝑙𝑜𝑔(𝑎𝑙𝑎𝑠𝑡

𝑖) (2.6)

2.2.4 Backpropagation Algorithm
The Backpropagation algorithm is a way of computing partial derivatives with
respect to the weights based on the chain rule (eq. 2.7). If we have partial deriva-
tives 𝜕𝐽

𝜕𝑊
, we can train the model with standard gradient-based optimizers. The

backpropagation algorithm works as follows:
After computing the forward propagation and the loss value, we compute for

each layer starting at the top:

1. Rate of parameters change. Formally this is the 𝜕𝐽
𝜕𝑊𝑙

2. Backpropagation error 𝛿𝑙. Formally the derivative with respect to the layer
input 𝜕𝐽

𝜕𝑍𝑙

d𝑓(𝑔(𝑥))
d𝑥

= d𝑓(𝑔)
d𝑔

· d𝑔(𝑥)
d𝑥

(2.7)

Intuitively according to the chain rule:

𝜕𝐽

𝜕𝑊2
= 𝜕𝐽

𝜕𝑍3
· 𝜕𝑍3

𝜕𝑊2
= 𝐴2 · 𝜕𝐽

𝜕𝑍3
(2.8)

𝜕𝐽

𝜕𝑍2
= 𝜕𝐽

𝜕𝑍3
· 𝜕𝑍3

𝜕𝑍2
(2.9)

𝜕𝑍3

𝜕𝑍2
= 𝜕𝑍3

𝜕𝐴2
· 𝜕𝐴2

𝜕𝑍2
(2.10)

𝜕𝑍3

𝜕𝐴2
= 𝑊2 (2.11)

And this sums up to:

𝜕𝐽

𝜕𝑍2
= 𝑊2 · 𝜕𝜎(𝑍2)

𝜕𝑍2
· 𝜕𝐽

𝜕𝑍3
(2.12)

and same as for the succeeding layer (eq. 2.8)

𝜕𝐽

𝜕𝑊1
= 𝜕𝐽

𝜕𝑍2
· 𝜕𝑍2

𝜕𝑊1
= 𝐴1 · 𝜕𝐽

𝜕𝑍2
(2.13)

8

Usually, we combine output activation and cost so that:

𝜕𝐽

𝜕𝑍3
= 𝐴3 − 𝑌 (2.14)

because we want to have a linear gradient with respect to the error on the
output layer. This is true for both the linear activation with least-squares cost
(standard linear regression model) and the softmax activation with cross-entropy
cost (also used in logistic regression).

2.2.5 Deep Neural Network
Recently (in the past ten years), as we have much more computational power
(mainly GPUs), deep neural networks (DNNs) became very popular. Defining
deep learning is not an easy task. The deep neural network is sometimes defined
as an artificial neural network where we have more hidden layers (in opposite to
the standard feed-forward network where we have only one hidden layer). Another
definition is that with DNNs, we do not need to extract interesting features man-
ually. The network accepts raw inputs (e. g. pixels in case of an image), and it
extracts the interesting features itself. There are two basic approaches typically
used in deep learning; Convolutional neural networks (DCNN) and recurrent neu-
ral networks (RNN). More recently, attentional networks based on the transformer
architecture appeared, and they became very successful in various tasks.

2.2.6 Activation Functions in Deep Learning
This section summarizes various activation functions for deep learning. In classical
neural networks, the activations mostly used were sigmoid and tanh.

𝜎(𝑥) = 1
1 + 𝑒−𝑥

(2.15)

The range of the sigmoid is (0, 1), which makes its output interpretable as a
probability, but it is shifted to 0.5 (𝜎(0) = 0.5), so it shifts the mean value, which
complicates gradient-based training. The advantage of tanh is its symmetricity
around 0 (it preserves the mean). The disadvantage of both functions is that their
gradient is decreasing very quickly on both sides.

Softsign

𝑓(𝑥) = 𝑥

1 + |𝑥|
(2.16)

9

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0
y

sigmoid activation function
sigmoid
sigmoid gradient

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y

tanh activation function
tanh
tanh gradient

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y

softsign activation function
softsign
softsign gradient

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0

2

4

6

8

10

y

relu activation function
relu
relu gradient

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0

2

4

6

8

10

y

leaky ReLU activation function
leaky ReLU
leaky ReLU gradient

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0

2

4

6

8

10

y

elu activation function
elu
elu gradient

Figure 2.6: Activation Function Examples

ReLU

the rectified linear unit (ReLU) (Nair and Hinton, 2010) has been proposed to
solve the vanishing gradient problem2. It copies the idea from logistic regression to
have a decreasing gradient only on one side (Figure 2.2). In many cases, improper
training with sigmoid or tanh activation is caused by a decreasing gradient with
increasing distance from the optimum. ReLU tries to solve this problem.

𝑓(𝑥) =

⎧⎨⎩𝑥, if 𝑥 ≥ 0
0, otherwise

(2.17)

ReLU is the simplest non-linear function with a single point of non-linearity.

Leaky-ReLU

Although it is super effective in practical use, the ReLU activation function may
be problematic to train due to its zero gradient in the negative domain. This
way, the network cannot learn from deactivated neurons, and it activates them
only by updating the weights of other neurons with some random chance. Leaky
ReLU (Maas et al., 2013) solves this problem by setting the value in the negative
domain to linear with a small negative slope. So there is some gradient towards
the decision point.

𝑓(𝑥) =

⎧⎨⎩𝑥, if 𝑥 ≥ 0
𝐶𝑥, 𝐶 ≪ 1 otherwise

(2.18)

2Details can be found in Section 2.2.7

10

Maas et al. (2013) set 𝐶 to 0.01.

PReLU

He et al. (2015) proposed a generalization of ReLU called Parametric ReLU, which
is simply the leaky Relu where 𝐶 is the parameter trained by a network as well.
With PReLU, negative values can still affect the training (because there can be
non-zero gradient). But for PReLU it is harder to model a decision (discrete)
because all negative examples are still affecting the activation.

ELU

𝑓(𝑥) =

⎧⎨⎩𝑥, if 𝑥 ≥ 0
𝛼 · (𝑒𝑥 − 1), otherwise

(2.19)

ELU is very similar to ReLU, but it has a smooth gradient decrease in the
negative part. It is sort of a compromise between ReLU and PReLU. The gradient
in the negative part is non-zero, but it is decreasing very quickly.

2.2.7 Initializing Weights
With standard activation functions used in simple FFNN (sigmoid or tanh), espe-
cially very deep neural networks face the vanishing gradient problem because the
first derivative of those functions goes down very quickly in both directions away
from the decision boundary. This is a big problem, especially for weights initial-
ization, because if we initialize weights in a wrong way, we may never converge
due to small gradients. Glorot and Bengio (2010) proposed a method for weights
initiation with standard activation functions so that the mean and variance of the
data do not change through the layers of the network (or the mean and variance
change will be the least possible). In this way, all the neurons activation will be at
a similar distance from its critical value (decision boundary), and the derivatives
will be on the same scale.

Suppose we have input data centered around zero with unit variance. We want
to have the same mean and variance on the succeeding layer. If the variance of the
weights 𝑣𝑎𝑟(𝑊 𝑙) = 1, then the variance of the output would be:

𝑣𝑎𝑟(𝑧𝑙
𝑖) =

∑︁
𝑗

𝑣𝑎𝑟(𝑎𝑙−1
𝑗) · 𝑣𝑎𝑟(𝑤𝑙−1

𝑖,𝑗)

if the mean of the input and weights is equal to zero. Now, if the variance of the
weights is equal to one:

𝑣𝑎𝑟(𝑧𝑙
𝑖) = 𝑣𝑎𝑟(𝑎𝑙−1) · 𝑛𝑙)

where 𝑛𝑙 is the number of inputs of the layer 𝑙. So if we want 𝑣𝑎𝑟(𝑧𝑙) = 𝑣𝑎𝑟(𝑎𝑙−1),
we need the 𝑣𝑎𝑟(𝑤𝑙) = 1

𝑛𝑙 for the forward case and 𝑣𝑎𝑟(𝑤𝑙) = 1
𝑛𝑙+1 for the backward

case. To compromise between these two constraints, Glorot and Bengio (2010)
suggest initializing the weights with the average of these two.

11

𝑣𝑎𝑟(𝑤𝑙) = 2
𝑛𝑙 + 𝑛𝑙+1

If we use the uniform distribution, we initialize the weights according to:

𝑊 = 𝑈(−
√

6√
𝑛𝑙 + 𝑛𝑛+1

,

√
6√

𝑛𝑙 + 𝑛𝑛+1
)

because 𝑣𝑎𝑟(𝑈) = 1
12 · (𝑏 − 𝑎)2

Later He et al. (2015) introduced a method for initializing weights for ReLU
activation in the same manner. The inference is very similar, and it leads to this
initialization rule:

𝑣𝑎𝑟(𝑊 𝑙) = 2
𝑛𝑙

The weights can be drawn from a uniform or a normal distribution with zero
mean and derived variance for both initializers.

2.2.8 Batch Normalization
Batch normalization is another technique to avoid very different gradient scales
in different layers. Ioffe and Szegedy (2015) proposed a normalization schema
as a part of the training where it can be applied on the input of each layer.
Normalized inputs on each layer should speed up training due to similar gradient
scales (same as in standard feature normalization). It also solves the problem
of non-proper weights initialization because the layers do not change mean and
variance anymore. Ioffe and Szegedy (2015) also address the problem of restrictive
properties of such a transformation (fixed mean and variance). They introduce
two trainable parameters 𝛽 = {𝛽(1), ...𝛽(𝑛)} and 𝛾 = {𝛾(1), ...𝛾(𝑛)} so that:

𝜇𝐵 = 1
𝑚

𝑚∑︁
𝑖=1

𝑥𝑖 (2.20)

𝜎2
𝐵 = 1

𝑚

𝑚∑︁
𝑖=1

(𝑥𝑖 − 𝜇𝐵)2 (2.21)

𝑥𝑖 = 𝑥𝑖 − 𝜇𝐵√︁
𝜎2

𝐵 + 𝜖
(2.22)

𝑦𝑖 = 𝛾𝑥𝑖 + 𝛽 (2.23)

where 𝑚 is the size of the batch, 𝑛 is the number the the parameters of the lazer
to be batch-normalized, and 𝜖 is a small constant added for numerical stability.
In this way, the network can learn the optimal mean and variance of the inputs

12

for each layer. The problematic terms here are 𝜇𝐵 and 𝜎2
𝐵 whose gradients depend

on the whole batch, which is computationally expensive. The backpropagation
inference can be found in Ioffe and Szegedy (2015).

2.2.9 Regularization
Regularization is a standard machine learning technique to prevent over-fitting. It
makes the model to generalize better. The standard regularization technique used
in machine learning is 𝐿2 parameter penalization (referred to as 𝐿2 regularization).
It alters the loss function to penalize too complex hypotheses. The formal definition
of 𝐿2 regularization is defined by Equation 2.24.

𝐽 = 𝐽 +
𝑁∑︁

𝑖=1
𝑤2

𝑖 (2.24)

With deep neural networks, many different regularization techniques have been
proposed. Nowadays, the most common one is the dropout. Dropout (Srivastava
et al., 2014) prevents overfilling by deactivating some neurons in each learning
step. This way, the neurons with the biggest information value are sometimes
turned off, and so they give a chance to others to affect the resulting model.

Another regularization technique used with DNN is gradient noise (Neelakan-
tan et al., 2015). In this method, the gradient used for optimization is the lin-
ear combination of the actual gradient computed with backprop and the random
noise. Several different approaches have been proposed. Neelakantan et al. (2015),
inspired by Welling and Teh (2011), proposed adding the Gaussian gradient noise
decreasing with training time with the variance equal to:

𝜎2
𝑡 = 𝜂

(1 + 𝑡)𝛾
(2.25)

𝑔𝑡 = 𝑔 + 𝑁(0, 𝜎2
𝑡) (2.26)

Graves (2011) and Blundell et al. (2015) try to make the network to learn
hyper-parameters of the distribution for the noise generation itself. This way, they
get closer to the Bayesian posterior from the ML hypothesis, which is chosen by
standard neural networks. This method is a Bayesian alternative to regularization
(dropout).

2.2.10 Parameter Sharing Relaxation
Parameter sharing relaxation. (Kaiser and Sutskever, 2015) is another technique
used to boost the convergence of optimization methods in DNN. In a recurrent
neural network with parameter sharing relaxation, the parameters are not shared
across all timestamps, but we use 𝑟 independent sets of parameters. Next, we
add a term into the loss function, which is proportional to the distance between

13

these parameter sets. This term is then multiplied by the scalar weight called
relaxation pull. At the beginning of the training procedure, the relaxation pull is
set to 0, so we have 𝑟 independent sets of parameters, and the network can learn
more different hypotheses. As the training continues, the relaxation pull is being
increased linearly, so the network converges to a single set of parameters.

2.2.11 Convolutional Neural Network
Convolutional networks were introduced on image classification (LeCun et al.,
1998). The basic idea is to learn an interesting pattern that should be detected
in the image. Their presence or absence in the image should be the discriminative
attributes for the classification. Convolutional networks are organized into deep
structures, where each successive layer should detect more complex patterns by
combining the patterns found by the previous layer. After each convolutional layer,
there is a pooling layer, which reduces the dimensionality.

Mathematical Notation

In mathematics, convolution is defined as an integral of the product of two func-
tions where one is reversed and shifted:

(𝑓 * 𝑔)(𝑡) =
∫︁ ∞

−∞
𝑓(𝜏)𝑔(𝑡 − 𝜏) 𝑑𝜏. (2.27)

In machine learning, we use its discrete variant:

(𝑓 * 𝑔)𝑘 =
∞∑︁

𝑖=−∞
𝑓𝑖 · 𝑔𝑘−𝑖 =

∞∑︁
𝑖=−∞

𝑓𝑘−𝑖 · 𝑔𝑖 (2.28)

Convolutional Layer

In the convolutional layer, we define the trainable set of convolution kernels, which
are moved across the whole input space (for example, whole image) searching
for matches. The layer computes the convolutions between the input and all the
trainable filters.

Pooling Layer

Pooling reduces the dimensionality of the input by applying reductional operation
on a region of the size given by the hyper-parameter. There are several types of
reductional operations, but max and average pooling are used the most.

Other Layers

After a sequence of convolutional and max-pooling layers, we map the output
of the convolution to a set of classes by a fully connected layer(s) same as in

14

other types of neural networks, and then we backpropagate the error (by standard
backpropagation algorithm) through all the layers updating the weights.

Convolution on Text

Textual data can also be processed with a convolutional neural network as a se-
quence of words or characters (or any other tokens). In this case, we have 1D
convolution (only one dimension of the data is sequential).

For example, Kalchbrenner et al. (2014) used deep convolutional network for
sentiment classification. In many cases, convolutional networks are used as character-
based models for adding syntactic information into the models.

The neural networks, very similar to convolutional networks, where the se-
quential dimension expresses time, have been called time-delayed networks. In
more recent years, these two terms have been practically merged, and we use the
term convolutional network even in case of time-dependent data.

When we have single-layer CNN with filters of size n (which is quite standard
on the text), the network is learning to find important n-grams, and it cannot
handle longer dependencies than n.

2.2.12 Recurrent Neural Network
For the sequential data, the recurrent neural networks are now used widely. There
are many different architectures, but the basic concept is always the same. The
RNN model is the sequence of RNN cells where the output of each cell depends
on current inputs and the previous cell state. Some non-linear transformations
have to be performed to model a decision. Elman (1990) defined recurrent neural
network as follows:

ℎ𝑡 = 𝜎ℎ(𝑊ℎ * 𝑥𝑡 + 𝑈ℎ * ℎ𝑡−1 + 𝑏ℎ) (2.29)

𝑦𝑡 = 𝜎𝑦(𝑊𝑦 * ℎ𝑡 + 𝑏𝑦) (2.30)

Jordan’s definition is slightly different:

ℎ𝑡 = 𝜎ℎ(𝑊ℎ * 𝑥𝑡 + 𝑈ℎ * 𝑦𝑡−1 + 𝑏ℎ) (2.31)

𝑦𝑡 = 𝜎𝑦(𝑊𝑦 * ℎ𝑡 + 𝑏𝑦) (2.32)

Here the input to the next timestamp is the current output, whereas in El-
man’s definition, the next timestamp depends on the current hidden state. This
type of sequential network has significant limitations. The biggest one the input is
weighted independently of the previous state. This way, the network cannot con-
trol properly what to store. Consequently, it suffers from the vanishing/exploding

15

gradient problem. Many different approaches on how to solve these have been de-
veloped. The most important are different activation functions and more advanced
RNN cells. Basic RNN architectures are shown in Figure 2.7.

xt-1 xt xt+1

yt-1 yt yt+1

U U U

V V V

W W W

ht-1 ht ht+1

bh bh bh

by by by

(a) Elman RNN

xt-1 xt xt+1

yt-1 yt yt+1

U U U

V

V VW W W

ht-1 ht ht+1

bh bh bh

by by by

(b) Jordan RNN

Figure 2.7: Basic RNN architectures

LSTM

Hochreiter and Schmidhuber (1997) proposed the Long short-term memory (LSTM).
It is the standard recurrent neural network with a different cell. The LSTM cell
operation works like this:

𝑓𝑡 = 𝜎𝑔(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓)
𝑖𝑡 = 𝜎𝑔(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖)
𝑜𝑡 = 𝜎𝑔(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜)
𝑐𝑡 = 𝑓𝑡 ∘ 𝑐𝑡−1 + 𝑖𝑡 ∘ 𝜎𝑐(𝑊𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡−1 + 𝑏𝑐)
ℎ𝑡 = 𝑜𝑡 ∘ 𝜎ℎ(𝑐𝑡)

(2.33)

Where:

∙ 𝑥𝑡 is the current input,

∙ ℎ𝑡 is the current output vector,

∙ 𝑓𝑡 is the forget gate,

∙ 𝑖𝑡 is the input gate,

∙ 𝑜𝑡 is the output gate,

∙ 𝑐𝑡 is the hidden cell state,

∙ 𝑈, 𝑊, 𝑏 parameter matrices and vector.

16

∙ Forget gate controls what part of the previous hidden state should be
copied without any change based on input,

∙ input gate controls what part of the input should be added to the current
hidden state,

∙ output gate controls what part of the hidden state should be passed to the
output.

GRU

Cho et al. (2014) simplified the gating mechanism and proposed the Gated Recur-
rent Unit (GRU). GRU cell operations are shown in the following equations.

𝑧𝑡 = 𝜎𝑔(𝑊𝑧𝑥𝑡 + 𝑈𝑧ℎ𝑡−1 + 𝑏𝑧)
𝑟𝑡 = 𝜎𝑔(𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1 + 𝑏𝑟)
ℎ𝑡 = (1 − 𝑧𝑡) ∘ ℎ𝑡−1 + 𝑧𝑡 ∘ 𝜎ℎ(𝑊ℎ𝑥𝑡 + 𝑈ℎ(𝑟𝑡 ∘ ℎ𝑡−1) + 𝑏ℎ)

(2.34)

Where:

∙ 𝑥𝑡 is the current input,

∙ ℎ𝑡 is the current output vector,

∙ 𝑧𝑡 is the update gate,

∙ 𝑟𝑡 is the reset gate,

∙ 𝑈, 𝑊, 𝑏 are The parameter matrices and the bias vector.

∙ update gate controls the mixture of the previous unchanged state and new
state based on the current input,

∙ forget gate controls what part of the previous state should be used to
produce the next state based on input and previous state.

Both LSTM and GRU are designed to control better what to remember and
what to forget when. The gates are dependent on the current input and on the
previous state, so the network can learn, that some information is no longer use-
ful based on the state (the information is already in the hidden state, or some
information in the hidden state became irrelevant based on inputs).

Recurrent neural networks can be used for creating representations of whole
sequences or for contextualized representations of individual tokens. For token rep-
resentations, we use ℎ𝑡 of each timestep, whereas for the whole sequence represen-
tation, the last state is used. Especially for token representations, it is important
to capture the context from both sides. For this purpose, the bidirectional RNNs
are often used. In the bidirectional RNN, we process the same sequence by two
RNNs, the first processes the input from left to right and the second from right
to left. In the end, we concatenate (or sum) both representations.

17

Another important approach is stacking the RNNs. In this model we stack
more recurrent layers, so that output of the first layer at each timestep is fed as
input to the second layer at the same timestep. The motivation is the same as for
building deep feed-forward networks. A single-layer model with enough capacity
can probably learn the same decisions, but it has been empirically shown, that
deeper models are easier to train Pascanu et al. (2013).

When we stack the bidirectional RNNs, the upper layers have the information
about the whole sequence, and they probably can learn more than single layer
RNNs. For example, it has been shown to improve the performance of speech
recognition in Graves et al. (2013).

2.2.13 Encoder-Decoder
The encoder-decoder architecture has been proposed to generate sequences (seq2seq
model) with (recurrent) neural networks. It is quite a general concept where the
whole input is encoded into a single hidden state at the first step, and then the
output is sequentially generated from that state. In NLP, most neural machine
translation models are based on the encoder-decoder architecture. In neural ma-
chine translation, the source sentence is at first projected into a hidden state which
is the vector in the embedding space shared between languages ("interlingua"). The
sentence in the target language is then generated sequentially from that shared
space.

Figure 2.8 shows standard encoder-decoder architecture on the example of
machine translation with RNN. When decoding the output, we first feed to the
network a special token that signalizes the start of the decoding stage (NULL in
the Figure, or EOS is sometimes used). In the next steps, we feed into the network
previously generated tokens (can be embedded as well). The decoder modifies
the state according to generated tokens. At the training time, we feed into the
decoder the expected outputs no matter what the network actually generates. At
the inference time, we need to use the previously generated token.

Encoder

Embed

He loved to eat .

S Decoder

Er liebte zu essen .

Softmax

Er liebte zu essenNULL

Figure 2.8: Encoder-Decoder Architecture

A special case of the encoder-decoder is autoencoder, where the expected out-
put is the same as the input. Autoencoder thus first encodes the input into the

18

hidden state, and then it reconstructs the original input from the hidden state. So
it generally compresses the data.

2.2.14 Attention-Based Networks
For the encoder-decoder architecture, long-distance dependencies are quite hard
to capture since the whole sequence is stored in a single state and decoded then.
The attention mechanism has been proposed to mitigate this problem.

The attention mechanism takes into account specific inputs when generating
the output. The network learns how important is the specific input position when
it needs to generate the output on the concrete position. Formally, the attention
is the function of the encoder input and the decoder state producing the attention
score (importance, relevance).

Luong et al. (2015a) presented attentional encoder-decoder architecture in neu-
ral machine translation. They proposed several modifications. In the simplest case,
the attention mechanism works like this:

1. The output of the decoder in timestamp 𝑡 is concatenated with context vector
𝑐𝑡:

ℎ̄𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐 · [𝑐𝑡; ℎ𝑡]) (2.35)

𝑜 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑠 · ℎ̄𝑡) (2.36)

2. The context vector 𝑐𝑡 is given by the weighted sum of the encoder hidden
states where the weights are given by the attention scores (attention vector
𝑎𝑡):

𝑐𝑡 =
∑︁
𝑆

𝑎𝑆
𝑡 · ℎ̄𝑆 (2.37)

3. Attention vector 𝑎𝑡 is given by softmax over the attention scores:

𝑎𝑡 = 𝑒𝑥𝑝(𝑠𝑐𝑜𝑟𝑒(ℎ𝑡, ℎ̄𝑆))∑︀
ℎ̄𝑆

𝑒𝑥𝑝(𝑠𝑐𝑜𝑟𝑒(ℎ𝑡, ℎ̄𝑆))
(2.38)

There are many slightly different approaches on how to compute the score,
for example:

𝑠𝑐𝑜𝑟𝑒(ℎ𝑡, ℎ̄𝑆) =

⎧⎪⎪⎨⎪⎪⎩
ℎ𝑡ℎ̄𝑆

ℎ𝑡𝑊𝑎ℎ̄𝑆

𝑊𝑎[ℎ𝑡; ℎ̄𝑆]
(2.39)

19

and many others.

To reduce computational complexity, Luong et al. (2015a) also propose to use
the local attention. In their local attention every word can attend only to a small
subset of the closest surrounding words.

Later the attention concept has been generalized in the way that it does not
have to be between encoder and decoder, but it can be between arbitrary layers.
The attention between two layers of the same part of the model is called self-
attention or sometimes intra-attention.

Parikh et al. (2016) used attention in the natural language understanding
model.

Transformer

Vaswani et al. (2017) proposed a learning method based mainly on attention.
They show that attention in combination with feed-forward layer has at least the
same (for some tasks even better) computational power as RNNs. The proposed
architecture, called the Transformer, is widely used in recent models. The authors
proposed multi-head attention as a crucial learning mechanism.

They formalized attention as the operation of query, key, and value as follows:

𝐴(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄 · 𝐾) · 𝑉 (2.40)

In the standard encoder-decoder attention, the key comes from the previous
layer of the decoder and both query and value come from the encoder. In self-
attention, all query, key, and value come from the previous layer of the same
stack. This is now the most common formalism to describe attention.

Vaswani et al. (2017) further proposed scaled dot product attention:

𝐴(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄 · 𝐾√
𝑑𝑘

) · 𝑉 (2.41)

where 𝑑𝑘 is the dimension of query and key. The motivation behind scaled dot-
product attention is to preserve variance in a deep attention-based model. When
the input has zero mean and unit variance and the output of dot-product attention
will have zero mean but variance equal to 𝑑𝑘 (because of summing 𝑑𝑘 elements
with unit variance). When we scale the output by the factor of 1√

𝑑𝑘
the output

also has unit variance.
Multi-head attention is another generalization of attention mechanism where

we compute several attentions with the different projection matrices, and then we
join the results with another linear projection:

𝐴𝑚𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, ℎ𝑒𝑎𝑑2, ..., ℎ𝑒𝑎𝑑𝑁) · 𝑊 𝑂 (2.42)

20

where

ℎ𝑒𝑎𝑑𝑖 = 𝐴(𝑄𝑊 𝑄
𝑖 , 𝐾𝑊 𝐾

𝑖 , 𝑉 𝑊 𝑉
𝑖) (2.43)

So we compute 𝑁 different attentions, we concatenate them and then project
them onto a result vector. In the Transformer model, multi-head attention is
used as the standard inter-attention (or encoder-decoder attention) and as a self-
attention between both encoder and decoder layers. There is no recurrent network
used in the Transformer architecture. The architecture of the Transformer for
machine translation is depicted in Figure 2.9. It is a standard encoder-decoder
architecture where both encoder and decoder are based mainly on intra-attention
(or self-attention), and there is inter-attention between encoder and decoder. After
every attention layer, there is a feed-forward layer. It consists of two fully connected
layers with ReLU activation. The same weights of the FFNN are used for all the
positions. All the layers can be skipped through the residual connection.

The advantage of the Transformer over the standard feed-forward network is
that in the attentional layer, the input is not changed with non-linear operations
and the network can preserve the original input value and its variations and linear
combinations. In the attention layer, the only non-linear operation is softmax used
when computing transformation matrix. The self-attention can be formalized as
the transformation 𝑌 = 𝑇 · 𝑋, where 𝑇 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄·𝐾√

𝑑𝑘
), so the only operation

performed with the input is multiplying with the transformation matrix. This is
also true for the multi-head attention because all the additional operations with
heads are linear transformations.

In other words, with FFNN the output of the layer are the decisions made
according to input, whereas in Transformer the output is the modification of the
input according to the decisions made.

Positional Encoding Since the attention layer has no information about the
word order (as the recurrent networks have), we need to add positional informa-
tion into the model somehow. For this purpose, the positional encoding can be
used. Vaswani et al. (2017) tried two approaches to positional encoding. The first
one is straightforward. They take the absolute position of the word in the sentence
and use it as an index into a trained embedding matrix (position embeddings).
The second way tries to capture relative position directly in its encoding. This
is achieved by representing the position with the sines and cosines of the abso-
lute position with different frequencies. Positional encoding is summed up with
corresponding word embedding.

The authors used the Transformer for machine translation in the encoder-
decoder architecture, as it is shown in Figure 2.9. In many other models (for
example, various sentence encoders), only the encoder part is used, and then the
encoded representation is projected directly to the output.

Probably the most significant advantage of the Transformer over recurrent
networks is that the Transformer is much more computationally efficient (it can
be computed for whole sequential dimension in parallel).

21

Figure 2.9: Transformer model architecture from Vaswani et al. (2017).

2.2.15 Tree-Structured Networks
In Natural Language Processing, many models have a tree structure. For example,
formal representations of both syntax and semantics are formed in a tree. In recent
years many researchers were trying to find the best way how to process trees in
neural networks. There are at least three different approaches:

1. The simplest to implement is to linearize the tree (for example, by one of
the tree search strategies), and then we can use standard recurrent neural
networks to make a tree representation.

22

(a) Scaled dot-product at-
tention.

(b) Multi-heead attention.

Figure 2.10: Types of attention from Vaswani et al. (2017).

2. Socher et al. (2013) proposed the tree-recursive neural network. The network
itself is formed into a tree structure.

3. There are many tree modifications of standard approaches for modeling se-
quences. For example, tree LSTM (Tai et al., 2015) and tree-based convolu-
tion (Mou et al., 2015).

Recently the classic RNNs have been proved (empirically) to have superior
performance over the tree-structured networks. Li et al. (2015) compare different
methods in various tasks.

2.3 Multi-Task Learning
Most of the machine learning techniques solve the task in a completely isolated
environment. They do not model the surrounding world or some related decisions.
The idea of multi-task learning is that knowledge of one task can help to solve
the other. (Caruana, 1997), Thus, in multi-task learning, we combine objectives of
more tasks because we suppose that knowledge from one task can help the other.
There are several possible reasons why to use multi-task learning.

1. The natural case – When we want to solve a complicated task composed of
several subtasks, neural networks with multi-task learning are very successful
tool to solve it end-to-end.

23

2. Auxiliary tasks – While solving a single task, it has been found beneficial in
many cases to add some auxiliary tasks, which add more features that can
help the system to make a decision.

2.3.1 Neural Networks for Multi-Task Learning
In recent years with the new wave of popularity of neural networks, many multi-
task learning systems based on them have been developed. (Ruder, 2017) In neural
networks, multi-task learning can be handled by just sharing some of the layers
between tasks and their objectives.

2.3.2 Hard Parameter Sharing
In hard parameter sharing, some parameters are simply used and trained in both
(all) tasks.

2.3.3 Soft Parameter Sharing
In soft parameter sharing, we have a different set of parameters for both tasks, but
we add the term to the cost function, which makes the two sets to have similar
values. For example, Euclidean distance can be used as the similarity measure for
parameter sets:

𝐽(Θ) = 𝐽(Θ) +
∑︁

𝑖

(Θ1
𝑖 − Θ2

𝑖)2 (2.44)

Chapter 3

Semantics

Generally, the task of semantic analysis is to capture the meaning of the text.
Understanding the meaning of words and texts is a crucial task for many

natural language processing applications. Many ways how to represent texts have
been developed. The simplest way how to represent a word is a one-hot vector. In
this way, the words are represented as vectors in a high dimensional space where
every word is orthogonal to each other. Therefore, there is no semantic information
in this representation (only lexical) because there exists no relation between words
encoded in this representation. The approaches how to represent the meaning of
words, sentences or even longer texts can be divided into two categories: formal
and distributional.

3.1 Lexical Databases and Ontologies
In past decades people have created many resources of semantic knowledge. When
we study the meaning of the words, the most important hand-created resource is
probably Wordnet.

3.1.1 Wordnet
Wordnet (Miller, 1998) is the lexical database which groups the words according
to their meaning into synsets. The synsets are linked with semantic and lexical
relations with the form of an ontology.

The backbone structure of Wordnet is the acyclic graph of the hypernym/hyponym
relations. It links more general synsets like (furniture, piece_of_furniture) to in-
creasingly specific ones like (bed) and (bunkbed).

The meaning of a word can be represented by its position in the resulting
graph.

We study Wordnet based semantic methods more deeply in (Konopík and
Pražák, 2015). Here we also compare these methods to another group of methods
based on distributional semantics, and we study if they can complement each
other.

24

25

3.2 Distributed Representations
The distributional hypothesis (Harris, 1954) says that if two words appear
in the same or similar context frequently, they tend to be similar in their meaning.

According to the distributional hypothesis, we can represent a word by the
context in which the word is likely to appear. In this way, the words that appear
in similar contexts have similar representations.

We can split distributional methods into two categories:

∙ Global context (or document context) methods model words to be more
similar if they appear in the same or similar document. The documents
are often represented as bag-of-words. It means that the word order in the
document is not encoded in the representation.

∙ Local context methods consider the words semantically similar if their
contexts of a few surrounding words contain the same or similar words.

The representations of words created according to the distributional hypothesis
are called word embeddings.

3.2.1 LDA
Blei et al. (2003) proposed a generative Bayesian model for finding hidden (or
latent) topics in the set of documents. LDA is the bag-of-words generative model.
The distributions trained for this generative process can be used to represent the
meaning of words and documents. Both documents and words can be represented
as the distribution over the hidden topics. The generative process words as follows:

1. Choose Θ𝑖�̃�𝑖𝑟(𝛼), where 𝑖 ∈ {1, . . . , 𝑀} and 𝐷𝑖𝑟(𝛼) is a Dirichlet distribu-
tion with a symmetric parameter 𝛼 which typically is sparse (𝛼 < 1).

2. Choose 𝜙𝑘 ∼ Dir(𝛽), where 𝑘 ∈ {1, . . . , 𝐾} and 𝛽 typically is sparse.

3. For each of the word positions 𝑖, 𝑗, where 𝑖 ∈ {1, . . . , 𝑀}, and 𝑗 ∈ {1, . . . , 𝑁𝑖}

(a) Choose a topic 𝑧𝑖,𝑗 ∼ Multinomial(𝜃𝑖).
(b) Choose a word 𝑤𝑖,𝑗 ∼ Multinomial(𝜙𝑧𝑖,𝑗

).

When the training is finished, we can represent words by their probabilities in
the topics, and we can represent documents by their topics probability distribution.

3.2.2 LSA
Latent Semantic Analysis is one of the simplest global context methods. It uses
the term-document matrix, which is the matrix where rows represent words and
columns represent documents. Each entry contains the count of occurrences of

26

α

β

z w N

M

θ

Figure 3.1: LDA Graphical Model Representation

𝑖th word in 𝑗th document. The counts are typically weighted with inverse docu-
ment frequency (IDF)1. Such a matrix is very sparse, and we need to reduce its
dimensionality. LSA uses singular value decomposition (SVD) for dimensionality
reduction. SVD decomposes the matrix 𝐴 = 𝑈Σ𝑉 𝑇 where 𝑈 is the matrix of left-
singular vectors, Σ is the diagonal matrix of singular values, and 𝑉 is the matrix
of right singular vectors. Both 𝑈 and 𝑉 are orthogonal. SVD is the generaliza-
tion of the eigenvalue decomposition and it can be simply derived from eigenvalue
decomposition. If:

𝐴 = 𝑈Σ𝑉 𝑇

then
𝐴𝑇 𝐴 = 𝑉 Σ𝑇 𝑈𝑇 𝑈Σ𝑉 𝑇 = 𝑉 𝑇 Σ𝑇 Σ𝑉 = 𝑉 𝑇 𝑆𝑉

and
𝐴𝐴𝑇 = 𝑈Σ𝑉 𝑇 𝑉 Σ𝑇 𝑈𝑇 = 𝑈Σ𝑇 Σ𝑈𝑇 = 𝑈𝑆𝑈𝑇

because 𝑈𝑇 𝑈 = 𝑉 𝑉 𝑇 = 𝐼 (orthogonality). 𝐴𝐴𝑇 = 𝑈𝑆𝑈𝑇 is eigendecomposition of
𝐴𝐴𝑇 so 𝑉 is the matrix of eigenvectors of 𝐴𝐴𝑇 and 𝑈 is the matrix of eigenvectors
of 𝐴𝑇 𝐴. The transformation is independent of the order of the columns, but by
convention, they are sorted in descending order according to singular values. Upper
submatrices are then optimal low-rank approximations of the original matrix. The
higher the eigenvalue is, the more of the original variance it captures.

In LSA, words can be represented with rows of 𝑈 (can be weighted with Σ),
which can be interpreted as the weights for the linear combination of representa-
tives of words (sort of word clusters, created from co-occurrences in documents).
The documents can be represented with rows of 𝑉 (can be weighted with Σ),
which can be interpreted as weights of the linear combination of eigendocuments
(the most representative documents as a word mixtures).

1The words that occurred in less document are more informative thus they are more impor-
tant.

27

HAL

Hyperspace Analogue to Language (HAL) is the simplest method for local-context-
based distributional semantics. It slides the window on a given input while count-
ing the word co-occurrences. The algorithm works like this: Increase the count if
the word 𝑖 is in the left context of size 𝑘 of word 𝑗. The counts can be weighted
by distance. In this way, we get a matrix which rows contain right context counts,
and columns contain left context counts. A word is then represented with the
concatenation of the corresponding row and column. The big disadvantage of this
method is the high dimensionality of the word representations.

This problem can be partially solved with Random Indexing. RI is the modifi-
cation of HAL where in HAL, we sum the one-hot representations of the context
words, whereas in RI, we create for each word a random vector of rank in thou-
sands with a few randomly selected +1 and −1 in this way, the vectors are nearly
orthogonal although they are much smaller than in case of HAL. We can set arbi-
trary dimensionality. The rest of the algorithm is the same as HAL.

3.2.3 Neural Networks’ Hidden States
Textual representation from neural networks can be divided into two categories:
feature-based approaches and fine-tuning approaches.

∙ Feature-based Approaches train neural network on unsupervised task
(language model) and then use previously trained weights as features in a
different neural network for the downstream task (supervised).

∙ Fine-tuning Approaches first pre-train the network on the unsupervised
task (language model) and then use the same model for downstream tasks. In
this way, only a few parameters are learned from scratch (only the projection
layer), but all the parameters are typically fine-tuned for the downstream
task.

Skip-Gram and CBOW

Mikolov et al. (2013a) Created two simple neural network models to create seman-
tic representation. The basic idea is to take the hidden state of the neural language
model to represent the meaning of words. The neural network learns to predict
words according to their context (or it learns the context from central words), so
the hidden state naturally captures the contextual information of the words. The
basic idea to represent words with a neural network’s hidden state comes from
Bengio et al. (2003). Standard neural network for language modeling from Bengio
et al. (2003) has four layers:

1. Input – Words are fed into the network in the one-hot representation.2

2The word is represented by a vector of the length equal to the dictionary size, where each
element of the vector represents one word. Only one element of the vector is non-zero.

28

2. Projection – Input vector goes through the fully-connected layer, so the
internal word representations are created.

3. Hidden – Creates representation of the context.

4. Output – Softmax layer which computes the probability of the current word
according to the context.

Figure 3.2 shows the architecture of the basic language model based on the
feed-forward neural network.

(Mikolov et al., 2013a) simplified this network by removing the hidden layer,
and the context word representations are only summed up. In the Skip-gram ar-
chitecture, the context is predicted from the central word, and in CBOW the
central word is predicted from the context. Those models are also referred as
Word2Vec. The architectures of skip-gram and CBOW are shown in Figure 3.3.
For Skip-Gram, the context word probability is computed as:

𝑝(𝑤𝑜|𝑤𝑐) = 𝑒𝑥𝑝(𝑊 (0)
𝑐 · 𝑊 (1)

𝑜))∑︀𝑉
𝑤𝑐

𝑒𝑥𝑝(𝑊 (0)
𝑐 · 𝑊

(1)
𝑜)

(3.1)

We can then use the standard cross-entropy cost:

𝐽 =
𝐶∑︁
𝑤𝑐

𝑁(𝑤𝑐)∑︁
𝑤𝑜

−𝑙𝑜𝑔(𝑝(𝑤𝑜|𝑤𝑐)), (3.2)

where 𝐶 is the sequence of all words in the corpus and 𝑁(𝑤𝑐) is the neighbor-
hood function, which returns all the words in the context window of 𝑤𝑐.

Another simplification of Word2Vec is the negative sampling. Since we do not
need to use the network as the language model and because softmax is a very ex-
pensive operation, we can replace it by approximation of the probability with sig-
moid with few negative samples. Instead of predicting probabilities for each word
on the output (classify into 𝑉 classes), we put into the network the central and
the context word, and we want to predict the probability of their co-occurrence.

𝑝(𝑤𝑜|𝑤𝑐) = 𝜎(𝑊 (0)
𝑐 · 𝑊 (1)

𝑜) (3.3)

We need to include negative examples in the cost since there is no softmax
anymore.

𝐽 =
𝐶∑︁
𝑤𝑐

(
𝑁(𝑤𝑐)∑︁

𝑤𝑜

−𝑙𝑜𝑔(𝑝(𝑤𝑜|𝑤𝑐)) −
𝑈(𝑘)∑︁
𝑤𝑜

𝑙𝑜𝑔(1 − 𝑝(𝑤𝑜|𝑤𝑐))) (3.4)

where 𝑈(𝑘) generates 𝑘 samples from the uniform distribution over the vocab-
ulary.

29

W (0) W (0) W (0)

W (2)

Words as one-hot vectors

Words as continuos vectors (concatenated)

W (1)

Continuous representation of context

Probabilities of words at t (softmax)

w(t-3) w(t-2) w(t-1)

Parameters W (0) are shared across words

Figure 3.2: Basic neural network language model architecture

w(t-2)

w(t+1)

w(t-1)

w(t+2)

w(t)

SUM

INPUT PROJECTION OUTPUT

w(t)

INPUT PROJECTION OUTPUT

w(t-2)

w(t-1)

w(t+1)

w(t+2)

CBOW Skip-gram

Figure 3.3: Architecture of Word2Vec Models (from Mikolov et al. (2013a))

3.2.4 Sentence Embeddings and Contextualized Word Em-
beddings

In this section, various contextual word representations and sentence representa-
tions are described. In recent years many of such models have been developed, and
they all are very similar. That is why only the most popular ones will be described
here chronologically. They are also summarized in Table 3.1

30

method dataset model params input tasks GLUE score
Skip-thoughts Books Corpus GRU x word L2R-LM 61.3

ELMo Word Benchmark CNN+LSTM x word L2R-LM 71.0
GPT Books Corpus Transformer 117M BPE L2R-LM 75.1

BERT Books Corpus Transformer 762M WordPiece MLM+NSP 82.1
ALBERT Books Corpus Transformer 235M SentPiece MLM+SOP 89.4
RoBERTa Books,News,WebText,... Transformer ≈ 782𝑀 SentPiece MLM 88.5

USE Wiki,news,QA,SNLI Transformer, DAN x word L2R-LM+SNLI -
GPT 2 WebText Transformer 1542M BPE L2R-LM -

Table 3.1: List of Recent Contextualized Models of Semantics

31

Input Representation

Current models for unsupervised pre-training of contextualized embeddings use
different input representations (tokenizations). Some of them use standard word-
level tokenization, and others use subword tokenizations to reduce effective vocab-
ulary and deal with morphology in a better way. There are two commonly used
subword tokenizations:

1. Byte Pair Encoding (BPE) (Sennrich et al., 2016) – Originally, BPE
was used for data compression. It is a straightforward algorithm where it
iteratively replaces the most frequent byte pair with a new single byte up
to target vocabulary size or until there is no reoccurring byte pair. Sennrich
et al. (2016) modified this algorithm for tokenization in NLP applications.
First, they tokenize the text on the character level,3 and then they iter-
atively merge the most frequent pair of tokens until they reach a target
vocabulary size. The algorithm does not consider token pairs that cross the
word boundaries.

2. WordPiece Tokenization (Wu et al., 2016) – Was originally used for
Japanese segmentation. The algorithm is very similar to BPE. They first to-
kenize the text on the character level, and then they use a greedy algorithm
to maximize the likelihood of the data obtained from a language model by
merging the tokens. They basically iteratively merge a pair of tokens which
increases the likelihood the most.

Skip-Thoughts

Kiros et al. (2015) proposed the Skip-Thoughts model for semantic representation
of sentences. It can be described as a generalization of Skip-Gram, where instead
of predicting surrounding words, we predict the previous and the next sentence
given the actual sentence. For this purpose, the authors use a single-layer GRU-
based encoder-decoder in the standard way (see section 2.2.13). The network is
composed of one encoder and two decoders (one for the previous sentence and one
for the next sentence). The encoder part is then used as a general-purpose encoder
for capturing the meaning of the sentences.

The authors propose a vocabulary expansion method based on the linear
transformation of vector spaces. Because the model is much more complex than
Word2Vec and mostly because of the softmax on the top of the encoder-decoder,
it is much harder to learn infrequent words. During the training, the vocabulary of
the RNN was limited to the 20 000 most frequent words. The authors also trained
a standard skip-gram with a large vocabulary. After the training, both word vector
spaces 𝑊𝑤2𝑣 and 𝑊𝑅𝑁𝑁 are taken, and 𝑊𝑤2𝑣 is transformed so that:

�̂�𝑅𝑁𝑁 = Θ · 𝑊𝑤2𝑣 (3.5)
3Adding special end-of-word character to be able to restore the original tokenization.

32

Θ = argmin
Θ

(
𝑉∑︁
𝑖

(Θ · 𝑊 𝑖
𝑤2𝑣 − 𝑊 𝑖

𝑅𝑁𝑁)2) (3.6)

where the vocabulary 𝑉 = 𝑉𝑤2𝑣 ∩ 𝑉𝑅𝑁𝑁

In this way, the unknown words are first projected from Word2Vec embeddings,
and the resulting embeddings can be fed into RNN to encode the sentence.

ELMo

ELMo (Peters et al., 2018) has a similar learning procedure to Skip-thoughts, but
the model is more complex. The authors follow the neural language model by Joze-
fowicz et al. (2016). It consists of convolutional layer for processing characters and
two-layer LSTM-based encoder on the word level. First, the character sequences
are processed by a convolutional layer with 2 048 filters. Then the representa-
tions are projected to state with 512 elements. These are the word embeddings
trained from scratch from character sequences. Next, there are two LSTM layers
(bidirectional, but both directions are processed separately). On the top LSTM
encoder, there is a softmax (or its approximation) to predict the next word. For
semantic models like ELMo simple sampling algorithm like negative sampling is
efficient enough since we do not need the inference step of the language model.
For the actual language model, more advanced techniques are used (see Jozefowicz
et al. (2016) for details). The crucial idea of ELMo is that the lower layers of the
language model can help the transfer task a lot. So for each task, the task-specific
weights for the layers are trained. More formally:

𝐸𝐿𝑀𝑜𝑡𝑎𝑠𝑘
𝑘 = 𝛾𝑡𝑎𝑠𝑘

𝐿∑︁
𝑗=0

𝑠𝑡𝑎𝑠𝑘
𝑗 ℎ𝐿𝑀

𝑘,𝑗 (3.7)

where 𝑠𝑡𝑎𝑠𝑘 are softmax normalized weights, 𝛾𝑡𝑎𝑠𝑘 is a global scaling parameter,
and 𝐿 is the number of layers.

GPT

The GPT model (Radford et al., 2018) uses the transformer decoder (see section
2.2.14) for left-to-right language model. The model is pre-trained on the Books
corpus dataset (Zhu et al., 2015), and then used for various NLU tasks fine-tuned
with a single additional projection layer. During fine-tuning the language model
is added as an auxiliary task (see section 2.3). The model is pre-trained on single-
sentence inputs, but some of the transfer tasks process structured inputs (typically
sentence pairs), so during the fine-tuning, multiple inputs are concatenated using
special separator tokens. The motivation for this approach is to add the least
possible number of additional parameters during fine-tuning and make better use
of those pre-trained. In this way, we add a few additional tokens, which should
be better than changing the architecture and train many additional parameters.

33

During training, the positional embeddings are trained rather than using the sine,
cosine approach from Vaswani et al. (2017).

BERT

BERT (Devlin et al., 2018) stands for Bidirectional Encoder Representations from
Transformers. It is one of the current state-of-the-art methods for semantic repre-
sentation. The architecture is based on the Transformer. It belongs to fine-tuning
approaches for semantic representations. The training objective consists of two
tasks:

1. Masked language model In order to capture dependencies from both sides
(not only left-to-right or right-to-left model) in masked LM we hide a certain
number of random words, and the task is to predict them from the rest of
the sentence. At the top of the encoder, there is the softmax classification of
all the masked-out tokens. Thus, BERT is not the encoder-decoder model,
but only the encoder with a dense layer and softmax on the top. In this way,
the model can capture dependencies from both sides, whereas in standard
encoder-decoder we cannot use both contexts at the same time, because the
model would be able to see the word, which it needs to predict directly on
higher layers.

2. Next sentence prediction Given two sentences, the task is to determine
if one sentence follows the other. With this task, the model learns to capture
relationships between two sentences.

BERT architecture is shown in Figure 3.4. The main difference between BERT and
GPT is that BERT is pre-trained on the sentence pairs and the classification task
of the next sentence prediction, so it learns to capture some relationships between
sentences during training. Another significant difference is that BERT is using a
bidirectional encoder thanks to masked LM, which should capture the context in
a better way.

The pre-training of BERT is done on the concatenation of the books corpus
and English Wikipedia. The multilingual version uses the Wikipedias of all 104
languages. Since no cross/lingual Wikipedia links have been used, the BERT model
is multilingual, but its cross-lingual capabilities are limited. Details about cross-
lingual properties of BERT are discussed later.

Universal Sentence Encoder

Universal sentence encoder is a multi-task learning approach for creating semantic
representations. The model is trained primarily on the standard language model
task in the same way as Skip-Thoughts Kiros et al. (2015) and conversational data
via response suggestion task Henderson et al. (2017). In addition, SNLI (Bowman
et al., 2015) is included as an auxiliary task during pre-training. The pre-training
data includes Wikipedia pages and news for unstructured textual data, question-
answer pages and discussion forums for conversational data, and SNLI dataset as

34

BERT BERT

E[CLS] E1 E[SEP]... EN E1’ ... EM’

C T1 T[SEP]... TN T1’ ... TM’

[CLS] Tok 1 [SEP]... Tok N Tok 1 ... TokM

Question Paragraph

Start/End Span

BERT

E[CLS] E1 E[SEP]... EN E1’ ... EM’

C T1 T[SEP]... TN T1’ ... TM’

[CLS] Tok 1 [SEP]... Tok N Tok 1 ... TokM

Masked Sentence A Masked Sentence B

Pre-training Fine-Tuning

NSP Mask LM Mask LM

Unlabeled Sentence A and B Pair

SQuAD

Question Answer Pair

NERMNLI

Figure 3.4: BERT pretraining and fine-tuning (from Devlin et al. (2018))

a general discriminative task data. USE is meant as a feature-based approach for
creating universal sentence representation. The model is not supposed to be fine-
tuned as it is. USE includes two encoder models Transformer, which is used in
the standard way, and Deep Averaging Network (DAN). Deep Averaging Network
is a very simple and fast model, where first, the embeddings for all the words in
the sentence are summed up and then processed by a deep feed-forward network.

RoBERTa

RoBERTa (Liu et al., 2019) uses almost the same model as BERT with a few
modifications:

1. They use much larger batches (8k).

2. They omit the next sentence prediction task.

3. They feed into MLM the maximum number of sentences to fit the maximal
sequence length (512) separated by SEP token.

4. They use a larger subword vocabulary (50k).

ALBERT

In ALBERT (Lan et al., 2019) the authors propose several improvements of the
BERT model. First they argue that the hidden size is unnecessarily large for word
embeddings and they use lower dimensional projection layer to reduce the number
of parameters. Instead of having 𝑉 × 𝐻 parameters for word embeddings they
have 𝑉 × 𝐸 + 𝐸 × 𝐻 parameters, where 𝐸 ≪ 𝐻.

Next they propose to use sentence ordering prediction (SOP) instead of the
next sentence prediction. The task of SOP is to determine if two given sentences
are in the right order. This task is significantly harder than NSP. In NSP the
negative examples are random sentences from whole corpus and they are usually

35

very different from the positive ones. However, in SOP the model has to understand
the semantics of the sentences much better in order to determine the order.

The last modification is to reduce the number of parameters by sharing all the
parameters between transformer layers.

These modifications result into a model which has only 18M parameters in the
same setting as BERT-large4.

GPT 2

GPT 2 Radford et al. (2019) basically follows the GPT architecture; The only
significant difference is in the dataset used for training. The authors created a new
corpus called WebText, by crawling various web pages similarly to the Common
Crawl corpus, but the authors state that WebText is much better is the quality of
the text. The version of WebText used in GPT 2 has around 40GB of text. It is
crawled from the common web starting on Reddit. The Wikipedia pages are dis-
carded to avoid overlap with common datasets. Since the dataset is much bigger
and much more open-domain than the datasets used for previous models, the Web-
Text is much harder to overfit, and thus much more parameters should be trained.
GPT model has 117M parameters, whereas GPT 2 has 1542M parameters. The
authors state that it still under-fits the training dataset.

Additionally, the authors evaluate the ability of this general-purpose language
model to learn various NLP tasks in the zero-shot setting. If we have a left-to-right
language model which is learning to maximize the probability of the training text
given the previous part of the sequence:

𝑝(𝑥) =
𝑛∏︁

𝑖=1
𝑝(𝑠𝑖|𝑠1, ..., 𝑠𝑖−1) (3.8)

for any supervised task, learning can be expressed as estimating the prob-
ability 𝑃 (𝑜𝑢𝑡𝑝𝑢𝑡|𝑖𝑛𝑝𝑢𝑡). The probability also depends on the task so it can be
formalized as estimating 𝑃 (𝑜𝑢𝑡𝑝𝑢𝑡|𝑖𝑛𝑝𝑢𝑡, 𝑡𝑎𝑠𝑘). The supervised objective is the
same as the language model objective but evaluated only on the subset of the
sequence. Therefore the global optimum of the language model is (in theory) also
the global optimum of any supervised task. So a good language model should learn
(itself) to perform on supervised tasks. Radford et al. (2019) evaluate zero-shot
performance on supervised tasks by estimating 𝑃 (𝑜𝑢𝑡𝑝𝑢𝑡|𝑖𝑛𝑝𝑢𝑡, 𝑡𝑎𝑠𝑘) with the
GPT 2 model. For example, to make the model do translation, we can compute
𝑃 (𝐸𝑛𝑔𝑙𝑖𝑠ℎ_𝑠𝑒𝑛𝑡|𝐹𝑟𝑒𝑛𝑐ℎ_𝑠𝑒𝑛𝑡, 𝑓𝑒𝑤_𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛_𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠) by conditioning on
a few examples we are describing the task.

3.2.5 Document Embeddings
The main problem of aforementioned Transformer-based models lays in the max-
imum length of the inputs. During pre-training, all the models use the maximum

4With the same hidden size, number of layers and number of heads as BERT-large. For
comparison, BERT-large has 334M parameters.

36

length of 512 sub-word tokens due to quadratic time and memory complexity of
the attention. It is long enough for word-level, sentence-level, and sentence pair
tasks but it is far from enough for document-level tasks like document classifica-
tion or some types of question answering. There are several ways how to deal with
longer inputs in transformer-based models. Most of them are based on the pruning
of the attention matrix (for example, with local attention 5).

Longformer

Beltagy et al. (2020) propose several sparse attention mechanisms to reduce the
complexity of the Transformer model. They use three types of sparse attention
patterns:

1. First, they use the sliding window (same as standard local attention),
where each token attends to 𝑤 surrounding tokens.

2. Dilated sliding window – To further increase the context length with-
out increasing computational complexity, the sliding window can be dilated.
With 𝑑 dilated sliding window, each word attends only to the words with
relative distance divisible by 𝑑.

3. Global attention – To enable modeling of long-distance dependencies while
having the linear complexity, the authors propose task-specific global atten-
tion patterns (rule-based). For example, in the case of sentence classification,
all the tokens attend to the CLS token, and the CLS token attends to all
other tokens.

Other Pre-Training Objectives

Another problem of standard BERT-like models comes from the masked language
modeling task used for their pre-training. When we want to predict a word or a
subword token based on the rest of the sentence, it can be determined from the
small context in most cases, so BERT does not learn to model many long-distance
dependencies between the words. For example, for the information retrieval task,
many other pre-training objectives have been used.

Chang et al. (2020) propose different pre-training objectives for large-scale
document retrieval. Beside more global information, their model benefits from
sentence (document) relationship-based tasks. In large-scale document retrieval,
a system cannot use query-document inter-attention during inference. There are
too many documents to compare to, and the document representations need to be
pre-computed.

Chang et al. (2020) use three global pre-training objectives:

∙ Inverse Cloze Task (ICT) – The task is to determine if a given context
(paragraph) is surrounding a given sentence.

5described in Section 2.2.14

37

∙ Body First Selection (BFS) – Given a sentence from the first section of
a Wikipedia page and a random passage from a Wikipedia page, the task is
to determine if both come from the same page.

∙ Wiki Link Prediction (WLP) – Given a sentence from the first section
of a Wikipedia page and a random passage from another page, the task is
to determine if there is a link between those two pages.

3.3 Semantic Role Labeling
Semantic role labeling (Gildea and Jurafsky, 2002) is the task of shallow semantic
parsing, where given a sentence, the task is to:

1. First, identify predicates (actions, events, etc.),

2. identify arguments of the predicates,

3. determine argument types (active entity, passive entity, other entities, and
modifiers - time, place, etc.).

Figure 3.5 shows an example of an SRL annotation.

(1) [He]AGENT |A0 believes [in what he plays] THEME|A1 .

(2) Can [you] AGENT |A0 cook [the dinner] PATIENT|A1 ?

(3) [The nation‘s] AGENT|AM-LOC largest [pension]THEME|A1 fund,

Figure 3.5: Three SRL annotation examples

3.3.1 Feature Engineering
At the beginning of this task, with standard learning and feature engineering,
many features for SRL have been developed. They are well summarized in Mos-
chitti et al. (2008). Lang and Lapata (2011) proposed simple syntactic rules for
argument identification and proved that syntactic features are suitable enough for
this subtask. Semantic role labeling can be divided into four separate machine
learning problems:

1. Predicate identification,

2. argument identification,

3. role labeling,

4. global optimization.

Standard features used in these approaches can be divided into several cate-
gories:

38

believes

He what

in plays

he

NSUBJ NM OD

CASE ACL:RELCL

NSUBJ

A0

A1

A1A1

A1

Figure 3.6: Tree visualization of SRL annotation

∙ Syntactic Features – part-of-speech tags of both predicate and argument, a
position in a dependency tree (for example as a directed path from predicate
to argument), a dependency relation of the argument, voice (active/passive)
etc.

∙ Lexical Features – a lemma or a sense of both predicate and argument (or
whole subtree).

∙ Semantic Features – Earlier mainly semantic clusters, nowadays word
embeddings.

Argument Identification From the machine learning perspective, argument
identification is a binary classification or tagging task to decide what subtrees are
the argument of the predicate.

Role Labeling Role labeling can be formalized as a multi-class classification
problem to determine the type of a semantic relation. The main problem here is
that every predicate have quite different arguments. For example, A2 role label of
one predicate can have completely different semantic meaning from A2 for other
predicates. But if we treat every predicate completely independent, the data would
be quite sparse.

Global Optimization SRL is closely bound with specific dependency annota-
tions, and in the most datasets, it is designed in the way that every argument is
the single subtree in the dependency tree of the sentence. As every label can be

39

assigned to only one node in the dependency tree, it should be beneficial to op-
timize the joined probability of all roles in the sentence. The global optimization
step is often solved in the post-processing phase where we take the matrix of prob-
abilities of assigning every label to every previously identified argument, assuming
that individual role assignments are independent on each other for simplicity. The
straightforward algorithm has exponential complexity. Some greedy solutions and
heuristics are often used (for example, beam search).

3.3.2 Deep Learning
More recently, various neural network architectures have been used either to solve
a separate subtask or whole SRL end-to-end.

Model OntoNotes F1
He et al. (2018) + ELMo 85.5
He et al. (2017) + ELMo 84.6

Tan et al. (2018) 82.7
He et al. (2018) 82.1
He et al. (2017) 81.7

Table 3.2: SRL state-of-the-art results

He et al. (2017) proposed a standard LSTM model for SRL, based on BIO-
tagging. They use a multi-layer bidirectional LSTM with gated highway (or resid-
ual) connections. In gated residual connection, the output is summed with the
previous layer in the weighted way, where the weight of the linear combination is
given by the residual gate. The gated residual connection operates on the inner
state of LSTM, and it is computed in every timestep.

𝑟𝑙,𝑡 = 𝜎(𝑊 𝑙
𝑟[ℎ𝑙

𝑡−1, 𝑥𝑡]) (3.9)

ℎ𝑡,𝑙 = 𝑟𝑙,𝑡 · ℎ′
𝑡,𝑙 + (1 − 𝑟𝑙,𝑡) · 𝑊 𝑙

ℎ𝑥𝑡,𝑙 (3.10)

They use constraint 𝐴* algorithm for the global optimization step (to incorpo-
rate dependencies between the output tags). They use three types of constraints:

1. BIO constraints – An output label sequence has to be a valid BIO se-
quence (that means the begin token of one role cannot be followed by the
intermediate token of a different role)

2. SRL constraints – Constraints for Semantic Role Labeling proposed by
Punyakanok et al. (2008).

(a) Unique Core Roles (U) – Each core role (ARG-0 - ARG-5, ARG-A
should appear at most once for each predicate.

40

(b) Continuation Roles (C) – Continuation role C-X can exist only if its
base role X is realized before it.

(c) Reference Roles (R) – Reference role R-X can appear only if its base
role is realized.

3. Syntactic constraints – Penalizes arguments that are not constituents of
a parse tree.

Tan et al. (2018) also use the BIO tagging, but they use a self-attention-based
model, similar to the transformer encoder. The network architecture is shown
in Figure 3.7. The Self-Attention block is the multi-head self-attention from the
Transformer model. The authors did not use any constrained decoding. They state
that the constraints only make the results worse.

The0 cats 0 love1 hats 0

RNN/CNN/FNN

Self-Attention

RNN/CNN/FNN

Self-Attention

...

Softmax

P(BARG0) P (IARG0) P (BV) P (BARG1)

Word &
P redicate

Sub-Layer
Nonlinear

Sub-Layer
A ttention

Repeat
N −2 times

Sub-Layer
Nonlinear

Sub-Layer
A ttention

Figure 3.7: Depp SRL model architecture from Tan et al. (2018)

He et al. (2018) abandon the BIO tagging scheme, and they are rather predict-
ing predicate-argument span tuples by searching through the possible combina-
tions. They use a multi-layer bi-LSTM to produce contextualized representations
of predicates and argument spans. Then they assign the role to the potential
predicate-argument tuple.

Chapter 4

Cross-Lingual Semantics

Cross-lingual methods can be divided into three categories:

1. Annotation Projection methods try to transfer the annotation from one
language into raw text corpus in a different language (typically using an
alignment, some unsupervised techniques or the combination of both). For
example, in cross-lingual semantic role labeling, Padó and Lapata (2009)
use graph matching to project semantic roles to different language using the
annotated parallel corpus.

2. Model Transfer methods are based on the assumption that input and out-
put structures (and also meaning) are shared across the languages. If we
train a model on data in one language with many annotated resources (typ-
ically English), we can use this model for prediction in different languages.
Model transfer methods may also make it possible to train a model on multi-
ple languages. In general, transfer learning is the machine learning technique
where the model trained on one task is used to solve other tasks with some
additional supervision.

3. Unsupervised Methods do not need any labeled data, thus many unsu-
pervised methods are easy to make cross-lingual or at least easier than the
supervised methods, where we need either annotated data in both languages
or perfectly transferable input representations.

4.1 Bilingual and Multilingual Semantic Vectors
Bilingual and multilingual embeddings are currently used the most frequently for
model transfer based cross-lingual model. Many different methods for creating
such representations have been created recently. These methods can be divided
into several categories:

1. Linear transformation methods have the two embedding spaces and dic-
tionary on the input. They try to find the transformation matrix, so that
word from the dictionary will be close to its translation after transformation.

41

42

2. Joined optimization methods train both languages jointly to share the
embedding space from the beginning. The combination of monolingual and
cross-lingual loss is used.

3. Zero-shot learning does not use any cross-lingual information and tries to
transfer the knowledge from one language to another without any training.
This approach is, of course, very limited.

4.1.1 Linear Transformations
The basic idea of linear transformations is that if we have the mapping of individual
words (dictionary 𝑉) we can take monolingual semantic spaces and transform them
linearly (translation, rotation, scaling) so that the word pairs in dictionary entries
will be close to each other in the resulting space.

More formally, given semantic spaces of two languages 𝐴 and 𝐵 we are opti-
mizing the transformation matrix T so that ∑︀|𝑉 |

𝑖 𝑚(𝑇𝑎𝑖, 𝑏𝑖) is maximal, where 𝑚
is a similarity metric.

Least Squares Optimization

Mikolov et al. (2013b) proposed the most straightforward approach where the
similarity metric is 1

(𝑎−𝑏)2 , so the optimization objective is:

argmin
𝑇

|𝑉 |∑︁
𝑖

(𝑇𝑎𝑖 − 𝑏𝑖)2 (4.1)

CCA

Faruqui and Dyer (2014) proposed embedding spaces transformation based on
canonical correlation analysis (CCA). Basically, CCA seeks for the transformation
matrices 𝑈 and 𝑉 so that the correlation 𝜌(𝑈𝐴′, 𝑉 𝐵′) is maximized. 𝐴′ and 𝐵′

represent aligned word vectors from 𝐴 and 𝐵 according to vocabulary. It iteratively
searches for basic vectors 𝑢 and 𝑣 according to criterion:

argmax
𝑢𝑖,𝑣𝑖

𝜌(𝐴 · 𝑢𝑖, 𝐵 · 𝑣𝑖) (4.2)

so that 𝑢𝑇
𝑖 𝑢𝑗 = 0, 𝑣𝑇

𝑖 𝑣𝑗 = 0∀𝑗 < 𝑖 In other words, every canonical vector is
orthogonal to all previous canonical vectors. The algorithm is a generalization
of PCA for two multivariate random variables. Then we use projection matrices
𝐴* = 𝑈𝐴′ and 𝐵* = 𝑉 𝐵′ where the spaces of 𝐴* and 𝐵* are shared. The schema
of the CCA algorithm is shown in Figure 4.1.

Ammar et al. (2016) generalize the CCA into the true multilingual scenario
where they project more than 50 languages into one common vector space.

43

d1

d2

n1 n2

U
V

d d

d1
d2

d

d

n1 n2

CCA

Figure 4.1: Illustration of CCA method

Orthogonal Transformation

Xing et al. (2015) propose orthogonal transformation based on inconsistencies ob-
served between a monolingual embedding model objective, transformation objec-
tive and standard evaluation metric. The common objective of embedding models
(like Skip-Gram) is to minimize negative log probability computed via softmax
of the dot product of co-occurring vectors (see 3.2.3 for Equations) which is equiv-
alent to maximizing the dot product of co-occurring vectors. The metric used for
evaluating is often cosine similarity:

𝑐𝑜𝑠(𝑤1, 𝑤2) = 𝑤1 · 𝑤2

||𝑤1|| · ||𝑤2||
(4.3)

which is simply normalized the dot product. The objective of a simple lin-
ear transformation is to minimize MSE, which is a very different objective. To
avoid this, Xing et al. (2015) propose to normalize monolingual embeddings dur-
ing training. After that, the dot product and cosine similarity are equivalent but
yet 𝑇𝑎𝑖 from the transformation objective (eq. 4.1.1) is not guaranteed to have
unit length, so the other constraint is for transformation matrix 𝑇 to be orthogo-
nal. Transformation with an orthogonal matrix does not rescale the space (it just
rotates the space), so it preserves the dot product of the projected vectors. In

44

Xing et al. (2015), they make the transformation matrix orthogonal by rescaling
via SVD: 𝑇 ′ = 𝑈𝑉 𝑇 , 𝑇 = 𝑈Σ𝑉 𝑇 They also propose to change the minimization
of squares to the maximization of the dot products, but as Artetxe et al. (2016)
show, it does not make any difference.

Later Artetxe et al. (2016) propose an improvement of this method and explain
how it is related to other methods. They propose an analytical method to find the
global optimum of orthogonal transformation objective:

𝑇 = 𝑉 𝑈𝑇 , 𝐵𝑇 𝐴 = 𝑈Σ𝑉 𝑇 (4.4)

They also propose dimension-wise mean centering of vector spaces to make
expected cosine of two random words equal to 0.

Max-Margin Optimization

Lazaridou et al. (2015) pointed out the problem of hubness in cross-lingual em-
beddings mapping. It is one of the problems called the curse of dimensionality,
where the higher the dimensionality of the space is, the more similar the pair-wise
distances of its elements are. In an extreme scenario of a very high-dimensional
space, all the pair-wise distances are practically the same. In semantic spaces,
some words (hubs) occur in the nearest neighbors set of many completely differ-
ent words. Lazaridou et al. (2015) find out that with the least-squares mapping,
the hubness of projected space is much worse than the hubness of the original
spaces. They propose the max-margin loss for linear transformation to mitigate
this problem:

𝐽 =
𝑘∑︁

𝑗 ̸=𝑖

𝑚𝑎𝑥(0, 𝛾 + 𝑑𝑖𝑠𝑡(𝑦𝑖, 𝑦𝑖) − 𝑑𝑖𝑠𝑡(𝑦𝑖, 𝑦𝑗)) (4.5)

where hyper-parameter 𝛾 is the margin, and 𝑘 is the number of negative exam-
ples (can be sampled randomly from a uniform distribution). Intuitively the loss is
forcing the transformation matrix to make the translation more similar than any
other word, and the margin controls how much more.

4.1.2 Joined Optimization
Joined optimization methods train the embeddings for both languages simultane-
ously. They often need a parallel corpus to find cross-lingual relations. The idea
here is that knowledge from one language can help to learn something interest-
ing for another language (with much less data, for example), and the embeddings
might be better than the monolingual ones. This is just the special case of multi-
task learning, where instead of different tasks, we have the same task in different
languages.

45

Bilingual Skip-Gram

Luong et al. (2015b) proposed the modification of the Skip-gram model for training
on sentence-aligned bilingual data. The objective is to predict the context in both
languages, given the central word in one of them. This objective is optimized for
both languages.

4.1.3 Unsupervised Transfer
Unsupervised Transformations

There are several attempts to map two semantic spaces to each other without any
explicit dictionary nor aligned corpora. In theory, we can do it by minimizing the
difference between pair-wise distances through all the words, although it is not
very effective in practice.

Artetxe et al. (2017) use the dictionary adaptation method for finding the
transformation matrix with a very small seed dictionary. The algorithm repeats
two steps until it converges:

1. Compute the optimal orthogonal mapping maximizing the similarities for
the current dictionary D:

argmax
𝑊𝑥,𝑊𝑧

∑︁
𝑖

∑︁
𝑗

𝐷𝑖𝑗((𝑋𝑖*𝑊𝑥) · (𝑌𝑗*𝑊𝑧)) (4.6)

An optimal solution is given by 𝑊𝑥 = 𝑈 and 𝑊𝑧 = 𝑉 where 𝑈𝑆𝑉 𝑇 = 𝑋𝑇 𝐷𝑍
is singular value decomposition.

2. Compute the optimal dictionary over the similarity matrix of the mapped
embeddings 𝑋𝑊𝑋𝑊 𝑇

𝑍 𝑍𝑇 . The nearest neighbors are taken as the dictionary
words (argmax over rows and columns).

Later Artetxe et al. (2018) extend this approach to completely unsupervised by
building the seed dictionary automatically. The seed dictionary is created by first
computing the similarity matrices of 𝑋 and 𝑍: 𝑀𝑋 = 𝑋𝑋𝑇 , then they sort the
elements of each row of 𝑀𝑋 and 𝑀𝑍 . After sorting, the best translations should
correspond to the most similar rows of the matrices.

Zero-Shot Learning with BERT

(Devlin et al., 2018) BERT is not using any cross-lingual information during train-
ing. Their multilingual model is trained on many monolingual corpora. The au-
thors show that supervised tasks can be solved in a zero-shot scenario very well
with this multilingual (but not generally cross-lingual) model.

Wu and Dredze (2019) performed a large number of experiments on various
tasks for many languages to evaluate zero-shot cross-lingual transferability of the
BERT model. Their experiments show that BERT achieves competitive results in
the zero-shot transfer.

46

Pires et al. (2019) empirically investigate cross-lingual properties of multilin-
gual BERT. For example, they show that when we use English BERT for other
languages in a zero-shot setting, it achieves poor results for languages with small
vocabulary overlap. However, in the case of multilingual BERT, there is a very
weak correlation between vocabulary overlap and zero-shot performance.

Artetxe et al. (2019) further investigate the cross-linguality of BERT. They
proved that its cross-lingual properties do not come primarily from shared words
(lexically the same). They design the model where in the first step they train
English BERT and then they train new embeddings for another language keeping
the rest of the model weights frozen. They found that this approach achieves only
slightly worse results in the zero-shot cross-lingual transfer. Their approach cannot
learn from lexically the same words, because it does not share the vocabulary
between languages. They also show that word-level cross-lingual mappings perform
really poorly in comparison with a deep model like BERT.

4.2 Parallel Corpora and Machine Translation
Many cross-lingual methods need aligned parallel corpora to be trained on. Mostly
for the joined optimization techniques, we need sentence aligned parallel corpus,
but for example, even for word-level mapping, the supervised dictionaries are often
created from machine translation alignments on parallel corpora.

∙ Probably the most well-known parallel corpus is Eutoparl (Koehn, 2005).

∙ For Czech-English cross-lingual methods, we have CzEng (Bojar et al., 2016).

∙ Another interesting cross-lingual resource for Czech-English is Prague Czech-
English Dependency Treebank (Hajič et al., 2012), which is the supervised
parallel corpus hand-annotated with many syntactic and semantic features.

4.3 Universal Dependencies and Other Cross-
Lingual Resources

The Universal Dependencies (UD) (Nivre et al., 2016) is a framework for consis-
tent annotation of grammar (parts of speech, morphological features, and syntactic
dependencies) across different human languages. UD is an open community effort
with over 300 contributors producing more than 150 treebanks in 90 languages.
The UD annotation scheme evolved as a compilation of three universal annota-
tion principles: universal dependency relations from Stanford (de Marneffe and
Manning, 2008), part-of-speech tags from Google (Petrov et al., 2012), and mor-
phological features (Zeman, 2008) from UFAL, Charles University.

The design of UD annotations is, in principle, similar to SD1 annotations,
but it differs in some crucial aspects. From the SRL point of view, the most

1Standard language-specific annotations, for example Penn Treebank annotations.

47

critical difference is making content words the heads. In SD annotation for many
languages, the auxiliary verbs, prepositions, and conjunctions are often the heads.

There are several frameworks that enable end-to-end parsing into UDs: UDpipe
(Straka et al., 2016), Stanford CoreNLP (Manning et al., 2014), Malt parser (Nivre
and Hall, 2005), and others.

4.4 Cross-Lingual SRL
In semantic role labeling, all three types of cross-lingual methods have been de-
veloped.

4.4.1 Annotation Projection
Annotation projection methods make use of a parallel corpus. The corpus is an-
notated in one language (by annotators or by a language-dependent automatic
system), and this annotation is projected into other languages through alignments
for machine translation.

Padó and Lapata (2009) propose the annotation projection from English to
German. The authors use a parallel corpus with either the gold alignments or
with the automatic ones produced by GIZA++ (Och and Ney, 2003). The general
objective is given by:

𝐴 = argmin
𝐴∈𝒜

∑︁
(𝑢𝑠,𝑢𝑡)∈𝐴

𝑤𝑒𝑖𝑔ℎ𝑡(𝑢𝑠, 𝑢𝑡) (4.7)

where 𝐴 is the best alignment, 𝒜 is the set of all possible alignments, and 𝑢𝑠

and 𝑢𝑡 are the source and the target node, where

𝑤𝑒𝑖𝑔ℎ𝑡(𝑢𝑠, 𝑢𝑡) = − log (𝑠𝑖𝑚(𝑢𝑠, 𝑢𝑡)) (4.8)

The baseline algorithm transfers a role between two words if the words are
aligned. More complex algorithms work with constituents instead of single words.
The authors use matching in a bipartite graph. In post-processing, they apply
several filters:

1. filling the gaps – adding the words as arguments so that the argument would
be a continuous sequence of words;

2. word filter – removing some words with simple rules.

Annesi and Basili (2010) use a similar approach and extend it with an HMM
model to increase the transfer accuracy.

48

4.4.2 Unsupervised Approaches
Grenager and Manning (2006) deploy unsupervised learning using the EM al-
gorithm based upon a structured probabilistic model of the domain. Lang and
Lapata (2011) discover arguments of verb predicates with high accuracy using a
small set of rules. A split-merge clustering is consequently applied to assign (name-
less) roles to the discovered arguments. Titov and Klementiev (2012a) propose a
superior argument clustering by using the Chinese restaurant process and Titov
and Klementiev (2012b) use this model in the cross-lingual scenario, where they
add cross-lingual agreement on the parallel data to the cost function.

Woodsend and Lapata (2015) use CBOW based FFNN to learn embeddings
for predicates and arguments. First, they identify arguments according to linguis-
tic rules from Lang and Lapata (2011). Then they train a FFNN to predict an
argument given the predicate and its other arguments within the context window
of the size given by the hyper-parameter. In the input, a predicate is represented
by the one-hot vector, and arguments are represented with syntactic features (de-
pendency relation, POS...) and with the semantic embedding of the argument
root word. Context vectors are weighted with a single matrix. After that, they are
concatenated resulting in the final context representation 𝑣𝑐. The central word is
weighted with a different matrix resulting in 𝑣0. The network architecture is shown
in Figure 4.2. Probability of the central word is given by:

𝑃 (𝑎𝑐|𝑎𝑐𝑜𝑛𝑡𝑒𝑥𝑡, 𝑏) = 𝑣𝑐𝑣0 (4.9)

as a cost function, they use standard negative log probability:

𝐸 = − 1
𝑇

𝑇∑︁
𝑖=0

𝑃 (𝑎𝑖|𝑎𝑐𝑜𝑛𝑡𝑒𝑥𝑡, 𝑏𝑖) (4.10)

The final vector representations are then clustered with linear programming
formulation of hierarchical clustering, where they can model task-specific knowl-
edge.

4.4.3 Model Transfer
Kozhevnikov and Titov (2013) use cross-lingual word mappings and cross-lingual
semantic clusters obtained from parallel corpora, and cross-lingual features ex-
tracted from unlabelled syntactic dependencies to create a cross-lingual SRL sys-
tem. In (Kozhevnikov and Titov, 2014), they try to find a mapping between
language-specific models using parallel data automatically.

Our approach (Pražák and Konopík, 2017) belongs among the model transfer
approaches. We introduce a first attempt to use Universal Dependencies as cross-
language features in SRL. Most of the state-of-the-art approaches to SRL rely on
lexical features (e.g. word lemmas). In the cross-language scenario, such features
require bilingual models (e.g. word mapping via machine translation or bilingual
clusters).

49

arg t − 1 arg t arg t + 1 predicate

f − 1 f + 1

v − 1 v + 1 v pred

× W context × W context

v c

v 0

f 0

× W argument

Context
features

Context
representation

Concatentation

Target
representation

Target
features

Figure 4.2: Network Architecture (from Woodsend and Lapata (2015))

Chapter 5

Preliminary Experiments and
Future Work

As the first experiment, we studied and evaluated word-level semantic methods
(Konopík and Pražák, 2015), where we compared formal and distributional meth-
ods. Later we participated in SemEval 2016 Task 2: Interpretable Semantic Textual
Similarity (Konopík et al., 2016), where the task was to analyze deeper semantic
relationships between two sentences. We have won one of two sub-tasks. More re-
cently, we have participated in another challenging semantic task, SemEval 2020
Task 1: Unsupervised Lexical Semantic Change Detection (Pražák et al., 2020)
where we analyzed semantic change of words through time. The task was to:

1. Classify if there is a change of the meaning of words between two corpora
from different time periods (binary classification).

2. Rank the word according to their degree of semantic change between the
two time periods.

We used linear transformation of embedding spaces of both time span corpora,
and then we compared representations of the target words in resulting spaces for
the ranking task.

We ranked 1𝑠𝑡 in the sub-task 1 and 4𝑡ℎ in the sub-task 2.

Nowadays, there are many methods for creating deep semantic representations.
From the cross-lingual perspective, the most interesting is multilingual BERT. It
has been empirically shown that it has an unexpectedly high cross-lingual per-
formance. However, multilingual BERT has its limits in the case of low resource
languages. One problem of multilingual BERT is- the joined vocabulary pruned
by token frequency. In this way, the low-resource languages lose almost all to-
kens in favor of English. We believe there is much more to improve in current
state-of-the-art semantic representation to perform better in minor languages.

Another unresolved issue is how to represent longer text and capture long-
distant dependencies (like whole documents) with deep models. In Konopík and

50

51

Pražák (2018), we successfully injected global information obtained from Latent
Dirichlet Allocation into a deep learning model, which significantly improved the
performance of the Named Entity Recognition system. This experiment shows that
the ability of deep neural networks to capture long-distant dependencies is at least
limited. Another problem is that the current models are not able to process long
texts at all. In recurrent neural network due to its sequential processing, it is able
to process sequences of around 100-200 tokens. Transformer-based models have no
such restriction in theory, but still, they are trained on either single sentence or
on a sentence pair, and they would not be very effective in processing long inputs.
Most current state-of-the-art methods use the language model as an unsupervised
objective, which does not have many long-distance dependencies. There are at
least two ways how to deal with long inputs:

1. Analyze long-distant dependencies in an unsupervised way and then use the
result in a deep model (like we did in Konopík and Pražák (2018))

2. Modify the deep model to be able to deal with long inputs itself (the details
are discussed in Section 3.2.5).

Most of the cross-lingual representations have been created and evaluated in
a bilingual scenario. There are not many attempts to create joint cross-lingual
representation for many languages. In Pražák and Konopík (2017), we created the
joint cross-lingual model for Semantic Role Labeling evaluated on four languages.
Later in Pražák and Konopík (2019), we extended this approach, and we created
the system capable of producing SRL annotations for 51 languages. We plan to
extend this approach in the future.

5.1 Aims of the PhD thesis
The goal of the doctoral thesis is to propose novel methods for cross-lingual se-
mantic representations. The work will be focused on the following research tasks:

∙ Propose a new method to deal with semantics of long texts and its long-term
dependencies.

∙ Adapt current cross-lingual methods and try to improve performance in
Czech or other minor languages1.

∙ Propose a method capable of creating a joint semantic representation for
many languages.

1Czech and languages with similar amount of textual data available. For example in the
number of articles in Wikipedia, Czech is approximately 13x smaller than English (463, 175 x
6, 166, 566 according to Wikipedia statistics, 30.10.2020.)

List of Tables

3.1 List of Recent Contextualized Models of Semantics 30
3.2 SRL state-of-the-art results . 39

52

List of Figures

2.1 Sigmoid function . 3
2.2 Logistic Regression Cost Function 4
2.3 Biological neuron . 5
2.4 McCulloch-Pitts artificial neuron 5
2.5 Feedforward neural network . 6
2.6 Activation Function Examples . 9
2.7 Basic RNN architectures . 15
2.8 Encoder-Decoder Architecture . 17
2.9 Transformer model architecture from Vaswani et al. (2017). 21
2.10 Types of attention from Vaswani et al. (2017). 22

3.1 LDA Graphical Model Representation 26
3.2 Basic neural network language model architecture 29
3.3 Architecture of Word2Vec Models (from Mikolov et al. (2013a)) . . 29
3.4 BERT pretraining and fine-tuning (from Devlin et al. (2018)) 34
3.5 Three SRL annotation examples . 37
3.6 Tree visualization of SRL annotation 38
3.7 Depp SRL model architecture from Tan et al. (2018) 40

4.1 Illustration of CCA method . 43
4.2 Network Architecture (from Woodsend and Lapata (2015)) 49

53

List of Equations

2.1 Linear regression cost . 3
2.2 Cross-Entropy Cost Function for Simple Logistic Regression 3
2.3 Neural Network Aggregation Function 4
2.4 Neural Network Activation Function 4
2.5 Softmax . 7
2.6 Cross-Entropy Cost . 7
2.7 Chain rule . 7
2.8 Backpropagation - Second Weights’ Derivative 7
2.9 Backpropagation - Hidden Layer Error 7
2.10 Backpropagation - Hidden Layer Error step 1 7
2.11 Backpropagation - First Weights Derivative step 2 7
2.12 Backpropagation - Hidden Layer Error Final 7
2.13 Backpropagation - First weights Derivative 8
2.14 Backpropagation - Output Layer Error 8
2.15 Sigmoid Function . 8
2.16 Softsign . 8
2.17 Rectified Linear Unit . 9
2.18 Leaky-ReLU . 9
2.19 Exponential Linear Unit . 10
2.20 Batch Mean . 11
2.21 Batch Variance . 11
2.22 Batch Normalization . 11
2.23 Batch Normalization – Weighted Rescaling 11
2.24 𝐿2 Regularization . 12
2.25 Bayesian Gradient Noise . 12
2.26 Gaussian Gradient Noise . 12
2.27 Convolution . 13
2.28 Discrete Convolution . 13
2.29 Elman RNN Hidden State . 14
2.30 Elman RNN Output . 14
2.31 Jordan’s RNN Hidden State . 14
2.32 Jordan’s RNN Output . 14
2.33 LSTM . 15
2.34 GRU . 16
2.35 Adding the Attention . 18
2.36 Attention-based Network Output . 18
2.37 Attention Context Vector . 18

54

55

2.38 Attention - Alignment . 18
2.39 Attention Scores . 19
2.40 Dot-Product Attention . 19
2.41 Scaled Dot-Product Attention . 19
2.42 Multi-Head Attention . 19
2.43 Attention Heads . 20
2.44 Soft Parameter Sharing in MTL . 23
3.1 Skip-Gram Softmax . 28
3.2 Skip-Gram Cost . 28
3.3 Skip-Gram: Negative Sampling Output 28
3.4 Skip-Gram: Negative Sampling Cost 28
3.5 Skip-Thoughts: Vocabulary Expansion Projection 32
3.6 Skip-Thoughts: Vocabulary Expansion Objective 32
3.7 ElMO: Layers Weighting for Transfer Task 32
4.1 Least Squares Transformation . 42
4.2 CCA Optimization Criterion . 42
4.3 Cosine Similarity . 43
4.4 Orthogonal Least-Squares: Analytical Solution 44
4.5 Max-Margin Loss . 44
4.7 Padó+Lapata - Objective . 47
4.8 Padó+Lapata - weighting . 47
4.9 Woodsend2015 - Central word probability 48
4.10 Woodsend2015 Cost Function . 48

Bibliography

Ammar, W., Mulcaire, G., Tsvetkov, Y., Lample, G., Dyer, C., and Smith,
N. A. (2016). Massively multilingual word embeddings. arXiv preprint
arXiv:1602.01925.

Annesi, P. and Basili, R. (2010). Cross-lingual alignment of FrameNet annotations
through hidden markov models. In Proceedings of the 11th International Confer-
ence on Computational Linguistics and Intelligent Text Processing, CICLing’10,
pages 12–25, Berlin, Heidelberg. Springer-Verlag.

Artetxe, M., Labaka, G., and Agirre, E. (2016). Learning principled bilingual
mappings of word embeddings while preserving monolingual invariance. In Pro-
ceedings of the 2016 Conference on Empirical Methods in Natural Language
Processing, pages 2289–2294.

Artetxe, M., Labaka, G., and Agirre, E. (2017). Learning bilingual word embed-
dings with (almost) no bilingual data. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers),
pages 451–462, Vancouver, Canada. Association for Computational Linguistics.

Artetxe, M., Labaka, G., and Agirre, E. (2018). A robust self-learning method for
fully unsupervised cross-lingual mappings of word embeddings. In Proceedings
of the 56th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 789–798.

Artetxe, M., Ruder, S., and Yogatama, D. (2019). On the cross-lingual transfer-
ability of monolingual representations. arXiv preprint arXiv:1910.11856.

Beltagy, I., Peters, M. E., and Cohan, A. (2020). Longformer: The long-document
transformer. arXiv preprint arXiv:2004.05150.

Bengio, Y., Ducharme, R., Vincent, P., and Janvin, C. (2003). A Neural Probabilis-
tic Language Model. The Journal of Machine Learning Research, 3:1137–1155.

Blei, D. M., Ng, A. Y., Jordan, M. I., and Lafferty, J. (2003). Latent dirichlet
allocation. Journal of Machine Learning Research, 3:2003.

Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wierstra, D. (2015). Weight
uncertainty in neural networks. arXiv preprint arXiv:1505.05424.

56

57

Bojar, O., Dušek, O., Kocmi, T., Libovický, J., Novák, M., Popel, M., Sudarikov,
R., and Variš, D. (2016). CzEng 1.6: Enlarged Czech-English Parallel Corpus
with Processing Tools Dockered. In Sojka, P., Horák, A., Kopeček, I., and
Pala, K., editors, Text, Speech, and Dialogue: 19th International Conference,
TSD 2016, number 9924 in Lecture Notes in Computer Science, pages 231–238,
Cham / Heidelberg / New York / Dordrecht / London. Masaryk University,
Springer International Publishing.

Bowman, S. R., Angeli, G., Potts, C., and Manning, C. D. (2015). A large
annotated corpus for learning natural language inference. arXiv preprint
arXiv:1508.05326.

Caruana, R. (1997). Multitask learning. Machine learning, 28(1):41–75.

Chang, W.-C., Yu, F. X., Chang, Y.-W., Yang, Y., and Kumar, S. (2020).
Pre-training tasks for embedding-based large-scale retrieval. arXiv preprint
arXiv:2002.03932.

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,
H., and Bengio, Y. (2014). Learning phrase representations using rnn encoder–
decoder for statistical machine translation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Processing (EMNLP), pages
1724–1734.

de Marneffe, M.-C. and Manning, C. D. (2008). The Stanford Typed Dependen-
cies representation. In Coling 2008: Proceedings of the Workshop on Cross-
Framework and Cross-Domain Parser Evaluation, CrossParser ’08, pages 1–8,
Stroudsburg, PA, USA. Association for Computational Linguistics.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training
of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805.

Elman, J. L. (1990). Finding structure in time. Cognitive science, 14(2):179–211.

Faruqui, M. and Dyer, C. (2014). Improving vector space word representations
using multilingual correlation. In Proceedings of the 14th Conference of the
European Chapter of the Association for Computational Linguistics, pages 462–
471.

Gildea, D. and Jurafsky, D. (2002). Automatic labeling of semantic roles. Com-
putational linguistics, 28(3):245–288.

Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep
feedforward neural networks. In Proceedings of the thirteenth international con-
ference on artificial intelligence and statistics, pages 249–256.

Graves, A. (2011). Practical variational inference for neural networks. In Advances
in neural information processing systems, pages 2348–2356.

58

Graves, A., rahman Mohamed, A., and Hinton, G. (2013). Speech recognition with
deep recurrent neural networks.

Grenager, T. and Manning, C. D. (2006). Unsupervised discovery of a statistical
verb lexicon. In Proceedings of the 2006 Conference on Empirical Methods in
Natural Language Processing, EMNLP ’06, pages 1–8, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Hajič, J., Hajičová, E., Panevová, J., Sgall, P., Cinková, S., Fučíková, E., Mikulová,
M., Pajas, P., Popelka, J., Semecký, J., Šindlerová, J., Štěpánek, J., Toman,
J., Urešová, Z., and Žabokrtský, Z. (2012). Prague czech-english dependency
treebank 2.0. LINDAT/CLARIN digital library at the Institute of Formal and
Applied Linguistics, Charles University in Prague.

Harris, Z. S. (1954). Distributional structure. <i>WORD</i>, 10(2-3):146–162.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In Proceedings
of the IEEE international conference on computer vision, pages 1026–1034.

He, L., Lee, K., Levy, O., and Zettlemoyer, L. (2018). Jointly predicting predicates
and arguments in neural semantic role labeling. In Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics (Volume 2:
Short Papers), pages 364–369.

He, L., Lee, K., Lewis, M., and Zettlemoyer, L. (2017). Deep semantic role labeling:
What works and what’s next. In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages 473–
483.

Henderson, M., Al-Rfou, R., Strope, B., Sung, Y.-H., Lukács, L., Guo, R., Kumar,
S., Miklos, B., and Kurzweil, R. (2017). Efficient natural language response
suggestion for smart reply. arXiv preprint arXiv:1705.00652.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural
computation, 9(8):1735–1780.

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In International Conference on
Machine Learning, pages 448–456.

Jozefowicz, R., Vinyals, O., Schuster, M., Shazeer, N., and Wu, Y. (2016). Ex-
ploring the limits of language modeling. arXiv preprint arXiv:1602.02410.

Kaiser, Ł. and Sutskever, I. (2015). Neural gpus learn algorithms. arXiv preprint
arXiv:1511.08228.

Kalchbrenner, N., Grefenstette, E., and Blunsom, P. (2014). A convolutional neu-
ral network for modelling sentences. arXiv preprint arXiv:1404.2188.

59

Kiros, R., Zhu, Y., Salakhutdinov, R. R., Zemel, R., Urtasun, R., Torralba, A.,
and Fidler, S. (2015). Skip-thought vectors. In Advances in neural information
processing systems, pages 3294–3302.

Koehn, P. (2005). Europarl: A parallel corpus for statistical machine translation.
In MT summit, volume 5, pages 79–86.

Konopík, M. and Pražák, O. (2015). Information sources of word semantics meth-
ods. In International Conference on Speech and Computer, pages 243–250.
Springer.

Konopík, M. and Pražák, O. (2018). Lda in character-lstm-crf named entity recog-
nition. In International Conference on Text, Speech, and Dialogue, pages 58–66.
Springer.

Konopík, M., Pražák, O., Steinberger, D., and Brychcín, T. (2016). Uwb at
semeval-2016 task 2: Interpretable semantic textual similarity with distribu-
tional semantics for chunks. In Proceedings of the 10th International Workshop
on Semantic Evaluation (SemEval-2016), pages 803–808.

Kozhevnikov, M. and Titov, I. (2013). Cross-lingual transfer of semantic role
labeling models. In Proceedings of the 51st Annual Meeting of the Association
for Computational Linguistics, ACL 2013, 4-9 August 2013, Sofia, Bulgaria,
Volume 1: Long Papers, pages 1190–1200.

Kozhevnikov, M. and Titov, I. (2014). Cross-lingual model transfer using feature
representation projection. In ACL (2), pages 579–585.

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., and Soricut, R. (2019).
Albert: A lite bert for self-supervised learning of language representations. In
International Conference on Learning Representations.

Lang, J. and Lapata, M. (2011). Unsupervised semantic role induction via split-
merge clustering. In Proceedings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language Technologies-Volume 1, pages
1117–1126. Association for Computational Linguistics.

Lazaridou, A., Dinu, G., and Baroni, M. (2015). Hubness and pollution: Delv-
ing into cross-space mapping for zero-shot learning. In Proceedings of the 53rd
Annual Meeting of the Association for Computational Linguistics and the 7th In-
ternational Joint Conference on Natural Language Processing (Volume 1: Long
Papers), pages 270–280.

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al. (1998). Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324.

Li, J., Luong, M.-T., Jurafsky, D., and Hovy, E. (2015). When are tree structures
necessary for deep learning of representations? arXiv preprint arXiv:1503.00185.

60

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M.,
Zettlemoyer, L., and Stoyanov, V. (2019). Roberta: A robustly optimized bert
pretraining approach. arXiv preprint arXiv:1907.11692.

Luong, M.-T., Pham, H., and Manning, C. D. (2015a). Effective approaches to
attention-based neural machine translation. arXiv preprint arXiv:1508.04025.

Luong, T., Pham, H., and Manning, C. D. (2015b). Bilingual word representations
with monolingual quality in mind. In Proceedings of the 1st Workshop on Vector
Space Modeling for Natural Language Processing, pages 151–159.

Maas, A. L., Hannun, A. Y., and Ng, A. Y. (2013). Rectifier nonlinearities improve
neural network acoustic models. In Proc. icml, volume 30, page 3.

Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S. J., and McClosky,
D. (2014). The Stanford CoreNLP natural language processing toolkit. In As-
sociation for Computational Linguistics (ACL) System Demonstrations, pages
55–60.

McCulloch, W. S. and Pitts, W. (1943). A logical calculus of the ideas immanent
in nervous activity. The bulletin of mathematical biophysics, 5(4):115–133.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013a). Efficient estimation of
word representations in vector space. CoRR, abs/1301.3781.

Mikolov, T., Le, Q. V., and Sutskever, I. (2013b). Exploiting similarities among
languages for machine translation. arXiv preprint arXiv:1309.4168.

Miller, G. A. (1998). WordNet: An electronic lexical database. MIT press.

Moschitti, A., Pighin, D., and Basili, R. (2008). Tree kernels for semantic role
labeling. Computational Linguistics, 34(2):193–224.

Mou, L., Peng, H., Li, G., Xu, Y., Zhang, L., and Jin, Z. (2015). Discrim-
inative neural sentence modeling by tree-based convolution. arXiv preprint
arXiv:1504.01106.

Nair, V. and Hinton, G. E. (2010). Rectified linear units improve restricted boltz-
mann machines. In Proceedings of the 27th international conference on machine
learning (ICML-10), pages 807–814.

Neelakantan, A., Vilnis, L., Le, Q. V., Sutskever, I., Kaiser, L., Kurach, K., and
Martens, J. (2015). Adding gradient noise improves learning for very deep
networks. arXiv preprint arXiv:1511.06807.

Nivre, J., de Marneffe, M.-C., Ginter, F., Goldberg, Y., Hajic, J., Manning, C. D.,
McDonald, R. T., Petrov, S., Pyysalo, S., Silveira, N., et al. (2016). Universal
dependencies v1: A multilingual treebank collection. In LREC.

61

Nivre, J. and Hall, J. (2005). Maltparser: A language-independent system for data-
driven dependency parsing. In In Proc. of the Fourth Workshop on Treebanks
and Linguistic Theories, pages 13–95.

Och, F. J. and Ney, H. (2003). A Systematic Comparison of Various Statistical
Alignment Models. Computational Linguistics, 29(1):19–51.

Padó, S. and Lapata, M. (2009). Cross-lingual annotation projection for semantic
roles. Journal of Artificial Intelligence Research, 36:307–340.

Parikh, A. P., Täckström, O., Das, D., and Uszkoreit, J. (2016). A de-
composable attention model for natural language inference. arXiv preprint
arXiv:1606.01933.

Pascanu, R., Gulcehre, C., Cho, K., and Bengio, Y. (2013). How to construct deep
recurrent neural networks.

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., and Zettle-
moyer, L. (2018). Deep contextualized word representations. arXiv preprint
arXiv:1802.05365.

Petrov, S., Das, D., and McDonald, R. (2012). A universal part-of-speech tagset.
In Proceedings of the Eight International Conference on Language Resources
and Evaluation (LREC’12), Istanbul, Turkey. European Language Resources
Association (ELRA).

Pires, T., Schlinger, E., and Garrette, D. (2019). How multilingual is multilin-
gual bert? In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4996–5001.

Pražák, O. and Konopík, M. (2017). Cross-lingual srl based upon universal de-
pendencies. In RANLP, pages 592–600.

Pražák, O. and Konopík, M. (2019). Ulsana: Universal language semantic analyzer.
In Proceedings of the International Conference on Recent Advances in Natural
Language Processing (RANLP 2019), pages 967–972.

Pražák, O., Přibáň, P., Tailor, S., and Sido, J. (2020). Uwb at semeval-2020 task
1: Lexical semantic change detection. In Proceedings of the 14th International
Workshop on Semantic Evaluation (SemEval-2020).

Punyakanok, V., Roth, D., and Yih, W.-t. (2008). The importance of syntac-
tic parsing and inference in semantic role labeling. Computational Linguistics,
34(2):257–287.

Radford, A., Narasimhan, K., Salimans, T., and Sutskever, I. (2018). Improving
language understanding by generative pre-training. URL https://s3-us-west-2.
amazonaws. com/openai-assets/researchcovers/languageunsupervised/language
understanding paper. pdf.

62

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. (2019).
Language models are unsupervised multitask learners. OpenAI Blog, 1(8):9.

Ruder, S. (2017). An overview of multi-task learning in deep neural networks.
arXiv preprint arXiv:1706.05098.

Sennrich, R., Haddow, B., and Birch, A. (2016). Neural machine translation of
rare words with subword units. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pages
1715–1725.

Socher, R., Bauer, J., Manning, C. D., et al. (2013). Parsing with compositional
vector grammars. In Proceedings of the 51st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), volume 1, pages 455–
465.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.
(2014). Dropout: a simple way to prevent neural networks from overfitting. The
Journal of Machine Learning Research, 15(1):1929–1958.

Straka, M., Hajič, J., and Straková, J. (2016). UDPipe: trainable pipeline for
processing CoNLL-U files performing tokenization, morphological analysis, pos
tagging and parsing. In Proceedings of the Tenth International Conference on
Language Resources and Evaluation (LREC’16), Paris, France. European Lan-
guage Resources Association (ELRA).

Tai, K. S., Socher, R., and Manning, C. D. (2015). Improved semantic represen-
tations from tree-structured long short-term memory networks. arXiv preprint
arXiv:1503.00075.

Tan, Z., Wang, M., Xie, J., Chen, Y., and Shi, X. (2018). Deep semantic role
labeling with self-attention. In Thirty-Second AAAI Conference on Artificial
Intelligence.

Titov, I. and Klementiev, A. (2012a). A bayesian approach to unsupervised se-
mantic role induction. In Proceedings of the 13th Conference of the European
Chapter of the Association for Computational Linguistics, EACL ’12, pages 12–
22, Stroudsburg, PA, USA. Association for Computational Linguistics.

Titov, I. and Klementiev, A. (2012b). Crosslingual induction of semantic roles. In
Proceedings of the 50th Annual Meeting of the Association for Computational
Linguistics, Jeju Island, South Korea. Association for Computational Linguis-
tics.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,
Kaiser, Ł., and Polosukhin, I. (2017). Attention is all you need. In Advances in
Neural Information Processing Systems, pages 5998–6008.

63

Welling, M. and Teh, Y. W. (2011). Bayesian learning via stochastic gradient
langevin dynamics. In Proceedings of the 28th international conference on ma-
chine learning (ICML-11), pages 681–688.

Woodsend, K. and Lapata, M. (2015). Distributed Representations for Unsu-
pervised Semantic Role Labeling. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing, {EMNLP} 2015, Lisbon,
Portugal, September 17-21, 2015, pages 2482–2491.

Wu, S. and Dredze, M. (2019). Beto, bentz, becas: The surprising cross-lingual
effectiveness of bert. In Proceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP), pages 833–844.

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., Krikun,
M., Cao, Y., Gao, Q., Macherey, K., et al. (2016). Google’s neural machine
translation system: Bridging the gap between human and machine translation.
arXiv preprint arXiv:1609.08144.

Xing, C., Wang, D., Liu, C., and Lin, Y. (2015). Normalized word embedding and
orthogonal transform for bilingual word translation. In Proceedings of the 2015
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages 1006–1011.

Zeman, D. (2008). Reusable tagset conversion using tagset drivers. In Proceedings
of the Sixth International Conference on Language Resources and Evaluation
(LREC’08), Marrakech, Morocco. European Language Resources Association
(ELRA). http://www.lrec-conf.org/proceedings/lrec2008/.

Zhu, Y., Kiros, R., Zemel, R., Salakhutdinov, R., Urtasun, R., Torralba, A., and
Fidler, S. (2015). Aligning books and movies: Towards story-like visual expla-
nations by watching movies and reading books. In Proceedings of the IEEE
international conference on computer vision, pages 19–27.

	Introduction
	Outline

	Machine Learning
	Feature Engineering and Simple Classifiers
	Supervised Machine Learning
	Gradient-Based Optimizers
	Linear Regression
	Logistic Regression

	Neural Networks
	Mcculloch-Pitts Neuron
	Feed-Forward Neural Network
	Forward Propagation and Loss
	Backpropagation Algorithm
	Deep Neural Network
	Activation Functions in Deep Learning
	Initializing Weights
	Batch Normalization
	Regularization
	Parameter Sharing Relaxation
	Convolutional Neural Network
	Recurrent Neural Network
	Encoder-Decoder
	Attention-Based Networks
	Tree-Structured Networks

	Multi-Task Learning
	Neural Networks for Multi-Task Learning
	Hard Parameter Sharing
	Soft Parameter Sharing

	Semantics
	Lexical Databases and Ontologies
	Wordnet

	Distributed Representations
	LDA
	LSA
	Neural Networks' Hidden States
	Sentence Embeddings and Contextualized Word Embeddings
	Document Embeddings

	Semantic Role Labeling
	Feature Engineering
	Deep Learning

	Cross-Lingual Semantics
	Bilingual and Multilingual Semantic Vectors
	Linear Transformations
	Joined Optimization
	Unsupervised Transfer

	Parallel Corpora and Machine Translation
	Universal Dependencies and Other Cross-Lingual Resources
	Cross-Lingual SRL
	Annotation Projection
	Unsupervised Approaches
	Model Transfer

	Preliminary Experiments and Future Work
	Aims of the PhD thesis

