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jako multibody systému
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I, Jan Špička, declare that the work in this dissertation thesis titled ”On the development
of a Virtual human body model based on multibody principle” is my own. I confirm that
if any part has previously been published or presented, this has been clearly stated and
attributed. I also confirm that I have quoted all sources used during the work. I honestly
declare that I have followed the standard procedures and ethic of the scientific work.
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Annotation
This work is focused on the virtual modelling of the human body, with the main focus
on the full body models, utilized and developed for dynamics crash scenarios. This thesis
firstly presents a brief overview of the current state of the art in the human models.
However, the main aim of this work is to use multibody method for a spatial modelling of
a system of constrained rigid bodies. The theory of Euler angles and Euler parameters are
used here and their pros and cons are discussed. The full equation of motion is expanded
with the algorithms for numerical stabilization, contact calculation and internal stiffness
of the joints.

The full human body model is modelled via Euler parameters and consists of 17 rigid
bodies connected via kinematics joints. Here, all bodies have shape of ellipsoid and all
joints are modelled as spherical joints. The dimension, mass and inertia of each body
is set based on literature and real data measurement. The model is built as a scalable
model, where only total weight and height are pre-defined inputs and the particular model
(dimensions, masses, inertia) is created by scaling of the reference model. In order to
include range of motion of the joints, as well as their physiological stiffness, external
torques are added on each body. These torques are function of the relative rotations
between the adjoining bodies and are added as an external loading to the equation of
motion. Relative rotation between the bodies is solved with the advantages of the Euler
parameters (quatermions), that allow direct calculation of the current axis of rotation and
relative angle of rotation around this axis. Contact algorithm is solved with the continuous
force model, where several force models are included. The total equation of motion is
numerically integrated in MATLAB, using standard ODE solvers. To ensure the numerical
stability (which is generally not guaranteed in the constrained dynamical system), two
methods for stabilization are utilized (Baumgarte and direct violation method).

The work presents the results of particular methods and algorithms on basic benchmark
examples. Due to the lack of experimental data, some examples are verified only with
the visual observation method. The final model of the human body was utilized in set
of crash scenarios, where its behavior was tested. The model, especially its parameters
(contact parameters, stiffness and numerical parameters) are not set up to approximate
any particular scenario. They were setup in order to make the model working, realistic
and numerically stable. Such status of model can be called validation ready model. If the
application of this model in one particular case would be required, the full validation and
parameters optimization will be essential, to correctly set the model up.

However, purpose of this work was to build a general algorithm for a solution of the
multibody approach, to include additional algorithms for a human body modelling and
to get overview how they work, how they can be coded, to understand them and to find
their advantages and disadvantages. Despite some limitations of this model, the goal of
this work was successfully achieved.

Keywords: human body model; multibody method; contact calculation; joint stiffness;
Euler parameters
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Anotace
Tato práce se zabývá virtuálńımi modely lidského těla, použ́ıvané pro kolizńı dynamické
scénáře. V úvodu této práce je uveden krátký přehled aktuálńıch model̊u lidského těla.
Hlavńım ćılem této práce je využit́ı multibody metody pro popis prostorového pohybu
systému vázaných tuhých těles. Jsou zde využity koncepty Eulerových úhl̊u a Eulerových
parametr̊u a diskutovány jejich výhody a nevýhody. Celková pohybová rovnice modelu je
dále rozš́ı̌rena o algoritmy pro numerickou stabilizaci, výpočet kontaktu a výpočet vnitřńı
tuhosti kloub̊u.

Pro kompletńı popis lidského těla je využito Eulerových parametr̊u a takto vytvořený
model se skládá ze 17 tuhých těles, vzájemně vázaných kinematickým kloubem. Všechna
tělesa maj́ı tvar elipsoidu a všechny klouby jsou modelovány jako sférické klouby. Rozměry,
hmotnosti a setrvačnost každého tělesa jsou definovány z literatury a z reálných naměře-
ných dat. Tento model je vytvořen jako škálovatelný, kde vstupy jsou pouze celková
výška a hmotnost a konkrétńı model (jeho hmotnost, rozměry a setrvačnost) je vytvořen
vyškálováńım referenčńıho modelu. Pro modelováńı fyziologického rozsahu pohybu jed-
notlivých klub̊u, a také pro modelováńı jejich vnitřńı tuhosti, jsou do modelu přidány
zátěžné momenty. Tyto momenty jsou funkćı relativńıho natočeńı mezi jednotlivými
tělesy a posléze jsou přidány jako vněǰśı zat́ıžeńı do pohybové rovnice. Relativńı natočeńı
mezi tělesy je zde vyřešeno d́ıky vlastnostem Eulerových parametr̊u (kvatermion̊u), ze
kterých lze př́ımo źıskat aktuálńı osu rotace a úhel natočeńı okolo této osy. Kontaktńı
algoritmus je řešen pomoćı modelu spojité kontaktńı śıly, s několika modely kontaktńı
śıly. Pohybová rovnice celého mechanického systému je numericky integrována pomoćı
systému MATLAB a jeho standardńımi funkcemi ODE. Pro zajǐstěńı numerické stability,
která pro úlohy vázané dynamiky neńı obecně zaručena, je využito dvou metod numerické
stabilizace (Baumgartova stabilizace a metoda př́ımého porušeńı).

Tato práce prezentuje výsledky d́ılč́ıch metod a algoritmů na jednoduchých elementárńıch
úlohách. Vzhledem k nedostatku experimentálńıch dat jsou některé úlohy ověřovány
pouze pomoćı metody př́ımého vizuálńıho pozorováńı. Kompletńı model lidského těla je
použit v sérii několika kontaktńıch úloh, kde bylo testováno jeho chováńı. Tento model,
speciálně jeho parametry (kontaktńı parametry, tuhosti a numerické parametry), nejsou
nastaveny tak, aby simulovaly konkrétńı scénář. Byly nastaveny tak, aby výsledný model
fungoval, aby dával korektnd́ata a byl numericky stabilńı. Tento status lze nazvat model
připravený pro validaci. Pokud by bylo vyžadováno využit́ı tohoto modelu v nějakém
konkrétńım př́ıkladu, bylo by nutné provedeńı kompletńı validace a optimalizace všech
parametr̊u pro správné nastaveńı modelu. Účelem této práce je vytvořeńı obecného algo-
ritmu pro řešeńı úloh vázaných tuhých těles s uvažováńım daľśıch algoritmů pro potřeby
modelováńı lidského těla, źıskáńı znalost́ı jak tyto algoritmy funguj́ı, jak mohou být pro-
gramově řešeny a jaké jsou jejich výhody a nevýhody. I přes určité limity výsledného
modelu lze ř́ıci, že účelu této práce bylo dosaženo.

Kĺıčová slova: model lidského těla; vázaná tuhá tělesa; kontakt; tuhost kloubu; Eulerovy
parametry
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Anotación
Esta tesis se dedica a unos modelos virtuales del cuerpo humano, los cuales se utilizan
para escenarios dinámicos de colisión. Esta tesis presenta en primer lugar una breve
descripción de los modelos de cuerpo humano actuales. Sin embargo, el objetivo principal
de esta tesis es el uso de métodos multibody para la modelación espacial del sistema de
cuerpos ŕıgidos ligados. Se usan los conceptos de los ángulos de Euler y de los Párametros
de Euler y se discuten los beneficios y desventajas de ambos. La ecuación general del
movimiento del modelo se ampĺıa mediante algoritmos de estabilización numérica, cálculo
de contacto y cálculo de rugosidad interna de articulaciones.

Para una descripción del cuerpo humano completa se usan los Parámetros de Euler. Un
modelo aśı constrúıdo consiste de 17 cuerpos ŕıgidos interconectados por una articulación
cinemática. Todos los cuerpos son elipsoidales y todas las articualciones son modeladas
como articulaciones esféricas. Dimensiones, pesos e inercia de cada cual cuerpo se definen
de la literatura y de datos realmente medidos. Este modelo está diseñado para ser escal-
able, donde las entradas son solamente la altura total y el peso y el modelo espećıfico (su
peso, dimensiones e inercia) se crea escalando el modelo referencial. Para la modelación
del rango fisiológico de las articulaciones individuales y también para la modelación de
su rigidad internal se añaden pares de torsión externos a cada modelo. Estos pares de
extensión son una función de rotación relativa entre los cuerpos idividuales y después son
agregados como una carga externa a la ecuación de movimiento. La rotación relativa entre
los cuerpos se resuelve gracias a las propiedades de los Parámetros de Euler (cuaternios),
de los cuales es posible directamente obtener el eje de rotación actual y el ángulo de
rotación alrededor de este eje. El algoritmo de contacto se resuelve mediante un modelo
de fuerza de contacto continuo noc varios modelos de fuerza de contacto. Ecuación de
movimiento del sistema mecánico completo está integrada numéricamente usando el sis-
tema MATLAB y sus funciones estándares ODE. Para asegurar la estabilidad numérica, la
cual generalmente no está garantizada para tareas de dinámica vinculada, se utilizan dos
métodos de estabilización numérica (Estabilización de Baumgart y el método de infracción
directa).

Esta tesis presenta los resultados de métodos parciales y algoritmos en tareas elementales
simples. Debido a la falta de datos experimentales, algunas tareas solo se verifican me-
dianté el método de observación visual directa. El modelo completo del cuerpo humano
está usado en una serie de tareas de contacto, donde se ha probado el comportamiento
del modelo. Este modelo, especialmente sus parámetros (parámetros de contacto, rigidez
y parámetros numéricos) no están cofigurados para simular un escenario espećıfico. Se
han configurado para que el modelo resultante funcione bien y para que de datos razon-
ables y será numéricamente estable. Este estado puede denominarse como modelo listo
para validación. Si el uso de este modelo fué requerido en algún caso particular, seŕıa
necesario hacer una validación completa y optimización de todos los parámetros para el
ajuste correcto del modelo.

El propósito de esta tesis es crear un algoritmo general para resolver problemas de cuerpos
ŕıgidos ligados, teniendo en cuenta otros algoritmos para las nececidades de modelación
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del cuerpo humano, adquirir conocimientos sobre el funcionamiento de estos algoritmos,
cómo se pueden resolver mediante programación y cuáles son sus ventajas y desventajas.
A pesar de ciertos ĺımites del modelo resultante, se puede decir que el propósito de la tesis
se ha logrado.

Palabras clave: modelo del cuerpo humano, cuerpos ŕıgidos ligados, contacto, Rigidez
articular, parámetros de Euler
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Chapter 1

Introduction

Modelling of the human body is a highly expanding discipline of the biomechanical re-
search. With the advantages of the fast computer processing, the researchers have started
to use computers for the biomechanical modelling more frequently. The goal is to inves-
tigate numerical models of the human in different approaches for different scenarios. One
example of the highly expanding area of human modelling is an automotive safety field,
where virtual model of the human body or parts of the body are often use to predict or
eliminate fatal injuries or death. For such purpose, the detail deformable finite element
modelling method is usually applied. The complex models of particular body tissues are
widely developed within the automotive safety research. With the proper description of
materials and geometry, these models can calculate deformations, velocities, accelerations,
stresses or rupture of various human segments. On the other hand, there might be some
cases, where such complex description are inefficient or inappropriate. If we are inter-
ested only in global behaviour (kinematic and dynamics) of the system (human body),
the detailed description within the finite elements are inefficient and time and money
consuming. Let us imagine a simple example of a man pedaling his bike. If we consider
the man and bike as a one mechanical system and the goal is to describe kinematic of
the bike with respect to the position of legs and crank respectively, calculation of the
stresses and deformations of the body segments or internal organs are not required. For
such purpose, the classical description of mechanism can be enough to capture to motion.
More complex description can be consider with the articulated rigid body approach. If
the researchers are interested in the muscle forces, musculoskeletal modelling method is
an appropriate tool. Such model consists of constrained rigid bodies (articulated rigid
body, multibody) and model of the muscles. However, if the detailed tissue injury and
deformations are required, the finite element modelling is only one suitable tool. This
demonstrative benchmark example should illustrate the suitability of the various mod-
elling methods for different cases of interest. It is not always appropriate and effective
to use the most advanced model in any case. It is always necessary to select proper and
adequate model for the level of our interest.

Purpose of this work is to build an in-house software for simulation of a global behaviour
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of the scalable human body under different loading scenarios. Author uses multibody
(articulated rigid bodies) approach for the description of the human body. Such method
allows user to calculate motion under various loading in a real time simulation (or close
to real time). The multibody (MBS) method has an advantage of the possibility to
implement other algorithms, such as contact scenario, muscle modelling, stiffness of the
joint or activation of the model. The main aim of this paper was to derived all required
equations, to test the algorithms in simple benchmark examples and finally to combine
all of them in one complex model.

This paper summaries the current state of the art in the models of the human body.
The mechanical models of the human called ATD (anthropometric test device) or dummy
are presented in the second chapter. The dummies are divided based on the direction
of impact, for which they are designed (frontal, side and rear impacts, respectively).
The special category are the dummy of children ATD. This chapter also describes the
differences between the virtual models of the dummies and virtual models of the human
body. The list of the virtual (numerical) models is presented, where the models are divided
based on the modelling methods, namely the multibody and the finite element modelling.
The hybrid approach combining both the methods is also described.

Third chapter is focused on the theory of multibody system. Firstly, multibody method
and suitability of its application is described. The theoretical background of description
of the displacement, velocity and acceleration are introduced here. Author describes
utilization of the Euler angles for parametrisation of the spatial motion. The derivation
of the equation of motion for free and constrained body is described, as well as for system of
constrained bodies. However, since the Euler angles are know for their singular positions,
and thus the instability during numerical integration, the concept of four Euler parameters
is further used. Displacement, velocity, acceleration, generalized forces and total equation
of motion is derived using both these approaches. The difference between Euler angles and
Euler parameters is explained and discussed their pros and cons. The total equation of
motion of the full human body model is derived with the Lagrange equations of a second
kind with multipliers, where the spatial motion is described with Euler parameters.

This chapter also includes methods of numerical stabilization and their application in
simple constrained dynamics. Sensitivity analysis of these examples for variation of the
stabilization methods and parameters of the stabilization is presented, to get a view,
how the stabilization affects the results and to get a hint which method is suitable for a
different scenario.

Since the model is built do be scalable, to enable user to create a various size of the
human, only the weight and the height is initially defined. All other mechanical and
geometric properties are calculated based on these values. The wide database of human
anthropometric dimensions is used to calculate these values as well as analytical algorithm
for calculating mass distribution of particular body segments.

The fifth chapter describes contact analysis in multibody method. The review of the
contact detection algorithms is presented followed by review of contact force models.
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Finally, the methodology used in this model is described.

Next chapter shows the initial results of the particular models (one free and constrained
body, double pendulum with the internal stiffness) and also the full human body model.
This work does not model any particular scenario, and do not try to simulate any exact
case. It builds a multibody model of the human, containing 17 rigid bodies, connected with
the kinematic joints, including internal stiffness, contact algorithm and several methods
of numerical stabilization. Each of the attached methods consists of some parameters,
that must be carefully set up, validated and verified for each new case. This paper build
the so-called ”validation ready” model, and shows its benefits and its limitation.

The last chapter summaries the work, the achieved results and suggests the future im-
provements and possibilities of the exploitation of this human body model.



Chapter 2

Human body models - State of the
art

Human body is a very complex dynamical system comprising complicated segments, such
as internal organs, head, extremities, spine etc., that are made of live bio-materials.
These materials are generally heterogeneous, anisotropic, visco or hyperelastic and their
mechanical properties depend on many factors such as temperature, loading history, con-
centration of some chemical substances such as hormones etc. Due to these reasons it is
not very straightforward to design a model, representing human body and his behavior
for wide set of applications. The aim of biomechanical research in the field of human
body modelling is to build various models, for the specific purposes. It can be a model
for automotive crash tests, blood flux inside body and organs, respectively or rigid body
model for global description of the human body behavior. In case of automotive industry,
the physical models of the human (dummy) are currently used in the experimental crash
tests and vehicle development, testing and certification. Virtual human body models can
represent a real human (geometry and materials, such as bones, soft tissue, flesh and
internal organs), while the mechanical dummies are made from plastic, rubber, metal or
foam. The dummies are made for multiple re-use without damage and needs to repair.
Thus there is no biological damage and injury in terms of dummies. The injury risk of the
human is deduced indirectly within instrumental response under different crash scenario.
For the purpose of injury evaluation, or probability of injury, the criteria for the specific
loading and the abbreviated injury scale (AIS) were developed [35, 62, 97]. Thus, the
risk of injury is based only on some statistic database, which is the best we can have,
but is is not perfect and it is not fully biofidelic. The experimental tests with dummy
results in mechanical values, such as acceleration, velocity, forces, torque that are used to
calculate/predict an injury risk.
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2.1 Dummy

In the world of the crash tests, it is common practice to use mechanical dummies as
surrogates for the human vehicle occupant. Mechanical dummies are biofidelic occupant
surrogate devices, that are widely used in real crash test scenarios. A crash test dummy
is a full-scale anthropometric test device (ATD) that simulates passenger of the vehicle.
Dimensions, weight proportions and articulation are based on the average human body.
The device is instrumented to record data about the dynamic behavior of the ATD, such as
forces, moments, displacements, velocities or accelerations. The concept of using dummies
in the crash tests is not perfect, since the dummies are only mechanical approximation
of a real human. As Yang said [43]:”If you design a car based on dummy response, you
are going to design a car that is good for dummies, but not necessarily good for humans.
We have data to say that crash dummies are helping the industry to design safer cars, but
they are not human-like.” Since humans cannot be used in real crash tests, the dummies
are only workable alternative approved be governments. Hopefully, in the near future, the
virtual models will be approved by governments to be officially used in the certification
of the vehicles. Nowadays, the virtual models are approved only for certification of an
active bonnet, where virtual model of a pedestrian can be used. Human volunteers can
be only exceptionally served in experimental impact tests, but only in low speed tests,
where there is no risk of injury. The dummies are generally designed especially for a
package of crash scenarios, such as frontal, rear or side impact. The ATD (dummy)
is generally only the physical model of an average man. It is biofidelic for a certain
scenarios in particular parameters. The ATD is usually biofidelic in the dimensions,
masses, physiological motion of the human, but they are stiffer then human body in the
joints, in the particular segments, since they consist of metal and plastic segments, instead
of flesh and bones. They do not include internal organs and they cannot predict any kind
of real human injury. They can provide only mechanical response (force, acceleration,
displacement...) for a certain loading and this values can be interpreted in the probability
of injury, that are based on limited data from experimental tests. Crash test dummies
are also designed to be ”re-usable” which also decrease their biofidelity.

Consequently, the dummy is designed for one specific loading (crash scenario) and it can
be used only in such conditions. So, the frontal passenger dummy cannot be used in other
scenario than frontal crash test of a occupant. The great overview of the current status
of the ATD is presented by Haug in [53], in producer Humanetics catalogue [58] or in a
new book (2019) written by Scataglini and Gunter [96]. Generally, the dummies can be
divide as follows:
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• Frontal impact dummy

• Side impact dummy

• Rear impact dummy

• Child dummy

• Pedestrian dummy

• Military and Aerospace dummy

2.1.1 Frontal impact

Frontal impact dummies and frontal impact testing are the foundations of current world
wide highway safety efforts. It has been published [5, 35], that many deaths and injuries
were caused in frontal crashes. Before their introduction, it was assumed that victims of
car crashes were victims of fate. These dummies have replaced this thinking with the use
of current engineering methods to prevent death and injury on the road.

”The initial purpose of the frontal impact dummy and frontal impact testing was to test
restraint system effectiveness in preventing head injury, thorax injury represented by rib
compression and thorax acceleration, and leg injury as expressed by femur fracture and
hip dislocation. Over the years the dummy has been developed to increase its capabilities
to aid the vehicle designer, crash test engineer and federal regulator” [58].

This dummy has been very effective in reducing death and injury on the roads and led to
a new generation of motorists and their children, who think safety first and automatically
use their seat belts for crash protection. The overview of some existing dummies for the
frontal impact test are presented bellow.

• The Hybrid III dummy family

The Hybrid III dummy is a widely used ATD for frontal impact tests [58]. This
dummy family contains standard Hybrid III 50th percentile male, 5th percentile
female, 95th percentile male, 10 years old (yo) child, 6yo child and 3yo child, see
Fig. 2.1. The previous version Hybrid II, average male is still using. The Hybrid
III 50th percentile male crash test dummy is one of the most widely used crash test
dummy in the world for the evaluation of automotive safety restraint systems in
frontal crash testing. However, in last few years, it is replaced but more advanced
Thor dummy. This Hybrid III dummy is regulated test device in Europe, Asia and
in the United States, respectively. The 50th percentile Hybrid III represents a male
with the weight equaling to 75.5 kg and height equaling to 175 cm [35, 58, 117, 41].
The 5th and 95th percentile dummy is an scaled equivalent of the average ATD.
95th percentile dummy has height of 188 cm and mass of 100 kg, while the ”smaller
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sister” female 5th percentile Hybrid III has height and weight of 152 cm and 50 kg
respectively.

Figure 2.1: Hybrid III dummy 50th percentile [58] (left) and dummy family [2] (right)

• THOR

This dummy was developed in the USA by NHTSA (National Highway Traffic Safety
Administration [18]) and is used for the frontal test. THOR has more human-
like features than Hybrid III, as a spine and pelvis that allow the dummy various
seating positions, such as sitting upright or slouching [35, 58]. THOR has currently
two anthropometric version: 50M (average male) and 5F (5th percentile female).
THOR dummy is also widely used ATD, similarly as HIII. Moreover, it starts to
play more important role in the car safety than Hybrid III. In addition, EuroNCAP
is considering to use the THOR-50M dummy for the future frontal impact tests as
a part of their continuous efforts to improve road safety. The THOR dummy is
displayed at Fig. 2.2.

Figure 2.2: THOR dummy [58] (left) and components and load sensors [35] (right)
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The Hybrid III and THOR dummies are the most common used ATD in a world
of automotive safety development. Today, they are both triggered under company
Humanetics [58], as a world producer and distributor of the real and virtual dum-
mies. In the following, there is a list of several other frontal dummies, but they are
rarely used. They are applied usually for some special cases, where the Hybrid or
THOR cannot be used, or they work as a advanced tool of such ATD.

• TNO-10

The TNO-10 dummy was developed as a loading device for testing vehicle belts in a
simulated crash scenario [58]. This dummy represents a 50th percentile male. Since
this dummy is used only for testing of the belts and for reasons of simplicity, the
dummy has no arms and only one lower leg, see Fig. 2.3.

Figure 2.3: TNO-10 dummy [58]
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• Body Block

The dummy Body Block [58] is designed and manufactured to meet the requirements
of the SAE (Society of Automotive Engineers) standard [20], steering Control Sys-
tem - Passengers Car - Laboratory Test Procedure - SAE J944A [21]. Despite the
fact of canceling this standard at 1992, it is still continuously demanding by vehicle
and equipment manufacturers. The Body Block dummy is shown in Fig. 2.4.

Figure 2.4: Body block dummy [58]

• MAMA2B

Maternal Anthropometry Measurement Apparatus Version 2B (MAMA2B) [58] is
a kit with pregnant abdomen and torso for a small pregnant dummy, see Fig. 2.5.
This device can be fitted to the standard Hybrid III small female dummy. The
MAMA-2B is still an ongoing research and development product.

Figure 2.5: MAMA2B dummy [58]
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• OCATD 6

Occupant Classification Anthropomorphic Test Device 6 (OCATD 6) is a developing
science designed device to address the need to adjust or suppress the deployment of
an airbag depending on the size of the person sitting in the seat. New regulations
in the US are expected to require the airbag to be suppressed if a child smaller than
the average six year old is occupying the front passenger seat [58]. The OCATD 5
and OCATD 6 represents the 5 years and 6 years old small child, respectively, see
Fig. 2.6.

Figure 2.6: OCATD 6 dummy [58]

2.1.2 Side impact

Nader in his work [82] demonstrated that many deaths and injuries were caused in side,
low speed, 15-30 mph (25-50 km/h) crashes. Over a half of the fatalities were caused
due to head injury, followed by thorax injury and debilitation due to femur breakage or
hip dislocation. These could be caused by hitting the windshield, the headliner or the
steering wheel during the side impact [58]. In order to capture such effects, the side
impact dummies (SID) were developed and brief list of these dummies is given bellow.
The SID (Side Impact Dummy) family of test dummies is designed to measure head,
neck, rib, spine and internal organ loading in side collision. It also accesses spine and rib
deceleration and compression of the chest cavity. The SID dummy is the US government
testing standard, EuroSID is used in Europe to ensure compliance with safety standards.

• EuroSID 2

EuroSID, see Fig. 2.7 was developed be the European Experimental Vehicles Com-
mittee (EEVC) and is currently used to access compliance with the European side-
impact requirements [35]. EuroSID 2 is the next generation of EuroSID dummy that
is incorporated with the number of advanced technologies, compared to the first gen-
eration. The EuroSID-2 was developed by the SID2000 program, a consortium of
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European researchers, automotive manufacturers and dummy manufacturers. The
EuroSID dummy does not have a lower arms. The total mass of this dummy is 72.0
kg.

Figure 2.7: EuroSID dummy [58]

• BioSID

BioSID dummy is based on General Motor design. It is slightly more advanced
compare to SID and EuroSID, but it is not defined as the official dummy to be
used in certification tests. The dummy SID, EuroSID and BioSID are designed to
represent 50th percentile male of the height 178 cm and mass equalling to 77 kg
[35].

Figure 2.8: BioSID dummy [53]
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• WorldSID

WorldSID (5th female and 50th percentile male), see Fig. 2.9, stands for worldwide
harmonized side impact crash dummy to be used for the assessment of vehicle occu-
pant injury risk in lateral impact. It is designed to be used as a standard, regulatory
test tool as well as a research tool for a multitude of impact conditions [58].

(a) WorldSID 5F[58]

Figure 2.9: WorldSID dummy 50M (left) and, 5F (right) [58]

• SID-H3

The SID-H3 dummy, see Fig. 2.10, combines the body of the US DOT SID with the
head and neck of the Hybrid III 50th percentile male test dummy [58].

Figure 2.10: SID-H3 dummy [58]
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• US DoT SID

US DoT SID is the first side-impact dummy was developed in 1970s by the National
Highway Traffic Safety Administration (NHTSA [18]) of the US Department of
Transportation (DoT). US DoT SID dummy, see Fig. 2.11, is still used in the US
for the testing of side impact test of the new cars [35].

Figure 2.11: US DoT SID dummy [28]

• SID-IIs

The SID-IIs female Small Side Impact Dummy is a new generation crash test dummy
to specifically evaluate advanced automotive side impact protection systems, par-
ticularly side airbags, see Fig. 2.12.

Figure 2.12: SID-IIs 5th Female Side Impact dummy [58]
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2.1.3 Rear impact

A rear impact dummy (RID) was developed mainly to measure the risk of minor neck
injuries, known as a whiplash [25, 97], during low-speed rear crashes. This effect can
be sometimes hard to quantify, but it is very debilitating for the undergoing persons.
Such kind of injury can cause a serious problems to the patient, not only immediately
after accident, but several months or years after. This injury is really hard to measure
or quantify, since it can cause trouble of the head, neck and of the entire spine. Thus is
really important to study and prevent this injury, because it can frequently happen also
in low speed crash. This injury is caused mainly by relative motion of the head with
respect to the neck and due to its higher mass and inertia, see Fig. 2.13.

Figure 2.13: Whiplash injury mechanism [25]

• BioRID II

BioRID was developed in the late 1990s with the group of the Chalmers University
of Technology in Gothenburg (Sweden), restraint manufacturer Autoliv and car
makers Saab and Volvo. It is designed in order to represent a 50th percentile size
man, 5 feet 10 inches tall (178 cm) and weight of 170 pounds (77 kg), see Fig. 2.14.
BioRID was designed especially to capture the relative motion of the head and torso.
In the crash scenarios, where the vehicle is struck in the rear, the BioRID dummy
can help to learn how the seatback or head restraint system influence the likelihood
of the whiplash injury [35, 58].
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Figure 2.14: BioRID dummy [58]

2.1.4 Child dummy

These dummies are important in the development of protective equipment for children
in the vehicles. Investigation in the children restrain system is efficient way how to
minimize the number of fatalities or injuries of a young population. During the past,
there was a common practice for the parents to hold their children only with their arms.
Under deceleration even during the low speed impact, the child’s effective weight can be
multiplied 10 to 20 times, making them impossible to hold. Thus, there were the need
to develop and test the dummies for smaller, younger occupants to provide them and
effective crash protection. The child is not only a down scaled version of an adult person,
it has different mass and inertia distribution and body dimension of the body segments.
So, the development of a special children dummy is more then required for the better
protection of our young population.

• Hybrid III dummy

The wide family of the Hybrid III dummy also contain the child dummies. There
exist the 3 years old (3yo), 6 years old (6yo) and 10 years old (10yo) child dummies,
see Fig. 2.15. These small human body dummies were also successfully tested and
validated within wide set of experiments and simulations [35, 58].
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(a) Hybrid III 3yo (b) Hybrid III 6yo (c) Hybrid III 10yo

Figure 2.15: Hybrid III child dummies [58]

• SID-IIs

The Small Side Impact Dummy (SID-IIs or SID-2-s) is a new generation crash test
dummy for evaluation advanced automotive side impact protection. Anthropometry
is based on the Hybrid III 5th Female Dummy, similarly to the weight of 12-13 years
old child [58], see Fig. 2.16.

Figure 2.16: SID-IIs dummy [58]

• CAMI

The CAMI are a small family with the newborn dummy (CAMI 6 months old).
This dummy is based upon a leather skeleton, which has approximately the external
shape of the 6 month old occupant, see Fig. 2.17. The six moths old dummy has
the weight of 7.7 kg and the sitting height is approximately 45 cm [58].
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Figure 2.17: CAMI dummy [58]

• P-series Child dummy

The P-series dummies are the simplified ATD used for infant occupant protection.
The dummy consists of a plastic skeleton covered with flesh and skin simulating
polymer, see Fig. 2.18.

Figure 2.18: P-series child dummy [58]

• Q-series Child dummy

The Q-dummies were developed as a series of child dummies that covers almost the
complete child population up to 10 years, see Fig. 2.19. The Q-series dummies are
still testing tools for the European regulation UN-ECE Regulation 44 and are also
adopted by many other standards [58]. The Q-series dummy differs considerably
from the P-dummies. It is not only advanced in terms of its biomechanical and
anthropometric characteristics, it is also developed to be used in both front and
side impact testing, making it the first ”multi-directional” dummy.
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Figure 2.19: Q-series child dummy [58]

• CRABI

The Child Restrain Air Bag Interaction (CRABI) dummy family concerns 6 months
old dummy (mo), 12 months and 18 months old dummy, see Figs. 2.20. It was
designed by the First Technology Safety System (FTSS) to evaluate child restrain
system, including an airbag [35, 58].

(a) 6mo child dummy (b) 12mo child dummy (c) 18mo child dummy

Figure 2.20: CRABI child dummies [58]
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2.1.5 Pedestrian dummy

Pedestrian dummies, see Fig. 2.21 are really important in the development of modern
vehicles. Tests with these dummies help to dictate the frontal shape of the vehicle so that
the effects of car-pedestrian impacts are mitigated to prevent injury and death.

”Pedestrian dummies are used to aid the vehicle designer in developing the forward sur-
faces of the car both in shape and impact response to lessen the negative effect of a
pedestrian impact. Wound injuries were caused by rigid hood ornaments. Leg breakage
was caused by bumper impact. High grilles caused thoracic damage. Head injury was
caused by impact with the bonnet and windshield. Knock-down and run over accidents
were caused by interaction with the front of the vehicle” [58].

For the pedestrian testing, the Hybrid III dummy was modified in all three version (5F,
50M and 95M). These pedestrian dummies were modified in torso and a knee area, espe-
cially for testing of the impact of the car-bonnet and bumper to the body. This dummy
can be also used in the non-automotive application (wheel chair, recreation vehicles, sport
gear and medical devices).

Figure 2.21: Hybrid III M50 pedestrian kit [58]

Besides the total pedestrian model, there are also a set of section models, used for the
development of the vehicles, safer for the pedestrian. The most commonly used ones are
head-from impactor and leg-form impactor. Since the head and leg (knee) are the most
injured region of the pedestrian [5], the highest effort is spend with these two impactors,
see Figs. 2.22.
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Figure 2.22: Head-form (left) and Leg-form impactor (right) [58]

2.1.6 Military and aerospace dummy

Aerospace and military dummies cover a wide range of applications such as civilian air-
craft testing, fixed wing and rotary; military parachutes; aircraft with crew ejection seat
systems or ballistic and blast impact counter-measures. The dummies for the military
and aerospace applications are generally based on the standard automotive dummies, but
they are improved and modified for their specific usage. The full body dummies are based
on Hybrid III and EuroSID.

• FAA HIII 50M

The Federal Aviation Administration (FAA) Test Dummy is a modification of the
Hybrid III 50th percentile male automotive crash test dummy, see Fig. 2.23. The
FAA dummy modifications are made in the lower torso and in the legs to equip the
dummy to be used in testing per Federal Aviation Administration regulations for
emergency landing dynamic conditions, [15]. The FAA dummy is modified to give
it an erect seated posture, replacing the ”driver slouch” of the automotive dummy,
[58].
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Figure 2.23: FAA Hybrid III M50 dummy [58]

• MIL SID

The military side impact dummy (MIL SID) is a dummy with the core components
from 50M EuroSID 2 and head and neck section from 50M Hybrid III dummy
incorporated with the new type of neck load cell and military lower legs, see Fig. 2.24.
Such dummy is currently used for evaluation of a mine blasts and under body blasts.
The MIL SID dummy has capability to measure lateral and vertical force loading
the body.

Figure 2.24: Military 50M side impact dummy [58]

• Body region dummy

The military and aviation applications sometimes requires only some body part
models, similarly to the automotive, for the particular configurations. The parachute
dummy, is only a torso corresponds to a 95M dummy, see Fig. 2.25a. The parachute
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dummy is the most rugged dummy of all. It is designed to withstands a repeated
free fall with the minimum damage.

The Military Lower extremity legs dummy is a special version of the 50M dummy leg
designed for the analysis of the under vehicle mine impact and blast, see Fig. 2.25b.
It is a straight leg design with energy-absorbing elements, optimized for measure-
ment of vertical forces and accelerations. This special leg is used in the MIL SID
dummy.

Facial and Ocular CountermeasUre (FOCUS) headform impactor is a dummy de-
veloped for the eye and facial injury analysis to test and evaluate various protective
devices and other equipment under impact events, see Fig. 2.25c.

(a) Parachute torso
dummy [58] (b) Military Lower

Extremity (50th
Male) Legs [58]

(c) Facial and Ocular Coun-
termeasUre headform im-
pactor [58]
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2.2 Virtual human body model

Virtual models of the human body, human body parts as well as virtual model of the
dummies are virtual approximations of their physical origin (real human or dummy).
Such models play really important role in the development of the vehicles. However, they
are not fully accepted within the regulations for the certification [41], they are abundantly
used in the process of development and innovation. They enable the researches to perform
and simulate thousands of scenarios, that cannot be physically tested. Or, they can by
tested, but with the really high cost. The virtual models of the human can be designed for
the multiple applications, or single purpose, but there is no one model, that can be used
for unlimited scenarios. Each model has its suitable range of usage, has its limitations
and has its own pros and cons. Generally, the models can by dived based on the behavior
or mathematical principle used (rigid - MBS, deformable - FEM or partially deformable
- Hybrid).

2.2.1 Virtual model of the dummy

Besides the mechanical dummies (occupant surrogates) and virtual models of a real human
body, there also exist numerical models of the dummies. They are designed in order to
model the dummies, with all their segments and materials (metal, plastic, rubber or foam).
The simulation responses performed with this dummy model should correspond with the
responses of the experimental dummy, not with the real human. However, the mechanical
dummies are designed to be the best, suitable approximation of the human body, but
still only approximation. Their virtual models are basically model of the model. Several
studies comparing dummy, real human body, virtual models of the dummy or virtual
models of the human body were published [29, 30, 39, 74, 80, 87].

Generally, for each physical dummy, there exists its virtual model, designed in the spe-
cific computational software [28, 35, 43, 58, 117]. The most common dummy has several
versions of the virtual models (finite element model, multibody model or only CAD ge-
ometry) and can have equivalent models for several software (LS-Dyna [42], Pam-Crash
[14], Ansys [10], Radioss [8] or Abaqus [7]). These virtual models of the dummy can have
several versions, based on their purposes. Only a brief example of one dummy model
is presented on the Hybrid III dummy. Similar database of the virtual models is avail-
able also for the THOR dummy. These virtual dummy models were developed based on
material, components and full body tests performed with the real dummy.

• Hybrid III dummy FEM model

The dummy family Hybrid III was modelled based on finite element method (FEM)
in order to develop virtual model of the mechanical dummy. The models of the
entire Hybrid III dummy family were designed and these finite element models are
shown in Fig. 2.26. As was previously discussed, the finite element model is a very
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complex mechanical system, based on discretization of the continuous system into
a discrete subsystems. As an example of the complexity of such FEM model, 50th
percentile dummy model has more than several thousands elements [28, 78].

(a) Hybrid III family FEM models [28]

Figure 2.26: Detailed HIII FEM model [78] (left) and HIII family [28] (right)

• Hybrid III dummy MBS model

Some of the dummy models are made either as a complex finite element model
and as a simple multibody model. Multibody modelling is based on the linked
tree structure of the rigid bodies. Such models can also contain a few deformable
parts. They execute faster than complex FEM model, but they are not able to yield
detailed deformation and thus the injury. As an example of the MBS model of the
dummy, Hybrid III MBS model are shown in the Fig. 2.27.

Figure 2.27: Hybrid III MBS dummy model [28]

• Side impact dummy FEM model

Finite element models of the side impact dummies, namely the EuroSID and US
DoT SID are presented in the Fig. 2.28.
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Figure 2.28: EuroSID FEM (left) and US DoT SID FEM (right) dummy model [28]

2.2.2 Virtual human body model

Virtual human body models play an important role for designing, development and op-
timization of the vehicles and safety system, interacting with the occupant or passenger.
Application of the virtual human body models in the numerical testing can help to design,
test and optimize passive and active safety technologies, such as restraint systems, road
barriers, airbag systems, emergency breaking, collision avoidance system, active bonnet
etc. Generally, there exist two main approaches for the human body modelling. The
first group is detailed deformable finite element models and second one is articulated
rigid body models (multibody). Recently, the combine (hybrid) approach starts to be an
important tool in the automotive research. From each of the group, one can find large
database of the models, developed for the specific applications or developed with the par-
ticular research group or under different software. Nowadays, more and more researches
are building their own numerical/virtual models of the human body or its segments. Gen-
erally speaking, the main problem of the human models are appropriate material models
and validation of the models. The human body geometry is quite good known and do
not significantly vary with the subject. Respectively, there is a correlation between total
height and total mass and anatomical segments dimensions. Moreover, with the highly
developed technologies such as computer tomography (CT) and magnetic resonance image
(MRI) and post-processing tools (Mimics [17], Slicer [6] or Amira [9]), the generation of
the body geometry can be quite straightforward task, but still time consuming. However,
the material definition is very complicated and it suffers with several issues. The main
one is a lack of the experimental data. Some tests are just not possible to be done, some
tests were done with the ill-known conditions, and thus the results are disputable, and
some tests were performed with the different specimen/subject, in the different laboratory
(conditions), with the different outputs etc. and thus it is hard to used them and trigger
together. Moreover, the materials of the live-human subject are very complicated mate-
rials and depend on many specifications (age of the specimen, loading history, history of
storage, sensitivity of measuring devices, experiences of the testers, chemical substance
inside the sample (hormones...) and so on. The group from USA [23, 24] recently came
with the idea of worldwide database of materials and validation tests. However, because
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of complicated interpretation of the results and because of property rights, this idea is not
going to happened in the near future. Thus, there exist thousands of virtual human body
models, each of them with some specific advantages and disadvantages and its particular
field of applications. This document brings a brief overview of the most advanced and
known model as well as some specific and interesting models that can have relationship
with the University of West Bohemia.

This overview of the biomechanical models for occupant safety is structured based on
the mathematical method used in the model (deformable FEM, rigid MBS and hybrid
approach).

• MBS

Simple model based on the system of the articulated rigid bodies, that can be
constrained in the kinematics chain. Such approach is called Articulated Rigid
Body (ARB) or MultiBody System (MBS). In terms of the classical mechanics,
these models concern only basic segments of human body linked with the joints,
corresponding to the real human body joints. These segments are approximated
with the rigid bodies, where only the location of centre of gravity, mass, geometry
and tensor of inertia are required. They execute in very fast central processor
unit computer time (CPU), but cannot reflect detailed deformation of the bodies,
and thus, for example injuries of the human. This approach is useful, when the
deformations of the segments are not required and the global behavior of the model
is to be analyzed. The deformation of the bodies can be partially implemented via
the contact stiffness and damping ratio. Despite the fact, that these models are
really simple, they still play important role in the process of vehicle development.

• FEM

Complex model are based on discretization of the continuum, within finite elements
(Finite Element Method-FEM). In terms of mechanics, these models are based on
detailed geometry of the whole human body, segments of the human body and
possibly all the internal organs. For every tissue and organ, respectively, the ex-
act material properties are required and these are not easy to be determined and
validated. On the other hand, with the detailed finite element model, the stress,
strain, deformation can be calculated. These quantities are more readily linked to
the injury of the human body.

• Hybrid

This approach combines FEM and MBS approach, to build a model simple enough
to enable fast calculation but also includes deformable elements, to calculate local
deformations and predict injury risk of the occupant.
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Multibody model

• MADYMO

MAthematics DYnamics MOdel is engineering software tool, used for the design, an-
alyzing and optimization of the occupant and pedestrian safety [22]. It is a virtual
software based on the multibody principle. Human model under MADYMO soft-
ware provides a tool set capable of realistic human response prediction for a broad
range of loading conditions, where no crash test dummy exists. The MADYMO hu-
man model portfolio comprises both passive and active models. MADYMO human
models can be used for front, side, rear and vertical impact as well as intermediate
impact directions and more complicated scenarios like roll-over. MADYMO soft-
ware includes active adult human model, passive adult human model, child human
model and pedestrians human model, see Fig. 2.29. The MADYMO model is vali-
dated human body model used in a real application, it is a scalable model, comprises
passive and active muscles and it reports better biofidelity than standard crash test
dummies.

(a) MADYMO active model (b) MADYMO passive model

(c) MADYMO child model (d) MADYMO pedestrian model

Figure 2.29: MADYMO articulated rigid body models [4]

• Human Articulated Rigid Body (HARB) - Robby

This model was developed by the cooperation of the University of West Bohemia and
ESI Group (Engineering Simulation for Industry) [50]. The model consists of rigid
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bodies (head, fully articulated spine, thorax, abdomen, upper and lower extrem-
ities), connected with kinematics joints with non-linear biomechanical responses.
The Robby family contains 50th percentile male (Robby), 5th percentile female
(Robina) and also 6 years old child (Bobby), see Fig 2.30. The aim of this model
was to divide the human body model given by meshed geometry into the several
rigid bodies representing the real human geometry. Furthermore advanced shoul-
der joint, including passive muscle model, was added to the system. The Robby
model was validated against sled test [60], where head and thorax acceleration were
observed and compared with the experiment. For more details, see [35, 60, 61].

Figure 2.30: Robby model in sled test configuration (left) and Robby family: Robby,
Robina and Bobby [60] (right

• Anybody

The musculoskeletal simulation software AnyBody (AMS, AnyBody Technology
A/S, Aalborg, Denmark, V. 7. 2. 0.) [72] is used for modelling of the active
human body models, see Fig. 2.31. The rigid segments of the human body are
connected via joints and active muscles. This software enable user to run forward
and inverse dynamics. The AMS software is a very helpful tool in prevention and
rehabilitation of the injury, or calculation of the body loading under defined motion.
Together with the advantage of the 3D motion software, the reaction forces of the
internal joints can be calculated. The Anybody software is currently used also in the
biomechanics of athletes, to increase their training performance or to avoid injury
or recover after the injury. This model is partially open platform, where the users
can added the newly developed and validated model into a special repository, that
can be used (after approval) by other userd.
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Figure 2.31: Human body model in the AnyBody Modelling system [72]

• Parametric multibody model in alaska

This model of a human body was built based in real data from z IfM Chemnitz [31].
It consists of 12 rigid bodies connected via 12 mechanical joint. The model respects
basic human anatomy and it was developed for the purpose of car simulations, see
Fig. 2.32. It is suitable for vehicle driver or passenger simulations. Such parametric
model is driven with the initial height and weight as an input and the mass, geo-
metric and inertial characteristic of the bodies are calculated with respect to this
inputs. The model was created by Polach [90] in alaska modelling software [75].

Figure 2.32: Multibody model of male-human body in software alaska 2.3 [90]

One of the important advantages of the MBS model is the easy way to set up a different
position for a different test configurations (positionability) and scalebility. The segments
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can be easy translated or rotated around the particular joint. Despite the fact, that
these models can generally catch only global behaviour of the human body, they report
significant benefits for hybrid human models or active models for safety [62] or the calcu-
lations, where the global dynamics of the body is the main goal. They are very usefull for
instance in the parametric studies, sensitivity analysis or numerical optimizations. The
results from this kind of calculation can be also used as an input (loading) for the FEM
modelling.

Finite Element Model

• GHBMC

The GHBMC is an international consortium of car-makers and suppliers working
with research institutes and government agencies on the advanced human body
model for crash simulations. The goal of the consortium is to concentrate human
body modelling research into a single global effort. Members of the GHBMC cur-
rently include for example General Motors Corp., FCA US LLC, Honda R&D Co.,
Hyundai Motor Co., Nissan Motor Corp. Ltd., PSA Peugeot-Citroën, Renault s.a.s.,
Joyson Safety Systems. Ford Motor Co., NHTSA (National Highway Transportation
Safety Administration)or Autoliv Inc. contributing to the technical development.
The GHBMC has developed a family of virtual humans including male and female
seated occupants of various sizes and pedestrians including a six year old child.

The GHBMC model is intended for use in vehicle crash simulations and is placed
in a driver position, see Fig. 2.33. The model was tested and validated over than 20
impact scenarios [46, 62] and the validations is still increasing for more performed
tests. The latest version of the model is very complex with detailed tissue geometry
and it has about 2-3 millions finite elements [12, 16, 37, 36].

The GHBMC model is really the most advanced and detailed model of a human
body. It consists of detailed geometry of the human body, down to the single
ligaments, neurons, muscles or cartilage segments, see Fig. 2.35a. The total GHBMC
family include 13 individual models plus age scaled and obese model, see Fig. 2.34.
The GHBMC is currently dealing with age scaling models up to 65yo, with the
morphing of the model, obese population, active muscle model implementation etc.
For all these variations, the highly detailed database of material and components
tests are required as well as set of validation tests. The GHBMC model stands for
numbers of publications worldwide connected mainly with automotive safety, the
list of paper can be seen in [12, 16].
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Figure 2.33: GHBMC 50th percentile model in the driver position [12]

Figure 2.34: Family of the GHBMC [36]

(a) Detail of the
head and neck
model [16]

(b) Detail of the thorax [12]

Figure 2.35: GHMBC model in detail
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• THUMS

The Total HUman for Safety (THUMS) was assembled and tested by a joint develop-
ment of Toyota Motor Corporation and Toyota Central R&D Labs [3, 35, 62, 119].
The THUMS model represents human body in detail, including the outer shape,
bones, muscles, ligaments, tendons and internal organs. Therefore, THUMS can be
successfully assembled in automotive crash simulations to create a vehicles, safer to
occupants and pedestrians.

THUMS is a full family comprises numbers of models, such as 50th and 95th per-
centile male, 5th percentile female, 3, 6 and 10 years old child models or pedestrian
model, see Fig. 2.36. Current version of THUMS ver. 4.0, 50th male, has about 1.8
millions elements and consists of numerous 3D and 2D parts, representing different
tissues of a human body, see Fig. 2.37.

Figure 2.36: THUMS model [11, 13]

Figure 2.37: Detail of the THUMS model [13]
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• Simulated Injury Monitor-SIMon

This model was developed by experts at NHTSA [18] and it can directly simulate
injury of the body. The SIMon software package is being developed for the advanced
interpretation of injury mechanisms based on kinematic and kinetic data measured
via anthropomorphic test dummy and applying to the human mathematical models
embedded in SIMon. The SIMon software is primarily focused on development of
new generation of head and brain models [104]. The current state of the model are
shown in the Fig. 2.38.

Figure 2.38: SIMon FEM model of head and brain [95]

• LAB Human Model

The LAB (Laboratoire d’Accidenologie et de Biomécanique of PSA: Peugot, Citroën,
Renault) in collaboration with several companies, developed a 50th percentile male
human body model based on finite element method with about 10 000 elements, see
Fig. 2.39. The model was validated within database of about 30 tests [35].

Figure 2.39: LAB human model in driver position [35]

• RADIOS-HUMOS

The Human Models for Safety (HUMOS) was developed under European HUMOS
project [94] by the cooperation of TNO, ESI Software and Mecalog. RADIOSS is a
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part of Alair HyperWorks numerical software package [8]. The head and skull were
developed with the collaboration of the University of Strasbourg. The RADIOSS-
HUMOS model is displayed at Fig. 2.40, for more information, see [8, 35, 94].

Figure 2.40: RADIOSS-HUMOS human model in driver position [65]

• WSU Human FE model

The Wayne State University (WSU) model was a basement for many workers and
institutions for their own biomechanical research (General Motors, ESI, Nissan,
Toyota, etc.) [35]. Over the last few years the research at WSU is mainly focused
on detail modelling of the head and brain respectively, see Fig 2.41. For example
WSU’s brain model itself consists more then 300 000 elements. These models are
more advanced and they have been validated within the experiments, performed at
the centre itself. As an example of the complexity, the bone of the skull has three
main layers (thin inner and outer layer and one thick inside layer). Each of this
layer is included in WSU model and each of them has its own material properties.
The model of the human head and model of whole human body is displayed at the
Fig. 2.41. The WSU is now mainly focus on the traumatic brain injury (TBI) and
improvement of the head and brain model towards the TBI model prediction and
decreasing the number of TBI in the population. WSU stands for the top research
in the brain modelling and brain injury calculation.
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(a) WSU human body model
[1]

(b) WSU head
model [43]

Figure 2.41: Wayne State University FEM model

• Honda Human FE model

Baseline Honda Human model represents anthropometry of the 50th percentile male,
which might be scaled to any size of adult and also 6 years old child model. The
model was created mainly for a pedestrian analysis crash scenario [41].

• JAMA Human FE Model

The Japan Automotive Manufacturers Association, Inc (JAMA) model is based on
the coupling of the upper body from THUMS (Ver.1.4), the lower body from Honda
model, see Fig. 2.42. The model was modified to improve biofidelity and numerical
stability [41, 86]. The JAMA human body model is available for two solvers, PAM-
CRASH and LS-DYNA, respectively.

Figure 2.42: JAMA pedestrian FE model [102]
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• OSCCAR

OSCCAR - future occupant safety for crashes in car is a new European project, that
point to the future occupant modelling and safety. OSCCAR uses a comprehensive
integrated approach for the development of future advanced occupant protection
systems. It will provide a unique human body model (HBM)-based development
and assessment framework, covering main challenges of future road safety due to
the introduction of highly automated vehicles as well as changes in demograph-
ics: relevant accident scenarios (mixed traffic), future vehicle interior designs, new
occupant sitting positions, aging and obese population etc. This demands for tar-
geted changes and adaptions of scenarios, procedures and tools for occupant safety
development, assessment and homologation, not addressed by current regulations
or consumer crash tests [19]. Project OSCCAR does not built a new human body
model, it creates a database of the models, tests, crash scenarios, passive, active and
future safety systems. OSCCAR will develop and demonstrate advanced occupant
protection principles, fully integrated assessment methods for complex test crash
scenarios and contribute to the harmonization of human body models.

Hybrid Model

The combination of the multibody structure together with the deformable finite elements
can build a new set of models. Let us called this hybrid approach. Human body models
based on multibody and finite elements method have some advantages and disadvantages.
Since the simple MBS model has great benefit in the calculation time (minutes), it has
low contribution in the stress and deformation knowledge, and thus low contribution in
the injuries risk. On the other hand, complex FEM provides precise information about
detailed deformations, stress and injuries. However, this benefit is balanced with the
required knowledge of material properties of all the segments and with the long duration
of calculation time (hours or days). For these reasons, the mixed approach starts to
play an important role in the biomechanics focused on the safety. The aim of the mixed
(hybrid) approach is the combination of MBS model and FEM (detailed) model of some
segments of the human body (head, abdomen, etc.). Thanks to detailed FE model of the
entities, such models are able to describe injuries with the benefit of reasonable calculation
time.

• Virthuman

The example of the hybrid human body model is a Virthuman model [62, 63, 64,
67, 76, 113, 114] developed under cooperation of company MECAS ESI s.r.o [50]
and University of West Bohemia in Pilsen. The main advantages of this model
are short of calculation time, scalability of the modelm positionability and injury
prediction algorithm. The developed scaling algorithm can automatically generate
virtual human body model of a given weight, height, age, gender and anthropometric
percentile, see Fig. 2.43. The displayed models are only example of possible humans.
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The only limitations for the scaling is the range of the database, containing around
10 000 persons between 6 and 65 years old [32].

The Virthuman model consists of the rigid elements representing external shape of
the human body connected via non-linear springs and dampers to the rigid MBS
segments. Such segments form an open tree structure based on the multibody
principle. The particular rigid segments are connected via kinematic joints that
represent real human joints (shoulder, elbow, knee, etc.) or breakable joints for the
description of the bone fracture. This model was especially validated also for the
pedestrian modelling [114, 115].

Figure 2.43: Virthuman model; Sled test (left), scaled models (right) [62]

The research of the digital/virtual models of the human body, as well as dummy devel-
opment is massive part of the research and development and it is not possible to create
a full database or list of all the existing models. Moreover, the highly developed models,
such as GHBMC or THUMS have number of versions, updated by the users, for their own
purposes or software. The great effort of summary of the current state in virtual human
body model was done by Scataglini in her book [96], Duffy in [39], Haug in [53] or in [29].



Chapter 3

MBS model - Theory

Previous chapter presents the review of current state of the mechanical human body mod-
els (dummy), virtual models of the dummy and virtual models of human body. Purpose
of this work is to create the model of the human, for fast impact scenarios and thus, the
the multibody approach was chosen. This work is a-priory focused on global human body
behavior during different loading scenarios. There are several reasons for a such decision
and they are discussed bellow.

• Firstly, multibody analysis is not as complex as FEM, and thus it is less time and
money consuming to build such a model (software). The reader can observe in the
previous chapter 2, that multibody or articulated rigid body techniques is less used
compare to FEM in the fields of biomechanical research and industry. Numbers of
companies, especially car-makers companies, have invested a lot in the development
of numerical FE models for a detailed analysis of a human body during crash tests.
These models usually consist of several thousands, or milions of elements, hundreds
of material descriptions and numbers of contact definitions. Thus it would be very
expensive to get all of these descriptions of the human body and would be impossible
to build a model, that could be really successfully validated and can be used in a
real simulations. Generally, the main advantage of the multibody modelling is that
we can receive reasonable results of human body motion in the relatively short
computation time. The segments of multibody model are rigid bodies, so only the
geometry, inertia properties, mass and location of centre of gravity are required.
The individual segments can be constrained with the joints. For the description of
the joints, only their location, range of motion and possible internal stiffness are
required. The contact of the bodies with the external shape requires definition of
contact parameters.

• A great benefit of the multibody modelling lays on the variability of the application
within one previously developed model. Since the positions of each child body in
the kinematic chain (tree structure) are defined relative to the position the parent
body [4], they can be easyly modified. Dimensions of the bodies and relative position
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of the kinematic joints can be easily changed to simulate wide spectra of initial
positions and size of the model. Thanks to these features, the MBS model is quite
easy to position and scale compare to FEM model. In the finite element modelling,
every change of size and initial position results in the rebuilding (re-meshing), pre-
simulation or morphing of the model, which is not easy task. Scaling algorithm is
clearly described by Hynč́ık [62]. This scaling process defines the size of particular
bodies in the system with respect to some pre-defined values, such as height or
weight of the human.

• In the multibody approach, the rigid bodies are linked with the joint in the open or
close kinematics tree structure. The joints can have an internal stiffness or damping.
However, multibody principle is suitable tool also for adding spring, damper or
active elements into the system [107, 108]. In this particular case of biomechanical
modelling, these elements can approximate human muscles and the generated force
can represent contracting force of the muscle or reaction force inside the joints,
similarly with the AnyBody Modelling System [72].

• Besides the force elements, the joints between constrained bodies can be supple-
mented with the proportional-integral-derivative (PID) controller [92]. This supple-
mented elements can control the joint variables (rotation motion, force, torque etc.)
and meet the required motion or just stabilize the human body model in the desired
position [72].

• Another advantage of the multibody models is relatively simple way how to imple-
ment contact. The world of crash tests is based on the contacts and calculation of
the contact scenarios. There is a contact of a vehicle with some infrastructure or
with another vehicle occurring in the crash scenario. Due to the deceleration of the
car, the innner entities (driver, passengers, cargo etc.) are moving inside the vehicle
and can get into a contact one to each other or with the structure. Evaluation of
contact force generally have two steps, detection of the contact and contact point
respectively, and evaluation of the contact force. Spicka in his work [110] sum-
maries the possible way how to detect contact and presents the new algorithm for
contact detection. Several contact force models and contact detection algorithms
were published in [26, 48, 70, 73, 81, 89, 100, 110, 116].

3.1 Spatial dynamics

The aim of this chapter is to describe dynamical analysis of the spatial body motion and
to describe main principles of the multibody method. In case of planar (2D) analysis the
actual position of a rigid body can be described using three coordinates. Two coordinates
describe translation of a reference point and one coordinate defines relative rotation of the
body around this reference point. The orientation angle is defined in such a way, that the
angular velocity of the body is a time derivative of the orientation angle. Furthermore,
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the order of the finite rotation is commutative, since the body always rotates around
the same axis. One of the main difference between planar and spatial analysis is due
to the complexity of the description of orientation of the body in the 3D space. In the
spatial analysis, an unconstrained (free) motion of a rigid body is described using six
coordinates. In the general case, these coordinates are independent (free motion). Three
coordinates describe the translation of the reference point, that is fixed on the body and
the remaining three coordinates define the orientation of the body in the space. In this
case, the order of finite rotations is not commutative and thus, the sequence of body
rotation is important aspect of the analysis. The angular velocities are not the time
derivatives of the set of orientation angles. These angular velocities can be expressed in
terms of selected orientation coordinates and their time derivatives. Several ways how
to describe orientation and how to parametrise the spatial rotation were derived. The
most common are well know three Euler angles, Cardan angles or set of four parameters
of quatermions. The very common set of quatermions are Euler parameters [33, 83, 84,
85, 99, 110]. Euler angles and Cardan angles are described with the same principle (three
mutual rotations), but the difference is in the sequence of these rotations. While the Euler
angles use sequence Z-X-Z, the Cardan angles sequenced the rotation X-Y-Z (the letter
describes the relative axis of rotation) [83].

In multibody principle the current position of a rigid body is described using a set of
coordinates that define the global position vector of the body. Such vector comprises the
translation of reference point on the body as well as the orientation of the body (rotation
around the reference point). The absolute velocity and acceleration vector of an arbitrary
point on the body can be described with respect to this coordinates. The spatial motion
is quite complex process compare to the planar motion. Derivation of equation of motion
is presented and the simplification for a special case, when the reference point is selected
as the body centre of mass is discussed. This special case is called a centroidal system and
it leads to the formulation of the Newton-Euler equations. There is no inertia coupling
between translation and rotation of the body in the centroidal system. Analysis of a
constrained dynamic is also presented. This work used the description mainly based on
Nicravesh and Shabana. The derivation of the equations, description of all variables,
principles and features can be find in [84, 85, 83, 99]. In the following section, some
matrices or vector are expressed in both, local and global coordinate system. Hereafter,
the symbol vector stands for expression in the local coordinate (body fixed) system,
while the matrix/vector without the overline always means global (inertia, frame fixed)
coordinate system.

3.2 Theory

Description of the body motion in the 3D space is a complex process and several dif-
ferent approaches how to describe it were defined. Generally, the free motion as well
as constrained motion can be decomposed to a translation motion of the reference point
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and rotation of the body around this point. Translation of the body is defined with the
translation of any point on the body, no matter which approach was chosen. However,
the parametrisation of the spatial rotation is the key point of the modelling. This work
summaries the two method (three independent Euler angles - EA and four Euler param-
eters - EP) and discusses their pros and cons. Since the spatial rotation has 3 degrees of
freedom, it is visible that four Euler parameters are not totally independent, while the
Euler angles are.

3.2.1 Euler angles

Displacement and orientation

Translation/displacement of the rigid body i can be defined with the translation of one
point on this body. Kinematics of the rigid body can by fully described within translation
of the reference point O, see Fig. 3.1 and with relative rotation of the body around this
reference point as

ri = Ri + Ai(ψi, ϑi, ϕi)u
i, (3.1)

Figure 3.1: Rigid body coordinate system

where ri are coordinates of any particular point with respect to the global (inertia) co-
ordinate system XY Z, Ri is the global position vector of the origin of the reference
(body-fixed) coordinate system X iY iZi, Ai(ψi, ϑi, ϕi) is transformation (cosines) matrix
from the body/local coordinate system to the global coordinate system, ui is position vec-
tor of the particular point on the body i with respect to the local (body-fixed) coordinate
system X iY iZi. Transformation matrix Ai is a 3x3 matrix and the three-dimensional
vectors above are defined as

ri = [rix, r
i
y, r

i
z]
T (3.2)
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Ri = [Ri
x, R

i
y, R

i
z]
T (3.3)

ui = [uix, u
i
y, u

i
z]
T . (3.4)

Rotation

Cosine matrix Ai is matrix defining orientation of body-fixed coordinate system X iY iZi

with respect to the global coordinate system XY Z. From the definition [34, 83, 99],
transformation matrix of any motion can be decomposed to the set of transformation
matrices of the basic motions (translation and rotation). This matrix has some special
properties, for example orthogonality etc. For more information see [33, 34, 83, 99]. The
most frequently used parameters for description of the orientation in 3D space are the
three independent Euler angles. As an example of different approaches in parametrisation
of the orientation in space, three Bryant, Cardan or Rodriguez angles and four Euler and
Rodriguez parameters are mentioned. Generally, these four-parameters are know as a
quatermion.

Euler angles represent three successive rotations about three axis. By performing these
three rotations in the proper sequence, the body (body-fixed coordinate system) can
reach any orientation in the space. There is no limitation for the sequences of these three
rotations and for the selection of the axis of rotation. Each of the sequence has some
advantages and disadvantages. The main troubles of the parametrisation are connected
with the singular positions, where the integration process can fail. Each of the rotational
sequence has some singular positions. The sequence of rotations known as ZXZ, which
is the widely used in real applications is called Euler angles. The first motion is rota-
tion of the body fixed coordinate system X iY iZi, with angle ψ about the local Z axis.
Transformation matrix of such motion called precession is define as

Apre(ψ) =

 cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 . (3.5)

The coordinate system X iY iZi is then rotated with the the angle ϑ about current axis
X i. Change of the orientation is known as a nutation and the transformation matrix is
described as

Anut(ϑ) =

 1 0 0
0 cos(ϑ) − sin(ϑ)
0 sin(ϑ) cos(ϑ)

 . (3.6)

Finally, the coordinate system X iY iZi rotates with an angle ϕ around current axis Zi

and the resulting matrix of the spin is given by

Aspin(ϕ) =

 cos(ϕ) − sin(ϕ) 0
sin(ϕ) cos(ϕ) 0

0 0 1

 . (3.7)
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When the transformation matrices of the three motions, Eq. 3.5, 3.6 and 3.7 are sub-
stituted into a general formula for body motion analysis Eq. 3.1, the final equation is
obtained as

ri = Ri + Ai
pre(ψ)Ai

nut(ϑ)Ai
spin(ϕ)ui. (3.8)

Transformation matrix Ai in terms of the Euler angles (ψi, ϑi, ϕi) is defined as a multi-
plication of the three matrices as

Ai =

 cosϕi cosψi − cosϑi sinϕi sinψi − cosψi sinϕi − cosϕi cosϑi sinψi sinψi sinϑi

cosϕi sinψi + cosψi cosϑi sinϕi cosϕi cosψi cosϑi − sinϕi sinψi − cosψi sinϑi

sinϕi sinϑi cosϕi sinϑi cosϑi

 .

(3.9)

Velocity

Absolute velocity of any arbitrary point on the rigid body can be derived by differentiating
of Eq. 3.1 with respect to the time

ṙi = Ṙi + Ȧiui. (3.10)

Let us define a skew symmetric matrix ω̃i as

ω̃i = ȦiAiT =

 0 −ωi3 ωi2
ωi3 0 −ωi1
−ωi2 ωi1 0

 , (3.11)

in which ωi1, ω
i
2 and ωi3 are components of angular velocity vector ωi defined as

ωi = [ωi1, ω
i
2, ω

i
3]T . (3.12)

After several mathematical operations [83, 99], the absolute velocity vector of any point
can be expressed as

ṙi = Ṙi + ω̃iAiui, (3.13)

or
ṙi = Ṙi + ωi × ui. (3.14)

Angular velocity can be expressed in term of Euler angles and their time derivatives as

ωi = Giθ̇
i
, (3.15)

where

Gi =

0 cosψi sinϑi sinψi
0 sinψi − sinϑi cosψi
1 0 cosϑi

 (3.16)
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and θ̇
i

is a vector of derivatives of Euler angles defined as

θ̇
i

= [ψ̇i, ϑ̇i, ϕ̇i]
T . (3.17)

The columns of matrix Gi represent unit vectors along the axis about which the Euler
angles rotate. These are expressed in the global coordinate system. It turns out useful to
define this matrix also in the local coordinate system, using transformation matrix A as

Li = G
i

= AiTGi =

sinϑi sinϕi cosϕi 0
sinϑi cosϕi cosϕi 0

cosϑi 0 1

 (3.18)

and thus the vector of angular velocity can be defined in terms of local coordinate system
as

ωi = G
i
θ̇
i

= Liθ̇
i
. (3.19)

Lagrange equation - Energy balance

Multibody approach lays on the principle of virtual work and consequently derivation of
equation of motion using this variation principle. As a modification of this approach,
the Lagrange equations were derived [33, 34, 83, 89, 99], in order to develop advanced
method for derivation of equation of motion. Generally, two main principles for Lagrange
equations was established: Lagrange equations of the first kind, or equations in Cartesian
coordinates with undetermined Lagrange multipliers, and Lagrange equations of the sec-
ond kind with multipliers, or equations in generalized coordinates. Lagrange equations
of the first kind are derived in terms of independent coordinates, while the generalized
coordinates correspond to the set of both, independent and dependent coordinates. The
number of generalized coordinates are equal or higher than degree of freedom (DOF) of
the system. Let us consider the mechanical system with n degree of freedom. When the
Lagrange equations of the first kind in classic Cartesian coordinates are used, exactly
n independent coordinates are required to described this system. However, if the La-
grange equations of the second kind in generalized coordinates are applied, usually m >
n coordinates are used. Consequently, n independent coordinates, and r=m-n constraint
equations for r dependent coordinates is performed. Kinematics constraint equations
generally depict in a form

Cj(sk, t) = 0, j=1, 2, ...,r (3.20)

where
sk, k=1, 2, ...,m, m > n, (3.21)

represents generalized coordinates used in the description of the mechanical system.

Lagrange equations of the second kind can have a following form

d

dt

∂L

∂q̇
− ∂L

∂q
= Q+

r∑
j=1

λj
∂Cj
∂q

(3.22)
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where L = Ek − Ep is scalar quantity called Lagrangian, Q represents the generalized
forces, λj are Lagrange multipliers, Cj are the constraint equations and q is the vector
of generalized coordinates that comprises independent and dependent coordinates. The
main task of Lagrange equation is to derive an equation of a kinetic and potential energy
balance. Kinetic energy of the spatial mechanical system of n bodies for the non-centroidal
case, i.e. when centre of gravity does not coincide with the origin of the local body-fixed
coordinate system, i.e. with the reference point, can be expressed as

Ek =
n∑
i=1

[
1

2
(Ṙi)2mi +

1

2
ωiIiAω

i + Ṙi(ωi × di)mi

]
(3.23)

where Ṙi is the translation velocity vector of the origin of the body local coordinate sys-
tem, mi is mass of the i-th body, ωi is vector of rotational velocity of the local coordinate
system, IiA is inertia matrix of i-th body with respect to the reference point A and di is
the coordinate vector of centre of gravity with respect to the local coordinate system. Po-
tential energy is a function of generalized forces, such as gravity or external and internal
forces. The current expression depends on a particular system and thus is not presented
here.

Equation of motion

Unconstrained dynamics

Principle of Lagrange equation is a very general tool for deriving equation of motion
of a body, or system of bodies moving in the space. However, it is not always very
straightforward task to follow and to finish all steps of the algorithm. For example the
derivatives of energies with respect to all generalized coordinates might cause difficulties,
especially in case of non-centroidal analysis or time dependent constraints. Shabana [99]
or Nicravesh [83] present the total equation of motion of i-th body, written in matrix form
as [

mi
RR mi

Rθ

mi
Rθ mi

θθ

]
︸ ︷︷ ︸

Mi

[
R̈i

θ̈
i

]
︸ ︷︷ ︸

q̈i

=

[
(Qi

e)R
(Qi

e)θ

]
︸ ︷︷ ︸

Qi
e

+

[
(Qi

ν)R
(Qi

ν)θ

]
︸ ︷︷ ︸

Qi
ν

, i=1, 2, ...,n (3.24)

where Mi is the mass matrix of i-th body, qi is the vector of three translation and three
rotational coordinates of the body and Qi

e and Qi
ν are the vectors of generalized force

associated with generalized translations and orientations, respectively (ride-hand-side of
EOM). Equation 3.24 is matrix equation that governs unconstrained motion of a rigid
body. This equation can be simplified, if the centroidal system is considered, thus if the
origin of local coordinate system is rigidly attached to the body centre of gravity. In this
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case, some terms in Eq. 3.24 vanished and equation of motion comes to the form[
mi

RR 0
0 mi

θθ

]
︸ ︷︷ ︸

Mi

[
R̈i

θ̈
i

]
︸ ︷︷ ︸

q̈i

=

[
(Qi

e)R
(Qi

e)θ

]
︸ ︷︷ ︸

Qi
e

+

[
0

(Qi
ν)θ

]
︸ ︷︷ ︸

Qi
ν︸ ︷︷ ︸

Qi

, i=1, 2, ...,n (3.25)

and consequently standard matrix form

Miq̈i = Qi (3.26)

The matrices and vectors in Eq. 3.24 and 3.25 are defined as

mi
RR = miI (3.27)

where is mi is total mass of the i− th body and I is 3x3 identity matrix.

mi
θθ = G

iT
J
i
G
i

= GiTAiJ
i
AiTGi (3.28)

in which J
i

is the 3x3 symmetric inertia matrix (tensor) of the rigid body expressed in
local coordinate system and can be defined as

J
i

=

 ixx ixy ixz
iyy iyz

sym. izz

 (3.29)

Matrices Ai, Gi and G
i

are defined above in Eq. 3.9, 3.16 and 3.18 respectively. Vector
of translation accelerations R̈i and rotational accelerations (or second derivatives of Euler

angles) θ̈
i

were previously defined. Vector (Qi
e)R of the generalized forces associated with

generalized translation is defined as

(Qi
e)R = Fi

1 + Fi
2 + ....+ Fi

h =
h∑
j=1

Fi
j (3.30)

where Fi
1,F

i
2, ...F

i
h are set of external forces acting on the body. Vector (Qi

e)θ of the
generalized forces associated with generalized orientation is defined with expression

(Qi
e)θ = GiT

[
h∑
j=1

Mi
j +

l∑
k=1

(uik × Fi
k)

]
(3.31)

where Mi
j are the torques acting on the body and and uik are the points in which the

external forces Fi
k act. When there is no external torque loading the body, the Eq. 3.31

can be simplified to the form

(Qi
e)θ = −

(
Aiũ

i

pG
)T

Fi (3.32)
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Matrix ũ
i

p is a skew symmetric matrix associated with local position vector of the force,
generally defined as

ã =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 (3.33)

Vector (Qi
ν)θ is the inertia forces vector that absorbs terms quadratic in the velocities and

is defined as
(Qi

ν)θ = −GiT
[
ωi ×

(
J
i
ωi
)

+ J
i
Ġiθ̇

i
]

(3.34)

where a Ġi is time derivative of Eq. 3.18, thus

Ġi =

cosϑi sinϕiϑ̇i + sinϑi cosϕiϕ̇i − sinϕiϕ̇i 0

cosϑi cosϕiϑ̇i − sinϑi sinϕiϕ̇i − cosϕiϕ̇i 0

− sinϑiϑ̇i 0 0

 (3.35)

Constrained dynamics

When a system of n bodies linked in kinematic chain or tree structure is considered,
principle of Lagrange multipliers is used to adjoin the kinematic constraint equations to
the equation of motion. Shabana [99] presents derivation of the matrix equation of motion
of system containing n bodies using Euler angles for the parametrisation of the rotation
motion as 

M1 0 · · · 0 CT
q1

0 M2 · · · 0 CT
q2

...
...

. . .
...

...
0 0 · · · Mn CT

qn

Cq1 Cq2 · · · Cqn 0




q̈1

q̈2

...
q̈n

λ

 =


Q1
e + Q1

ν

Q2
e + Q2

ν
...

Qn
e + Qn

ν

Qd

 (3.36)

where Cqi is the constraint Jacobian matrix [33, 83, 99, 110, 111] and Qd is defined as

Qd =



−
n∑

α=1

n∑
j=1

Cjα
1 q̇j q̇α

−
n∑

α=1

n∑
j=1

Cjα
2 q̇j q̇α

...

−
n∑

α=1

n∑
j=1

Cjα
3r q̇

j q̇α


(3.37)

where Cjα
i is a second derivative of i-th constraint equation with respect to particular

generalized coordinates, thus

Cjα
i =

∂2Ci
∂qj∂qα

(3.38)
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Equation 3.36 can be written in a complex form as[
M CT

q

Cq 0

] [
q̈
−λ

]
=

[
Qe + Qν

Qd

]
(3.39)

where M is the total mass matrix, Cq is the Jacobian matrix, λ is the vector of r Lagrange
multipliers, Qe and Qv are the total vectors of applied and inertia forces, respectively,
and Qd is total vector that absorbs terms quadratic in the velocities. This equation
leads to index one differential-algebraic equations (DAE). They can be solved for vector
of unknown accelerations and Lagrange multipliers. Generalized accelerations can be
directly integrated in order to obtain generalized velocities and coordinates, respectively.

Joint definition

Dynamical system in the multibody analysis usually contains a set of kinematic joints, that
define the connectivity between bodies in the system. Each joint eliminates some degrees
of freedom from the system to meet required motion. The overview of common joints and
number of their DOF is presented in the Tab. 3.1. Note that maximum DOF is six. Sum
of free and eliminated number of degree of freedom must be equal to six. Parameter r

Type of joint Number of DOF DOF Eliminated DOF
Spherical 3 r, r, r t, t, t
Cylindrical 2 r, t t, t, r, r
Prismatic 1 t t, t, r, r, r
Universal 2 r, r t, t, t, r
Rigid 0 t, t, t, r, r, r
Revolute 1 r t, t, t, r, r

Table 3.1: Joints specification

in the Tab. 3.1 denotes rotational degree of freedom and t stands for translation degree
of freedom. Kinematics relationship called constraint equation can be written in the
following vector form

C(q, t) = 0 (3.40)

This equation varies for a different type of the kinematics joints. Since this work deals
mainly with spherical joint, only this one is analysed here. The overview of the particular
equations for the kinematic joints can be manually derived, or found in [83, 99]
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Spherical joint: When the bodies i and j are constrained with a spherical joint, relative
translations between these two bodies are eliminated, and only 3 degrees of freedom of
relative rotations are allowed. Kinematics constraint of the spherical joint required two
points, P i and P j on bodies i and j, respectively, that coincide through the motion, see
Fig. 3.2.

Figure 3.2: Spherical joint

The constraint equation between body i and j can be written as

C(qi,qj) = Ri + AiuiP −Rj −AjujP = 0 (3.41)

where Ri and Rj are the global position vectors of origin of the body coordinate systems,
Ai and Aj represent the transformation matrices between local and global coordinate
systems, uiP and ujP are the position vectors of point P with respect to the local coordi-
nate system X iY iZi of i-th body and the local coordinate system XjY jZj of j-th body,
respectively. The Jacobian matrix for a spherical joint between i-th and j-th body can be
expressed as

Cq =
[
Cqi , Cqj

]
=
[
I,Aiũ

iT

P G
i
,−I,−Ajũ

jT

P G
j
]

(3.42)

where ũ
i

P and ũ
j

P are the skew symmetric matrices associated with local position vectors
uiP and ujP , respectively. Now, all terms in Eq. 3.36 are defined, and the acceleration,
velocities and displacements can be calculated.

NOTE: Singular position: When the nutation angle ϑ equalls to zero, the precession and
spin coincides and the integration process failed, since in cannot distinguish between these
two motion.
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3.2.2 Euler parameters

The principle of equation of motion derived within Euler angles suffers with singular
positions and thus ill numerical stability. Therefore, the concept of 4 Euler parameters is
often used to solved this issue. These parameters are not totally independent, since they
describe spatial rotations of the 3 DOF within 4 variables. The Euler parameters seem to
have no physical meaning, since it is set of four parameters for 3 DOF motion. However,
this idea lays on the basic Euler theorem [83]:

The general displacement of a body with one point fixed is a rotation about some axis.

This theorem defines the orientation of the body-fixed coordinate system at any time t,
as a rotation of this body about one imaginary axis. Based on this theorem, the Euler
parameters were defined, in the way that three variables define axis of rotation (vector)
and the last parameter is rotation about this particular axis.

Since these parameters are not independent, the constraint equation between Euler pa-
rameters pi must be defined as

3∑
k=0

(pk)
2 = 1, (3.43)

or in vector formulation

pTp− 1 = 0. (3.44)

Euler parameters in terms of Euler angles

Euler parameters might be tough to interpret in a physical meaning (especially the initial
values, definition some identities or coupling with Euler angles), so it is useful to define
the Euler parameters as a function of well known Euler angles as

p0 = cos

[
1

2
(ψ + φ)

]
cos

θ

2
(3.45)

p1 = cos

[
1

2
(ψ − φ)

]
sin

θ

2
(3.46)

p2 = sin

[
1

2
(ψ − φ)

]
sin

θ

2
(3.47)

p3 = sin

[
1

2
(ψ + φ)

]
cos

θ

2
(3.48)
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and similarly the derivatives of the Euler angles as a function of Euler velocities

ṗ0 = − sin
θ

2

θ̇

2
cos

[
ψ + φ

2

]
− cos

θ

2
sin

[
ψ + φ

2

]
ψ̇ + φ̇

2
(3.49)

ṗ1 = cos
θ

2

θ̇

2
cos

[
ψ − φ

2

]
− sin

θ

2
sin

[
ψ − φ

2

]
ψ̇ − φ̇

2
(3.50)

ṗ2 = cos
θ

2

θ̇

2
cos

[
ψ − φ

2

]
+ sin

θ

2
cos

[
ψ − φ

2

]
ψ̇ − φ̇

2
(3.51)

ṗ3 = − sin
θ

2

θ̇

2
sin

[
ψ + φ

2

]
+ cos

θ

2
sin

[
ψ + φ

2

]
ψ̇ + φ̇

2
(3.52)

Displacement

Displacement of the body does not depend on the method for parametrisation of a spatial
rotation. As was previously described, the approaches vary only in the spatial rotation
description. Thus, translation component of the equation of motion remains unchanged.
The coordinates X, Y and Z describe motion of the rigid body (its local coordinate system)
in a global Cartesian coordinate system.

Orientation

Orientation of the rigid body in the space is expressed via translation of one point and
rotation of the body around this particular point. The actual position of the point P
on body i, expressed via Euler parameters are formally the same as in the case of Euler
angles, Eq. 3.1 as

ri = Ri + Ai(pik)u
i (3.53)

but the transformation matrix A is a function of Euler parameters, not Euler angles, and
can be expressed as:

A =

p2
0 + p2

1 − 1
2

p1p2 − p0p3 p1p3 + p0p2

p1p2 + p0p3 p2
0 + p2

2 − 1
2

p2p3 − p0p1

p1p3 − p0p2 p2p3 + p0p1 p2
0 + p2

3 − 1
2

 (3.54)

Note that the term expressed in local coordinate system of the body is mark with overline symbol, while the definition in

the global coordinate system has no additional mark.
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Velocity

The relation between angular velocity ω and time derivatives of the Euler parameters
can be defined in a similar way as in the Euler angles approach [83]. This relation can
be defined both in the global Eq. 3.55 and local coordinates system Eq. 3.56 respectively.
The identities between time derivatives of Euler parameters Ṗ and angular velocity vector
ω = [ωx, ωy, ωz]

T can be written as
ω = 2Gṗ (3.55)

or in the local coordinate system as

ω = 2Lṗ (3.56)

where G and L are transformation matrices between global and local coordinate system.
These are defined as

G =

−p1 p0 −p3 p2

−p2 p3 p0 −p1

−p3 −p2 p1 p0

 (3.57)

and

L =

−p1 p0 p3 −p2

−p2 −p3 p0 p1

−p3 p2 −p1 p0

 (3.58)

The matrices G and L has some features, such as orthogonality of the rows and there
exist some useful identities between these matrices [83]:

GGT = I (3.59)

and
LLT = I, (3.60)

or
A = GLT (3.61)

Similarly for the time derivatives of these matrices

Gṗ = −Ġp (3.62)

and
Lṗ = −L̇p (3.63)
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Equation of motion: Unconstrained dynamics

A general equation of motion for rigid body is formulated here on the basic of the dynamics
principle MBS and defined for example in the [83] or [99]. The translation equation of
motion does not change with the Euler parameters approach and is given as

MR̈ = QR, (3.64)

where M is a mass matrix related to translation coordinates, R are vector of translation
accelerations and QR is general force vector associated with translation.

Nikravesh in his work [83] presented rotational equation of motion in terms of Euler
parameters in three formulations . Each of the formulation has some special feature and
the total equations of motion of free and constrained body are presented here. Later on,
the first formulation is used for the further analysis and for building of the model.

Firstly, similarly with the concept of Lagrange equation of the second kind, the constraint
equation between Euler parameters, and its second derivatives, need to be added into the
system. The second derivatives of the equation 3.44 can be expressed as

pT p̈+ ṗT ṗ = 0 (3.65)

Generalized forces:

Figure 3.3: Rigid body in the 3D space, coordinates and acting force

Let us assume the generalized force f acting on a body in the point P F , as shown in
Fig. 3.3. The component of the force and moment vector f and n?, respectively, can be
defined based on virtual work and converted into Euler parameters. Finally, the seven
components of the force-moment vector is obtained as
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[
f
n?

]
=

[
f

2GT ũF
Tf

]
(3.66)

where ũF is a skew symmetric matrix of position vector of the point P F , where the force
acts.

Since the position, mutual rotations, loads and inertia of the free body (unconstrained)
are known, the total equation of motion can be written. If we consider parametrisation of
the spatial rotation within Euler parameters, the three formulations of the global motion
can be defined. For detailed description of these three formulations, see [83, 84, 85].

Formulation 1

Formulation 1 introduces parameter σ into the system as a Lagrange multiplier and overall
equation of motion of unconstrained (free) body in a matrix form isM 0 0

0 J 2p
0T 2pT 0

R̈p̈
σ

+

 0
2Hṗ
ṗT ṗ

 =

 fn?
0

 (3.67)

where

J = 4LTJL, (3.68)

H = 4L̇
T
JL, (3.69)

n? = 2GTn = 2GT ũTFf = 2LTn. (3.70)

The final matrix equation of motion can be writtenM 0 0
0 4LTJL 2p
0T 2pT 0

R̈p̈
σ

 =

 f

n? + 8L̇
T
JLṗ

−2ṗT ṗ

 , (3.71)

or in standard compact form

M totalq̈ = Qtotal. (3.72)
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Formulation 2

The second formulation is basically only a transformation of all the equations from Euler
angles method into the Euler parameters. This method is rarely used compare to the
first formulation, since it suffers with similar issues as Euler angles (singular positions).
The second formulation does not introduce any additional parameter, such as σ, but on
the other hand, it does not increase number of variables and equations. The equation of
motion in the seven variables has a form M2JL

pT

[R̈
p̈

]
+

 0
LH
ṗT

[Ṙ
ṗ

]
=

fn
0

 . (3.73)

Formulation 3

Third formulation does not work directly with the Euler parameters. It is expressed in
terms rotational velocities ω, which can be explicitly defined within Euler parameters.
Moreover, in the definition of the rotations and in the constraints definition, the Euler
parameters still appear. The overall equation of motion for the unconstrained body goes
to a form [

M
J

] [
R̈
ω̇

]
+

[
0

ω̃Jω

]
=

[
f
n

]
. (3.74)

If all three formulations are compared together, Eq. 3.72 contains 8 variables (three for
translation motion, four Euler parameters and variable σ with the function of Lagrange
multiplier); Formulation 2, Eq. 3.73, defines the spatial motion with 7 variables; while
formulation 3, Eq. 3.74, contains only 6 variables.

Each of the formulation has some pros and cons and these can be discussed. Based on
the experience on the multibody modelling and aim of this work, the formulation 1 will
be used here and after. Thus, the kinematics constraints, constrained equation of motion
as well as equation for system of constrained bodies are presented in this formulation 1.

Generally, the formulation within Euler parameters has advantages of singularity-free,
it is more computationally efficient compared to Euler angles and the matrix formula-
tion is explicitly prepared for the computer programming and is more straightforward to
implement in a program for kinematic and dynamic analysis.

Equation of motion: Constrained dynamics

Multibody system can be considered as a set of rigid bodies connected via kinematic
joints. The list of available joints is described above, together with the degree of freedom,
constrained with this particular joint. The subject of interest in this work is model of
human body (17 rigid connected via spherical joints) and thus, the constraint equation
will be derived for the case of spherical joint.
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In the case of Euler parameters, the constraint equation remains formally the same as in
case of Euler angles, Eq. 3.41, but the matrix A has changed. Moreover, the derivatives
of this equation changed significantly, since there is more variables.

Generally, the second derivatives of the constraint equation is added to the free body
equation of motion Eq. 3.71 and these together formulate the constrained dynamics
of the body. After some mathematics operations, substitutions and rearrangements, the
equation of motion of the constrained body using the first formulation can be defined as,

M 0 0 CqR

0 4LTJL 2p CqP

0T 2pT 0 0
CqR CqP 0 0



R̈
p̈
σ
−λ

 =


f

n? + 8L̇
T
JLṗ

−2ṗT ṗ
hi − hj

 (3.75)

where hi is defined as

hi = −2ĠiL̇
T

i u
i
P (3.76)

and CqR and CqP are Jacobi matrices associated with the traslation and orientation
coordinates respectively defined as

CqR = I, (3.77)

CqP = 2GũP . (3.78)

If the system of system of n bodies constrained in the kinematic chain is considered, the
total equation of motion for this mechanical system can be written based on the equation
Eq. 3.75. The constraint equation between bodies must be defined and included to this
equation via RHS and Jacobi matrix Cq. The parameter σ is an artifical variable and
was defined in that way, to ensure the mass matrix to be square and regular (existence
of exact inverse matrix). This parameter can be interpreted as a Lagrange multipliers
associated with the constraint equation between Euler parameters Eq. 3.44. However,
this variable remains in the vector of generalized coordinates q and does not come to a
Lagrange multipliers vector (constraint between bodies) and is integrated in the same way
as R and P .

When the system of n bodies, linked with the r spherical joints is considered, the total
equation of motion has a following form, where the dimension of the sub-matrices are also
written: 

M Cq
T

[8n×8n] [8n×3r]

Cq 0
[3r×8n] [3r×3r]



q̈

[8n×1]

−λ
[3r×1]

 =


F

[8n×1]

γ
[3r×1]

 (3.79)
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3.2.3 Numerical analysis

The equation of motion Eq. 3.79 represents system of 8n + 3r mixed of differential and
algebraic equations (DAE). In order to numerically solve such system, the method of
elimination of the Lagrange multipliers is used here to transform this equation into the
set of differential equations, that can be numerically solved using standard tool, such as
MATLAB [77]. Equation 3.79 can be distributed into two vector equations as

Mq̈ −Cq
Tλ = F , (3.80)

and

Cqq̈ = γ. (3.81)

After rearranging of the Eq. 3.80, the acceleration can be expressed as

q̈ = M−1
(
F +Cq

Tλ
)

, (3.82)

and substituted into Eq. 3.81 as

CqM
−1
(
F +Cq

Tλ
)

= γ. (3.83)

After some basic mathematical operations, vector of Lagrange multipliers is expressed in
the following form

λ =
(
CqM

−1Cq
T
)−1 (

γ −CqM
−1F

)
. (3.84)

When Eq. 3.84 is substituted into the Eq. 3.82, vector of Lagrange multipliers is eliminated
and the vector of unknown generalized accelerations can be expressed as

q̈ = M−1
[
F +Cq

T
(
CqM

−1Cq
T
)−1 (

γ −CqM
−1F

)]
(3.85)

The Equation 3.85 can be numerically solved in MATLAB computational environment
using implemented solvers ODE for numerical integration. However, such equation can
has some undesirable properties. It leads to be numerically unstable for certain cases,
and so called drift-off effect consisted of the violation of constraints occurs during the
solution. The violation problem comes from the fact, that the numerical solution using
second derivatives of constraint equation is not the same as the solution using original
equation.

3.3 Numerical stability of multibody system

When the set of constraints are imposed into a dynamical system, it is important that
the solution must satisfied the constraint equations at all levels. To prevent numerical
irregularities during the solution, stability of equation of motion must be preserved. This
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chapter discuss numerical stability of the governing equation of motion when integrated
to yield the time history of a system. Firstly, the Baumgarte stabilization technique
used to stabilize and reduce the error due to conventional representation of the constraint
equations is presented. Secondly, correction method by Yu and Chen is introduced [120].
Finally, other approaches such as penalty method or a method by Amirouche and Ider,
that modify the constraint equations are briefly introduced.

3.3.1 Baumgarte stabilization

One of the most commonly used stabilization method is a constraint violation stabilization
or a constraint regularization with the Baumgarte stabilization method [27, 45, 51]. The
constraint equation Eq. 3.40 is modified to following equations

C̈ + 2αĊ + β2C = 0, (3.86)

which is solved during numerical solution of DAE Eq. 3.79. The coefficients α and β are
chosen as positive constants. Vector γ in the Eq. 3.79 can be replaced by a new vector

γ(q, q̇, t) = γ(q, q̇, t)− 2αĊ − β2C, (3.87)

and substitute into the expression of the generalized accelerations Eq. 3.85 as

q̈ = M−1
[
F +Cq

T
(
CqM

−1Cq
T
)−1
(
γ − 2αĊ − β2C −CqM

−1F
)]

. (3.88)

Equations 3.88 is a total EOM of constrained dynamical system including also additional
stabilization elements. The Baumgarte constraint violation method is one of the old-
est stabilization method and it was adopted from feedback control theory to construct a
modified differential equations, which implicitly accounted for violation in the constraint
equations. Additional terms can be comprehend as a proportional-derivative (PD) con-
troller [92]. However this method has some disadvantages.

• Different types of violation are not considered in the constraint equation since the
same correction parameters are used. Thus some violations might be eliminated,
while others cannot.

• Baumgarte technique is an indirect stabilization method. It adds feedback con-
trol terms in the dynamics equation to control the constraint violations instead of
correcting the values of state variables to satisfy the constraint equations.

• There is no general rule how to select the coefficients α and β, it is based on the
experience or could be set with respect to the sensitivity analysis of the particular
system onto these parameters. If the values are too large, the dynamic equation will
be influenced significantly and the obtained results are not acceptable to describe
behavior of the system. On the other hand, if the values are too small, the violations
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cannot be controlled effectively. The selection of α and β between 0 and 10 are
suggested in [51]. The relationship between the constants β = α

√
2 or β =

√
2α is

proposed in[51, 120]. Zhenkuan [122] developed a method for automatic selection
of parameters α and β. The proposed selections are that

α =
1

h
, β =

√
2

h
, (3.89)

where is h the step-length of integration. However, when applying the variable
step-length integrator, this method of automatic selection becomes impractical.

Despite these disadvantages, the Baumgarte stabilization technique is still one of the most
often used method for stabilization of constraint dynamic equations. It is relatively easy
to apply and it was proved to work for wide range of mechanical systems.

3.3.2 Direct violation correction method

Purpose of this method lays in correction of the values of generalized coordinates and
generalized velocities after each time step in order to satisfy the constraint equations
[120]. There are no additional terms added to the equation of motion.

Generalized coordinates correction

Let us assume that at i-th time step t = ti, the generalized coordinates of the system are
q̂i. If this calculated coordinates do not satisfy the constraint equation, thus

C(q̂i, t) 6= 0 (3.90)

with the given error tolerance, a correction term δqi is added to satisfy the constraint
equation. The corrected generalized coordinates qi are expressed as

qi = q̂i + δqi, (3.91)

in such way that
Ci = C(qi, ti) = C(q̂i, ti) + δCi = 0. (3.92)

The generalized coordinates correction term is defined as

δqi = −(Cq)Ti
[
(Cq)i(Cq)Ti

]−1
C(q̂i, ti), (3.93)

where the term (Cq)i = Cq(q̂i, ti) is Jacobian of the constraints expressed in original
(uncorrected) generalized coordinates and (Cq)i is Jacobian matrix in terms of modified
coordinates. Finally the corrected generalized coordinates, which satisfy the constraint
equation

C(qi, t) = 0, (3.94)

takes the form
qi = q̂i − (Cq)Ti

[
(Cq)i(Cq)Ti

]−1
C(q̂i, ti) (3.95)
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Generalized velocities correction

When the violation in velocity constraint equations is beyond a specific error tolerance,
i.e.,

Ċi = Ċ(qi, ̂̇qi, t) 6= 0, (3.96)

where ̂̇qi are calculated (uncorrected) generalized velocities. The correction term δq̇i is
added to generalized velocities to satisfy the constraint equation. In a similar way as
defined in previous paragraph, the generalized velocities are corrected as

q̇i = ̂̇qi + δq̇i (3.97)

The generalized velocities correction term is defined as

δq̇i = −(Cq)Ti
[
(Cq)i(Cq)Ti

]−1
Ċ(qi, ̂̇qi, ti), (3.98)

Consequently the corrected generalized velocities, which satisfy the constraint equation

Ċ(qi, ̂̇qi, t) = 0, (3.99)

takes the form
q̇i = ̂̇qi − (Cq)Ti

[
(Cq)i(Cq)Ti

]−1
Ċ(qi, ̂̇qi, ti). (3.100)

Thus the violation in coordinates and velocities constraint equation can be eliminated
after each integration time step. The proposed method can be applied under holonomic
constraints only. However, the selection of the given error tolerances has no general rules.
Yu in his work [120] suggests the values between 10−5 and 10−8.

3.3.3 Penalty formulation method

Another stabilization technique is based on a penalty formulation. The concept of this
method is the constraints enforcing using the special penalty term that is added to the
Lagrangian of the system. The additional term can be define as

1

2
CTBC, (3.101)

where B is diagonal matrix with the particular penalty factors bi on the main diagonal.
One of the representation of penalty technique is the augmented Lagrangian formulation
[38]. The regularization of the vanishing constraint by Amirouche and Ider is described
in [27]. This is a special technique for stabilization equation of motion of the multibody
system with singular positions and redundant constraints. It is based on eliminations of
particular rows of constraint equation.

Several other stabilization methods for numerical integration of equation of motion were
developed, see [27, 51, 122]. The selection of the proper methods always depends on the
particular model, and cannot be anyhow generalized. Moreover, the combination of more
techniques is also possible.
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3.4 Sensitivity Analysis

In the previous chapter, the equation of motion for the constrained dynamic Eq. 3.79
was derived and several methods for numerical stabilization were described. Since there
is no general rule, which method is more suitable for particular dynamical system, and
what values of the parameters should be used, examples of spatial pendulum and double
pendulum respectively (one or two body constrained with the spherical joint) are analyzed.
Variation of the parameters for the Baumgarte and direct violation method applied on the
spatial pendulum and double pendulum are performed, to identify more suitable method
and to test the effect of the parameter variations. This sensitivity analysis can help
in further modelling to choose the stabilization method and to better understand how
the parameters affect the particular model. Since the further model of the human body
contains only spherical joints, just spherical joints are analyzed.

3.4.1 Spatial pendulum

The example here is the ellipsoid body, linked with the frame at point P (spherical joint)
at the top of the main axis, loaded with the gravity, see Fig. 3.4 and in this case, zero
initial velocities. The case of non-zero initial velocities was analyzed as well. However, it
was found out, that the dynamical system with one body is not stable for any value of
non-zero initial velocities. The body initially lays in the horizontal position (main axis
of the body is parallel with the global axis X). The geometry and mass of the body are
summarized in the Table 3.2. The simulation time is 5 s.

m 1 [kg] Mass of the body
a 0.6 [m] Length of the main principle axis
b 0.4 [m] Length of the second principle axis
c 0.2 [m] Length of the third principle axis
dR 0 [m/s] Initial velocities vector

Table 3.2: Mechanical properties of the body
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Figure 3.4: Spatial pendulum

Firstly, Baumgarte stabilization method with the variation of α ∈ {0, 1, 5, 10, 50, 100, 1000}
and consequently β = α

√
2 and zero initial velocities is done. The monitored parameters

are maximum violation of the constraint equation and calculation CPU time on the com-
puter Dell Inspiron 15 7000. The CPU time is not an important aspect of the calculation
in its absolute value. It is provided here only to compare the particular calculation one
to each other (so the relative difference between CPU is rather important aspect).

dR α β Direct violation Stable Max. violation [m] CPU [s]

0 0 0 NO YES 0.03 0.157
0 1 1.41 NO YES 6.0E−4 0.149
0 5 7.07 NO YES 1.2E−4 0.164
0 10 14.14 NO YES 6.0E−5 0.155
0 50 70.71 NO YES 7.0E−5 0.297
0 100 141.42 NO YES 8.0E−6 0.450
0 1000 1414.21 NO YES 5.0E−6 2.2

NOTE: symbol dR is an expression for dx, dy and dz. Here, all three velocities are equal to zero.

Table 3.3: Sensitivity analysis of α and β for pendulum

Secondly, α = 0 and thus Baumgarte method is not active and only direct violation
method is used. The direct violation method is specified with the error tolerance ε and
dε for the constraint equations (coordinate Eq. 3.90 and velocity constraint equations
Eq. 3.96). The variation here is specified within these error tolerance. For the simplicity,
both the tolerances equal and the results are in Tab. 3.4.
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dR α β Direct violation ε = dε Stable Max. violation [m] CPU [s]

0 0 0 YES 1.0E−3 YES 0.07 0.179
0 0 0 YES 1.0E−2 YES 0.015 0.164
0 0 0 YES 1.0E−1 NO 0.08 0.154
0 0 0 YES 5.0E−1 NO 0.03 0.141
0 0 0 YES 1.0 NO 0.03 0.134

Table 3.4: Sensitivity analysis of ε and dε for pendulum

The third case of sensitivity analysis consists of combination of both methods. From the
previous analysis, the best case of direct violation was chosen (i.e. ε = dε = 1.0e− 2) and
together with the variation of α and β.

dR α β Direct violation ε = dε Stable Max. violation [m] CPU [s]

0 1 1.41 YES 1.0E−2 YES 1.5E−3 0.169
0 5 7.07 YES 1.0E−2 YES 5.0E−3 0.191
0 10 14.14 YES 1.0E−2 YES 1.2E−4 0.231
0 50 70.71 YES 1.0E−2 YES 1.5E−5 0.436
0 100 141.42 YES 1.0E−2 YES 7.0E−6 0.804
0 1000 1414.21 YES 1.0E−2 YES 3.0E−4 8.789

Table 3.5: Sensitivity analysis of both methods for pendulum

In the following Figures 3.5, the violation of the constraint (relative motion of the joint)
are plotted within the coordinates X, Y, and Z. These should from the definition remain
zero, but due to the violation of the constraint, they are not. If the ε = 0, the direct
violation method is not active.
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(a) α=0, ε=0 (b) α=1, ε=0 (c) α=5, ε=0

(d) α=10, ε=0 (e) α=50, ε=0 (f) α=100, ε=0

(g) α=1000, ε=0 (h) α=0, ε=1.0E−3 (i) α=0, ε=1.0E−2

(j) α=0, ε=0.1 (k) α=0, ε=0.5 (l) α=0, ε=1

(m) α=1, ε=1.0E−2 (n) α=5, ε=1.0E−2 (o) α=10, ε=1.0E−2

(p) α=20, ε=1.0E−2 (q) α=100, ε=1.0E−2 (r) α=1000, ε = 1.0E−2

Figure 3.5: Results of the pendulum sensitivity analysis
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3.4.2 Spatial double pendulum

In order to test stabilization method on a chain of constrained bodies, the double-
pendulum example was analyzed for the variations of initial parameters for the stabi-
lization method, see Fig. 3.6. Similarly with the pendulum example, the case of zero
initial velocities was tested. It was discovered, that the non-zero initial velocities can
be also stable, if they are not applied directly on the body, that is constrained with the
frame (if yes, the violation is too high and non of the stabilization techniques works). The
mechanical system consists of two identical bodies linked with the spherical joint (first
body is linked to the frame), see Tab. 3.6.

m1 = m2 1 [kg] Mass of the body
a1 = a2 0.6 [m] Main principle axis
b1 = b2 0.4 [m] Second principle axis
c1 = c2 0.2 [m] Third principle axis

Table 3.6: Mechanical properties of the bodies

Figure 3.6: Spatial pendulum

Firstly, the Baumgarte stabilization method only is applied and results are as follows:



3.4 Sensitivity Analysis 66

H]

dR α β Direct violation ε = dε Stable Max. violation [m] CPU [s]

0 1 1.41 YES 1.0E−1 YES 1.0E−3 0.331
0 5 7.07 YES 1.0E−1 YES 6.0E−4 0.337
0 10 14.14 YES 1.0E−1 YES 1.2E−5 0.401
0 50 70.71 YES 1.0E−1 YES 6.0E−6 0.743
0 100 141.42 YES 1.0E−1 YES 3.0E−6 1.091
0 1000 1414.21 YES 1.0E−1 YES 1.2E−6 5.124

Table 3.9: Sensitivity analysis of both methods for double pendulum

dR α β Direct violation Stable Max. violation [m] CPU [s]

0 0 0 NO YES 1.6E−3 0.31
0 1 1.41 NO YES 7.0E−5 0.319
0 5 7.07 NO YES 7.0E−5 0.322
0 10 14.14 NO YES 2.4E−5 0.317
0 50 70.71 NO YES 1.0E−5 0.587
0 100 141.42 NO YES 9.0E−6 0.956
0 1000 1414.21 NO YES 8.0E−6 5.12

Table 3.7: Sensitivity analysis of α and β for double pendulum

Secondly, only direct violation method is considered:

dR α β Direct violation ε = dε Stable Max. violation [m] CPU [s]

0 0 0 YES 1.0E−3 YES 4.0E−4 0.481
0 0 0 YES 1.0E−2 YES 2.0E−4 0.419
0 0 0 YES 1.0E−1 YES 4.0E−4 0.361
0 0 0 YES 5.0E−1 YES 1.6E−3 0.342
0 0 0 YES 1.0 YES 1.6E−3 0.316

Table 3.8: Sensitivity analysis of ε and dε for double pendulum

Thirdly, the combination of the methods, for the double pendulum example, with zero
initial velocities. The value of error tolerance ε and dε was chosen based on the best
results of the previous analysis.

In following Figures 3.7, the violation of the constraint (relative motion of the frame joint)
are plotted within the coordinates X, Y, and Z.
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(a) α=0, ε=0 (b) α=1, ε=0 (c) α=5, ε=0

(d) α=10, ε=0 (e) α=50, ε=0 (f) α=100, ε=0

(g) α=1000, ε=0 (h) α=0, ε=1.0E−3 (i) α=0, ε=1.0E−2

(j) α=0, ε=0.1 (k) α=0, ε=0.5 (l) α=0, ε=1

(m) α=1, ε=1.0E−1 (n) α=5, ε=1.0E−1 (o) α=10, ε=1.0E−1

(p) α=20, ε=1.0E−1 (q) α=100, ε=1.0E−1 (r) α=1000, ε=1.0E−1

Figure 3.7: Results of the double pendulum sensitivity analysis
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As was previously discussed, constrained dynamical system can behave stable, if the
frame-linked body is not directly loaded with the initial velocities. In order to test this
theorem and to show how the system behaves if the first or second body is loaded, the vari-
ation on the stabilization method together with the variation of the loading is presented.
Initial translation velocity for each body is specified with the vector dR = [dx, dy, dz].
Here in the analysis, all three velocities always equal and are defined as dR in the Ta-
ble 3.10.

dR1 dR2 α β Direct violation ε = dε Stable Max. violation [m] CPU [s]

0.1 0 0 0 NO – NO – –
0.1 0 1 1.41 NO – YES 3.0E−2 0.450
0.5 0 1 1.41 NO – YES 1.6E−1 0.41
1.0 0 1 1.41 NO – NO – –

0.1 0 0 0 YES 1.0E−1 NO – –
0.1 0 1 1.41 YES 1.0E−1 NO – –
0.5 0 1 1.41 YES 1.0E−1 NO – –
1.0 0 1 1.41 YES 1.0E−1 NO – –

0 0.1 0 0 NO – YES 2.0E−3 0.405
0 0.1 1 1.41 NO – YES 7.0E−5 0.379
0 0.5 1 1.41 NO – YES 1.2E−4 0.505
1 1.0 1 1.41 NO – YES 1.4E−4 0.526

0 0.1 0 0 YES 1.0e-1 YES 1.4E−3 0.606
0 0.1 1 1.41 YES 1.0e-1 YES 3.0E−4 0.391
0 0.5 1 1.41 YES 1.0e-1 YES 4.5E−2 0.806
1 1.0 1 1.41 YES 1.0e-1 YES 2.0E−2 0.774

0.1 0 5 7.07 NO – YESA 7.0E−3 –
0.1 0 10 14.14 NO – YESA 3.2E−3 –
0.1 0 50 70.71 NO – YESA 2.0E−3 –

0 0.1 5 7.07 NO – YESA 2.0E−5 –
0 0.1 10 14.14 NO – YESA 8.0E−6 –
0 0.1 50 70.71 NO – YESA 4.0E−6 –

NOTE A: The system behaves stable, until the numerical integration fails, due to length of the step size.

Table 3.10: Sensitivity analysis of ε and dε for double pendulum with non-zero initial
velocities

This dynamical system does not behave very stable for the non-zero initial velocities, or
are stable until numerical failure, the plot of the constraint violation does not bring any
additional information and thus, is not provided.
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3.4.3 Discussion

The stabilization techniques analyzed here can be summarized in a few conclusion re-
marks.

• If the body, that is directly constrained to the frame, is loaded with non-zero initial
velocity, the system is unstable and violation of the constraint still increases.

• Results of the analysis with the non-zero initial velocities proof this theory. The
results in Table. 3.10 indicate that the system generally behaves more stable, if the
second body is loaded (even is not fully stable during the entire simulation).

• If the Baumagarte method is used, increasing of the α and consequently β causes
the decreasing of the violation but increasing of the CPU time.

• Increasing of the α added artificial damping element into the EOM and the con-
straint shows vibration (oscillation) effect.

• Direct violation method works less effective than Baumgarte, however, it can stabi-
lize the pendulum and double pendulum for certain cases.

• The combination of both methods works less effective than Baumgarte itself for
these particular configurations.

• In the further analysis, the Baumgarte method with the parameters α and β from
1 to 100 can be recommended as an initial value. If these does not work well, these
values can be heightened and possibly the direct violation can be activated.



Chapter 4

Human body model - MBS

The aim of this work is to create MBS solver, to analyze its behavior, to test particular
algorithms in an in-house software including 3D model of a human body for various
loading scenarios. The human body model here is a system of rigid bodies linked with
spherical joints and constrained in open kinematic tree structure, to approximate external
shape of the human. This system, however cannot simulate behavior of human body for
any kind of loading and thus, the suitable configurations must be specified and tuned
up (validated) to get reasonable results. Consequently, the behavior of internal organs,
fractures of bones or rupture of the muscles are not captured here. Purpose of this model
is to describe global behavior of human body under different impact situations. The
basic concept of this work is in the segmentation of the human body defined by Robbins
[93, 62]. Human body is divided into the segments, whose motion are in agreement with
the kinematic of human body under external loading, see Fig. 4.1.

Figure 4.1: Segmentation of human body [93]

Hynč́ık [62] suggested the simply structure of the 2D model containing 11 rigid bodies,
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see Figure 4.2, where all bodies are modelled as ellipses or circles, respectively.

Figure 4.2: Segmentation of 2D human body model [62]

The spatial model segmentation is expanded within pair extremities, and thus the model
has 17 rigid bodies, based on Fig. 4.2 and Fig. 4.1:

• Pelvis

• Abdomen

• Thorax

• Neck

• Head

• Left and Right Arms

• Left and Right Forearms

• Left and Right Hands

• Left and Right Tights

• Left and Right Calves

• Left and Right Feet

The connections between bodies are modelled within the 16 spherical joints, representing
real human joints:

• Vertebrae L5/Sacrum, between ab-
domen and pelvis

• Vertebrae T12/L1, between thorax
and abdomen

• Vertebrae C7/T1, between neck and
thorax

• Vertebrae Atlas/T1 , between head
and neck

• Left and Right Shoulder joints

• Left and Right Elbow joints

• Left and Right Wrist joints

• Left and Right Hip joints

• Left and Right Knee joints

• Left and Right Ankle joints
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4.1 Mass distribution, geometry and inertia proper-

ties

This model is build to be a scalable, to capture the various size of the population [88]. The
total weight and total height of the human are the inputs and the dimensions and mass of
particular segments are calculated based on these defined values. The mass of the body
segments can be calculated from the total mass and height of the human, generally with
the two approaches [69, 106]. The first, and less accurate comes from mass distribution
of the particular segments expressed in percentages. The second approach is method of
Zaciorsky and Salujanov (1979) [106], who used radioisotope method for experimental
measuring of 100 humans and defined coefficients for each body segments. The mass of
the particular segment can be expressed with the simple equation

mi = β0i + β1im+ β2iv, (4.1)

where m [kg] is the total mass of the body, v [cm] is weight of body and coefficients β are
defined in Table 4.1

Segment β0 [kg] β1 [-] β2 [kg.cm−1]
Pelvis -7.498 0.0976 0.04896
Abdomen 7.181 0.2234 -0.0663
Thorax 8.2144 0.1862 -0.0584
Neck 0.096 0.0031 0.0022
Head 1.2 0.014 0.0123
Arm 0.25 0.03013 -0.0027
Forearm 0.3185 0.01445 -0.00114
Hand -0.1165 0.0036 0.00175
Tight -2.649 0.1463 0.0137
Calf -1.592 0.03616 0.0121
Foot -0.829 0.0077 0.0073

Table 4.1: Table of coefficients for calculation of body segment’s masses [106]
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Geometry of the segments was defined based on Robbins database, where dimensions of
large, medium and small man and female, are published [98]. An average male of height
equals to 180 cm was used as a reference one (measured in Czech Republic in 2011) [68],
and all the dimensions from Robbins (medium male) are related to this value. Thus, the
dimensions of each body segment are function of total height of body only and calculated
based on the database. Such algorithm enable the user to model wide set of population
(height and weight). However, it does not take into account different shape of the humans
(thin, fat, large etc.). The model of a medium size male, with the height equals to 180
cm and weight equals to 80 kg; with the arms outspread and stretched out are shown in
Figs. 4.3.

Figure 4.3: Male, 180 cm, 80 kg

Inertia properties of the body segments are calculated from mass and geometry of the
particular body parts. Since the origin of the local coordinate system is assume to coincide
with centre of mass of the body, the principal moments of inertia equal to zero and inertia
tensor (ellipsoid) can be defined as:

I =

ixx ixy ixz
iyx iyy iyz
izx izy izz

 =

1
5
m(b2 + c2) 0 0

0 1
5
m(a2 + c2) 0

0 0 1
5
m(a2 + b2)

 , (4.2)

where a, b and c are lengths of semi-principal axes of the ellipsoid. The example of the
scaled models are plotted in Fig. 4.4, where 5 models of different body size and weight
are generated.
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Figure 4.4: Scaled family of human body models (HBMs)

The masses of the scaled segments are presented in the Table 4.2, where average model
(180 cm), 200 cm and 150 cm model are provided.
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Model 80 kg, 180 cm 100 kg, 200 cm 100 kg, 200 cm
Segment Mass [kg] Mass [kg] Mass [kg]
Pelvis 9.1 12.1 4.7
Abdomen 13.1 16.3 8.4
Thorax 12.6 15.2 8.8
Neck 0.7 0.8 0.6
Head 4.5 5.1 3.7
Arm 2.2 2.7 1.3
Forearm 1.3 1.5 0.8
Hand 0.5 0.6 0.3
Tight 11.5 14.7 6.7
Calf 3.5 4.4 2.1
Foot 1.1 1.4 0.7

Table 4.2: Masses of scaled body segments

4.2 Joint range of motion

The joints connecting the bodies in this mechanical system are modeled as spherical
joints (unlimited spatial rotational motion). However, the real human joints have their
physiological range of motion, and cannot withstand any possible sequence of rotations.
Moreover, some joints allow only one main rotation about one axis (knee - flexion, Y
axis), plus minor rotations around the rest two axes. The joints with only one degree
of freedom (rotation) can be modelled with the revolute joint [91], or it can remain as a
spherical joint with the additional internal stiffness to limit its range of motion (ROM).
Internal stiffness can work as both, limits for range of motion and physiological stiffness
of the joints. The stiffness can be defined by a curve, and then the model is loaded with
the external torque, added on the RHS of the EOM Eq. 3.79. The physilogical range of
motion was measured by Robbins and his team in 80’s [93]. He measured anthropocentric
dimensions, inertia properties, masses, joints range of motion for the mid-size male, small
female and large male (the elementary concept of the dummy size). Based on the database
[93, 105], the curves of internal stiffness for the particular joints were defined, and these
can be used in this MBS human body model. The angles of rotations were measured from
initial seating position, and were measured individually for X, Y, Z global axes. Thus, the
transformation into the current set of rotation parameters (Euler parameters) is required,
to correctly model the physiology of the human.
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4.2.1 Quatermions

Using of the Euler parameters for the parametrisation of the spatial motion can show the
advantage also here, in the measuring of the rotation of the body, with respect to the
global coordinate system defined with axes: X,Y,Z. Euler parameters can be transformed
into the set of the Euler angles (for example in standard sequence ZXZ). However, the
angles calculated in such way cannot be used for the definition of the internal torque, since
the stiffness curves and ROM are measured as an isolated rotation about the global axes
X,Y,Z. respectively. Thus the transformation into any set of Euler angles does not bring
any benefit. Moreover, the Euler angles would bring back the problem of singularities,
that was eliminated with the Euler parameters.

Euler parameters are set of so called quatermions and this has, from the definition, some
special features [27, 83, 99, 103, 118]. They were defined by William Rowan Hamilton
in 1843 [52] as a 3D equivalent of the complex number and complex unit i. The main
characterization of the quatermions is that they represent actual axis of rotation (global
vector: 3 parameters) and the angle of rotation around this particular axis.

Let’s have a generalized quatermion Λ:

Λ = [a, b, c, d]T = [cos
(υ

2

)
, sin

(υ
2

)
u]T (4.3)

where a,b,c,d are four quatermion parameters, a stands for angle of rotation and b,c,d
are connected with a vector of rotation, u is a global vector of actual rotation and υ a
rotation angle.

In order to define the global rotation, the angles of rotation from the global axes separately
must to be calculated. Here, the rotation of the body is defined with Euler parameters
from which, the three angles can be calculated from Eq. 4.3.

cos
(υ

2

)
= a, (4.4)

sin
(υ

2

)
u = [b, c, d]T . (4.5)

Thus the angle and vector of actual rotation is

υ = 2 arccos(a) .... [rad] (4.6)

u =
[b, c, d]T

sin
(
υ
2

) (4.7)

Finally, the angles of global rotations can be expressed directly from u and υ
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α = rotx = uxυ .... [rad] (4.8)

β = roty = uyυ .... [rad] (4.9)

γ = rotz = uzυ .... [rad] (4.10)

where ux, uy and uz are particular components of vector u.

4.2.2 Physiological range of motion

The threshold of the physiological range of motion of the mid-size male are defined in the
Tab. 4.3, where limits of positive and negative direction (with respect to the right-hand
coordinate system of the model: X-left, Y-up, Z-front), the anatomical name of such
motion and the reference are presented.
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For the purpose of modelling the internal stiffness and limits of the joint, an external
torque (mathematically external) is calculated and added into Eq. 3.79 or Eq. 3.75 as an
additional term into n?.

The torque Njoint is calculated as

Njoint =

Mx

My

Mz

 =

−Kxα
−Kyβ
−Kzγ

 (4.11)

Where angles α, β and γ are calculated from Eq. 4.8, 4.9, 4.10 and Ki is the particular
stiffness defined from database [62, 93]. The stiffness curves are defined in such way, that
they generates small torque up to the limit of motion and significantly higher torque, if
the angle exceeds the limit.

As an example of the internal stiffness, the curves for knee, elbow, wrist, hip, shoulder
and ankle are shown in Figs 4.5.

Figure 4.5: Internal stiffness curves [62, 93, 105]

The final torque Njoint is a vector of the size [3x1], and this must be transformed into the
Euler parameters space [4x1]

NEP
joint = 2GTNjoint (4.12)



Chapter 5

Contact analysis

Purpose of this chapter is to include the impact/contact scenarios into the model. The
calculation of the contact and contact force between the body and some external surface
is a essential part of the crash modelling. Impact, or contact, is a complex phenomenon
that occurs, when at least two bodies undergo a collision, see Fig. 5.3. Impact problem
arises in many engineering applications, such as multi-body dynamics, robotics, aircraft,
biomechanics and many others. Impact is defined as a collision of two bodies that occur
over a significantly short time interval. The impact can be characterized with large
reaction forces, large energy dissipation and very high change of accelerations.

5.1 Contact detection and minimum distance calcu-

lation

Calculation of the minimum distance between two objects of arbitrary shape is very im-
portant and it is deeply associated with impact applications. Ellipsoids are frequently
used for representation of many natural organism, such as segments of the human body.
There are many efficient algorithms for collision detection and related minimum distance
calculation between objects [40, 100, 116]. First group of methods only provides infor-
mation, whether the bodies are separated, contacting at one point or the bodies are in
collision. Second group concerns algorithms, which computes distance between bodies,
respectively between their surfaces.

5.1.1 Surface approximation

Sohn [100] presents an algorithm for computing distance between two free surfaces. The
main idea is using a line geometry to approximate shape of bodies and to reformulate the
distance calculation problem to intersection between surfaces, see Fig. 5.1.
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Figure 5.1: Line approximation of bodies [100]

5.1.2 Separating surface

Wang [116] presents efficient and accurate algorithm for detection of collision in case of
two moving ellipsoids. This work contains two approaches, namely a simple algebraic test
for disjunction of two ellipsoids and a method of construction of the separating surface.
Compared with surface approximation algorithm by Sohn [100], this algorithm reduces
calculation time and has a higher accuracy.

Collision detection

Interiors of two ellipsoids A and B are represented by matrix equations XTAX < 0 and
XTBX < 0 respectively, where A and B are real symmetric matrices of dimension 4 and
X = [x, y, z, w]T express a point in homogeneous coordinates.

A simple algebraic test for separating of two ellipsoids is established by defining two
surfaces A : XTAX = 0 and B : XTBX = 0 and the quartic equation f(λ) = det(λA−
B). This quantity is called characteristic equation of A and B.

Figure 5.2: Two (a) disjoint and (b) overlapping ellipsoids and corresponding f(λ) [116]
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This two ellipsoids are disjoint if and only if equation f(λ) = 0 has two distinct positive
roots. They touch each other in a single contact point if f(λ) = 0 has one positive double
root. Note that ellipsoids are in contact, if the characteristic equation has no positive
roots, see Fig. 5.2.

Separating plane

Wang in his work [116] described how to construct a plane, separating two ellipsoids. Since
the plane is separating the bodies, there can be no collision between ellipsoids until one
of them impacts the plane. Wang is applying affine transformation to plane and ellipsoid
problem to reduce it to a problem of a sphere and a plane. Afterwards the problem of
calculation between the sphere and the plane becomes a problem of distance between the
centre of the sphere and the plane. However, affine transformation generally does not
keep the distance magnitude, hence the truthfulness of this method can be discussed and
should be proved.

5.1.3 Analytical method using transformation

The fully analytical algorithm for calculation of the contact between ellipsoid and plane
in 3D space is described in [110, 112], where the analytic equation of the ellipsoid and
plane is used to calculate the minimum distance between these two entities. The main
idea is to create a new plane, perpendicular to the initial one and tangential to the body.
Once the plane is defined, the tangential point (shared point for new plane and body)
is also defined and the problem of the distance between body and plane is reduced to a
problem of distance between point and plane, which is quite simple task.

5.1.4 Iteration process

Moser described a model of a human body for contact with vehicle application in his
work [79]. Pedestrian model is coming into the contact with a rigid surface (shape of the
car). Moser uses iteration process for testing distance between the surfaces of the bodies.
The distance between any two points of bodies is checked and the minimum distance is
calculated. This algorithm can be efficient for simple geometry, which does not require
high number of points. However, for complicated structures, this method can significantly
increases calculation time.
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5.1.5 Quadratics equation of ellipsoid

Eberly [40] presented similar method as Wang [116] based on the solution of algebraic
equations. However this method is only testing a collision and it is not interested in min-
imum distance calculation. Eberly introduced two algorithms for intersection calculation.
First one is based on roots estimation and second one is using gradient approach.

Eberly defines an ellipsoid Ei by the quadratic equation

Qi(X) = XTAiX +XTBi + Ci (5.1)

The Qi(X) < 0 defines interior of the ellipsoid and Qi(X) > 0 defines exterior. It is
obvious that Qi(X) = 0 defines point on the surface.

Roots calculation

Two polynomial equations f(z) = α0 + α1z + α2z
2 and g(z) = β0 + β1z + β2z

2 have a
common root if and only if the Bézout determinant is equal to zero

(α2β1 − α1β2)(α1β0 − α0β1)− (α2β0 − α0β2)2 = 0. (5.2)

When the Bézout determinant is equal to zero, common roots of f(z) and g(z) are

z̃ =
α2β0 − α0β2

α1β2 − α2β1

. (5.3)

Gradient approach

An alternative solution is to set up a system of differential equation, which walks along
one ellipsoid and searches for the point of intersection with the second one. The method
results in finding the particular point or evaluate that there is no such points.

The method starts with point X0 where Q0(X0) = 0. It concerns any point placed on
the surface. The first step is testing if Q1(X0) = 0. If yes, contact point was directly
found. This condition means that the particular point is on the surface of both ellipsoids.
If Q1(X0) < 0 the point X0 lies inside and if Q1(X0) > 0, it lies outside the second
ellipsoid, respectively. The main idea is to follow the direction of tangential vector of
the first surface in such a way to reach value of Q1 = 0. The best and fastest approach
provides the direction of a gradient of Q1. Once the point Xn where Q1(Xn) = 0 is
found, the point distance method can be applied. For detailed description see [40].
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5.2 Contact force models - overview

Purpose of this section is to provide an overview of impact and contact models. The
contact modelling has main aspects and attached issues, such as energy absorption, be-
havior of a friction model, multi-contact problem, experimental testing and verification
or overall methodology of contact problem. A brief review of results already presented
in literature describing the existing models, their relationships and applications of these
impact (contact) models are presented here. Contact is a scenario, when two bodies un-
dergo a collision (touch each other in a specific time tcont), while being separated before.
The contact is always represented by the bodies (shape, mass, location of COG) and with
the contact aspect (contact point, friction, stiffness, direction of impact and attached line
of impact) and so on, see 5.3.

Figure 5.3: Impact of two bodies [48]

In general, two different approaches for contact analysis can be defined, discrete and con-
tinuous contact models. This text describes both, including unilateral constrain approach,
that is generalization of discrete model for multi-contact problem.

5.2.1 Discrete contact model

The discrete contact model formulation is based on the assumption that the impact pro-
cess is instantaneous, impact forces are impulsive kinetic variables having discontinuous
changes, while no displacements occur during the impact and other forces are neglected.
Such models are usually used for rigid or very hard bodies, whilst the effects of deformation
at the contact point are taking into account through the particular coefficients. The im-
pact problem is then solved by the linear and angular impulse-momentum characteristics
between the variables before and after the impact using the coefficient of restitution.

Classical impact theory

Let’s have a planar impact of two bodies with masses mi, i ∈ {1, 2} and initial velocities
vi0, i ∈ {1, 2} and let us divide the impact process into 2 phases, see Fig. 5.4. Conse-
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quently, loading in t ∈ [t1, t2] is characterized by the linear impulse P1 and unloading
during t ∈ (t2, t3] is characterized by the linear impulse P2 as

Figure 5.4: Loading and unloading phases of discrete contact model

P2 = εP1, (5.4)

where the coefficient of restitution ε 〈0, 1〉 describes the local changes and

P1 =

t2∫
t1

Fdt, (5.5)

is the impulse caused by the one dimensional impact, see Fig. 5.4. Here t ∈ [t1, t3] is the
impact interval. The ε = 1 means completely plastic impact, ε = 0 stands for completely
elastic impact.

Linear and angular velocities of particular bodies can be defined [48]

v1 = v10 − (1 + ε) P1

m1
,

v2 = v20 + (1 + ε) P1

m2
,

ω1 = ω10 − (1 + ε)rS1
P1

IS1
,

ω2 = ω20 + (1 + ε)rS2
P1

IS2
.

(5.6)

Equations (5.6) can be simply solved for impacts between 2 bodies. However, system with
more bodies together is complicated to be handled because each impact state influences
the remaining system kinematics.
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Coefficient of restitution models

The triad vector (n, t, b) defines a coordinate system with origin at the contact point,
where n is the normal vector to body at this point and vectors t and b define tangential
planes. The total linear impulse can be written as

P = Pnn+ Ptt+ Pbb. (5.7)

The relative linear velocity at the contact point has 3 components: compression veloc-
ity along normal direction and component velocity along vectors t and b, called sliding
velocities. Some of existing restitution models are preseted here.

Poisson’s model

The total normal impulse Pf is divided into two parts, Pc and Pr, corresponding to
compression and restitution phases, respectively. Coefficient of restitution is than defined
as

ε =
Pr
Pc
, Pf = Pc + Pr. (5.8)

The condition for the end of compression phase is expressed by relative velocity along the
normal direction equaling to zero.

Newton’s model

The coefficient of restitution here is

ε =
C(tf ) n

C(t0) n
= −Cf

C0

. (5.9)

This model is based on kinematic point of view and only the initial and final conditions
for relative normal velocity are taken into account.

Stronge’s model

This model is based on the internal energy dissipation hypothesis. The coefficient of
restitution is defined as the square root of the ratio of energy released during restitution
and the energy absorbed during compression phase. In the terms of work done by the
normal force during compression and restitution phases, the coefficient or restitution can
be calculated

ε2 =
Wr

−Wc

. (5.10)
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Unilateral constraints approach

The unilateral constraints approach is based on the discrete impact model, but it over-
comes the problem by defining multiple impact. The multiple contact includes a problem
of a large dimension. If one contact has changed, all other contacts are influenced and it
makes a new set of contact configurations necessary to be analyzed [89]. Hence it makes
sense to define the sets

IS = {1, . . . ,m} , with m contact point,
IC(t) = {j ∈ IS(t) : ΦNj = 0} , with mC elements,

IN(t) = {j ∈ IC(t) : Φ̇Nj = 0} , with mNelements,

IT (t) = {j ∈ IT (t) : |Φ̇Tj | = 0} , with mT elements

(5.11)

where IS is the set of all contact points, IC contains the constraints with vanishing distance
with arbitrary relative velocity, IN describes the constraints fulfilling the necessary con-
ditions for continuous contact (vanishing distance at zero relative velocity in the normal
direction) and IT are the possibly sticking contacts. Φj and Φ̇j are the relative distances
and velocities between the contacting bodies for the j-th contact. Since each contact event
changes all other contact events in the multibody system, these sets depend also on the
time. The transition between one state to another one are governed by complementary in
normal and tangential directions defining the corresponding unilateral constraints [89].

Due to the complication of using the discrete contact modelling approach (timing in
multiple contact using classical impact theory or computationally expensive quadratic
programming using unilateral constraints approach), the approach assuming continuous
contact force as the external force as a function of local indentation between the impacting
bodies is usually assessed.

5.2.2 Continuous contact model

The continuous contact model is useful to overcome the problem with local deformation,
non-smoothness in contact variables and energy absorption that is complicated to be de-
scribed by the discrete contact models. The basement of the continuous model formulation
for contact dynamics is in explicitly accounting of the deformation of the bodies during
impact. Large class of continuous models is defined by applying the normal contact force
Fn as an explicit function of a local indentation δ and indentation velocioty δ̇

Fn ≡ Fn(δ̇, δ). (5.12)

The dependence of force on the indentation is a crucial relation, which has to be known
or otherwise unrealistic results might appear. In the following text, a summary of some
existing contact force models are analyzed.
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Elastic model

The elementary contact model is an elastic model known as a Hertz model [26, 48, 73]. It
is non-linear and it does not include a damping. However, it is limited only to an impact
of elastic deformation. Hertz model for contact problem can be constructed as interaction
of two rigid bodies via a non-linear spring along the line of impact. The hypothesis is
based on the assumption, that the deformation is concentrated only in the vicinity of the
contact point (area). The elastic wave motion is not relevant and the total mass of each
body is moving with the velocity of its center of gravity. The impact force is then defined

Fn = kδn, (5.13)

where k and n are constant parameters depending on material and geometric properties
of bodies and can be calculated using elastostatic theory [81]. Parameter k represents
stiffness of a virtual spring. For example, in case of two spheres impact, n = 3

2
and k is

function of Poisson ratios, Young modulus and radii of the spheres

k =
4

3(σi + σj)

[
RiRj

Ri +Rj

]
, (5.14)

where material parameters σi and σj are defined by

σl =
1− ν2

l

El
, l ∈ {i, j}, (5.15)

in which quantities νl and El are Poisson ratio and Young modulus associated with par-
ticular sphere. Since the Hertz model does not take energy dissipation into account, the
coefficient of restitution is equal to one. Gillardi [48] discussed this model as a suitable
tool especially for low velocity impact within the hard materials. Elastic contact law of the
Hertz model can be upgraded by adding plastic deformation. This can be accomplished
by using hysteresis force law, which takes the form

Fn = Fn,max(
δ − δp

δmax − δp
)n (5.16)

where Fn,max and δmax are maximum normal force and maximum indentation during load-
ing phases of impact, respectively, and δp is permanent indentation. Note that maximum
values in the (5.16) is calculated in every instance of numerical solution, value δ is calcu-
lated in each time step, but δp is an additional parameter, and it has to be defined initially
in particular contact model. This model is only a rarely used, since is being large, heavy
or not effective.
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Dissipative contact models

An alternative contact force model taking account energy loss during impact is a set
of dissipative models, known as a spring-dashpot or Kelvin-Voigt model [48, 73]. The
impact is schematically represented with a linear damper (dashpot) for dissipation of
energy, parallel with non-linear spring for the elastic behavior, see Fig. 5.5. The normal
contact force is defined as

Fn = kδ + bδ̇ (5.17)

Figure 5.5: Spring-dashpot system [73]

Parameters k and b in Eg. 5.17 depend on material and shape of the contacting bodies.
δ is indentation (or penetration) and δ̇ is relative normal contact velocity [48, 73]. Three
weaknesses of this model are pointed out:

• At the beginning of impact, contact force is discontinuous, because of the damping
term. During the real contact scenario, both elastic and damping forces should be
initially equal to zero and are increasing over the time.

• When the objects are separating, the indention comes to zero and hence their relative
velocity tends to be negative. The results is a negative normal force holding the
objects together, is shown in Fig. 5.6.

• The coefficient of restitution for this model does not depend on the impact velocity
and dependence of ε on the velocity has to be set up experimentally.
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Figure 5.6: Contact force history for the spring-dashpot model [48]

Even the spring-dashpot model is not physically realistic, it is used very often because of its
simplicity. It provides a reasonable method to capture energy dissipation effect without
explicitly considering plastic deformation issues. Since it generally contains only two
parameters (stiffness and damping ratio) it is a suitable tool for experimental validation
and verification.

Non-linear damping As an extension of the spring dashpot model, the non-linear
damping can be defined. Such model deals with problems of the spring-dashpot model
and retains the advantages of the Hertz model [26, 48, 59, 73]. The non-linear damping
term is considered and impact force comes to

Fn = kδn + χδpδ̇q, (5.18)

where p, q and n are constants and it is common to set them p = n and q = 1. The
damping parameter χ is related to the coefficient of restitution, because it is associated
with energy dissipation phenomena, similarly with dashpot model. Based on the literature
review and the physical effect, parameter χ is called the hysteresis damping factor. The
basic and the most commonly used form of this parameters is

χ =
3k(1− Cr)

2δ̇(−)
, (5.19)

in which k represents the generalized stiffness parameter, Cr is the coefficient of resti-
tution and δ̇(−) is the initial contact velocity. The main advantages of this model is
realistic relationship between damping coefficient and indentation, and in the absence of
discontinuities at initial and separating phases.
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If the Eq. 5.19 is substitute into the Eq. 5.18, the final relationship for non-linear dissi-
pative force can be defined. The hysteresis parameter χ can have several modifications
defining the contact force model, named based on the authors:

• Hunt & Crosley model [59]

Fn = kδn

[
1 +

3(1− Cr)
2

δ̇

δ̇(−)

]
, (5.20)

• Lee & Wang model [71]

Fn = kδn

[
1 +

3(1− Cr)
4

δ̇

δ̇(−)

]
, (5.21)

• Herbert & Mc Whannell model [55]

Fn = kδn

[
1 +

6(1− Cr)
[(2Cr − 1)2 + 3]

δ̇

δ̇(−)

]
, (5.22)

• Lankarani & Nikravesh model [70]

Fn = kδn

[
1 +

3(1− C2
r )

4

δ̇

δ̇(−)

]
, (5.23)

• Gonthier model [49]

Fn = kδn

[
1 +

(1− C2
r )

Cr

δ̇

δ̇(−)

]
, (5.24)

• Zhiying & Qishao model [123]

Fn = kδn

[
1 +

3(1− C2
r e

2(1−Cr))

4

δ̇

δ̇(−)

]
, (5.25)

• Flores model [44]

Fn = kδn

[
1 +

8(1− C2
r

5Cr

δ̇

δ̇(−)

]
, (5.26)

• Grahib & Hurmuzlu model [47]

Fn = kδn

[
1 +

(1

Cr

δ̇

δ̇(−)

]
, (5.27)
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Friction model

Coulomb (discrete) contact law is frequently used to describe an effect of friction in the
impact. Main disadvantage of the Coulomb law is the discontinuity of the friction force.
To deal with this issue and to capture effect of friction, an alternative friction force law
has been established [48, 73]. The first improvement of the law is obtained by using
a non-local friction model, where value of friction at one point depends on value of its
neighborhoods. Another improvement is in applying of the non-linear model to allow a
continuous transition from sticking to sliding phases. The friction model is defined

F t = kfs, s(t) =


s(t0) +

∫ t

t0

vtdt, if |s| < smax

smax
vt
|vt|

, otherwise, smax = |µ|Fn
kf

,

(5.28)

where kf is friction stiffness, s is the vector of friction displacement, t0 is the starting time
of the last sticking at the contact point, vt is the relative tangential velocity and smax is
the parameter of maximum allowable deflection. An important aspect of this model is
the effective calculation of friction force as a function of time.

Another model, but is is not common to present it as a friction model, is the Stronge
model [48]. This model is using concept of tangential friction force, in the way of the
Hertz model, thus the tangential force is defined as

Ft = ktδt (5.29)

where δt is tangential component of indentation at the contact point and kt is tangential
stiffness.

5.3 Human body model - contact

The human body model described here is a system of the linked ellipsoids that can come
into the contact with external infrastructure (ground or vehicle). It was found to be more
effective to use modified iteration process to calculate distance of the bodies from the
plane. Each ellipsoid is described with the set of points on its surface, and for each of
this point, the distance from the plane is being checked. Since the distance between point
and plane is simple analytic equation Eq. 5.30, the numerical process is still fast enough.
Moreover, the selection of the body (the points on the surface) for the distance checking
can by optimized only for some specific bodies (i.e. check the distance of the COG of
each body and only if this distance is lower than some threshold/tolerance, the surface
points are being checked). The equation of the distance between a body and plane in the
3D space is defined
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d(X, r) =
|ax1 + bx2 + cx3 + d|√

a2 + b2 + c2
(5.30)

where

X = [x1, x2, x3]T , is the point (5.31)

ax+ by + cz + d = 0, is analytical equation of the plane (5.32)

If the distance between i-th point on the surface is bellow the zero (or some threshold -
called contact thickness) the contact force is added to the system based on the specified
contact force model. It acts at the i-th point on the body surface in the direction of
normal vector of the plane. The system of the particular forces (at each point of the
contact is replaced by the equivalent system of a total force Ftotal and a total moment
Mtotal acting at the COG of the body, see Fig. 5.7.

Figure 5.7: Incremental contact forces (left) and equivalent system of force and moment
(right)

5.4 Human body model - total equation of motion

The total equation of motion of the human body Eq. 3.79 is expanded with the moment
genereated by the internal thickness of the joint Eq. 4.12 and with the contact force
Eq. 5.12 and Eq. 5.18. These external loading appear on the RHS of the equation of
motion 

M Cq
T

[8n×8n] [8n×3r]

Cq 0
[3r×8n] [3r×3r]



q̈

[8n×1]

λ
[3r×1]

 =


F + F contact + F stiff

[8n×1]

γ
[3r×1]

 (5.33)
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where

F contact = [F x
n , F

y
n , F

z
n , 0, 0, 0, 0, 0]T (5.34)

and

F stiff =
[
0, 0, 0, NEP0

joint, N
EP1
joint, N

EP2
joint, N

EP3
joint, 0

]T
(5.35)



Chapter 6

Application

Following section presents elementary problems and algorithms used in this model, to
verify/validate their behavior on the simply benchmark examples. Firstly, the spatial
motion of the free body (non-constrained) within the contact algorithm is tested on the
simple bouncing ball falling on the flat rigid surface [26], where the various contact force
models are applied. Next example is a contact of the ellipsoid falling on the inclined
surface, to test the eccentricity of the contact. The principle of the spherical joint and
joint stiffness is tested on the spherical pendulum with the pre-defined internal stiffness
(defined with the curves in the same way as in the human joints). Finally, the contact
problems of the full human body model are presented.

6.1 Numerical solution

The process of the numerical integration of the EOM uses the standard MATLAB function
for solving differential equation of the first order, called ODE**, where symbols ** defines
the method and order of the integration method. The application examples bellow are
solved with the ODE45 method. The ODE45 is a numerical method with the variable
time step, that decreases when the solver requires it, for instance in the contact. There
exist more ODE solvers, pre-defined in MATLAB library. The solvers can be generally
divided based on some criteria (fixed or variable time step; discrete or continuous; explicit
or implicit; one step or multi step). The examples and main features of the solvers are
presented here, where the solvers are distinguished based on their time step order.

6.1.1 Variable time step solvers

• ODE23: Solves non-stiff differential equations - low order method. Explicit one
step Runge-Kutte formulation of a second order. Effective for mild-stiff problems
or for examples, where the RHS of the differential equation f(t,y) is not continuous.
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• ODE23s: Solves stiff differential equations - low order method. Implicit one step
Rosenbrock formulation of a second order. Effective for stiff problems or for exam-
ples, where the RHS of the differential equation f(t,y) is not continuous.

• ODE23t: Solves moderately stiff ODEs and DAEs - trapezoidal rule. Implicit one
step trapezoidal rule, effective for medium stiff problems and for set of differential-
algebraic equations.

• ODE23tb: Solves stiff differential equations - trapezoidal rule + backward differ-
entiation formula. Similar solver to the ODE23s and can be more effective for a
lower accuracy.

• ODE45: Solves non-stiff differential equations - medium order method. Explicit
one step Runge-Kutte formulation of a fourth order. Effective for non-stiff prob-
lems. Usually the first choice when solving a new problem.

• ODE113: Solves non-stiff differential equations - variable order method. Multi-
step Adams-Bashforth-Moulton method with variable order (from 1 to 13). Effective
for non-stiff problems, with non-continuous f(t,y).

• ODE15s: Solves stiff differential equations and DAEs - variable order method.
Implicit multi-step method with variable order (from 1 to 5). Effective for stiff
problems.

• ODE15i: Solves fully implicit differential equations - variable order method. Fully
implicit method for a solution ODE and DAE equations.

6.1.2 Fixed time step solvers

The following solvers have fixed time step (user defined) and it cannot be changed during
the integration. Generally, the fixed time step method is not recommended, but for some
special cases, this can be a useful tool. These solvers are not included in the standard
MATLAB library.

• ODE1: Euler formulation of a first order.

• ODE2: Euler formulation of a second order.

• ODE3: Bogacki-Shampine formulation of a third order of accuracy.

• ODE4: Standard Runge-Kutta formulation of a fourth order.

• ODE5: Dormand-Prince formulation of a fifth order.

• ODE8: Dormand-Prince formulation of a eight order.
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Stiff problem:

In the previous lines, stiff and non-stiff problem were used. The general definition of the
stiff problem can be the cases, where the time constants vary in order 2 and more. Or,
it can be examples, where the time step (variable) approaches to zero. Or, linear systems
with the negative real part of the eigenvalues. The stiff problem can be solved also with
the non-stiff solvers, but with the higher computational time.

6.2 Bouncing ball

Equation of motion of a free body Eq. 3.72 is used to generate the system of one sphere
and a rigid ground. The body is loaded only with gravity and freely fall, until it reaches
the ground. The contact and contact force are calculated based on the equations described
above. In order to capture a real behavior of this mechanical system, the stiffness and
damping parameters must be optimized. The variation of these parameters changes the
response of the numerical system until the results of the simulation and experiment would
be similar enough. However, it is not purpose of this work to tune up parameters of the
bouncing ball example. The goal of this chapter is to show, how the selection of the
contact force model can affect the results and how the coefficient of restitution changes
the results (within one force model).

Figure 6.1: Bouncing Ball [26]

The body here is a sphere with the radius 0.2 m, mass of 1 kg falling from the initial height
equaling to 0.5 m (position of COG). The stiffness parameter of the contact force model
k is calculated based on the geometry and mass of the impacting bodies, see Eq. 5.14.
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Coefficient of restitution:

First set of Figs. 6.2 are examples with the standard dissipative model (Hunt & Crosley,
Eq. 5.20), where only the coefficient of restitution Cr have changed from 0 to 1 (0 = pure
plastic, 1 = pure elastic contact). The behavior of the bouncing ball system shows the
correctness of the force model with respect to the elastic-plastic behavior. In case of pure
elastic contact (Cr = 1), the amplitude of the displacement does not change (only small
variations due to numerical errror) and with the decreasing coefficient of restitution, the
level of plasticity increases.

(a) Cr=1 (b) Cr=0.9 (c) Cr=0.5

(d) Cr=0.1 (e) Cr=0.0001 (f) Cr=0

Figure 6.2: Displacement of the COG

Force model:

This paragraph shows the difference between contact force models (Herzt elastic model
Eq. 5.13 and dissipative models Eq. 5.20 - Eq. 5.27. The contact force Fig. 6.3a, maximum
force Tab. 6.1 and a hysteresis curve (force vs. displacement) Fig. 6.3b are presented here
to show the difference between the models. The selection of the contact force model
affects also the CPU time. The simulation time was 0.5 s (identical in all simulations) to
compare the models one to each other.
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Force model Max Force [N] Max Disp [m]
Herzt 1320.6 0.2134
Hunt & Crosley 1697.7 0.0029
Lee & Wang 1500.1 0.0031
Herbert & McWhannel 1822.8 0.0027∗∗

Lankarani & Nikravesh 1500.1 0.0031
Gontier 2075.2 0.0021
Zhying & Qishao 2035.1 0.0022 ∗∗∗

Flores 2438.3 0.0018∗∗∗∗

Grahib & Hurmuzlu 2075.1 0.0021∗∗∗

Table 6.1: Maximum contact force and maximum displacement

NOTE *: The simulation exhibits 2 jumps (two contacts)

NOTE **: The simulation exhibits 3 jumps (three contacts)

NOTE ***: The simulation exhibits 6 jumps (six contacts)

(a) Contact force (b) Histeresis curve

Figure 6.3: Variation of the force models in the bouncing ball example

There is a visible difference between the contact models (in the force as well as in the
displacement). Moreover, for one model (Herbert & McWhannel) the ball performed two
jumps, in two cases (Zhying & Qishao and Grahib & Hurmuzlu) three jumps and in case
of Flores model, the ball jumped six times, for the same simulation time. The proper
selection of the contact force model, as well as tuning of the contact parameters must
be gauge individually for each particular case. There is no global recommendation for
the model selection and no general definition of the parameters. This overview here is
only going to show, how important is the selection of the correct force model and its
parameters specification.
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6.3 Ellipsoid on inclined surface

Equation of motion of a free body Eq. 3.72 is also used here, to evaluate behavior of the
ellipsoid body, falling on the inclined rigid surface. The body here is an ellipsoid with
the length of the main principle axis equals to 1.0 m, and two remaining principle axes
equaling to 0.4 m, with the mass of 1 kg. The body falls under the gravity, until it reaches
the surface, inclined with 45◦, from the ground, see Fig. 6.4. The Hertz contact model is
used (pure elastic contact). The kinematic of the body is shown in Fig. 6.5 to test and
verify the contact algorithm (especially the torque, generated due to the eccentricity of
the contact) (Eq. 3.70, Eq. 4.12 and Fig. 5.7).

Figure 6.4: Initial configuration of the ellipsoid and inclined surface

Figure 6.5: Falling ellipsoid
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Since, there is a lack of testing/experimental data, only this basic example, where the
results can be visually evaluated, was performed. The kinematics of the body implies the
correctness of the contact algorithm. This example can approximate the rugby ball falling
on the ground. However, to really validate this algorithm, the data from experimental
tests would be required.

6.4 Spherical pendulum with internal stiffness

The spherical pendulum is an elementary problem of the constrained rigid body dynamics.
Despite the fact it contains only one body, constrained to the frame with the spherical
joint, it is a useful tool to test the constraint and also the internal stiffness algorithm. The
validity of the derived constraints was already tested in the sensitivity analysis section 3.4.
However, the internal joint stiffness algorithm need to be verified.

Firstly, the spherical pendulum is moving only in one plane (XY) - rotational motion
around Z-axis and for each of this particular rotation, the several stiffness curves are
applied. The goal here is to change the range of motion of the joint and to test how this
affects the motion of the body. In the examples bellow, only γ angle is changing, so only
limit for this particular curve was varied.

The sets of figures Fig. 6.6, Fig. 6.7 and Fig. 6.8 show the behavior of the spherical
pendulum, with the variation of stiffness (limit angle respectively).
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6.4.1 No stiffness

(a) COG coordinates (b) Rotation angles

(c) Torques (d) Body motion

Figure 6.6: Spherical pendulum with no internal stiffness. Coordinates of the COG (top
left); angles of rotation (top right); internal torque (bottom left); motion of the body
(bottom right)

The first set of Fig. 6.6 shows the motion with no stiffness, no damping. So, the body
oscillates from the initial (horizontal) position, to its maximum (opposite horizontal po-
sition), with no decreasing. The coordinates of COG generates the sin-like curve (X and
Y) and zero curve (Z), since the body rotates around Z axis. Consequently, the γ curve
generates sin while α and β are constant and equal to zero curve. There is no torque
generated by the motion.
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6.4.2 Angle γ limit = 20◦ (rotation Z)

(a) COG coordinates (b) Rotation angles

(c) Torques (d) Body motion

Figure 6.7: Spherical pendulum with internal stiffness: γlim = 20◦. Coordinates of the
COG (top left); angles of rotation (top right); internal torque (bottom left); motion of
the body (bottom right)

The second set of Fig. 6.7 shows the example, where the limit angle γ is set to be 20◦.
Note that the limit is not a maximum angle, that can be reached, it is the point, where
stiffness curve changes its slopes, see Fig. 4.5. Thus, the body does not stop in this
particular limit, but the internal torque rapidly increases after reaching this threshold.
This phenomena can be seen in Fig. 6.7b and Fig. 6.7c, where the angles and torques are
plotted. Due to the torque, acting on the body against its motion, the body does not
reach the horizontal position (the maximum) and stops when the γ angle is approximately
135◦, see Fig. 6.7b and Fig. 6.7d.
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6.4.3 Angle γ limit = 70◦ (rotation Z)

Figure 6.8: Spherical pendulum with internal stiffness: γlim = 70◦. Coordinates of the
COG (top left); angles of rotation (top right); internal torque (bottom left); motion of
the body (bottom right)

The third set of Fig. 6.8 shows the same phenomena like in previous case, only the limit
angle was changed to 70◦. The body stops its movement when the angle γ is approximately
160◦.

6.4.4 General motion

This section shows the motion of the spherical pendulum, releases from general position,
under loading of gravity only, with the initial rotation in all three directions (the axis of
rotation is a general axis and not coincides with any global coordinate axis). The initial
position is defined via quatermion (Euler parameters), where the body is initially rotated
with the angle π/6 [rad] around the vector [1, 1, 1]T . The COG is placed at the origin of
the global coordinate system, see Fig. 6.9.



6.4 Spherical pendulum with internal stiffness 105

Figure 6.9: Initial position of the body

The motion of the body, as well as rotational parameters, torque are displayed in the set
of the following Figs. 6.10.

Figure 6.10: Spherical pendulum with internal stiffness, general initial position. Coordi-
nates of the COG (top left); angles of rotation (top right); internal torque (bottom left);
motion of the body (bottom right)
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6.5 Human Body Model

The human body model (HBM) previously described is now tested in some basic case
studies, to show its relevance and biofidelity for these particular cases. If the general
biofidelity is required, the full validation and optimization of all parameters (especially
contact stiffness and damping) must be done. However, such process is not easy task and
it is not done here. The model here uses a global set of contact parameters, that were
set-up in order to cover the relevance of the model.

The model, presented here can be named as a ”Validation-ready model”. That means,
the model is done, all parameters are defined to make the model working, the results are
realistic and the model behaves human-like. However, for the specific application, such as
dynamic crash scenario, the contact as well as numerical parameters must be optimized,
to correctly set them up and to reach the biofidelity of the model.

The examples here are to show some cases, in which, this model can be used. The falling
scenario is the main concern, since it is a common scenario in a real life, automotive safety
or in forensic analysis [57, 56]. Moreover, the accident with the static obstacles (ground) is
numerically more stable than with the dynamical one (pedestrian to car crash) and hence,
is more suitable for testing of the model. The dynamical accident would require some
numerical tuning of the model (contact parameters, numerical stabilization parameters,
time step limit definition etc.). Moreover, the selection of the stabilization techniques
(here Baumgarte and direct violation method) would require a sensitivity analysis for the
full human body model, similarly as was done in case of pendulum and double pendulum,
respectively). Since this work is more about preparation of the model, ready for validation
and not the modelling of one specific example, optimization for the HBM case is not
provided and only Baumgarte stabilization method, with standard ODE45 solver is used.

6.5.1 Human body falling on the rigid ground

This testing case shows the human body model falling from a minimum height (0.01 m)
on the rigid surface (ground fall), see Fig. 6.11. This example provides the view on the
model behavior in this contact scenario. The model is scaled to human with the weight
of 80 kg and 180 cm of height. The ground is modelled as a rigid plane and the HBM is
loaded only with gravity.
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Figure 6.11: HBM falling on the ground from minium distance, inital conditions

Results: The Figures 6.12 show the motion of the body. When the body touches the
ground (the distance is less then contact distance), the contact algorithm starts and with
the change of the joint angle, the internal stiffness is introduced.

Figure 6.12: HBM falling on the rigid ground from 0.01 m height
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Fall on the rigid ground from 4 m

This example is similar with previous one, but the initial height was defined to be 4 m
above the ground (distance between the foot and the ground), see Fig. 6.13.

Figure 6.13: HBM falling on the ground from 4 m, inital condition

Results: The Figures 6.14 show the motion of the body.

Figure 6.14: HBM falling on the rigid ground from 4 m height)
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Fall on the rigid ground from 4 m with different contact parameters

This example is similar to the previous one, the initial height was defined to be 4 m above
the ground but the contact is defined to be more elastic, see Fig. 6.15.

Figure 6.15: HBM falling on the ”elastic” ground

Results: The Figures 6.16 show the motion of the body on the ”elastic” ground. This
example can be an approximation of the athlet jumping on the trampoline.

Figure 6.16: HBM falling on the rigid-elastic ground from 4 m height)
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6.5.2 Human body falling on the inclined rigid ground

The example here is similar with the previous case (same HBM) but the ground is inclined
from the horizontal plane. The contact in both cases is friction-less.

Inclined ground with 20◦

Figure 6.17: HBM falling on the ground inclined with 20◦

Results: The Figures 6.18 show the motion of the HBM falling from 4 m on the 20◦

inclined rigid ground.

Figure 6.18: HBM falling on the 20◦ inclined ground
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Inclined ground with 45◦

Figure 6.19: HBM falling on the ground inclined with 45◦

Results:

The Figures 6.20 show the motion of the HBM falling from 4 m on the 45◦ inclined rigid
ground.

Figure 6.20: HBM falling on the 45◦ inclined ground
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Inclined ground with 70◦

Figure 6.21: HBM falling on the ground inclined with 70◦

Results:

The Figures 6.20 show the motion of the HBM falling from 4 m on the 70◦ inclined rigid
ground.

Figure 6.22: HBM falling on the 70◦ inclined ground
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6.5.3 Inclined ground with 70◦ and non-zero initial velocity

The examples here shows the behavior of the model on the impact to the 70◦ rigid wall
with the initial velocity in direction against the wall, see 6.23. This configuration can
simulate collision with the car or other external infrastructure.

Figure 6.23: HBM falling on the ground inclined with 70◦ with the initial velocity v0

.
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Initial velocity 2 m/s

The following Figures 6.24 show the results of the impact scenario, where the initial
velocity of the HBM is defined as a 2 m/s in the negative X direction (against the rigid
wall).

Figure 6.24: HBM falling on the 70◦ inclined ground with 2 m/s initial velocity
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Initial velocity 5 m/s

The following Figures 6.25 show the results of the impact scenario, where the initial
velocity of the HBM is defined as a 5 m/s in the negative X direction (against the rigid
wall).

Figure 6.25: HBM falling on the 70◦ inclined ground with 5 m/s initial velocity
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Initial velocity 10 m/s

The following Figures 6.26 show the results of the impact scenario, where the initial
velocity of the HBM is defined as a 10 m/s in the negative X direction (against the rigid
wall).

Figure 6.26: HBM falling on the 70◦ inclined ground with 10 m/s initial velocity
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6.5.4 HBM falling on a rigid ground in the laying position

This configuration shows the behavior of the HBM in the falling configuration, when the
body initially lays in horizontal position, and fall under loading of gravity.

Figure 6.27: Laying HBM falling on the ground
.The following Figures 6.28 show the results of the impact scenario, where the laying HBM

falls on the ground from height of 5 m.

Figure 6.28: Laying HBM falling on the ground
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6.5.5 Famous case of human body falling on the rigid ground
from more then 14 meters

This section is going to show the behavior of the HBM in the famous and mysterious
case in the history of Czechoslovakia. In the 1948, the body of death minister of foreign
affair was found on the ground of the courtyard of the ministry at Čerńın palace. There
are still a lot of uncertainties, myths and investigations around this event and the true
is still not revealed and very probably it will remain such [54, 66, 101, 121]. The aim
here is not to talk about this, but to utilize this model in such dynamic impact scenario.
One can find more information for instance in [109], where some technical features as
well as historical background are discussed. The author participated in the document,
that led to the opening of the new (fifth) investigation on this event. Nevertheless, the
collision scenario is a free fall of the male (180 cm, 100 kg, 62 year old) from the height of
approximately 14-15 meters on a flat rigid surface. Based on the last knowledge, the body
probably fell rearward with the initial velocity up and rear (oblique throw, rear jump).
The main aim was only to test, if the model can withstand such scenario. The results are
not really comparable with the Virthuman model used in [109] or with the real data, since
the model is not validated (especially the contact parameters). The scenario here is a rear
jump/fall with the initial velocities dx = 0 − side, dy = 1m/s − up, dz = 1.5m/s − rear
defined on the HBM.

Figure 6.29: Human standing at the 14 m initial height [left], defined initial velocity [right]

Following Figures 6.30 show the initial phase of the rearward jump, with the initial veloc-
ities dy=1 ms and dz=-1.5 ms defined on the trunk of the body (chest, abdomen, pelvis).
The values are based on the forensic study and experimental measurement on this case
[109].
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Figure 6.30: Initial phase of the rear jump

The sequence of the motion (initial phase, flight phase and landing/contact with the
ground) is presented in the following set of Figures 6.31. The first contact of the body is
through the feet, followed by the pelvis and chest. The head does not get into contact,
which is in correspondence with the historical data (the head of the minister was not
injured). Of course, the particular setting of the parameters (numerical stabilization,
contact parameters and initial posture) can significantly affect the final stature of the
body. The example here only shows the possibility of this human body model.

Figure 6.31: Phases of a rear jump

Note that the first three pictures show entire model, including initial location of the body
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(feet 14 m above ground) and the ground, to see the full perspective, while the last 5 are
focused on the landing area. As can be seen, the body significantly bends (flexion) in the
torso area, which seems to be un-physiological. However, the body can flex up to 70◦ in
Sacrum-L5 joint, see Tab. 4.3. Moreover, the model is not fully validated, it uses the joint
limits and internal torques from the literature [93] and the proper setting would require a
complex validation and verification. However, this model shows the good potential also in
this crash scenario, where long time simulation (2000 ms) together with internal stiffness
and contact algorithm.

6.6 Discussion

The full human body model (HBM) developed here was tested in some basic impact sce-
narios. The particular algorithms and sub-models were tested in a single body examples:
bouncing ball, falling ellipsoid including various set of contact models and a spherical
pendulum including internal stiffness of the joint. All these models show a good potential
to be used in such applications. Despite the fact that the results are tested only with
visual observation, the behavior of the bodies looks reasonable and realistic.

The full HBM contains 17 bodies, connected with the spherical joints. The model contains
internal joint stiffness, contact algorithm for each body and also stabilization methods
(Baumgarte and direct violation). The contact calculation and especially the joint stiff-
ness brings a high non-linearity into the model. Moreover, the calculation in MATLAB
with using the standard integration solvers for differential equations have some limita-
tions and they might be slower for non-linear equations and they are not very useful for
paralelization, that could make the calculation faster.

Based on the setting of the numerical parameters, the impact calculation with the full
HBM can take relatively long calculation time (from a few minutes up to several hours),
but all the particular algorithms work and the full model gives reasonable results. How-
ever, if the model will be used for some particular case, the proper setting of the contact,
stiffness and numerical parameters must be tuned up, to validate model for this case.
Moreover, for the further applications, all mathematical methods and algorithm described
in this work could be written in programming language such as C++, or Java, where some
features, such as paralelization can be done.

Generally, the model behaves good in the spatial motion, numerical stabilization, contact
or internal stiffness implementation. However, if all scenarios meet in the same time, the
calculation can make some troubles. For instance, contact algorithm works well (if the
contact stiffness is properly set) for the first impact. Since secondary contact is already
affected with the error from the first one, the results are not very clear. As was discussed
before, several sets of parameters (contact, damping, internal stiffness, numerical setting
and so on) need to be correctly set. The numerical optimization can help to do it, if
the data (results) of the particular case are available, to be compare with the numerical
results. The main aim of this work was to used the principle of MBS (with the main
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focus on the spatial motion) to built a solver for the human body model, that can be
used in the crash scenario. To properly model the human body in the crash scenarios,
the contact algorithm (for contact), the internal stiffness (to limit joint range of motion)
and numerical stabilization (to numerically stabilize the model) were included.



Chapter 7

Conclusion

Human body is a highly complicated and complex system, that is really hard to describe
within some mathematical model. Since it is a live system, with non standardize geometry
and material parameters. These all are changing with every single individual case, with
the age, gender, history of the human body and also with the physical condition and body
shape. Moreover, if some database is built (such as anthropometric database of ČSSR,
[32]), it is limited for the special case (in this case population of the Czechoslovakia, Spar-
takiáda event - athletes, 80’s, on so on). If the description of the body geometry is done
(which is a doable task) the main limitation and concern would be the material descrip-
tion. Since the ”human materials” are live, they are anisotropic, hyper or viscoelastic,
temperature and chemical substance dependent, heterogeneous, active - muscle, it is not
possible to precisely described all the human materials for all possible humans, for all
possible scenarios. The material description of the human tissue is even more compli-
cated, since there is a lack of experimental data, which is essential part of the material
description. If there are some studies, they always have some limitations and uncertain-
ties, such as how the test were performed, what was the history of subject and sample
etc. The live tissues do not behave equally, if the sample is ”fresh”, frozen and de-frozen
or if it remains couple of hours out of the body, so not alive anymore. The testing of the
live tissue has also technical limitations (not all the required tests are feasible) and also
ethical limitations.

However, there are number of high quality human body models (or its segments), but they
are designed for a special field of applications, they have some limitations, where they
can be successfully used, and these conditions must be always satisfied. For instance, the
most complex human body model based on finite element methods GHBMC or THUMS
can not be apply in muscle analysis, since they are not designed for such purposes. They
can bring a very appropriate results in the dynamics analysis, deformations and stresses
of the tissue of human body in crash configurations. On the other hand, musculoskeletal
models (such as AnyBody) can analyze muscle activities and joint reaction forces in a real
motion of the human, but do not provide any information about the tissue deformation,
since they contain only rigid bodies and active muscle elements.
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The word model can be connected with the physical models (in case of human body
called Dummy) or virtual models (numerical models). This work presents some review
of the current models stage (including dummies, numerical models of the dummies and
numerical models of the human body) in the first chapter. To sum this up, each model
of human body is always only an approximation of the human and it always has some
limitations and rules, than must be always satisfied.

The main aim of this work is in the mathematical background of the multibody approach,
that is used and described here. General theory of the mathematical equations, especially
the 3D rotation is presented, where the well-known Euler angles and more robust Euler
parameters are used to parametrise general 3D motion. The equation of motion for free
and constrained body, as well as for a system of constrained bodies are derived here.

Since the multibody method generates differential-algebraic equations, that are numeri-
cally integrated in the standard MATLAB solvers, some methods of numerical stabiliza-
tion must be used, to fulfill the constraints and to stabilize the model. Two methods of
stabilization are presented here (Baumgarte and direct violation), including sensitivity
analysis of such methods, on a simple constrained system (pendulum and double pendu-
lum).

The crash examples (concern of this model) is connected with the contact and impact
scenario. For this purpose, the review of contact detection algorithms and contact force
models are presented (discrete or continuous models and variation of the normal contact
force models). Finally, the contact detection method developed for this model is described
and implemented as a right hand side to the total equation of motion. Each body of the
system can potentially get into the contact with the rigid infrastructure, to include the
crash applicability to the model.

Finally, all the methods, approaches and algorithms described here are tested via the
full human body model. Such model contains of 17 rigid bodies, linked in a open tree
structure within spherical joints. The joints include internal stiffness (to limit range of
motion and to describe physiological rigidity of the joints) as an external torque, that is
function of the relative rotation between the body segments.

The main purpose of this work is not to build a brand-new model of the human body.
There are hundreds or thousand of the models, each of them long time developed for a
very special usage. It would cost several years of development for a team of experts to
create a new software, that could be comparable with the commercial software spread
world-widely. The main concern was to study all the algorithms, that are used in MBS
software, to test them in a very simple benchmark examples, to get an idea how they
work, how they can be implemented and what are their pros and cons. The human
body model described above is a results of all the particular examples and approaches
trigger together in one complex model. The knowledge gained during the development
will be used in the further modelling. The University of West Bohemia disposes with
virtual human body Virthuman [62, 63, 64, 67, 76, 113, 114]. This model includes MBS
fragments (the basic skeleton) and the algorithm developed here can extend this model
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for a further applications. Especially the internal stiffness is a fresh field that is currently
under concern of the researches to be included in the automotive industry. Consequently,
the model shows a good potential also in the forensics analysis, which start to be also a
perspective field for biomechanical models.

To sum this up, the model which is presented here is not a completed and fully validated
model, ready to use. However, the model is in a status called validation-ready. This means,
that the model successfully connected all the mathematical and numerical approaches to
build a complex model. The model behaves good for a various crash examples. Of course
it has same limitations, uncertainties and disadvantages, that were discussed above. If
the description of some particular example (scenario) is required, the parameter variation
and model validation would be the main task. The model was created from a sketch
and all mathematical equations are provided and thus, for a further applications, a new
software can be coded in some other programming languages, that can solve limitation
of the MATLAB and its numerical solvers. Despite the limitations of the final human
body model, the main task of this work was achieved. There are still a lot of the impact
biomechanics tasks remaining, and this model can further help in their solution.
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[61] Luděk Hynč́ık. Rigid body based human model for crash test purposes. In Proceed-
ings of the Engineering MECHANICS, volume 8, pages 1–6, 2001.
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Moser, and Radek Valášek. Prediction of injury risk in pedestrian accidents using
virtual human model virthuman: real case and parametric study. Technical report,
SAE Technical Paper, 2016.
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