
University of West Bohemia
Faculty of Applied Sciences

Department of Computer Science and Engineering

Bachelor’s thesis

Use of spiking neural
networks

Plzeň 2021 Václav Honzík

ZÁPADOČESKÁ UNIVERZITA V PLZNI
Fakulta aplikovaných věd

Akademický rok: 2020/2021

ZADÁNÍ BAKALÁŘSKÉ PRÁCE
(projektu, uměleckého díla, uměleckého výkonu)

Jméno a příjmení: Václav HONZÍK
Osobní číslo: A19B0674P
Studijní program: B3902 Inženýrská informatika
Studijní obor: Informatika
Téma práce: Využití impulzních neuronových sítí
Zadávající katedra: Katedra informatiky a výpočetní techniky

Zásady pro vypracování
1. Seznamte se s aktuálním stavem poznání v oblasti impulzních neuronových sítí.
2. Vymezte zásadní charakteristiky impulzních neuronových sítí a rozdíly vůči klasickým neuronovým sítím.
3. Seznamte se s dostupnými nástroji pro vytváření a simulaci impulzních neuronových sítí.
4. Na základě bodů 1, 2 a 3 navrhněte a implementujte vhodné příklady demonstrující využití impulzních

neuronových sítí.
5. Ověřte řešení z bodu 4 na netriviálních případech a zhodnoťte dosažené výsledky.

Rozsah bakalářské práce: doporuč. 30 s. původního textu
Rozsah grafických prací: dle potřeby
Forma zpracování bakalářské práce: tištěná

Seznam doporučené literatury:

Dodá vedoucí bakalářské práce.

Vedoucí bakalářské práce: Ing. Roman Mouček, Ph.D.
Katedra informatiky a výpočetní techniky

Datum zadání bakalářské práce: 5. října 2020
Termín odevzdání bakalářské práce: 6. května 2021

Doc. Dr. Ing. Vlasta Radová
děkanka

L.S.

Doc. Ing. Přemysl Brada, MSc., Ph.D.
vedoucí katedry

V Plzni dne 26. října 2020

Declaration

I hereby declare that this bachelor’s thesis is completely my own work and
that I used only the cited sources.

Plzeň, May 5, 2021

Václav Honzík

Abstract
In the last decade, artificial (analog) neural networks have become the new
norm of solving many tasks from the fields of machine learning and native
language processing. Despite their success, however, analog networks fail to
accurately capture the behaviour of biological neural networks as the model
of an analog neuron depends on continuous activations rather than discrete
sequences of action potentials. Spiking neural networks, on the other hand,
present a new approach to model such biological nets much closely while
also attaining performance close to artificial networks. This thesis studies
current knowledge of spiking networks and compares them to analog ones.
Subsequently, state-of-the-art tools for simulation in the spiking setting are
overviewed and their subset is applied to selected brain-computer interface
experiments and image datasets.

Abstrakt
Umělé (analogové) neuronové sítě se staly v posledním desetiletí novou
normou pro řešení mnoha úloh z oblasti strojového učení a zpracování přiro-
zeného jazyka. Nicméně i přes jejich úspěch, analogové sítě nejsou schopné
přesně zachytit chování biologických neuronových sítí, protože model analo-
gového neuronu závisí na spojitých aktivacích místo diskrétních posloupností
akčních potenciálů. Impulzní neuronové sítě, na druhou stranu, představují
nový přístup jak modelovat biologické sítě mnohem přesněji a zároveň dosa-
hují výkonu velmi blízko analogovým sítím. Tato bakalářská práce studuje
současné znalosti z impulzních sítí a porovnává je s analogovými. Následně
práce shrnuje nejmodernější nástroje pro simulaci v impulzním prostředí
a část z nich je aplikována na vybraných experimentech pro rozhraní mozek-
počítač a obrazových datasetech.

Contents

1 Introduction 8

2 Non-spiking and spiking neural networks 9
2.1 Analog neural networks . 9

2.1.1 Applications . 10
2.1.2 Generative adversarial networks 12
2.1.3 Convolutional networks 12
2.1.4 LSTM networks . 13

2.2 Spiking neural networks . 13
2.2.1 Neuromorphic hardware 16

2.3 State of the art . 16
2.3.1 ANN to SNN conversion 17
2.3.2 Constrain-then-train 18
2.3.3 Local learning rules, STDP 18
2.3.4 Approximation methods 19
2.3.5 Binary neural networks 19
2.3.6 Comparison of state-of-the-art SNNs and ANNs . . . 20

3 Tools for simulation of spiking networks 22
3.1 NEURON . 22
3.2 BindsNET . 23
3.3 NEST . 23
3.4 Brian . 24
3.5 PyNN . 24
3.6 Nengo . 25

3.6.1 Nengo Core . 25
3.6.2 NengoDL . 25
3.6.3 KerasSpiking . 26
3.6.4 The rest of the ecosystem 26

3.7 SNN-Toolbox . 27
3.8 ANN simulation platforms 28

3.8.1 TensorFlow and Keras 28
3.8.2 PyTorch . 29

3.9 Summary . 29

6

4 Applications of spiking neural networks 32
4.1 Large multi-subject P300 dataset spiking conversion 33

4.1.1 Model architecture 34
4.1.2 Network training and evaluation 34
4.1.3 Conversion to spiking network 36
4.1.4 Results . 38

4.2 Training deep spiking networks using
surrogate gradient . 40
4.2.1 Results . 43

4.3 Spatial attention shifts to colored items dataset classification 44
4.3.1 Data preprocessing 44
4.3.2 Model architecture 44
4.3.3 Training on the entire dataset 45
4.3.4 Training on samples from male and female subjects . 48
4.3.5 Training on samples from each participant separately 48
4.3.6 Results . 49

5 Conclusion 52

List of abbreviations 54

Bibliography 55

A User guide to run the experiments 62
A.1 Setting up the tools . 62

A.1.1 Setting up Python 62
A.1.2 Installing Python dependencies 62

A.2 Running the experiments . 63
A.2.1 Spiking CNN on the guess the number Multi-subject

P300 dataset . 64
A.2.2 Surrogate gradient training on MNIST and Fashion

MNIST datasets with deep spiking networks 65
A.2.3 BNCI Horizon Spatial attention shifts to colored items

dataset experiment 65

7

1 Introduction

Artificial neural networks (ANNs) are systems inspired by biological neural
networks found in the brains of humans and animals. Compared to their bi-
ological counterparts, ANNs were altered to fit a more pragmatic approach
in the field of computer science. Similarly to human (or animal) neural
network, an analog neural network consists of units called neurons. These
neurons are connected with synapses which allow transferring signals (in-
formation) between them. The strength of these synapses can be adjusted
which allows the system to learn. Such trained networks attain high accu-
racy in various sophisticated tasks such as image classification, audio and
object recognition, trend prediction, and many more.

While ANNs perform very well in many fields, they are still limited in
their utilization. To run the majority of high accuracy ANNs, high-end
graphics processing units (GPUs) are required for sufficient performance
and a low computation time. This makes such networks impossible to im-
plement efficiently in power restricted hardware such as embedded devices.
Additionally, these networks are not suitable for biological simulations due to
their oversimplified representation of biological neural nets. Spiking neural
networks (SNNs) are often thought of as the next generation of computer-
simulated neural networks. This type of nets is specifically modelled with
both energy consumption and biological plausibility in mind. Thanks to
their architecture, SNNs can be utilized in various fields of science, rang-
ing from the energy-saving replacements of conventional ANNs to efficient
processors for inputs from event-based sensors [30].

However, in their current state, SNNs are still in early development and
require a lot more research to be applicable. This work aims to contribute
to the research of spiking neural networks and explore their potential appli-
cations. Chapter 2 overviews basic principles of ANNs and SNNs, compares
both architectures, and analyses the state-of-the-art in the field. Chapter
3 examines several tools and frameworks that can be used to model and
simulate spiking neural networks. A subset of these tools is used in Chap-
ter 4 where several models of spiking networks are applied on image and
brain-computer-interface datasets.

8

2 Non-spiking and spiking
neural networks

2.1 Analog neural networks
An analog neural network1 (ANN) is a system of processing units that are
connected together to simulate desired behaviour. Such units are typically
referred to as neurons and their connections as synapses due to the resem-
blance to biological neural networks.

A neuron in an analog network is a cell that transforms a specific input
signal to a corresponding output signal. These transformations are achieved
using the neuron’s activation function. The function receives signals (in-
formation) from synapses (typically real numbers), sums them (or they are
summed beforehand) and produces an output (a visualization can be seen
in Fig. 2.1). Synapses are not only used to transfer the signal but also to
control its strength. If the summed up input is strong enough, the activation
"fires", i.e., it produces a strong output. Not every function can, however, be
used as activation and specific properties are required. Typical requirements
involve non-linearity and differentiability. Non-linearity allows the network
to perform complex operations, whereas differentiability is usually required
by state-of-the-art training methods since they use some form of a gradient
descent.

Neurons group into layers where neurons in each layer use the same type
of activation. The information is fed to the input layer (the first layer in
the network) and then gradually processed by the following layers (hidden
layers) until the result is produced in the output layer. According to the
number of connections in the layer, it can be either dense, i.e., each neuron
connects to all neurons from the previous layer, or sparse - with a lower
number of synapses.

Depending on the way the information is transferred, neural nets can be
either feedforward or recurrent (see Fig. 2.2). Feedforward networks allow
the information to only move forward, i.e., the output of a specific neuron
cannot be fed to it again. Recurrent networks (RNNs), on the other hand,
permit feedback loops and the signal can be even transferred to the previous

1In this context, the term analog neural network and artificial neural network are
equivalent. Even though spiking network is considered artificial as well, it is commonly
not referred to it this way.

9

Figure 2.1: Visualization of an analog neuron. The input is a series of real
numbers multiplied by the weights (synapses), summed up, and fed to the
activation function, producing an output. An additional bias can be added
as well, which is typically a real number. Source: [28]

layers.
If the network has two or more hidden layers, it is called a deep neural

network (DNN). These networks are more capable in real-world applica-
tions than shallow ANNs (with one or zero hidden layers) as they contain
more trainable parameters and transform the data in a non-linear fashion.
With the current technology, DNNs can comprise hundreds of hidden layers
and achieve high performance in various complex AI tasks, sometimes even
surpassing humans.

2.1.1 Applications
One of the main applications of neural networks is supervised learning. Su-
pervised learning tasks involve learning a general pattern across a given data.
This pattern can then be used to predict on previously unseen data, ideally
with high accuracy. Each sample from the learning dataset comprises two
parts - input data (features) and a label. The model has to learn the pattern
by adjusting its parameters so the predicted label is the same as the target
(original) label.

The two most common applications of supervised learning are classi-
fication and regression tasks. Classification tasks concern with selecting
a correct label (class) for specific input. Depending on the requirements,
the model can choose one or multiple classes. There exist many real-world
applications such as optical character recognition, spam detection, image

10

Figure 2.2: Visualization of feedforward and recurrent neural networks.
Source: [17]

segmentation, and countless others. Regression also involves determining
a relationship between the given set of features and labels. Unlike classifica-
tion, however, regression models are used to predict continuous values (not
a distinct class). The most common applications of regression are risk-factor
analysis, market predictions, sports analysis, and so forth.

In the case of neural networks, backpropagation algorithms are used to
train the ANN for a specific supervised learning task. These methods calcu-
late the gradient of the loss function (a function that computes the difference
between the network’s output and the label) and use it to adjust the pa-
rameters of the network appropriately. Typically, the training of a neural
network requires more samples than less complex algorithms such as naive
Bayes, support vector machines or linear regression, which usually makes
ANNs unpractical for small datasets. In some cases, the learning of neural
network may not converge to optimal parameters and the network becomes
either overfit or underfit. Overfit networks tend to perform well on train-
ing data and poorly on testing data, while underfit networks often perform
poorly on both. There are many approaches to solving fitting issues, e.g., by
modifying the training dataset - expanding it, improving its quality or using
entirely different samples. The overall performance can also be improved by
applying some sort of regularization to the network - dropout layers [40],
batch normalization layers, and L1 or L2 regularization.

Unsupervised learning is another field neural nets perform exceptionally
well in. The main difference is that in unsupervised learning, no labels are
available. The goal of such tasks is to learn without any external error cor-

11

rection, i.e., it is not possible to adjust the model’s parameters according to
the labels. The most common application of unsupervised learning is cluster
analysis (i.e., grouping data with similar properties to the same groups) and
dimension reduction.

As of right now, there exists many specializations of analog networks
for both unsupervised and supervised learning. The following three sections
serve as a very brief overview of the most popular architectures of ANNs.

2.1.2 Generative adversarial networks
An example of an architecture used in unsupervised learning (though not ex-
clusively) are generative adversarial networks (GANs) [15]. GANs are used
for generative modelling - a task that is concerned with creating new (arti-
ficial) samples from an existing set of data. In recent years, these networks
have found especially huge success in problems regarding image generation.
One such example [23] used GANs to generate additional samples to improve
(deliberately) imbalanced versions of popular datasets such as MNIST [21]
and CIFAR-10 [20] which resulted in improved accuracy on the datasets.

2.1.3 Convolutional networks
Another state-of-the-art architecture used in ANNs are convolutional neural
networks (CNNs). CNNs expand on the concept of feedforward networks
by introducing convolutional and pooling layers. Both types of layers are
typically placed before the set of dense layers and their task is to perform
feature extraction (see Fig. 2.3).

Convolutional layers take in a vector/tensor (pixel grid, signal data, etc.)
and apply a linear transformation - a convolutional filter. The filter extracts
specific features such as shapes, lines, or other domain-specific objects that
are subsequently going to be processed by the rest of the network. With
more convolutions applied, the extracted features become more complex
which, in theory, should increase the probability of correct classification.

Each convolutional layer is often followed by a pooling layer. A pooling
layer downsamples the output to introduce a translation invariance to small
shifts and distortions [46]. In practice, this means that the network should
be able to recognize the same objects in slightly different positions and rota-
tions. The result of the last pooling layer is then fed to a sequence of dense
layers which serve the same purpose as in a conventional classifier. CNNs
perform especially well on image-based datasets such as MNIST, Fashion

12

MNIST [45], CIFAR-10, and others. Other applications involve native lan-
guage processing, signal processing or classification of medical data.

Figure 2.3: Visualization of the CNN architecture. Source: [42]

2.1.4 LSTM networks
Long short-term memory networks (LSTMs) are RNNs that present state-
of-the-art machines for processing time-series data. Such networks contain
specialized LSTM cells that help the network to overcome long-term depen-
dencies and vanishing gradient problem introduced by recurrent loops.

The concept of LSTM cells is not unified, and there exist various imple-
mentations of LSTM neurons. The most basic model is a recurrent neuron
with a forget gate. A forget gate is typically represented by a vector which
is used to determine whether the information in the cell should be removed
or not. Other more advanced models involve LSTMs using peephole con-
nections, gated recurrent units or minimal gated units [47].

Apart from the analysis of time-series data, the application of LSTMs
overlaps with CNNs as both are used in areas such as signal processing.
There even exist hybrid networks that use both LSTM and CNN layers. One
example is shown in this work [49] that has used such "C-LSTM" network
for text classification.

2.2 Spiking neural networks
Spiking neural networks (SNNs) represent a new generation of computer-
simulated neural networks. SNNs are designed to model biological neural
networks more precisely while also aiming to improve several shortcomings
of analog nets such as slow response times, high power consumption or lack
of asynchronous computing.

Due to the expectations set, the structure of spiking networks needed to
be changed. A spiking network consists of spiking neurons (see Fig. 2.4),

13

which are fundamentally different from the neurons found in ANNs. While
spiking neurons also share information via synaptic connections, they do not
have an activation function. Instead, every spiking neuron has a membrane
potential. Neurons receive and share information via sequences of action
potentials, also known as spike trains [42], which alter the membrane poten-
tial. Whenever a certain threshold voltage is exceeded, the neuron produces
a spike (a stimulation) and the membrane potential is reset towards some
defined baseline. This phenomenon is also commonly referred to as a firing
of the neuron.

Figure 2.4: Visualization of a spiking neuron. Inputs are sequences of spikes
(blue) which influence neuron’s membrane potential. The output is also
spikes that are generated upon exceeding the membrane potential. Source:
[1]

Usually, all spikes are assumed to be stereotypical events which reduces
the production of spikes to two main factors [30]. The first factor is the
timing of the incoming spikes such as firing rates (how many spikes were
fired in a given time frame) and firing patterns. Together, both properties
are the closest representation of an activation function in an analog network.
The second factor involves the types of synapses used to transfer the spike
sequences. Synapses in the spiking setting can be either excitatory or in-
hibitory. The excitatory synapse increases the membrane potential, while
the inhibitory decreases it. As is the case with analog networks, synapses
in spiking nets are also represented by real-valued weights. Positive weights
are typically used for excitatory synapses while negative weights are used
for inhibitory ones.

The presence of action potentials fundamentally changes the way spik-
ing networks process information. The signal in SNNs is not continuous

14

or differentiable due to the discrete nature of spikes. Even though this re-
duces the overall usability of backpropagation methods, this property can
be utilized to make the information processing asynchronous. In an ideal
case, each neuron behaves as an independent processing unit that is not
synchronized with the rest of the network. This means that if there are no
spike trains present, the neuron can be fully turned off or can at least con-
sume less energy. If implemented well, and there is an overall low number
of spikes to encode inputs, this can lead to a very power-efficient imple-
mentation. The reduction of power consumption is crucial because it makes
it feasible to use SNNs in embedded devices, which cannot be achieved by
the state-of-the-art ANNs. Spiking nets can be improved even further if
paired with event-based sensors. This addition makes it possible to detect
the first approximate output of the network after registering the first input
spikes (even for deep networks) [30]. Such phenomenon can be exploited to
achieve lower response times than conventional analog networks have, while
also maintaining high accuracy [27].

Currently, there exist several models of spiking neurons. These vary in
biological plausibility, level of detail, and computational cost. Arguably,
the most popular model is the LIF (leaky integrate-and-fire) neuron [10].
However, there are other viable candidates like the Izhikevich model [19]
or the spike response model. Even though these neuron models are more
complex than the standard neurons found in ANNs, they still represent a
relatively simplified version of the biological models. In a typical spiking
neuron, only threshold dynamics is assumed while there are other impor-
tant factors such as refractoriness, hysteresis, resonance dynamics, etc. [42].
Another common simplification is setting the resting membrane potential to
0 Volts which is, however, not the case in the biological neurons where it is
usually negative.

While there are crucial differences between the working principles of spik-
ing and non-spiking neurons, the architecture of an SNN remains very sim-
ilar to the one of an ANN. Spiking neurons are contained in layers that use
synapses to transfer information throughout the network. Again, the most
popular are deep spiking neural networks (i.e., networks with at least two
hidden layers) since they contain more trainable parameters and perform
better than simpler shallow SNNs. Just as ANNs, spiking networks can
also process information in a feedforward manner or even adopt a recurrent
architecture. With some changes, they can even implement concepts from
state-of-the-art analog networks, such as the use of convolutional layers,
pooling layers, dropout layers, etc.

15

2.2.1 Neuromorphic hardware
Unfortunately, there are not many advantages of using spiking networks
implemented in the conventional von Neumann computers. To work effec-
tively, SNNs need hardware with independent processing units that are not
synchronized by a system clock. One such promising hardware for spiking
networks are neuromorphic devices.

Neuromorphic hardware aims to model neuro-biological structures found
in the nervous systems of humans and animals. Such devices share the local-
ity of data to reduce on-chip traffic which is mostly reflected by using trains
of spikes for communication between the components [30]. Neuromorphic
hardware can be based on various implementations. Some neuromorphic de-
vices comprise analog electronic circuits, while others use digital electronics.
The key distinction is in the mapping between the hardware and the neu-
rons. Analog based devices are typically mapped one-to-one, while digital
neuromorphic machines emulate hundreds or thousands of neurons per core.

Even though the efficiency is greatly increased (compared to the von
Neumann architecture), the structure of neuromorphic systems is very re-
strictive, and spiking networks have to be modified to fit the specific hard-
ware. Many platforms also demand the SNN to be trained before it is put
in the chip, though some such as SpiNNaker, BrainScales [37], and Loihi
[9] implement spike-timing-dependent plasticity (STDP, see Section 2.3.3)
for on-chip learning. There is also an issue of implementing deep spiking
networks and only a few successful examples exist. Possibly the best result
was achieved using the TrueNorth [24] platform in article [13] that managed
to construct a deep SNN with 99.41% accuracy on the MNIST dataset.

2.3 State of the art
Since the discontinuity of spikes makes it extremely difficult to use back-
propagation algorithms, which are de facto a standard in the state-of-the-art
ANNs, a large part of the current research is focused on finding alternative
methods of training that would close the performance gap between the spik-
ing and analog architecture. There are also additional challenges, such as
finding the optimal coding for the information recognized by the network
as it needs to be represented by spikes rather than a series of floating-point
numbers (which is the case in analog networks). This section overviews sev-
eral state-of-the-art approaches of training spiking networks and evaluates
their results in the comparison section.

16

2.3.1 ANN to SNN conversion
The first solution to the lack of optimal learning methods is to avoid them
in the spiking environment entirely. Instead, a conventional ANN is trained
via backpropagation and then converted to its spiking equivalent. The con-
version step consists of transforming the non-spiking neurons to their spiking
variants as well as adjusting their specific parameters (refactor times, leak
rates, etc.) and weights of their synapses.

A great advantage of this method is that state-of-the-art analog networks
can be utilized. Therefore, the converted SNN achieves similar accuracy
to the original ANN since the conversion introduces minimal performance
decrease. There are already some well-performing SNNs created with this
method such as [11, 38] which achieve only marginally worse results on the
standard ANN datasets such as MNIST.

Even though these conversions are a rather successful and viable solution
to the supervised training of SNNs, there is still vast room for improvement.
Typically, most of the converted networks use rate coding, i.e., the informa-
tion is encoded in an average number of spikes over a given interval. This is,
however, suboptimal since multiple spikes are required to represent a single
activation of analog network [30]. Ideally, temporal codes with a sparse num-
ber of spikes (i.e., timing the spikes precisely) should be used to fully utilize
the potential of a spiking network. They, however, in almost all cases lower
the performance. Several papers are trying to improve rate codes, for exam-
ple, [48] manages to decrease the overall number of spikes while maintaining
similar accuracy to other rate-based codes. Histogram of averaged time sur-
faces (HATS) is another alternative that introduces a spatio-temporal coding
for event-based hardware [39], defining a new type of memory time surface
to compactly store spatio-temporal information.

An additional set of issues includes conversion of specific ANN compo-
nents to the spiking environment. Activations with negative outputs prove
difficult to convert since the firing rates of spiking neurons can only be pos-
itive. This affects frequently used activations such as softmax. There is
a partial solution to this problem [29] which uses one neuron to encode pos-
itive and zero values, while the other one is used to encode negative values.
A different circumvention is to simply avoid these activation functions en-
tirely and substitute them with similar ones that output only positive values
- e.g., a sigmoid in the case of softmax activation. The conversion of spe-
cific CNN layers such as max-pool causes problems as well. This is due
to the maximum operation being nonlinear and unable to be computed on
a spike-by-spike basis [30]. The inability to properly emulate max-pool in

17

the spiking setting made some state-of-the-art networks, such as [11], use
average pooling instead. That, however, results in a slight performance de-
crease. There is also a workaround solution, which proposes that output
units use a gating function that discards all spikes except the ones from
the maximally firing neuron [35] which, in practice, results in functionality
similar to the one found in a max-pooling layer.

2.3.2 Constrain-then-train
Constrain-then-train methods are similar to the conversion methods, except
that they define additional constraints before the analog model is trained.
These constraints are present because of the nature of the spiking neurons
(or the hardware they are implemented in). Traditional training methods
based on backpropagation are used to train the ANN which can then be
converted to its spiking equivalent.

Unlike the ANN conversion methods, however, constrain-then-train uses
constraints for a single configuration of spiking parameters, i.e, if the SNN
parameters need to be changed, the entire ANN model has to be retrained
as well (which is not the case in the conversion methods). Such an approach
usually provides SNNs with better accuracy than the ones from the conver-
sion method. The technique is for example applied in [18], where a neural
network with leaky integrate-and-fire neurons was used. The resulting SNN
achieved accuracy comparable to other state-of-the-art spiking networks.

2.3.3 Local learning rules, STDP
Local learning rules are one of the more biologically plausible methods for
training neural networks. The most notable is the so-called spike-timing-
dependent plasticity (STDP). STDP is a biology-inspired method that mod-
ifies the weights of synapses between neurons. If a presynaptic neuron fires
shortly before the postsynaptic neuron, the weight of the synapse connecting
them is strengthened [42]. Unlike the two previously mentioned methods,
STDP allows training SNN directly. While this approach may seem like the
most attractive one, there is, however, no proper way of performing back-
propagation on feedforward networks (the adjustments can only be made
locally). Therefore, STDP is mostly used for unsupervised learning. To
allow STDP to be utilized for supervised learning, a feedforward network
would have to be converted to a recurrent one. Even though several experi-
ments are combining recurrent networks and STDP for supervised learning
tasks, they attain worse results than the previously mentioned conversion

18

and constrain-then-train methods.
For unsupervised learning, there are already existing neuromorphic hard-

ware implementations such as SpiNNaker, BrainScaleS or Loihi. These can
additionally be exploited to accelerate biological simulations that would oth-
erwise take a significantly longer time to simulate [30].

2.3.4 Approximation methods
Another approach is to approximate the discontinuity of the spike signals
by a function that is continuous and differentiable so that backpropagation
algorithms can be used. These methods generally show more potential than
the previously mentioned conversion and constrain-then-train approaches as
they allow training the spiking network directly. One of the successful imple-
mentations [22] used low-pass filtering with backpropagation to train a high
accuracy SNN. Another method [26] defines a modified version of stochastic
gradient descent which approximates the gradient itself (instead of changing
the network).

2.3.5 Binary neural networks
Even though binary networks are not SNNs and instead constitute a special
type of ANNs that contain only neurons with binary activations, they can
be seen as a viable alternative to spiking networks. Thanks to binarization,
these networks are much more energy-efficient than generic ANNs and can
also be implemented in event-based hardware. To provide an even better
performance, weights in the network can be binarized as well [8] which makes
it possible to replace costly multiplication operations with computationally
cheaper bitwise operations such as XNOR and bit counting [30].

Although it might seem practical to convert an ANN into its binarized
form after it was trained, such a conversion usually results in a significant
accuracy degradation. Therefore, it is preferred for the network to be bi-
narized before the training is performed. State-of-the-art training methods,
however, take longer than gradient descent methods (which are not usable
due to binarization), and the resulting networks offer worse performance
than conventional ANNs. Additionally, binary networks cannot substitute
spiking networks in use cases where asynchronous data processing is required
since they are still based on analog networks.

19

2.3.6 Comparison of state-of-the-art SNNs and ANNs
This section overviews several state-of-the-art analog and spiking networks
on the MNIST dataset. Even though there are other, more suitable datasets
for spiking networks such as N-MNIST (Neuromorphic MNIST), they are not
used frequently enough for the comparison to be meaningful. Additionally,
the MNIST dataset is also used by analog networks which makes it possible
to measure performance differences between the state-of-the-art analog and
spiking nets.

The MNIST dataset is commonly used for performance evaluation of ma-
chine learning methods since it is not difficult to achieve very high accuracy
on it. The dataset consists of 28× 28 grey-scale images of handwritten dig-
its (from a range of 0 to 9) with 60000 training samples and 10000 testing
samples.

It is worth noting, however, that unlike in ANNs, comparing only ac-
curacy does not show the full potential of spiking networks. SNNs allow
additional optimizations for lower response times and efficient power con-
sumption, which is typically not a point of concern of analog networks.
In many cases, achieving a highly performant SNN directly decreases the
response time and the power efficiency since high firing rates and longer
duration for spike integration are necessary [30]. Therefore, evaluating the
performance of spiking networks by only using accuracy-related metrics may
result in misleading interpretations.

Table 2.1 shows performance of the state-of-the-art analog and spiking
networks. The table consists of three ANNs and four SNNs. The two best
best performing networks are analog networks [5, 6] which achieve over 99.7%
accuracy. The third ANN is a recurrent LSTM network that scored only 99%
accuracy. This, however, is still remarkable since LSTM networks usually
do not perform as well as CNNs in image classification.

The best spiking network is surprisingly implemented in neuromorphic
hardware. The work [13] is an example of the approximation approach.
It treated spikes and synapses as continuous probabilities which made it
possible to use standard backpropagation techniques for training. The SNN
managed to attain 99.42% accuracy which is very close to the best ANN on
the list. The second best SNN is also an example of approximation methods
and is very close to the first one. The network is a CNN trained using back-
propagation and low-pass filtering [22] which allowed it to achieve 99.31%
accuracy. The spiking CNN trained with weight and threshold balancing [11]
is a case of the conversion methods and its accuracy is still relatively close
to the first two SNNs. The worst performing network [34] in the table was

20

converted from an ANN as well but uses temporal coding instead of a rate
based one. The temporal coding is expected to be more energy efficient but,
as seen, comes with an accuracy decrease.

Neural network Network type MNIST accuracy [%]
Branching and Merging
CNN with HFC [5]

ANN 99.79

Multi-column DNN for
image classification [6]

ANN 99.77

SNN implemented in
TrueNorth and trained with
backpropagation [13]

SNN 99.42

Spiking CNN trained with
BP and low-pass filtering
[22]

SNN 99.31

Spiking ConvNet trained
with weight and threshold
balancing [11]

SNN 99.10

Batch normalized LSTM [7] ANN 99.00
Spiking Lenet-5 with sparse
temporal coding [34]

SNN 98.57

Table 2.1: Comparison of spiking and non-spiking state-of-the-art networks
on the MNIST dataset (sorted from best to worst).

21

3 Tools for simulation of
spiking networks

The next part of the thesis was to explore tools that were going to be used
to model and simulate spiking networks. As of right now, there already ex-
ist several robust frameworks, typically each with a different specialization.
Some frameworks are more theoretically oriented and allow very detailed
simulation of individual neurons, while others are very pragmatically fo-
cused. Most of these simulators are designed to be used with the Python
programming language since it offers simple syntax to work with complex
algorithms while also being compatible with lower-level languages such as
C and C++.

There were several factors involved to determine whether a specific plat-
form was going to be examined. The main ones were the overall support
from the user base and developers, the number of features it offers, and the
quality of documentation. Frameworks with a large community were pre-
ferred since they typically have more educative materials and tend to be
more user-friendly. The ability to convert an analog network to a spiking
one was also welcome since it allows to directly compare how well does the
SNN perform. Other factors were GPU support, compatibility with other
machine learning frameworks (e.g., TensorFlow and PyTorch) or simple in-
stallation and setup.

3.1 NEURON
NEURON is arguably the most used platform among researchers as it ap-
pears in more than 2000 scientific papers. The platform targets mostly users
with a neuroscience background since its intention is to simulate biologically
plausible neurons and networks.

Most of the simulation can be done either via NEURON’s GUI, in "hoc"
(a programming language) or in Python. Alternatively, the framework also
offers its own domain specific language called NMODL which the users can
declare models in. NMODL makes the construction of the models very
straightforward and can also be compiled to highly optimized code for both
CPUs and GPUs. Clusters such as IBM Blue Gene or Beowulf are supported
as well. NEURON additionally offers integrator-independent model defini-

22

tion. Users can select from different numerical integration methods such
as Euler method, Crack-Nicholson method or adaptive integration methods
which are more accurate.

3.2 BindsNET
BindsNET [16] is a Python simulation library that is built on top of PyTorch.
The main goal of the framework is to provide biologically acceptable simula-
tion while also maintaining straightforward development by using PyTorch
objects to construct the network.

BindsNET offers tools for both unsupervised and supervised learning
as well as reinforcement learning. The framework contains several models
of spiking neurons that can be used to construct an SNN such as the LIF
model, the Izhikevich model, etc. There are also premade models of networks
available, however, those are typically simple two-layer SNNs.

Training of the networks can be done by application of learning rules
(this is typically preferred over backpropagation due to biological plausi-
bility). Rules can be either two-factor or three-factor. Two-factor learning
rules change parameters of the network according to pre-synaptic and post-
synaptic activity. These can be for example Hebbian Learning (neurons that
fire at the same time have a strong synaptic connections to one another)
and STDP (see Section 2.3.3). Three-factor learning rules allow additional
changes to the network on a global level.

A great advantage of this framework is that it uses functionality from
PyTorch. This means that costly operations during training (such as matrix
computations) can be done on a GPU rather than on a CPU and the training
can be faster. BindsNET should also, in theory, be convertible to various
hardware platforms such as FPGA, ASIC or ARM devices [16] to execute
simulations. However, no tools for such conversion have yet been created.

3.3 NEST
NEST [12] is another platform for simulation of spiking neural networks.
Its main advantage is its wide range of features for creating such mod-
els. The framework contains over 50 types of spiking neurons and 10 types
of synapses. A NEST network can also comprise a combination of these com-
ponents, i.e., multiple variants of neurons and synapses can be used within
a single network. The properties of the SNN can be tracked and even changed
during its run. NEST is also very popular in the scientific community, ap-

23

pearing in nearly 500 scientific papers and projects such as BrainScaleS and
the Human Brain Project.

The framework itself is written in C++, however, it can also be used in
Python (via PyNEST library), in a built-in simulation language interpreter
(SLI), or in NESTML - a domain-specific language for modelling NEST
neurons [31]. Additionally, it is compatible with PyNN which is a high-
level framework for simulator independent model definition (see Section 3.5).
NEST is primarily designed to run on UNIX systems - Linux, macOS, etc.
Even though there is no direct support of Windows operating systems, the
page mentions compatibility via a virtual machine (or Windows Subsystem
for Linux). Another advantage of NEST is its scalability. The authors
mention compatibility with a wide range of systems ranging from MacBooks
to computer clusters such as IBM BlueGene. Unfortunately, the framework
does not currently support computation on GPUs, which makes it in certain
cases slower than other similarly oriented frameworks [43].

3.4 Brian
Brian is a mathematically based simulator programmed in Python. It of-
fers an equation-oriented definition of SNNs rather than implementing them
programmatically. Neurons, synapses, and other parts of the network can
be described by differential equations which makes Brian very flexible and
relatively straightforward for scientific purposes. On the other hand, such
equations also require expert knowledge in computational neuroscience and
might not be suitable for everyone.

Models defined in Brian can be converted to highly optimized Python,
Cython, and even native C++ code. Such compiled C++ code can also be
used as an input to the GeNN library [41] which makes it possible to further
optimize the entire simulation by running part of it on Nvidia GPUs.

3.5 PyNN
PyNN is a framework that can be used to define abstract models of neural
networks. Such models can then be run on various supported backends
such as the previously mentioned NEURON, NEST, and Brian. There is
also support for running PyNN networks on neuromorphic platforms such
as SpiNNaker or BrainScaleS. The library contains a set of neurons and
synapses which are compatible across all frameworks. If the user does not
need simulation on multiple backends, PyNN can also use platform-specific

24

features and serves as a high-level abstraction on top of the specific simulator.

3.6 Nengo
Nengo [2] is a Python framework that supports simulation of both non-
spiking and spiking networks. A great advantage of this platform is that it
is very flexible while also offering a large number of features. Nengo uses a
similar approach as PyNN which allows defining an abstract model that can
run on various simulation backends. These involve the conventional x86/x64
platform (Linux, Windows, macOS) as well as various neuromorphic devices.

3.6.1 Nengo Core
Nengo core contains essential functionality which is reused in other parts of
the library. It consists of several objects that are used to model a neural net-
work. A network itself is represented by the Network object which comprises
ensembles (groups of neurons), nodes (neurons), connections (synapses) or
even other networks. Models can be trained using learning rules - similar to
other biologically inspired frameworks. Nengo also allows to define custom
learning rules and node types.

Since the simulations of biological models are typically very complex,
and there might not be enough memory to monitor all components of the
network during the simulation, Nengo uses a Probe object, which collects
data from a particular object in the model, e.g., a neuron. Probes can
record statistics such as the number of spikes, membrane potential, and
others. Models created in Nengo can also be visualized using NengoGUI,
which is a web application. This application shows all parts of the network
and can even be used to control the simulation.

3.6.2 NengoDL
NengoDL contains a deep learning simulator for Nengo models. Even though
some learning and simulation could be done with components from the core,
this library contains more features and functionality dedicated to deep learn-
ing tasks.

NengoDL uses TensorFlow and Keras as the backend for the simulation.
User can use pure Nengo models, define models that comprise parts from
TensorFlow and Keras, or even use networks that are made in Keras entirely.
Before the simulation, any non-native network must be converted. This
involves replacing TensorFlow objects (layers, activations ...) with native

25

Nengo objects (if such converter exists) or creating a TensorNode which
provides compatibility between the two frameworks.

To run the network, NengoDL introduces a Simulator object which acts
as a wrapper around Keras API. This is very useful since most of the Tensor-
Flow (Keras) functionality can be used alongside Nengo, including optimiz-
ers, callbacks, and losses. Training and evaluation can be done in the same
way as in Keras as well, i.e., a network is created, compiled, fit, and then
evaluated. It is also possible to change certain parts (such as activations)
of the trained network. This, in practice, means that the user can train
a state-of-the-art analog network and then swap its activations with spiking
ones, resulting in a highly performant SNN.

3.6.3 KerasSpiking
KerasSpiking contains functionality to construct and train spiking neural
networks in the Keras framework. Unlike NengoDL, it does not use objects
from Nengo and is intended to be a lightweight library used alongside Keras
rather than a feature-rich framework.

The main feature of this library is its ability to convert any Keras /
TensorFlow activation into a spiking one. Models with spiking activations
can be run and trained in the same way as analog ones. This is achieved
by using a feature called "spiking aware training" that swaps the spiking
activations with analog ones whenever the network parameters are being
adjusted (i.e., during training). There is also a PyTorch variant of this
framework called PyTorchSpiking which offers the same set of features. The
main disadvantage of both of these frameworks is that the created networks
cannot be converted to native Nengo models, and therefore are tied to their
specific backend.

3.6.4 The rest of the ecosystem
As previously mentioned, Nengo also contains modules that make it possi-
ble to implement spiking networks in hardware. Various hardware platforms
can be used such as FPGAs, Intel Loihi, OpenCL-based devices (i.e., set of
CPU, GPU and other computing devices that can be programmed with the
OpenCL framework), and SpiNNaker. There is also a library for seman-
tic pointer architecture implemented in Nengo SPA. This allows to define
a (spiking) neural network by semantic pointers which represent higher-level
cognitive functions. The visualization of the entire ecosystem can be seen in
Figure 3.1.

26

Figure 3.1: Visualization of the Nengo ecosystem. Source: [3]

3.7 SNN-Toolbox
SNN-Toolbox is a Python library that specializes in converting artificial
networks into spiking ones. The framework functions as a mediator between
analog and spiking platforms. It can convert ANN models defined in non-
spiking frameworks such as Keras, PyTorch, Caffe or Lasagne and make
them usable in spiking simulators such as PyNN and Brian. User can also
run converted SNNs in INIsim, which is a native simulator inside SNN-
Toolbox.

Additionally, SNN-toolbox supports two popular hardware platforms -
Loihi and SpiNNaker. Due to the differences of each platform, though, not
all layers in analog network can be converted (see Fig. 3.2). The most
compatible is INIsim (for obvious reasons).

27

Figure 3.2: Supported features in SNN-Toolbox. Source: [36]

3.8 ANN simulation platforms
This section briefly overviews two main frameworks (TensorFlow and Py-
Torch) for the simulation of analog networks. While neither of these allows
the creation and run of spiking neural networks directly, they are often used
as a backend in many spiking simulators.

3.8.1 TensorFlow and Keras
TensorFlow is one of the most popular ANN platforms. The platform is very
beginner-friendly and also contains a large set of features and customizabil-
ity for advanced users. Tensorflow can be controlled via Keras API which

28

contains high-level components to simplify the creation of neural networks.
The platform is very scalable - TensorFlow networks can be run in Python,
server-side using TensorFlowJS, or even in mobile devices using the Tensor-
Flow Lite platform. There is also support for GPU computing using the
Nvidia CUDA toolkit.

3.8.2 PyTorch
PyTorch is another mature machine learning platform that targets the same
user base as TensorFlow. It is designed to be used in Python, offering similar
features to TensorFlow - support for mobile devices, enormous scalability,
and GPU support (again via the CUDA platform). Its main advantage over
TensorFlow is that it allows to define computational graph (a graph that
describes relations between parts of the network) dynamically, i.e., a model
can be edited while the simulation is running. There is also a low-level C++
API called LibTorch if the user needs to optimize their code further.

3.9 Summary
The most feature-rich and popular simulators for spiking networks were cov-
ered. While there are many other spiking frameworks available, they are
either in the very early stage of development, or most their features are
already implemented in one of the mentioned frameworks.

This section compares features of the six previously mentioned simulators
- NEURON, BindsNET, NEST, Brian, Nengo, and SNN-Toolbox. PyNN
was excluded since it is more of a high-level API to simplify work with
other simulators. Regarding Nengo, only Nengo core and NengoDL were
considered since they are the most used parts of the framework while others
such as PyTorchSpiking or KerasSpiking are currently in more experimental
stages. Table 3.1 shows data gathered from the GitHub repository of each
project as GitHub has become arguably the largest platform for distributing
software in the last few years. The site provides statistics that can be used
to compare popularity, size of the community, and general support from the
developers. Unfortunately, GitHub does not publicly disclose the number
of unique or recent downloads per project, and thus, only metrics such as
the number of stars, the number of releases, fork count, and the "used by"
number were considered. Such collected data might, however, not be entirely
accurate since some simulation platforms offer downloads directly from their
websites (which in certain cases could be preferred by their user base).

29

If only data from GitHub is examined, the two closest metrics to the
popularity are the "used by" number (i.e., how many repositories use the
project) and the number of stars (user can add a star to a project to show
that they like it). Sadly, not every repository tracks the "used by" statistics,
and thus only the number of stars were considered. Using this metric, it can
be seen that the three most popular frameworks are BindsNET, Nengo, and
Brian.

Platform Releases Forks Stars Contributors Used by
NEURON 18 63 139 35 N/A
BindsNET 17 218 834 25 N/A
NEST 20 271 341 92 N/A
Brian 35 162 531 39 99
Nengo 20 161 615 32 109

SNN-Toolbox 5 75 187 11 3

Table 3.1: GitHub statistics of each project.

Another important metric can also be the number of publications each
framework appears in. This is shown in Table 3.2. Unfortunately, Brian,
BindsNET, and SNN-Toolbox do not provide any information about the
number of publications that mention them. Nengo appears in over 100
publications, however, the authors also mention that the list is incomplete.
Judging by this metric, the NEURON framework is most likely the most
used platform in the scientific community.

Platform Number of publications
NEURON 2304
BindsNET N/A
NEST 495
Brian N/A
Nengo over 100

SNN-Toolbox N/A

Table 3.2: Number of publications for each platform.

Lastly, Table 3.3 shows various features of each framework such as their
scalability, GPU support, and others. It could be argued that Nengo and
BindsNET are probably the best platforms for "general purpose" simula-
tions since they offer an easy setup of the environment (both are compatible
with either TensorFlow or PyTorch) and have a much flatter learning curve

30

Platform GPU supp. Cluster supp. Language
NEURON Yes Yes GUI, Python /

hoc, NMODL
BindsNET Yes N/A Python
NEST No Yes Python, C++,

NESTML
Brian Yes (via

Brian2GeNN)
No Python

Nengo Yes (in
NengoDL)

Yes Python

SNN-Toolbox N/A No Python

Table 3.3: Various features of each platform - GPU support, cluster compu-
tation support, and the language the user controls the simulation in.

(though this is very subjective). SNN-Toolbox also fits this category. How-
ever, its modelling features are very restrictive, and most of them are already
present in Nengo or BindsNet. On the other side of the spectrum, NEU-
RON, Brian, and NEST are more theoretically oriented and offer extensive
features for modelling and implementing custom spiking neurons.

31

4 Applications of spiking
neural networks

After evaluating all possible tools for the simulation of SNNs, the next task
was to use these tools to construct a spiking network and apply it in a mean-
ingful way. To find a fitting use case, only classification problems were con-
sidered since the results can be easily evaluated. Classification tasks are also
one of the most common applications of neural networks so there exist many
datasets from various fields such as medicine, computer vision, statistics, and
many others.

One of the main criteria of choosing the dataset was whether it would be
suitable for the spiking network. Since SNNs process information via trains
of spikes, they are very suitable for spatio-temporal data. Image datasets
are another great candidate since they can be classified by CNNs which are
also realizable in the spiking setting (though with more constraints). In
total, 4 datasets were used - two with spatio-temporal characteristics (the
P300 and BNCI Horizon datasets) while the other two (MNIST and Fashion
MNIST) were image datasets:

• A large multi-subject P300 dataset [25]
• BNCI Horizon spatial attention shifts to colored items dataset [32]
• MNIST handwritten digits image dataset [21]
• Fashion MNIST image dataset [45]

The datasets were used across three experiments. The networks applied
in these experiments were run using Nengo, NengoDL, and PyTorch (with
additional implementation of a spiking network and a learning algorithm).
Nengo and NengoDL were selected since they offer a very straightforward
simulation of a spiking network. The SNN is constructed from an already
trained ANN which also makes it possible to compare the performance be-
tween both architectures. Other frameworks were not chosen as they did not
prove to be very practical and/or did not offer any advantage over Nengo
and PyTorch.

All experiments were run in Python 3.8 using Jupyter notebooks. Jupyter
notebooks were used because they allow splitting the entire Python script
into smaller code blocks that can be executed separately. In practice, this

32

allows to develop part of the program, run it, and see the results immedi-
ately (e.g., the user can print some text in the console or display a graph),
while also being able to use the variables declared in previous code blocks.
Each experiment was run on a personal computer with Intel Core i7 9700f
CPU, 16 GB of RAM, and Nvidia GTX 1060 6 GB GPU.

4.1 Large multi-subject P300 dataset spiking
conversion

The first experiment used a multi-subject P300 dataset from [25]. The
dataset contains electroencephalographic (EEG) samples from the guess the
number (GTN) brain-computer interface (BCI) experiment. In this BCI ex-
periment, the examined subject chooses an arbitrary number (ranging from
1 to 9) to which they refer to as the "target number". Subsequently, the par-
ticipant is shown a random sequence of digits (again from the same range)
while the experimenters record the EEG signal and try to guess the tar-
get number from event-related potential waveforms [25]. Overall, the GTN
dataset contains EEG data from 250 children between ages 7 - 17. The
samples can be divided into epochs, i.e., a short time interval during which
a stimulus (in this case a random number) occurs.

The experiment performed here aims to create a spiking neural network
that can classify whether data from a specific epoch correspond to a target
or a non-target number. Since one paper [44] already used this dataset to
create a CNN which achieved relatively high accuracy (62 − 64%), a very
similar model was used here as well. There is also a thesis [33] which utilizes
this CNN with SNN-Toolbox to achieve accuracy around 63.7% in analog
and 57.2% in spiking setting.

Before performing the experiment, preprocessing of the original P300
dataset was applied (in the same manner as in the paper [44]). The entire
EEG signal from each participant was split into epochs. For each one, the
data from 200 ms before the stimulus and 1000 ms after the stimulus were
extracted, forming a 1200 ms long sample. To remove damaged epochs,
those with amplitude higher than 100 µV were taken out. In total, such
processing produced 8036 samples of 3 × 1200 tensors (3 EEG channels
recorded for 1200 ms with 1000 Hz sampling rate) that could be fed to the
model. The information whether a given epoch represents a target or a non-
target number was used as labels, which were hot-encoded - a (0, 1) vector
for a non-target and a (1, 0) vector for a target number.

33

4.1.1 Model architecture
To simulate a spiking network, NengoDL and TensorFlow (Keras) frame-
works were used. The CNN from the original paper [44] was created in
Keras and then converted to a Nengo model. This operation required small
changes due to compatibility issues between the frameworks (this involved
replacing ELU activations with ReLUs, changing padding to "same" in the
average pooling layer, and removing the first batch normalization layer). Un-
fortunately, not all parts of the network could be replaced by native Nengo
objects and were instead replaced by TensorNodes. This did not cause any
issues during this experiment but may potentially create problems if the
model needs to be simulated on a different backend. The visualization of
the model is shown in Fig. 4.1.

4.1.2 Network training and evaluation
Apart from the minor changes in the model, both features and labels needed
to be reshaped since Nengo required a specific shape of data for the simu-
lation. The features were flattened from 3 × 1200 tensor to a 3600-element
vector. Additionally, a dimension representing time was necessary for both
features and labels (so the simulator could use it for the time steps during
simulation - i.e., for how long is the data fed to the network).

The target and non-target features with their respective labels were con-
catenated to form the dataset. The training approach was very similar to
the article with the original CNN [44]. The dataset was shuffled and 25%
of the data was held out as testing data. The other part (75%) was used
in cross-validation (CV), i.e., a technique where the model is iteratively re-
set and retrained with different training subset to find the best performing
parameters. The CV method applied here is called Monte Carlo. The algo-
rithm randomly picks a part of the dataset as training samples, while the
other part is used to validate the model (this is done every iteration).

The CV was performed in 30 iterations (i.e., creating 30 different config-
urations of the model). In each one, 25% of the non-testing data were used
as the validation data while the remainder was fitted to the neural network.
Each configuration of the analog model was trained for 30 epochs with an
early stopping callback of five epochs (the training would stop, restoring
the best weights, if the loss on validation data did not improve in the last
5 epochs) and a batch size of 64. The Adam optimizer and binary cross-
entropy loss were used to optimize the network.

34

InputLayer
input:

output:

[(None, 3, 1200, 1)]

[(None, 3, 1200, 1)]

Conv2D
input:

output:

(None, 3, 1200, 1)

(None, 1, 1198, 6)

Dropout
input:

output:

(None, 1, 1198, 6)

(None, 1, 1198, 6)

AveragePooling2D
input:

output:

(None, 1, 1198, 6)

(None, 1, 150, 6)

Flatten
input:

output:

(None, 1, 150, 6)

(None, 900)

Dense
input:

output:

(None, 900)

(None, 100)

BatchNormalization
input:

output:

(None, 100)

(None, 100)

Dropout
input:

output:

(None, 100)

(None, 100)

Dense
input:

output:

(None, 100)

(None, 2)

Figure 4.1: TensorFlow model of the convolutional neural network tested on
the P300 dataset.

35

4.1.3 Conversion to spiking network
The trained ANN was evaluated on the previously unseen testing data and
its parameters were saved so it could be converted to a spiking network. The
conversion in Nengo was relatively straightforward. It consisted of loading
the parameters from a file and replacing non-spiking activations with spiking
ones. In this case, all ReLUs were swapped with Nengo’s spiking rectified
linear activations.

Apart from changing the activations, the Nengo converter has an addi-
tional set of parameters that can further improve the performance of the
spiking network. These are spike firing rate scaling and synaptic smoothing.
The first mentioned increases the number of spikes by applying a linear scal-
ing to the input of the neurons (subsequently the output needs to be divided
by the same scale as well) [4]. With high enough firing rates, the performance
of the SNN should converge to the performance of the ANN, though it also
implies less energy efficiency due to the number of fired spikes. Synaptic
smoothing (synapse parameter) applies smoothing to the spikes using a low-
pass filter which should also improve performance [4]. Without synaptic
smoothing, there is always a chance that the spike will not occur in the last
time step, whereas with it the output is averaged over more time steps. The
disadvantage of this feature is that it will increase the network’s latency.

The converted spiking network was evaluated with both features turned
on and off - i.e, 4 variants of the spiking network were tested (see Table 4.1)
which resulted in a total of 120 runs of SNNs across the entire CV. The spike
firing rate scaling was set to 1000 and the synaptic smoothing was set to 0.01.
These values were found mostly experimentally as increasing spike firing rate
scaling further, or changing the synaptic smoothing to different values did
not improve the overall accuracy in any noticeable way. The testing data
was fed to the network in 50 time steps and the output of the last time
step was used to compute the performance of the model. The example code
of running a spiking network is in Fig. 4.2.

SNN variant Time steps Spike firing
rates scaling

Synaptic
smoothing

1 50 1000 0.01
2 50 1000 Off
3 50 Off 0.01
4 50 Off Off

Table 4.1: Combinations of SNN parameters used in Nengo simulator.

36

Convert TensorFlow network to a spiking Nengo network
model - the TensorFlow model
swap_activations - replacement of ReLU activations with Spiking ReLUs
scale_firing_rates - firing rates scaling parameter
synapse - synaptic smoothing
converter = nengo_dl.Converter(

model=model,
swap_activations={ tf.nn.relu: nengo.SpikingRectifiedLinear() },
scale_firing_rates=scale_firing_rates,
synapse=synapse

)

Input layer of the network
input_layer = converter.inputs[model.get_layer('input_layer')]

Output layer of the network
output_layer = converter.outputs[model.get_layer('output_layer')]

Tile test features (x_test) to desired timesteps for the simulator
x_test_tiled = np.tile(x_test, (1, timesteps, 1))

Run NengoDL simulator to test the spiking network
with nengo_dl.Simulator(converter.net, minibatch_size=64) as simulator:

Load weights of the trained analog network
simulator.load_params(trained_network_params)

Get predictions for the test data
predictions = simulator.predict({ input_layer: x_test_tiled })

Extract output from the last layer and get the last timestep
predictions = predictions[output_layer][:, -1, :]

Apply argmax to get the label for each testing sample
predictions = np.argmax(predictions, axis=-1)

Compute accuracy of the spiking network
snn_accuracy = (predictions == y_test).mean()

print(snn_accuracy)

Figure 4.2: Conversion of a TensorFlow model to a spiking Nengo model
and getting its accuracy on testing data.

37

4.1.4 Results
The original ANN model was expected to perform the best since a slight
decrease in performance is usually present by conversion to a spiking net-
work. This was the case for variants 3 and 4, which both had no spike
firing rate scaling enabled. However, variants 1 and 2 achieved marginally
higher average and maximum accuracy than the ANN (most likely due to
the high scaling rate applied). The best accuracy, 64.96%, was attained by
variant 2 (the one without synaptic smoothing enabled). The worst perform-
ing model was the third variant which had synaptic smoothing enabled and
scaling disabled. This is surprising since smoothing is expected to improve
performance which is not the case here. Variant 4, which had both features
off, performed slightly better than variant 3 but was still very close to a coin
flip.

Performance metrics can be seen in Table 4.2, which contains informa-
tion about accuracy of each model and Table 4.3 that provides information
about precision, recall, and F1 score. Surprisingly enough, in terms of ac-
curacy and recall, both the analog model and the spiking variants 1 and 2
performed slightly better than the CNN in the original article [44] (which
attained an average accuracy of 62.18%, an average precision of 62.76%, and
an average recall of 61.34%).

38

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70
Accuracy

22

25

26

11

19

14

9

10

7

1

Ite
ra

tio
n

nu
m

be
r

ANN
snn [timesteps=50, scaling=1000, synapse=0.010000]
snn [timesteps=50, scaling=1000, synapse=None]
snn [timesteps=50, scaling=1, synapse=0.010000]
snn [timesteps=50, scaling=1, synapse=None]

Figure 4.3: Top 10 ANN accuracies in comparison with SNN. From best
(iteration 1) to worst (iteration 22) - sorted by the best ANN accuracy.

39

Model Average
accuracy

Maximum
accuracy

Accuracy
SD

ANN 0.6334 0.6472 0.0107
SNN

(variant 1) 0.6343 0.6486 0.0106

SNN
(variant 2) 0.6336 0.6496 0.0107

SNN
(variant 3) 0.5197 0.5431 0.0137

SNN
(variant 4) 0.5219 0.5456 0.0126

Table 4.2: Accuracy statistics of the analog CNN model and its spiking
variants (from Table 4.1) on the P300 dataset.

Model Average
precision

Maximum
precision

Average
recall

Maximum
recall

Average
F1

Maximum
F1

ANN 0.6433 0.6720 0.6004 0.6700 0.6204 0.6462
SNN

(variant 1) 0.6447 0.6732 0.6008 0.6683 0.6212 0.6446

SNN
(variant 2) 0.6441 0.6740 0.5996 0.6673 0.6202 0.6449

SNN
(variant 3) 0.5263 0.5567 0.3918 0.4801 0.4480 0.5092

SNN
(variant 4) 0.5288 0.5608 0.3905 0.4671 0.4484 0.4955

Table 4.3: Precision, recall, and F1 score of the analog CNN model and its
spiking variants (from Table 4.1).

4.2 Training deep spiking networks using
surrogate gradient

The next performed experiment was based on training a spiking network
using a so-called surrogate gradient (SG) method [26]. This method (unlike
the conversion in Nengo) allows training a spiking network directly, i.e., no
analog network is required to produce a trained spiking model.

As previously mentioned, the issue of training in the spiking environment
is that the spikes are discrete events, and the signal is thus discontinuous
and non-linear. These properties make it impossible to perform gradient
descent to optimize the loss function. To circumvent this issue, some form

40

Figure 4.4: A comparison of the "true" gradient and the surrogate gradient
in an SNN. The top graph shows an example of a loss function (grey) and its
surrogate form (violet). The bottom graph shows the norm of the gradient
of the loss function in the first graph (grey) and its surrogate form (violet).
Source: [26]

of approximation must be applied in order to use any backpropagation-based
algorithm. While many training methods make a direct change to the model,
the surrogate gradient proposes a different approach. No modifications of
the spiking network are necessary and instead, the regular gradient of the
loss function is replaced by a surrogate gradient during the training. The SG
has desired properties that make it possible to use it with backpropagation,
i.e., it is continuous and non-zero (to avoid the vanishing gradient problem
which would make training ineffective). The surrogate gradient can also be
interpreted as a gradient of virtual surrogate loss function which in itself
is some sort of an approximation [26]. The visualisation of surrogate and
"true" gradient can be seen in Fig. 4.4.

To apply this training method, a part of the implementation of the SG
from the SpyTorch GitHub repository [14] was used (since it was also ref-

41

erenced in the original article). The repository contains several examples
of training spiking neural networks with the SG. These examples involve
simple one-hidden-layer spiking nets using LIF neurons which are simulated
in PyTorch.

In this experiment, several deep spiking networks were constructed and
tested on MNIST (described in Section 2.3.6) and Fashion MNIST datasets.
Fashion MNIST [45] is very similar to the regular MNIST. It is an im-
age dataset that comprises 60000 training and 10000 testing examples of
28 × 28 grey-scale images. Each image shows a piece of clothing with
a label associated with one of 10 classes - t-shirt, coat, shirt, sneaker, etc.
This dataset aims to provide a more difficult classification than the original
MNIST while retaining its format (i.e., it should be interchangeable with
the regular MNIST without any required modifications to the classifying
network).

While it would be ideal to use a state-of-the-art architecture such as
CNN, it would also be rather difficult to make the SG work with specialized
layers such as convolutional or pooling ones. Therefore, only fully connected
deep spiking networks were considered. In total, four SNNs were tested on
both datasets - two recurrent and two feedforward. Each network comprised
an input layer of 784 units (since the images were 28 × 28) and an output
layer of 10 units (one per class). The first feedforward network composed
of two hidden layers with 256 and 128 units, while the other feedforward
network used an additional 64-unit hidden layer (which was the last hidden
layer in the network). The recurrent networks used the architecture from the
fully connected SNNs and also contained recurrent weights in each hidden
layer. The architecture of all four models can be seen in Table 4.4.

Because neither the MNIST nor the Fashion MNIST are intended for
use with a spiking neural network, an additional conversion to spikes was
required. To do so, time-to-first-spike coding (TTFS) was applied, which
is a spatio-temporal coding that was also used in the GitHub examples.
Apart from the structure of hidden layers, all models used the same model of
leaky integrate-and-fire spiking neuron and were trained in the same manner.
TTFS encoded data were fed to the model in 100 time steps where each time
step took 1 ms. Every model was trained for 30 epochs on both datasets
with the Adam optimizer and the negative log-likelihood loss.

42

Model Network Type Hidden layers Units in hidden layers
1 Feedforward 2 [256, 128]
2 Feedforward 3 [256, 128, 64]
3 Recurrent 2 [256, 128]
4 Recurrent 3 [256, 128, 64]

Table 4.4: Architecture of the used SNNs.

4.2.1 Results
The best performing model was model 1 (see Table 4.4) which was a two-
hidden-layer feedforward SNN. The model achieved around 97.09% accuracy
on MNIST and 85.52% accuracy on Fashion MNIST. Models 2 and 3 per-
formed similarly to the first one on the MNIST dataset, scoring 96.63% and
96.33% accuracy respectively, but attaining lower performance on the Fash-
ion MNIST dataset. Overall, the feedforward networks (models 1 and 2)
performed better than recurrent ones (models 3 and 4).

Note that the accuracy of each tested network could be vastly improved.
The tested SNNs comprised only fully connected layers with a very basic
structure and did not use any regularization. Implementing SG learning
in state-of-the-art architectures (such as convolutional networks) should in-
troduce additional performance increase. Compared to the CNN with ho-
mogenous filter capsules [5] which achieves state-of-the-art results on both
datasets, model 1 had around 2.67% worse accuracy on MNIST and 8.10%
worse accuracy on Fashion MNIST.

Dataset Model Accuracy Precision Recall F1

MNIST

1 0.9709 0.9705 0.9708 0.9706
2 0.9663 0.9660 0.9659 0.9660
3 0.9633 0.9629 0.9628 0.9628
4 0.9262 0.9259 0.9261 0.9253

Fashion MNIST

1 0.8552 0.8556 0.8552 0.8541
2 0.8379 0.8391 0.8380 0.8347
3 0.8223 0.8294 0.8224 0.8178
4 0.7464 0.7500 0.7465 0.7387

Table 4.5: Accuracy, precision, recall, and F1 score of the SNN models from
Table 4.4 on the MNIST and Fashion MNIST datasets.

43

4.3 Spatial attention shifts to colored items
dataset classification

The second researched spatio-temporal dataset was gathered from the BNCI
Horizon website (data from Spatial attention shifts to colored items exper-
iment) [32]. Similarly to the P300 dataset in Section 4.1, this dataset also
contains EEG signals from a BCI experiment. In this experiment, each
participant was asked several questions to which they could respond with
either "yes" or "no" answer. For every question asked, the participant made
a response by paying attention to either green "+"-cross (to answer "yes")
or to red "x"-cross (to answer "no"). The experiment consisted of 7 runs per
participant, where each run contained 24 trials (i.e., 168 samples per partic-
ipant). In the first two runs, the participants were not asked any questions
and instead focused on the red/green cross. Runs 3-6 composed of only
objective questions (e.g., ’Is Berlin a city?’), while the last run comprised
purely subjective ones (e.g., ’Are you a vegetarian?’). The aim of the spiking
network here is again very similar to the P300 experiment. The classifier is
trained on the part of the EEG data to be able to decide whether a specific
sample corresponds to a "yes" or "no" answer from the participant, while the
rest is used to test its performance.

4.3.1 Data preprocessing
Firstly, the dataset was preprocessed in the same manner as in the original
article [32]. From the original 29 channels in the EEG signal, only 14 parieto-
occipital channels were used and data from the rest of the channels were
discarded. The pre-stimulus part of the EEG signal was trimmed and only
the remainder was used. Subsequently, the data were transformed using
a zero-phase IIR Butterworth bandpass filter and resampled from 250 Hz
to 50 Hz. The signal was split into epochs, where each epoch took 750 ms
after stimulus onset. Such preprocessing resulted in a 14×36×10 tensor for
every trial (i.e., a sequence of 10 stimuli in 36 sampling points per channel).
In total, 2976 trials (samples) were extracted and could be used by a neural
network.

4.3.2 Model architecture
The next step was to construct an analog network that could recognize the
data and be converted to an SNN. Similarly to the experiment with the GTN
dataset in Section 4.1, Nengo was used here as well to perform the conversion.

44

Three different models of neural networks were tested on the dataset. The
first one was a CNN with two convolutional layers (one with 32 filters using
5×5 kernel and the other with 64 filters and a kernel size of 3×3), dropout,
and an average pooling layer after each convolution, followed by a series of
fully connected layers to perform the classification. The convolutional and
dense layers used ReLU activations (except the output dense layer which
used softmax). The architecture of the network can be seen in Fig. 4.5. The
other two tested models were the CNN from the previous experiment with
the P300 dataset (as shown previously in Fig 4.1) and an LSTM network.
The LSTM network was composed of two LSTM layers, each followed by
a dropout layer to introduce regularization. The visualization of the model
is in Fig. 4.6. Unfortunately, the LSTM network could not be run using
Nengo, and therefore it was simulated in TensorFlow and was only used for
the comparison with the other two models (no SNN model was made).

4.3.3 Training on the entire dataset
Firstly, each of the three models was trained on the EEG data from the
entire dataset. The dataset was split and 25% of it was used as testing
data. The non-testing data (i.e., the remaining 75%) was used for K-fold
cross-validation of 10 iterations (k = 10). The CV method split the data
into 10 folds (groups) and in each iteration, one fold was selected to serve
as validation data, while the rest was used to train the network. The model
was trained for 30 epochs with an early stopping callback to avoid overfitting
(patience of 8 epochs was used, since it performed the best during the initial
tests; the best weights were restored as in the P300 experiment). The Adam
optimizer and binary cross-entropy were used to train the network.

After fitting the model, it was evaluated on the 25% of the previously held
out data and converted to a spiking network (except for the LSTM). The
SNN was constructed in the same way as in the previous P300 experiment
in Chapter 4.1 (i.e., swapping ReLU activations with spiking rectified linear
activations). The SNN ran with spike scaling set to 1000 and synaptic
smoothing set to 0.01 to closely match the performance of the original analog
model. Subsequently, the SNN was fed the training data in 50 time steps
and the last time step was used to compute classification metrics.

45

InputLayer
input:

output:

[(None, 14, 360, 1)]

[(None, 14, 360, 1)]

Conv2D
input:

output:

(None, 14, 360, 1)

(None, 14, 360, 32)

Dropout
input:

output:

(None, 14, 360, 32)

(None, 14, 360, 32)

AveragePooling2D
input:

output:

(None, 14, 360, 32)

(None, 7, 180, 32)

Conv2D
input:

output:

(None, 7, 180, 32)

(None, 5, 178, 64)

Dropout
input:

output:

(None, 5, 178, 64)

(None, 5, 178, 64)

AveragePooling2D
input:

output:

(None, 5, 178, 64)

(None, 2, 89, 64)

Flatten
input:

output:

(None, 2, 89, 64)

(None, 11392)

Dense
input:

output:

(None, 11392)

(None, 512)

Dropout
input:

output:

(None, 512)

(None, 512)

Dense
input:

output:

(None, 512)

(None, 256)

Dense
input:

output:

(None, 256)

(None, 2)

Figure 4.5: Tensorflow model of the first convolutional neural network used
for the binary classification of the BNCI Horizon dataset.

46

InputLayer
input:

output:

[(None, 14, 360)]

[(None, 14, 360)]

LSTM
input:

output:

(None, 14, 360)

(None, 14, 124)

Dropout
input:

output:

(None, 14, 124)

(None, 14, 124)

LSTM
input:

output:

(None, 14, 124)

(None, 124)

Dropout
input:

output:

(None, 124)

(None, 124)

Dense
input:

output:

(None, 124)

(None, 64)

Dropout
input:

output:

(None, 64)

(None, 64)

Dense
input:

output:

(None, 64)

(None, 2)

Figure 4.6: Tensorflow model of the LSTM network used for the binary
classification of the BNCI Horizon dataset.

47

4.3.4 Training on samples from male and female sub-
jects

Since the dataset also includes information about the gender of each par-
ticipant, two smaller datasets were formed - one containing only samples
from female subjects (1680), while other contained only samples from male
subjects (1296). Both datasets were tested in the exact same manner as in
the case of all samples (i.e., 10-fold CV was run, training the network for 30
epochs and then converting both CNN models to a spiking network).

4.3.5 Training on samples from each participant sep-
arately

The third part of the experiment involved training each of the three models
on data from a single participant (separately). This part of was done to find
how well can both spiking and non-spiking networks perform in comparison
with a method from article [32] which was used with this dataset as well.
This method did not use a neural network and instead applied canonical
correlation analysis (CCA). The analysis technique computed correlation
vectors with which it was possible to classify a given EEG signal. The
method, however, did not use the entire dataset (of all 18 participants) but
rather data from a single subject.

All three models were trained similarly to the CCA-based model. The
process of training and evaluation was split into 18 iterations, each contain-
ing samples from one participant. The model was iteratively reset (so it
could not remember the data from the previous subject), trained with 75%
of the samples and tested with the remaining 25%. Due to the low number
of samples per participant, no cross-validation was applied as it would nega-
tively impact the training process. The individual training of the model was
again split into 30 epochs and an early stopping callback was applied (since
there was no validation data available, the loss calculated from the training
data was used instead). The conversion of the analog model was also the
same as in the case of the entire dataset and data from male/female sub-
jects. ReLU activations were swapped with spiking ones, firing rate scaling
was configured to 1000, synapse parameter was set to 0.01, and the input
was fed to the network in 50 time steps.

48

4.3.6 Results
Unfortunately, not a single tested model performed well on this dataset.
The average accuracy in all cases stayed around 50% which implies that
the model cannot generalize and performs similarly to picking the answer
randomly. Since the spiking models were converted from a "trained" analog
model, their performance did not improve either as they essentially used
the same weights. Additionally, there were also issues with how both CNN
models were able to classify the data. In some cases the model completely
ignored one label and classified only the other. This was not the case with
the LSTM network which did classify both classes equally, however, it did
not achieve better results.

The statistics regarding accuracy can be seen in Table 4.6. Table 4.7
shows precision, recall, and F1 score metrics. Note that since the CNNs
sometimes did not classify one class, this heavily influenced maximum re-
call. Thus, maximum recall and maximum F1 score were excluded from
the table and only averages are shown. The best-recorded accuracy was
achieved by the spiking CNN model from the GTN experiment on data
from individuals - 61.90%. Though this might be misleading since there was
relatively a small number of samples per individual. Using the data from
the entire dataset, the best performing network was the analog LSTM which
attained 52.96% maximum accuracy. Use of data only from one specific gen-
der slightly improved the maximum accuracy as the spiking variant of the
first CNN model (Fig. 4.5) achieved around 56.25% on the samples from
male subjects and 54.09% on data from female subjects (for both spiking
and non-spiking variant).

The low performance might be caused by various reasons such as a low
number of samples to successfully train any neural network on, the archi-
tecture of the tested models, or the preprocessing applied. Overall, the
CCA-based classifier tested in the original article of the dataset [32] seems
superior to any neural network tested here, though the method is less com-
plex and most likely more suitable for such a small dataset.

49

Part of
the dataset Model Type Average

accuracy
Max.

accuracy
Accuracy

SD

All subjects

CNN ANN 0.5060 0.5285 0.0230
CNN SNN 0.5039 0.5231 0.0195

CNN (p300) ANN 0.4905 0.5217 0.0221
CNN (p300) SNN 0.4853 0.5204 0.0204

LSTM ANN 0.5067 0.5296 0.0204

Male subjects

CNN ANN 0.4806 0.5406 0.0433
CNN SNN 0.4844 0.5625 0.0366

CNN (p300) ANN 0.5141 0.5438 0.0270
CNN (p300) SNN 0.5178 0.5438 0.0274

LSTM ANN 0.5009 0.5247 0.0190

Female subjects

CNN ANN 0.4892 0.5409 0.0242
CNN SNN 0.4962 0.5409 0.0248

CNN (p300) ANN 0.4925 0.5216 0.0125
CNN (p300) SNN 0.4933 0.5240 0.0139

LSTM ANN 0.5010 0.5238 0.0231

Individuals

CNN ANN 0.5013 0.5476 0.0277
CNN SNN 0.5093 0.5714 0.0366

CNN (p300) ANN 0.4601 0.5714 0.0592
CNN (p300) SNN 0.4733 0.6190 0.0742

LSTM ANN 0.5090 0.5952 0.0636

Table 4.6: Average, maximum accuracy, and its standard sample deviation
computed from the testing data for each model. All subjects - data from
all 2976 samples in the dataset, male subjects - samples corresponding
to only male subjects, female subjects - samples corresponding to only
female subjects, individuals - fitting each model on samples from a single
individual. CNN - the first CNN model, shown in Fig. 4.5. CNN (p300)
- the CNN used in the previous GTN P300 experiment (Section 4.1), shown
in Fig. 4.1. LSTM - the recurrent model, shown in Fig. 4.6.

50

Part of
the dataset Model Type Average

precision
Max.

precision
Average

recall
Average
F1 score

All subjects

CNN ANN 0.4980 0.5263 0.7281 0.5564
CNN SNN 0.5184 0.5417 0.6398 0.5335

CNN (p300) ANN 0.5186 0.6061 0.4729 0.4536
CNN (p300) SNN 0.5140 0.6111 0.4651 0.4484

LSTM ANN 0.5289 0.5714 0.5577 0.4904

Male subjects

CNN ANN 0.4996 0.5412 0.5584 0.4991
CNN SNN 0.5075 0.5609 0.5035 0.4736

CNN (p300) ANN 0.5326 0.5429 0.7578 0.6044
CNN (p300) SNN 0.5354 0.5522 0.7624 0.6096

LSTM ANN 0.5380 0.5714 0.5098 0.5133

Female subjects

CNN ANN 0.4941 0.5404 0.6662 0.5589
CNN SNN 0.5013 0.5401 0.7290 0.5869

CNN (p300) ANN 0.4948 0.5447 0.5143 0.4442
CNN (p300) SNN 0.4870 0.5484 0.5119 0.4422

LSTM ANN 0.5053 0.5301 0.4887 0.4892

Individuals

CNN ANN 0.3646 0.5882 0.6920 0.4733
CNN SNN 0.3709 0.5882 0.6286 0.4582

CNN (p300) ANN 0.4556 0.6000 0.3901 0.4130
CNN (p300) SNN 0.4646 0.6500 0.3958 0.4214

LSTM ANN 0.5064 0.6667 0.4854 0.4915

Table 4.7: Precision, recall, and F1 score computed from the testing data for
each model (average/maximum). All subjects - data from all 2976 sam-
ples in the dataset, male subjects - samples corresponding to only male
subjects, female subjects - samples corresponding to only female subjects,
individuals - fitting each model on samples from a single individual. CNN -
the first CNN model, shown in Fig. 4.5. CNN (p300) - the CNN used in
the previous GTN P300 experiment (Section 4.1), shown in Fig. 4.1. LSTM
- the recurrent model, shown in Fig. 4.6.

51

5 Conclusion

To sum up, this thesis overviewed the current knowledge of spiking networks
and their comparison to analog networks. It described the relation of spiking
networks to neuromorphic hardware as well as the state-of-the-art in the
field. A wide range of tools to model and simulate spiking neural networks
were investigated and their core features were overviewed. Out of all tested
simulators and tools, Nengo, TensorFlow, and PyTorch were used in the
experiments in Section 4 where several applications of spiking networks were
demonstrated.

In total, three different experiments were conducted, two involving BCI
EEG data and one using MNIST and Fashion MNIST datasets. Arguably,
two out of the three experiments resulted in a success and their outcomes
might be useful for further research in the field. The first experiment (Section
4.1) trained on a P300 dataset containing samples from guess the number
experiment and used a modified CNN from article [44]. Surprisingly enough,
the resulting spiking network had a better average (63.43%) and maximum
accuracy (64.96%) than the original CNN (which scored around 62 - 64%
maximum and 62.18% average accuracy). The performance could likely be
even improved, either by increasing the number of samples or by using a dif-
ferent model. The second experiment (Section 4.2) trained a spiking net
directly using the surrogate gradient on the MNIST and Fashion MNIST
datasets. The best model for both datasets had an accuracy of 97.01% on
MNIST and 85.52% on Fashion MNIST. The experiment did not utilize any
regularization or special layers (i.e., convolutional or pooling), and there-
fore, applying these alongside SG-learning could further increase the overall
performance. The only unsuccessful experiment was the last one where the
BNCI Horizon dataset was used (Section 4.3). None of the tested models
scored significantly better than a coin flip, and different preprocessing or
more samples would most likely be necessary to improve their performance.

This thesis mainly focused on simulating spiking nets on an x64 system
that follows classic von Neumann architecture, however, the work could be
further researched from the perspective of different hardware platforms, e.g.,
neuromorphic devices. It would also be interesting to apply different types
of spike encoding as here mostly rate-based coding was used.

The source code for this thesis also is available on a GitHub repository1.

1The repository can be found here: https://github.com/honzikv/use-of-snn.

52

https://github.com/honzikv/use-of-snn

List of Abbreviations

ANN Analog (artificial) neural network.

ARM Advanced Risc Machine.

ASIC Application-specific integrated circuit.

BCI Brain-computer interface.

CCA Canonical correlation analysis.

CNN Convolutional neural network.

CPU Central processing unit.

CV Cross-validation.

DNN Deep neural network.

EEG Electroencephalography.

ELU Exponential linear unit.

FPGA Field programmable gate array.

GAN Generative adversarial network.

GPU Graphical processing unit.

GTN Guess the number (experiment).

GUI Graphical user interface.

HATS Histogram of averaged time surfaces.

LIF Leaky integrate-and-fire.

LSTM Long short-term memory (unit, network, etc.).

N-MNIST Neuromorphic MNIST.

RAM Random access memory.

53

ReLU Rectified linear unit.

RNN Recurrent neural network.

SG Surrogate gradient.

SNN Spiking neural network.

SPA Semantic pointer architecture.

STDP Spike-timing-dependent plasticity.

TTFS Time-to-first-spike.

54

Bibliography

[1] Navin Anwani and B. Rajendran. 2020. Training multilayer spiking
neural networks using normad based spatio-temporal error backprop-
agation. ArXiv, abs/1811.10678. https://arxiv.org/pdf/1811.106
78.pdf.

[2] Trevor Bekolay, James Bergstra, Eric Hunsberger, Travis DeWolf, Ter-
rence Stewart, Daniel Rasmussen, Xuan Choo, Aaron Voelker, and
Chris Eliasmith. 2014. Nengo: a Python tool for building large-scale
functional brain models. Frontiers in Neuroinformatics, 7, 48, 1–13.
issn: 1662-5196. doi: 10.3389/fninf.2013.00048. http://compneu
ro.uwaterloo.ca/files/publications/bekolay.2014.pdf.

[3] Trevor Bekolay, James Bergstra, Eric Hunsberger, Travis DeWolf, Ter-
rence Stewart, Daniel Rasmussen, Xuan Choo, Aaron Voelker, and
Chris Eliasmith. 2021. Nengo: a Python tool for building large-scale
functional brain models. (2021). https://www.nengo.ai/.

[4] Trevor Bekolay, James Bergstra, Eric Hunsberger, Travis DeWolf, Ter-
rence Stewart, Daniel Rasmussen, Xuan Choo, Aaron Voelker, and
Chris Eliasmith. 2021. Nengo: a Python tool for building large-scale
functional brain models. (2021). https://www.nengo.ai/nengo-dl
/examples/tensorflow-models.html.

[5] Adam Byerly, Tatiana Kalganova, and Ian Dear. 2020. A branching
and merging convolutional network with homogeneous filter capsules.
(2020). arXiv: 2001.09136 [cs.CV].

[6] D. Ciregan, U. Meier, and J. Schmidhuber. 2012. Multi-column deep
neural networks for image classification. In 2012 IEEE Conference on
Computer Vision and Pattern Recognition, 3642–3649. doi: 10.1109
/CVPR.2012.6248110.

[7] Tim Cooijmans, Nicolas Ballas, César Laurent, Çağlar Gülçehre, and
Aaron Courville. 2017. Recurrent batch normalization. (2017). arXiv:
1603.09025 [cs.LG].

[8] Matthieu Courbariaux and Yoshua Bengio. 2016. Binarynet: training
deep neural networks with weights and activations constrained to +1
or -1. CoRR, abs/1602.02830. arXiv: 1602.02830. http://arxiv.or
g/abs/1602.02830.

55

https://arxiv.org/pdf/1811.10678.pdf
https://arxiv.org/pdf/1811.10678.pdf
https://doi.org/10.3389/fninf.2013.00048
http://compneuro.uwaterloo.ca/files/publications/bekolay.2014.pdf
http://compneuro.uwaterloo.ca/files/publications/bekolay.2014.pdf
https://www.nengo.ai/
https://www.nengo.ai/nengo-dl/examples/tensorflow-models.html
https://www.nengo.ai/nengo-dl/examples/tensorflow-models.html
https://arxiv.org/abs/2001.09136
https://doi.org/10.1109/CVPR.2012.6248110
https://doi.org/10.1109/CVPR.2012.6248110
https://arxiv.org/abs/1603.09025
https://arxiv.org/abs/1602.02830
http://arxiv.org/abs/1602.02830
http://arxiv.org/abs/1602.02830

[9] M. Davies, N. Srinivasa, T. Lin, G. Chinya, Y. Cao, S. H. Choday, G.
Dimou, P. Joshi, N. Imam, S. Jain, Y. Liao, C. Lin, A. Lines, R. Liu,
D. Mathaikutty, S. McCoy, A. Paul, J. Tse, G. Venkataramanan, Y.
Weng, A. Wild, Y. Yang, and H. Wang. 2018. Loihi: a neuromorphic
manycore processor with on-chip learning. IEEE Micro, 38, 1, 82–99.
doi: 10.1109/MM.2018.112130359.

[10] Arnaud Delorme, Jacques Gautrais, Rufin van Rullen, and Simon
Thorpe. 1999. Spikenet: a simulator for modeling large networks of
integrate and fire neurons. Neurocomputing, 26-27, 989–996. issn:
0925-2312. doi: https://doi.org/10.1016/S0925-2312(99)00095-
8. https://www.sciencedirect.com/science/article/pii/S0925
231299000958.

[11] P. U. Diehl, D. Neil, J. Binas, M. Cook, S. Liu, and M. Pfeiffer. 2015.
Fast-classifying, high-accuracy spiking deep networks through weight
and threshold balancing. In 2015 International Joint Conference on
Neural Networks (IJCNN), 1–8. doi: 10.1109/IJCNN.2015.7280696.

[12] Jochen Martin Eppler, Robin Pauli, Alexander Peyser, Tammo Ip-
pen, Abigail Morrison, Johanna Senk, Wolfram Schenck, Hannah
Bos, Moritz Helias, Maximilian Schmidt, and et al. 2015. Nest 2.8.0,
(September 2015). doi: 10.5281/zenodo.32969.

[13] Steve K Esser, Rathinakumar Appuswamy, Paul Merolla, John V.
Arthur, and Dharmendra S Modha. 2015. Backpropagation for energy-
efficient neuromorphic computing. In Advances in Neural Information
Processing Systems. C. Cortes, N. Lawrence, D. Lee, M. Sugiyama,
and R. Garnett, editors. Volume 28. Curran Associates, Inc. https:
//proceedings.neurips.cc/paper/2015/file/10a5ab2db37feedf
deaab192ead4ac0e-Paper.pdf.

[14] Friedemann Zenke and Manu Halvagal. 2019. Spytorch. (2019). http
s://github.com/fzenke/spytorch.

[15] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio.
2014. Generative adversarial networks. (2014). arXiv: 1406 . 2661
[stat.ML].

[16] Hananel Hazan, Daniel J. Saunders, Hassaan Khan, Devdhar Patel,
Darpan T. Sanghavi, Hava T. Siegelmann, and Robert Kozma. 2018.
Bindsnet: a machine learning-oriented spiking neural networks library
in python. Frontiers in Neuroinformatics, 12, 89. issn: 1662-5196. doi:

56

https://doi.org/10.1109/MM.2018.112130359
https://doi.org/https://doi.org/10.1016/S0925-2312(99)00095-8
https://doi.org/https://doi.org/10.1016/S0925-2312(99)00095-8
https://www.sciencedirect.com/science/article/pii/S0925231299000958
https://www.sciencedirect.com/science/article/pii/S0925231299000958
https://doi.org/10.1109/IJCNN.2015.7280696
https://doi.org/10.5281/zenodo.32969
https://proceedings.neurips.cc/paper/2015/file/10a5ab2db37feedfdeaab192ead4ac0e-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/10a5ab2db37feedfdeaab192ead4ac0e-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/10a5ab2db37feedfdeaab192ead4ac0e-Paper.pdf
https://github.com/fzenke/spytorch
https://github.com/fzenke/spytorch
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661

10.3389/fninf.2018.00089. https://www.frontiersin.org/arti
cle/10.3389/fninf.2018.00089.

[17] Dana Hughes and Nikolaus Correll. 2016. Distributed machine learning
in materials that couple sensing, actuation, computation and commu-
nication. (2016). arXiv: 1606.03508 [cs.LG].

[18] Eric Hunsberger and Chris Eliasmith. 2015. Spiking deep networks
with lif neurons. (2015). arXiv: 1510.08829 [cs.LG].

[19] E. M. Izhikevich. 2003. Simple model of spiking neurons. IEEE Trans-
actions on Neural Networks, 14, 6, 1569–1572. doi: 10.1109/TNN.20
03.820440.

[20] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. [n. d.] Cifar-10
(canadian institute for advanced research). http://www.cs.toronto
.edu/~kriz/cifar.html.

[21] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. 1998. Gradient-based
learning applied to document recognition. Proceedings of the IEEE,
86, 11, 2278–2324. doi: 10.1109/5.726791.

[22] Jun Haeng Lee, Tobi Delbruck, and Michael Pfeiffer. 2016. Training
deep spiking neural networks using backpropagation. Frontiers in Neu-
roscience, 10, 508. issn: 1662-453X. doi: 10.3389/fnins.2016.0050
8. https://www.frontiersin.org/article/10.3389/fnins.2016
.00508.

[23] Giovanni Mariani, Florian Scheidegger, Roxana Istrate, Costas Bekas,
and Cristiano Malossi. 2018. Bagan: data augmentation with balancing
gan. (2018). arXiv: 1803.09655 [cs.CV].

[24] Paul A. Merolla, John V. Arthur, Rodrigo Alvarez-Icaza, Andrew S.
Cassidy, Jun Sawada, Filipp Akopyan, Bryan L. Jackson, Nabil Imam,
Chen Guo, Yutaka Nakamura, Bernard Brezzo, Ivan Vo, Steven K.
Esser, Rathinakumar Appuswamy, Brian Taba, Arnon Amir, Myron D.
Flickner, William P. Risk, Rajit Manohar, and Dharmendra S. Modha.
2014. A million spiking-neuron integrated circuit with a scalable com-
munication network and interface. Science, 345, 6197, 668–673. issn:
0036-8075. doi: 10.1126/science.1254642. eprint: https://scienc
e.sciencemag.org/content/345/6197/668.full.pdf. https://sc
ience.sciencemag.org/content/345/6197/668.

57

https://doi.org/10.3389/fninf.2018.00089
https://www.frontiersin.org/article/10.3389/fninf.2018.00089
https://www.frontiersin.org/article/10.3389/fninf.2018.00089
https://arxiv.org/abs/1606.03508
https://arxiv.org/abs/1510.08829
https://doi.org/10.1109/TNN.2003.820440
https://doi.org/10.1109/TNN.2003.820440
http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html
https://doi.org/10.1109/5.726791
https://doi.org/10.3389/fnins.2016.00508
https://doi.org/10.3389/fnins.2016.00508
https://www.frontiersin.org/article/10.3389/fnins.2016.00508
https://www.frontiersin.org/article/10.3389/fnins.2016.00508
https://arxiv.org/abs/1803.09655
https://doi.org/10.1126/science.1254642
https://science.sciencemag.org/content/345/6197/668.full.pdf
https://science.sciencemag.org/content/345/6197/668.full.pdf
https://science.sciencemag.org/content/345/6197/668
https://science.sciencemag.org/content/345/6197/668

[25] R. Mouček, L. Vařeka, T. Prokop, J. Štěbeták, and P. Brůha. 2017.
Event-related potential data from a guess the number brain-computer
interface experiment on school children. Scientific Data, 4, 1, (March
2017), 160121. issn: 2052-4463. doi: 10.1038/sdata.2016.121. htt
ps://doi.org/10.1038/sdata.2016.121.

[26] E. O. Neftci, H. Mostafa, and F. Zenke. 2019. Surrogate gradient learn-
ing in spiking neural networks: bringing the power of gradient-based
optimization to spiking neural networks. IEEE Signal Processing Mag-
azine, 36, 6, 51–63. doi: 10.1109/MSP.2019.2931595.

[27] Daniel Neil, Michael Pfeiffer, and Shih-Chii Liu. 2016. Phased lstm:
accelerating recurrent network training for long or event-based se-
quences. (2016). arXiv: 1610.09513 [cs.LG].

[28] Rodrigo M. S. de Oliveira, Ramon C. F. Araújo, Fabrício J. B. Barros,
Adriano Paranhos Segundo, Ronaldo F. Zampolo, Wellington Fonseca,
Victor Dmitriev, and Fernando S. Brasil. 2017. A system based on ar-
tificial neural networks for automatic classification of hydro-generator
stator windings partial discharges. Journal of Microwaves, Optoelec-
tronics and Electromagnetic Applications, 16, 628–645. issn: 2179-
1074. http://www.scielo.br/scielo.php?script=sci_arttex
t&pid=S2179-10742017000300628.

[29] J. A. Pérez-Carrasco, B. Zhao, C. Serrano, B. Acha, T. Serrano-
Gotarredona, S. Chen, and B. Linares-Barranco. 2013. Mapping from
frame-driven to frame-free event-driven vision systems by low-rate
rate coding and coincidence processing–application to feedforward
convnets. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 35, 11, 2706–2719. doi: 10.1109/TPAMI.2013.71.

[30] Michael Pfeiffer and Thomas Pfeil. 2018. Deep learning with spiking
neurons: opportunities and challenges. Frontiers in Neuroscience, 12,
774. issn: 1662-453X. doi: 10.3389/fnins.2018.00774. https://ww
w.frontiersin.org/article/10.3389/fnins.2018.00774.

[31] Dimitri Plotnikov, Bernhard Rumpe, Inga Blundell, Tammo Ippen,
Jochen Martin Eppler, and Abgail Morrison. 2016. Nestml: a modeling
language for spiking neurons. (2016). arXiv: 1606.02882 [cs.SE].

[32] Christoph Reichert, Igor Fabian Tellez Ceja, Catherine M. Sweeney-
Reed, Hans-Jochen Heinze, Hermann Hinrichs, and Stefan Dürschmid.
2020. Impact of stimulus features on the performance of a gaze-
independent brain-computer interface based on covert spatial atten-
tion shifts. Frontiers in Neuroscience, 14, 1250. issn: 1662-453X. doi:

58

https://doi.org/10.1038/sdata.2016.121
https://doi.org/10.1038/sdata.2016.121
https://doi.org/10.1038/sdata.2016.121
https://doi.org/10.1109/MSP.2019.2931595
https://arxiv.org/abs/1610.09513
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S2179-10742017000300628
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S2179-10742017000300628
https://doi.org/10.1109/TPAMI.2013.71
https://doi.org/10.3389/fnins.2018.00774
https://www.frontiersin.org/article/10.3389/fnins.2018.00774
https://www.frontiersin.org/article/10.3389/fnins.2018.00774
https://arxiv.org/abs/1606.02882

10.3389/fnins.2020.591777. https://www.frontiersin.org/art
icle/10.3389/fnins.2020.591777.

[33] Kalivoda Roman. 2020. Extension of neural network architecture.
Bachelor’s Thesis. University of West Bohemia. http://hdl.handle
.net/11025/41790.

[34] B. Rueckauer and S. Liu. 2018. Conversion of analog to spiking neural
networks using sparse temporal coding. In 2018 IEEE International
Symposium on Circuits and Systems (ISCAS), 1–5. doi: 10.1109/IS
CAS.2018.8351295.

[35] Bodo Rueckauer, Iulia-Alexandra Lungu, Yuhuang Hu, Michael Pfeif-
fer, and Shih-Chii Liu. 2017. Conversion of continuous-valued deep
networks to efficient event-driven networks for image classification.
Frontiers in Neuroscience, 11, 682. issn: 1662-453X. doi: 10.3389/f
nins.2017.00682. https://www.frontiersin.org/article/10.33
89/fnins.2017.00682.

[36] Bodo Rueckauer, Iulia-Alexandra Lungu, Yuhuang Hu, Michael Pfeif-
fer, and Shih-Chii Liu. 2021. Snn-toolbox. https://snntoolbox.rea
dthedocs.io/en/latest/_images/features.png.

[37] J. Schemmel, D. Brüderle, A. Grübl, M. Hock, K. Meier, and S. Mill-
ner. 2010. A wafer-scale neuromorphic hardware system for large-scale
neural modeling. In 2010 IEEE International Symposium on Circuits
and Systems (ISCAS), 1947–1950. doi: 10.1109/ISCAS.2010.55369
70.

[38] Abhronil Sengupta, Yuting Ye, Robert Wang, Chiao Liu, and Kaushik
Roy. 2019. Going deeper in spiking neural networks: vgg and residual
architectures. Frontiers in Neuroscience, 13, 95. issn: 1662-453X. doi:
10.3389/fnins.2019.00095. https://www.frontiersin.org/arti
cle/10.3389/fnins.2019.00095.

[39] Amos Sironi, Manuele Brambilla, Nicolas Bourdis, Xavier Lagorce, and
Ryad Benosman. 2018. Hats: histograms of averaged time surfaces for
robust event-based object classification. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).
(June 2018).

[40] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever,
and Ruslan Salakhutdinov. 2014. Dropout: a simple way to prevent
neural networks from overfitting. J. Mach. Learn. Res., 15, 1, (January
2014), 1929–1958. issn: 1532-4435.

59

https://doi.org/10.3389/fnins.2020.591777
https://www.frontiersin.org/article/10.3389/fnins.2020.591777
https://www.frontiersin.org/article/10.3389/fnins.2020.591777
http://hdl.handle.net/11025/41790
http://hdl.handle.net/11025/41790
https://doi.org/10.1109/ISCAS.2018.8351295
https://doi.org/10.1109/ISCAS.2018.8351295
https://doi.org/10.3389/fnins.2017.00682
https://doi.org/10.3389/fnins.2017.00682
https://www.frontiersin.org/article/10.3389/fnins.2017.00682
https://www.frontiersin.org/article/10.3389/fnins.2017.00682
https://snntoolbox.readthedocs.io/en/latest/_images/features.png
https://snntoolbox.readthedocs.io/en/latest/_images/features.png
https://doi.org/10.1109/ISCAS.2010.5536970
https://doi.org/10.1109/ISCAS.2010.5536970
https://doi.org/10.3389/fnins.2019.00095
https://www.frontiersin.org/article/10.3389/fnins.2019.00095
https://www.frontiersin.org/article/10.3389/fnins.2019.00095

[41] Marcel Stimberg, Dan F. M. Goodman, and Thomas Nowotny. 2020.
Brian2genn: accelerating spiking neural network simulations with
graphics hardware. Scientific Reports, 10, 1, (January 2020), 410.
issn: 2045-2322. doi: 10.1038/s41598-019-54957-7. https://doi
.org/10.1038/s41598-019-54957-7.

[42] Amirhossein Tavanaei, Masoud Ghodrati, Saeed Reza Kheradpisheh,
Timothée Masquelier, and Anthony Maida. 2019. Deep learning in
spiking neural networks. Neural Networks, 111, 47–63. issn: 0893-6080.
doi: https://doi.org/10.1016/j.neunet.2018.12.002. http://w
ww.sciencedirect.com/science/article/pii/S089360801830333
2.

[43] Ruben A. Tikidji-Hamburyan, Vikram Narayana, Zeki Bozkus, and
Tarek A. El-Ghazawi. 2017. Software for brain network simulations: a
comparative study. Frontiers in Neuroinformatics, 11, 46. issn: 1662-
5196. doi: 10.3389/fninf.2017.00046. https://www.frontiersin
.org/article/10.3389/fninf.2017.00046.

[44] Lukáš Vařeka. 2020. Evaluation of convolutional neural networks using
a large multi-subject p300 dataset. Biomedical Signal Processing and
Control, 58, 101837. issn: 1746-8094. doi: https://doi.org/10.101
6/j.bspc.2019.101837. http://www.sciencedirect.com/science
/article/pii/S1746809419304185.

[45] Han Xiao, Kashif Rasul, and Roland Vollgraf. 2017. Fashion-mnist:
a novel image dataset for benchmarking machine learning algorithms.
CoRR, abs/1708.07747. arXiv: 1708.07747. http://arxiv.org/abs
/1708.07747.

[46] Rikiya Yamashita, Mizuho Nishio, Richard Kinh Gian Do, and Kaori
Togashi. 2018. Convolutional neural networks: an overview and appli-
cation in radiology. Insights into Imaging, 9, 4, (August 2018), 611–
629. issn: 1869-4101. doi: 10.1007/s13244-018-0639-9. https://d
oi.org/10.1007/s13244-018-0639-9.

[47] Yong Yu, Xiaosheng Si, Changhua Hu, and Jianxun Zhang. 2019. A
review of recurrent neural networks: lstm cells and network architec-
tures. Neural Computation, 31, 7, 1235–1270. PMID: 31113301. doi:
10.1162/neco_a_01199. eprint: https://doi.org/10.1162/neco
_a_01199. https://doi.org/10.1162/neco_a_01199.

60

https://doi.org/10.1038/s41598-019-54957-7
https://doi.org/10.1038/s41598-019-54957-7
https://doi.org/10.1038/s41598-019-54957-7
https://doi.org/https://doi.org/10.1016/j.neunet.2018.12.002
http://www.sciencedirect.com/science/article/pii/S0893608018303332
http://www.sciencedirect.com/science/article/pii/S0893608018303332
http://www.sciencedirect.com/science/article/pii/S0893608018303332
https://doi.org/10.3389/fninf.2017.00046
https://www.frontiersin.org/article/10.3389/fninf.2017.00046
https://www.frontiersin.org/article/10.3389/fninf.2017.00046
https://doi.org/https://doi.org/10.1016/j.bspc.2019.101837
https://doi.org/https://doi.org/10.1016/j.bspc.2019.101837
http://www.sciencedirect.com/science/article/pii/S1746809419304185
http://www.sciencedirect.com/science/article/pii/S1746809419304185
https://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747
https://doi.org/10.1007/s13244-018-0639-9
https://doi.org/10.1007/s13244-018-0639-9
https://doi.org/10.1007/s13244-018-0639-9
https://doi.org/10.1162/neco_a_01199
https://doi.org/10.1162/neco_a_01199
https://doi.org/10.1162/neco_a_01199
https://doi.org/10.1162/neco_a_01199

[48] Y. Zhang, P. Li, Y. Jin, and Y. Choe. 2015. A digital liquid state ma-
chine with biologically inspired learning and its application to speech
recognition. IEEE Transactions on Neural Networks and Learning Sys-
tems, 26, 11, 2635–2649. doi: 10.1109/TNNLS.2015.2388544.

[49] Chunting Zhou, Chonglin Sun, Zhiyuan Liu, and Francis C. M. Lau.
2015. A c-lstm neural network for text classification. (2015). arXiv:
1511.08630 [cs.CL].

61

https://doi.org/10.1109/TNNLS.2015.2388544
https://arxiv.org/abs/1511.08630

A User guide to run the
experiments

A.1 Setting up the tools
This attachment describes how to set up and run all three experiments
conducted in the thesis. The experiments are written in Python in the form
of Jupyter Notebook and were tested on a desktop computer with Windows
101.

Download the necessary files (i.e., the entire repository) from the GitHub
repository: https://github.com/honzikv/use-of-snn, either via Git,
or directly by clicking on Code → Download Zip. Extract the zip (if
necessary) in a folder that will be used to launch the experiments.

A.1.1 Setting up Python
The next step is to set up Python. While there are many installers and
distributions to choose from, the recommended one here is Anaconda as it
allows a straightforward installation of the dependencies. Alternatively, the
official installer (from https://www.python.org/) can be used as well,
however, it might be more difficult to set up PyTorch.

Download Anaconda from: https://www.anaconda.com/ and install
it. Make sure that Anaconda is saved in the Windows PATH variable as
it is going to be used from the console (using the conda command). Open
the command line (press the win key, type "cmd", and click the icon). Now,
create a new environment using the command:

conda create -n name_of_your_environment python=3.8.5

This will create an empty environment that can be used to install de-
pendencies.

A.1.2 Installing Python dependencies
Installing dependencies is very straightforward and can be done via the com-
mand line as well. In the root directory of the repository, there is a "require-

1Linux and macOS operating systems should be compatible as well, however, they
were not tested.

62

https://github.com/honzikv/use-of-snn
https://www.python.org/
https://www.anaconda.com/

ments.txt" file that contains most of the necessary dependencies (PyTorch
needs to be installed separately). Firstly, install this file using the following
commands:

1. Activate the created conda environment using:
conda activate name_of_your_environment

2. Now this environment can be referenced via pip, which will install
all dependencies from the requirements.txt file. Execute the following
command:

pip install -r requirements.txt

After installing all dependencies from the requirements.txt files, PyTorch
can be installed. Use either of the two commands, depending on whether
the machine is equipped with an Nvidia GPU with CUDA support:

1. If the computer has CUDA GPU:
conda install pytorch torchvision torchaudio

cudatoolkit=10.2 -c pytorch

2. If the computer does not have CUDA GPU:
conda install pytorch torchvision torchaudio cpuonly -

c pytorch

Note that in some cases it might happen that PyTorch updates NumPy
to a newer version, which may not be compatible with TensorFlow. To fix
this, run:

pip install numpy==1.9.5

After these steps, the environment should be ready to run any of the
three experiments.

A.2 Running the experiments
The experiments can be run using one or multiple Jupyter notebooks.
Firstly, a Jupyter server needs to be launched, this can be either done in
a command-line or in an IDE such as PyCharm Professional or Visual Stu-
dio Code. This example uses the command line approach as it is the easiest

63

one to set up. To run the server, simply open the command line in the root
directory of the repository and execute the following command2:

jupyter notebook

This should prompt to open a web browser with the page that will be used
to control the experiments. Alternatively, the URL will be displayed in the
console. In the web application, navigate to the folder "experiments", where
all three experiments are located. Each folder represents one experiment as
described in Sections A.2.1 - A.2.3.

The experiments comprise (Jupyter) notebooks (files with .ipynb exten-
sion) that can be interactivelly run. Each notebook contains multiple "cells"
which are blocks of executable code or text. Typically, the cells are meant
to be executed sequentially, from top to bottom. Cells can be executed in
many ways:

• To execute a single cell click the Run button or press ctrl + enter.
(This also works for any text cells)

• It is also possible to run all cells sequentially by clicking on Cell >
Run All

To restart the entire program (notebook), click on Kernel > Restart.

A.2.1 Spiking CNN on the guess the number Multi-
subject P300 dataset

The first performed experiment was the experiment with P300 dataset. The
experiment is located in the folder "experiments/p300_experiment". It con-
tains two notebook files:

• p300_dataset_exp_convnet.ipynb

• p300_stats_visualization.ipynb3

Before running anything, make sure to download the EEG data first as
they are not present in the repository. The download link is available here:

2Make sure to enable the Anaconda environment beforehand, otherwise, the command
might not work correctly.

3This file is not necessary to run the experiment and was only used for visualization.
To vizualize the model an installation of graphviz is necessary: https://graphviz.git
lab.io/download/.

64

https://graphviz.gitlab.io/download/
https://graphviz.gitlab.io/download/

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:
10.7910/DVN/G9RRLN.

Place the downloaded file in the "dataset" folder in the root of the ex-
periment and make sure it is named "VarekaGTNEpochs.mat". The first
notebook from the previous list contains code to run the experiment and
save statistics from it. It creates a CNN and performs a 30-epoch CV while
also converting it to a spiking equivalent after every training. The second
notebook uses the computed data and visualizes them (it is not required to
run for the experiment).

A.2.2 Surrogate gradient training on MNIST and
Fashion MNIST datasets with deep spiking net-
works

The second experiment tests four different models on the MNIST and Fash-
ion MNIST datasets using the surrogate gradient. The experiment is located
in the folder "experiments/surrogate_gradient_experiment". To perform it,
simply run the Jupyter notebook file. No additional download of the datasets
is necessary as they get directly downloaded via PyTorch. Note that it is
recommended to run this experiment on a GPU since the computations are
relatively long (in the span of hours).

A.2.3 BNCI Horizon Spatial attention shifts to col-
ored items dataset experiment

The last experiment uses data from BNCI Horizon and is located in the
folder "experiments/bnci_horizon_experiment".

To perform the experiment, the data from each participant firstly need
to be downloaded from here: http://bnci-horizon-2020.eu/database/d
ata-sets. On the website, navigate to the item with the number 28 named
"Spatial attention shifts to colored items - an EEG-based BCI (002-2020)".
Download all 18 participant files (P01 - P18) and place them in the "dataset"
folder. Make sure that no other files (except __init__.py) are present and
the files are not renamed - i.e, the resulting folder will have the init.py file
and the files P01 - P18.mat. The experiment contains five Jupyter notebook
files and two Python files:

• data_preprocessing.ipynb and data_preprocessing.py - either
of these files must be used before any other notebook as they preprocess
the data and form the dataset

65

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/G9RRLN
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/G9RRLN
http://bnci-horizon-2020.eu/database/data-sets
http://bnci-horizon-2020.eu/database/data-sets

• bnci_horizon_convnet_all_samples.ipynb - is used to run the
entire dataset, the samples from the female subjects, and the samples
from the male subjects on the two used CNN models

• bnci_horizon_convnet_individuals.ipynb - is used to run both
CNN models on data from a single subject

• bnci_horizon_lstm_all_samples.ipynb - runs the LSTM model
on the entire dataset, the samples from the female subjects, and the
samples from the male subjects

• bnci_horizon_lstm_individuals.ipynb - runs the LSTM model
on data from a single subject

• bnci_utils.py - this file contains part of the functionality that is used
across the notebooks and should not be edited.

Before running anything else, it is necessary to preprocess the dataset.
To do so, either run the Jupyter notebook "data_preprocessing.ipynb" or
execute the script "data_preprocessing.py" like so:

python data_preprocessing.py

After sucessfully running the preprocessing, the output (all preprocessed
files) will be located in "dataset_result" folder. Subsequently, each of the
four notebooks (with prefix bnci_horizon) can be run in any order. Files
with all samples for both the CNNs and the LSTM can additionally be
configured to run only with samples from female / male subjects (there is
an explanation how to do it in the notebooks).

66

	Introduction
	Non-spiking and spiking neural networks
	Analog neural networks
	Applications
	Generative adversarial networks
	Convolutional networks
	LSTM networks

	Spiking neural networks
	Neuromorphic hardware

	State of the art
	ANN to SNN conversion
	Constrain-then-train
	Local learning rules, STDP
	Approximation methods
	Binary neural networks
	Comparison of state-of-the-art SNNs and ANNs

	Tools for simulation of spiking networks
	NEURON
	BindsNET
	NEST
	Brian
	PyNN
	Nengo
	Nengo Core
	NengoDL
	KerasSpiking
	The rest of the ecosystem

	SNN-Toolbox
	ANN simulation platforms
	TensorFlow and Keras
	PyTorch

	Summary

	Applications of spiking neural networks
	Large multi-subject P300 dataset spiking conversion
	Model architecture
	Network training and evaluation
	Conversion to spiking network
	Results

	Training deep spiking networks using surrogate gradient
	Results

	Spatial attention shifts to colored items dataset classification
	Data preprocessing
	Model architecture
	Training on the entire dataset
	Training on samples from male and female subjects
	Training on samples from each participant separately
	Results

	Conclusion
	List of abbreviations
	Bibliography
	User guide to run the experiments
	Setting up the tools
	Setting up Python
	Installing Python dependencies

	Running the experiments
	Spiking CNN on the guess the number Multi-subject P300 dataset
	Surrogate gradient training on MNIST and Fashion MNIST datasets with deep spiking networks
	BNCI Horizon Spatial attention shifts to colored items dataset experiment

