
University of West Bohemia
Faculty of Applied Sciences

Department of Computer Science and Engineering

Bachelor’s thesis

Home Water Leaks
Detection

Plzeň 2021 Jakub Šilhavý

ZÁPADOČESKÁ UNIVERZITA V PLZNI
Fakulta aplikovaných věd

Akademický rok: 2020/2021

ZADÁNÍ BAKALÁŘSKÉ PRÁCE
(projektu, uměleckého díla, uměleckého výkonu)

Jméno a příjmení: Jakub ŠILHAVÝ
Osobní číslo: A17B0362P
Studijní program: B3902 Inženýrská informatika
Studijní obor: Informatika
Téma práce: Sledování úniků vody v domácí instalaci
Zadávající katedra: Katedra informatiky a výpočetní techniky

Zásady pro vypracování
1. Prostudujte možnosti detekce úniku vody v podmínkách domácího vodovodního rozvodu.
2. Navrhněte algoritmy pro detekci nejčastějších typů úniku vody z vodovodního rozvodu.
3. Zvolte vhodnou platformu a navrhněte další potřebné technické vybavení pro konstrukci detekčního za-

řízení.
4. Vytvořte potřebné programové vybavení detektoru. Doplňte zařízení o možnost dálkové signalizace úniku.
5. Uvažte další možné funkce zařízení (průběžný záznam odběru vody, možnost dálkového snímání dat

o odběru apod.).
6. Celé zařízení podle možnosti realizujte.

Rozsah bakalářské práce: doporuč. 30 s. původního textu
Rozsah grafických prací: dle potřeby
Forma zpracování bakalářské práce: tištěná
Jazyk zpracování: Angličtina

Seznam doporučené literatury:

Dodá vedoucí bakalářské práce.

Vedoucí bakalářské práce: Dr. Ing. Karel Dudáček
Katedra informatiky a výpočetní techniky

Datum zadání bakalářské práce: 5. října 2020
Termín odevzdání bakalářské práce: 6. května 2021

Doc. Dr. Ing. Vlasta Radová
děkanka

L.S.

Doc. Ing. Přemysl Brada, MSc., Ph.D.
vedoucí katedry

V Plzni dne 26. října 2020

Declaration

I hereby declare that this bachelor’s thesis is completely my own work and
that I used only the cited sources.

Plzeň, 29th April 2021

Jakub Šilhavý

Abstract

This document addresses the issue of potential water leaks in a family house.
Water leaks could represent a significant threat to any residence as they may
cause considerable damage to it. As the first part of the thesis, different kinds
of water leak occurrences are taken into consideration, along with possible
ways of detecting them. As a suggested solution, a process of designing a
device solving this issue is described in the second part of the document.
Its essential functionality accounts for aspects such as detecting a water
leak, preventing potential damages, remote control, and informing the user
about what has happened. The last part of the thesis regards testing of
the functionality along with the process of installing the device in a family
house.

Abstrakt

Tento dokument se zabývá problémem možných úniků vody v rodinném
domě. Úniky vody mohou představovat významné riziko, protože mohou
způsobit značné škody. V první části jsou brány v úvahu různé druhy úniků
vody a možné způsoby jejich detekce. Jako navrhované řešení je v druhé
části dokumentu popsán proces návrhu zařízení řešícího tento problém. Jeho
základní funkce zohledňuje aspekty, jako je detekce úniku vody, prevence
potenciálních škod, dálkové ovládání a informování uživatele o tom, co se
stalo. Poslední část se věnuje testování funkčnosti spolu s procesem instalace
zařízení v rodinném domě.

Contents

1 Introduction 9

2 Environmental analysis 10

3 Water leaks classification 11
3.1 Low-water leak . 11

3.1.1 Low-water leak description 11
3.1.2 Low-water leak definition 12

3.2 High-water leak . 12
3.2.1 High-water leak description 12
3.2.2 High-water leak definition 13

3.3 Total-water leak . 13
3.3.1 Total-water leak description 13
3.3.2 Total-water leak definition 14

4 Water leaks detection 15
4.1 Using a water meter . 15

4.1.1 How to carry it out? 15
4.2 Using humidity sensors . 16
4.3 Using flow sensors . 17

4.3.1 Using one flow sensor 18

5 Block diagram of the system 19

6 Algorithms for leak detection 20
6.1 IO of the algorithms . 20

6.1.1 Input data format . 20
6.1.2 Output data format 22
6.1.3 Time and space complexity 22

6.2 High-water leak . 22
6.2.1 High-water leak detection algorithm 1 22
6.2.2 High-water leak detection algorithm 2 25
6.2.3 High-water leak detection algorithm 3 26

6.3 Low-water leak . 28
6.3.1 Low-water leak detection algorithm 1 28
6.3.2 Low-water leak detection algorithm 2 29

5

6.4 Total-water leak . 31

7 Microcontrollers 32
7.1 Raspberry Pi . 32
7.2 Arduino . 33
7.3 STM microcontrollers . 33

8 Water valves 34
8.1 Solenoid valve . 34
8.2 Valve driven by an electric motor 34

9 IDE 35

10 SW structure of the system 36
10.1 Common Controller Interface -

IControllable . 37
10.2 Leak detection controller . 37

10.2.1 class PulseCounter 38
10.2.2 class Button . 39
10.2.3 structure LeakDetectionConfig_t 39
10.2.4 abstract class ALeakDetectable 40
10.2.5 class HighLeakDetection 42
10.2.6 class TotalLeakDetection 42
10.2.7 class LowLeakDetection 42
10.2.8 class LeaksController 42
10.2.9 class Consumption 44

10.3 Logging controller . 44
10.3.1 class Logger . 46
10.3.2 class FreeMemoryMeasurement 47

10.4 LCD controller . 47
10.4.1 intereface IDisplayable 47
10.4.2 class LCDController 48

10.5 Web server . 49
10.5.1 Providing HTML content 49
10.5.2 Sending e-mail notifications 52
10.5.3 Changing settings . 54
10.5.4 Changing e-mail notifications 54
10.5.5 Changing parameters of the water leak detection al-

gorithms . 55
10.6 Storing setting on an SD card 56

10.6.1 Reading data from the configuration file 56

6

10.6.2 Storing data to the configuration file 56
10.7 Remote connection . 57

10.7.1 API for data analysis 57

11 HW structure of the system 58
11.1 I2C bus communication . 58
11.2 LED signalization . 59
11.3 Buttons and switches . 60
11.4 Output of the main valve . 60
11.5 Reading pulses from the flow sensor 61
11.6 Reading the state of the home alarm 62

12 Testing 63
12.1 Unit testing . 63

12.1.1 Water leak detection algorithms 63
12.1.2 Receiving an HTTP request 65
12.1.3 Running Unit tests 66

12.2 System testing . 66
12.2.1 Scenarios . 67

12.3 Interface testing . 67
12.3.1 Testing e-mail notifications 67

13 Conclusion 68

Bibliography 69

List of abbreviations 71

14 Attachments 72
14.1 PulseCounter class . 72
14.2 Button class . 73
14.3 LeakDetectionConfig_t class 74
14.4 ALeakDetectable class . 75
14.5 Hierarchy of the water leak detection algorithms 79
14.6 LeakController class . 80
14.7 Consumption class . 82
14.8 WebServer class . 84
14.9 EmailSender class . 87
14.10 Assembly process of the device 89
14.11 E-mail notifications . 92
14.12 The user interface in a web browser 94

7

14.13 User manual . 97
14.13.1 Website of the device 97
14.13.2 Enabling and disabling functionality 99
14.13.3 Description of the physical device 101

8

1 Introduction

There are many different water-leak-related scenarios of what could unex-
pectedly happen in a family house. The user might have just bought a
new water-consuming device, such as a dishwasher or a washing machine,
and while operating, it may break down due to a variety of reasons. For
instance, the machine may have already broken while shipping, or it may
have not been installed properly. Regardless of what the reason is, water
leaking out of the machine may not only damage walls or furniture, but it
may also destroy other devices close to the crash site, such as a television
or other electrical devices. Another possible example of what may happen
could be a pipe hidden somewhere in a wall that suddenly breaks off because
of advanced corrosion or excessive water pressure. However, these may not
be the only possible causes. Such events require an immediate response to
prevent the equipment of the house from getting damaged, and therefore
saving money. The situation gets even more critical when the residents are
away on vacation, and there is nobody at home to deal with it immediately
after it happens. The Residential End Uses of Water study [12] revealed
that the average household losses roughly 17 gallons (64.4 liters) of water a
day due to indoor leaks.

In this document, I am going to go over the process of designing a device
that should be always a few steps ahead of these unfortunate events. When
the device discovers a leak taking place somewhere in the house, it should
automatically respond to it, for example, by closing the main valve of the
house, in order to avoid any potential damage. The user should immediately
know what has happened as the device keeps them updated at all times.
Also, the device should provide a user-friendly interface through which the
user will interact with the system remotely in order to change settings, see
various kinds of statistics, set up an e-mail address for regular notifications,
etc.

9

2 Environmental analysis

First of all, it is essential to specify the environment in which the device is
supposed to operate. The whole concept mainly focuses on family houses,
cabins, and cottages, where the device continuously detects whether or not
there is a water leak taking place. However, if appropriate installation-
related adjustments are made, the device may not be limited only by these
types of houses but could be used in any residence like dormitories, apart-
ment complexes, and other such buildings.

dishwasher

sink

washing

bath

machine

main
water
pipe

Figure 2.1: An example of crash spots in a house

The figure 2.1 shown above illustrates the basic concept of the environ-
ment. There is a main water pipe entering the house and splitting up further
down into smaller pipes running through the walls of the house, onto which
the user has connected various types of water-consuming machines. The red
marks in the figure represent different spots where a leak may occur. These,
however, may not be the only possible crash spots.

10

3 Water leaks classification

When it comes to theoretical scenarios of what may happen, it is crucial
to realize that all of them cannot be treated in the same way, as they have
distinct characteristics, and potentially, a different impact. For example, a
broken dishwasher may not cause the same damage as a leaking pipe hidden
in a wall; these are two different kinds of leaks. Distinguishing and defining
various types of leaks is vital when it comes to their detection, as different
approaches and techniques could be applied.

3.1 Low-water leak

3.1.1 Low-water leak description
As a first example, there may be loose screws holding a pipe under a sink,
whether it is in the bathroom or the kitchen. Such a tube may cause a
tiny constant leak that may not be easy to discover. Also, it may be quite
expensive, considering it could take a couple of weeks or even months until
someone would take notice of this anomaly. However, the water pipes may
not be the only spot where this type of leak could occur. A broken water-
consuming machine could be a source of a tiny constant leak as well. For
instance, the user might have just bought an external device for watering
their backyard, which is permanently connected to the water system of the
house, and without even noticing, it may turn out to be leaking. There may
be some other scenarios that could be thought of, resulting in the same type
of leak, out of which some are more likely to happen than others.

A sign that a tiny constant leak is taking place could be that there would
be no day, even when nobody is at home, with absolutely no water consump-
tion whatsoever. How quickly such a leak is discovered would depend on the
user’s daily habits.

11

3.1.2 Low-water leak definition

flow

time

flow(t)

0 t
limit

Figure 3.1: An example of a low leak occurrence

In order to find out whether there is a low-water leak taking place or
not, the following formula could be used.

∃ x ∈
〈
0, t− h

〉
: ∀ y ∈

〈
x, x + h

〉
: flow(y) < limit; x, t, h ∈ R

In other words, there must be such an interval of size h between time 0
and t− h in which the flow value is less than a defined limit. For example,
when the residents are out of the house for a couple of days, there must be
at least a few hours a day of no water consumption at all. Another example
could be that there must be at least two hours every night without any water
consumption.

3.2 High-water leak

3.2.1 High-water leak description
Another considered kind of leak has the character of an enormous amount
of water running through the pipes of the house within a short time. Per-
haps there is a water pipe hidden in a wall that suddenly breaks off due to
abnormal pressure in the water system of the house, or because it was not
fastened properly when being installed. Another cause could be, as men-
tioned above, a broken machine, such as a washing machine, out of which
the water would be leaking uncontrollably. Additionally, it could all happen
close to an electrical device such as a switchboard cabinet, short the circuits,
and possibly set the whole house on fire. It is worth reminding that there
might be nobody at home to deal with this situation immediately after it
happens.

12

3.2.2 High-water leak definition

flow

time

flow(t)

0 t1 t1+h t2 t2+h

high leak occurrence

Figure 3.2: An example of a high leak occurrence

∫ t+h

t
flow(x) dx < limit; t, h ∈ R

Generally, a high-water leak could be defined as a huge amount of wa-
ter being consumed within a relatively short time, such as 100 liters within
5 minutes. Since every household is different, the parameters h and limit
will be different for every type of house as well. There are several factors
determining the values of these variables. For example, the number of res-
idents living in the house, the size, whether it is permanently occupied or
just a cabin, etc.

3.3 Total-water leak

3.3.1 Total-water leak description
The third and last type of leak taken into consideration, is primarily caused
by the user’s daily habits such as flushing the toilet, taking showers, washing
dishes, and so on. It is rather a combination of the two previously mentioned
leaks; even though they may not be detected separately, together they could
cause a situation that could be theoretically considered as a leak.

This detection helps the user reduce the overall water consumption as
it keeps track of how much water they use in terms of their daily habits.
For example, the owner may say that they do not want to consume more
than 500 liters of water a day. If they do, they will be notified right away
as they exceed the limit that results in a total-water leak. According to
the Residential End Uses of Water study [13], toilets represent the highest
indoor use of water followed by faucets and showers. Therefore, keeping
track of how often the residents use these facilities could significantly reduce
the amount of money the user pays for their water bill.

13

3.3.2 Total-water leak definition

flow

time

flow(t)

0 t t+h

total leak occurrence

Figure 3.3: An example of a total leak occurrence

∫ t+h

t
flow(x) dx < limit; t, h ∈ R

It may seem to be like this kind of leak is the same as the high-water
leak (section 3.2). However, this one helps the user monitor their overall
water consumption of a day or a month (this depends on the particular
parameters used in the formula shown above) while the high leak detection
detects abnormal water consumption within a short time.

14

4 Water leaks detection

Although all the leaks have been defined in chapter 3 using the flow of water
running through the pipes of the house, it may not be necessarily the only
possible way to detect them. In the next chapter, I will focus on different
options of how to find a leak, where each of them has its pros and cons.

4.1 Using a water meter
One of the simplest ways to find out whether or not the user has a water
leak in their house is to use a water meter. This process does not require
any special device, and its guideline can be found at home-water-works.org
[19].

4.1.1 How to carry it out?
As home-water-works.org [19] suggests, there are essentially three steps that
need to be done in order to check if there is a leak taking place.

1) First, all water needs to be turned off. You might also want to make
sure that no automatic water equipment is being used as it could affect
the result of the leak detection.

2) As a second step, you can start recording the reading of the meter for
about 15 minutes. Be sure no one is using any water during this time.

3) Lastly, start recording again. If the meter has recorded use of water
during the test, it may be due to a leak.

If the user wants to check if they have a leak only once in a couple of
months, for example, this solution may work great for them. However, this
approach is not fully automatic, and a leak may be discovered too late, as
they probably will not be doing it on a daily basis. Therefore, there is a
need to find a better, more automatic way of finding a leak.

15

4.2 Using humidity sensors
Since a broken pipe would most likely result in a wall becoming damp, hu-
midity sensors could be installed over some critical spots sending information
to the central unit if a leak has been found.

dishwasher

sink

washing

bath

machine

main
water
pipe

S1

S2

S3

S4

S5
S6

S7

S8

Figure 4.1: Humidity sensors installed in a house

Humidity sensors are generally quite cheap, and their use is straightfor-
ward as there are many tutorials available on the internet, which could be
considered as an advantage. As well, having the humidity sensors installed
all over the house would bring the advantage of locating where exactly a
leak has occurred. On the other hand, the total number of sensors to cover
up the entire house would need to be taken into consideration. Not to men-
tion, it may be difficult to discover every leak if it happens in a spot where
no sensor is installed (this is shown in figure 4.2 down below). As men-
tioned previously, every household is unique, and therefore, I believe that
this solution would not be so efficient due to its inconsistency when it comes
to installation.

humidity
sensor

broken or leaking pipe

x

Figure 4.2: A crash site located too far away from the closest sensor

16

Another possible reason to rule out this option is communication between
the sensors and the central unit (a microcontroller). A communication pro-
tocol, such as Bluetooth, would have to be used in case the sensors are wire-
less. This might be an issue when it comes to large building since Bluetooth
only works within a couple of meters. It could be argued that there are some
solutions for this. For instance, a network could be used. However, I still
believe this solution would be too complicated and imprecise, considering
the goal is to come up with a simple and effective solution.

4.3 Using flow sensors
This solution is similar to the previous one, 4.2, but instead of using hu-
midity sensors, flow sensors would be used, which would have a couple of
advantages. A humidity sensor detects a leak up to a certain distance from
its location, which is a problem when it comes to installation. As shown in
figure 4.2, installing a sensor in the wrong spot may lead to inaccuracy as a
leak could take place out of the reach of the sensor. However, flow sensors
solve this issue quite well since a single sensor can monitor an entire pipe as
water flow changes equally. In other words, it should not matter where ex-
actly the sensor would be installed as long as it is on the pipe that is meant
to be checked for leaks. This solution would be more accurate, and at the
same time, it would still have the benefit of spotting the exact location of a
leak.

However, the drawback of this design is its price. The more accurate
this solution is required to be, the more sensors would have to be installed
throughout the house. Therefore, this solution would be quite expensive
as far as large buildings are concerned. Also, the installation process itself
would probably have to be done along with the construction process of the
building.

flow
sensor

broken or leaking pipe

Figure 4.3: Flow sensor installation on a pipe

As figure 4.3 above shows us, unlike a humidity sensor, a flow sensor can
cover up an entire pipe when it comes to finding a leak.

17

dishwasher

sink

washing

bath

machine

main
water
pipe

S1

S2

S3

S4

S5
LDD

flow sensors
data (flow value) sent
to the leak detection device

Figure 4.4: Flow sensors installation in the house

All the flow sensors send data to the central unit, which determines if
there is a leak taking place. The detection algorithms used in the central
unit will be discussed later in chapter 6.

4.3.1 Using one flow sensor
Another possible solution, based on the previous one, is to focus on the main
pipe and use only one flow sensor. We would indeed lose the benefit of being
able to say where exactly a leak has occurred, but despite that, I still believe
this solution would be more efficient overall.

Not only would there be only one flow sensor to maintain, which is gen-
erally cheaper, but also, the installation process would be almost the same
for every house. The process of transferring data from the sensor to the
central unit, where they would be processed further, would be much easier
than in the case of multiple sensors placed all over the building. How this
is done will be discussed later in the document.

18

5 Block diagram of the
system

In chapter 4, I mentioned several possible ways of leak detection. All of
them have their strong advantages under the right circumstances, but for
this project, I decided to go with the option discussed in section 4.3.1 (using
a single flow sensor).

In my opinion, this solution could be considered the best for this project
because it encapsulates all logical parts of the system into a single package
that should be easy to install in any family house. It should also be easy
to maintain, repair, or replace if needed. I think the simplicity and price of
this solution are the compensation for not being able to point out the exact
location of a leak in the house. Not to mention that this feature could be
implemented later in a software way.

The whole system is composed of three main logical parts, as you can
see in figure 5.1.

flow
sensor

broken pipe
main
valve

central
unit open/closedata

automatic water leak
detection system

Figure 5.1: Block diagram of the system for leak detection

The input block represents the flow sensor itself which provides data
about the current flow to the central unit. The central unit processes the
input data in such a way that the output is in a binary format; either open or
close the main valve. To achieve that, it could use the algorithms described
in chapter 6. If the central unit finds out that there is a leak somewhere
in the house, it will send a command to close the main valve in order to
prevent the house from being flooded.

19

6 Algorithms for leak
detection

All detection algorithms discussed in this chapter are based off of the char-
acteristics described in chapter 3. As for the input of the algorithms, the
data from the flow sensor will be used, as mentioned in section 4.3.1. Using
data analysis, it will be determined if there is a leak of any kind taking place
in the house which could cause serious damage.

6.1 IO of the algorithms
When it comes to an algorithm, one of the first things that need to be
specified is the input and the output. In this case, as you can see in diagram
5.1, the input is represented by the flow value sent from the sensor, and
the output is either yes, there is a leak taking place, or no, everything
is functioning properly. Also, each algorithm takes into account several
parameters associated with the particular house where the device would be
installed, such as the limit triggering a high leak, maximum daily water
consumption, etc.

water leak
detection
algorithm

settings
(parameters)

INPUT OUTPUT

flow value yes/no

Figure 6.1: Diagram of a leak detection algorithm

6.1.1 Input data format
As mentioned previously, the input of the algorithm is given by the output
of the flow sensor. This could be essentially divided into two main categories
depending on the type of the sensor.

20

Analog input data

The first category is when the output of the sensor is given as a continuous
signal. This type of signal will be transformed into a digital signal using a
technique called sampling. This would be done automatically as the signal
is read off a digital input pin of the microcontroller repeatedly with a certain
period. Renesas-FS2012 could be an example of this type of water meter.
However its output is in volts, and as company Renesas suggests, it needs
to be converted into SCCM 1 using the appropriate formula. [11].

time

flow(t)

signal

Figure 6.2: Analog signal from the flow sensor

time

signal

flow

sampling period

Figure 6.3: Analog signal from the flow sensor after sampling

When it comes to sampling, a sampling period needs to be specified as it
plays a particularly important role in the final form of the signal. Generally,
if the sampling frequency is too low, the sampled signal will not follow the
original shape, and some information might get lost. For example, a leak
may have occurred in between two samples, but it was impossible to detect
it due to the unsuitable size of the sampling period.

Contrastingly, if the sample period is too small, the system may get
overloaded because of the number of samples being stored per a constant
time.

1standard cubic centimeters per minute

21

Digital input data

If the output of the sensor is in a discrete format, it means the sensor does
the sampling process all by itself and provides digital data on its output.
This could be done by the sensor’s construction and the physical method it
uses to measure flow, or it may have a sampler directly in it.

Cyble Sensor made by the Itron company [6] could fall into this category
of water meters. It generates an electrical pulse on its output with every
K liters of water flown through it. This form of data will be taken into
consideration in the algorithms as well.

time

signal

1

0

Figure 6.4: An example of output of the Cyble Sensor

6.1.2 Output data format
As for the output of all the algorithms, the main valve is required to be
closed if there has been a leak detected. Therefore, the output has a simple
form of a 1/0.

6.1.3 Time and space complexity
While the efficiency of the algorithms described below may not be as critical
to boards such as Raspberry Pi (section 7.1), it is still essential to analyze
them because of some other microcontrollers that may be less powerful.

6.2 High-water leak

6.2.1 High-water leak detection algorithm 1

Description

Supposing a high-water leak is defined as in section 3.2.2, and the data has
been sampled as shown in figure 6.5, then in order to detect a high leak, we
need to find an area such that with a constant width, it exceeds the given
limit.

22

time

flow

sampling period

Figure 6.5: An example of a sampled signal

As the input signal is being sampled, we always look back at k samples
and calculate the total area S. If the area exceeds the limit, it means that
there is most likely a high-water leak taking place. In order to calculate the
area, we can use approximation and create a line between every two points.
Although, the real curve might be slightly different.

time

flow

k = 3 samples

S < limit

Figure 6.6: An example of inactivity of a high-water leak

For instance, the parameters of the algorithm can be adjusted, so a high-
water leak is defined as 300 liters, or more, per 10 minutes. Knowing the
sampling period, we can determinate the number of samples needed to cal-
culate the area which can be then compared against the limit value. In this
case, the limit is 300 liters. In case the sampling period is 1 minute, for
instance, then exactly 10 samples need to be included in the process of cal-
culating the area. However, this is just an example of what a set up could
look like. All the parameters will be adjustable, so the user can change them
as they need to.

23

time

flow

k = 3 samples

S >= limit

Figure 6.7: An example of a high-leak occurrence

time

flow

sampling period

S1

S2

S=S1+S2
yi-1 =flow(xi-1)

yi = flow(xi)

xixi-1

Figure 6.8: Process of calculating the area for a high-leak occurrence

Conclusion

The algorithm shown below takes four parameters in total. The first one,
Y , is an array of sampled flow values (see figure 6.8) which is one of the two
major values for calculating the area. The value k represents the amount of
samples involved in the process of calculating the area. And finally, the last
two values represent the limit and the sampling period.

The implementation of this algorithm is straightforward. However, there
are a few disadvantages that need to be pointed out. The overall time com-
plexity of the algorithm is O(k ∗ n), where n is the number of samples and
k, as mentioned above, is the amount of samples involved in the process of
finding a high-water leak. Since k is a constant number, it can be simply
ignored, so in the end, the algorithm will remain only with the time com-
plexity being O(n). Nonetheless, if we consider one sample at a time, the
time complexity is O(1) as we always look back k steps, and k is a con-

24

stant value. The more samples are needed, the more values also need to be
stored in memory. This could be an issue when it comes to the implement-
ation. However, from an analytic point of view, the space complexity of the
algorithm is O(1) as the array of values has a fixed size of k.

Implementation

Algorithm 1 High-water leak detection (1)
1: procedure detect_high_leak(Y , k, limit, sampling_period)
2: s = 0 . total area
3: n = len(Y) . number of samples
4: for i = k − 1 to n do
5: s = 0
6: for j = i− k + 2 to i do
7: s1 = 1

2(abs(Y [j]− Y [j − 1]) ∗ sampling_period) . area s1

8: s2 = min(Y [j], Y [j − 1]) ∗ sampling_period . area s2

9: s = s + s1 + s2 . update total area s

10: if s >= limit then . test if the limit has been exceeded
11: return 1 . high leak detected
12: return 0 . high leak not detected

6.2.2 High-water leak detection algorithm 2

Description

For this algorithm, I was inspired by an algorithm for finding the maximum
sum of k consecutive elements inside the array [17].

The algorithm described in section 6.2.1 can be slightly improved using
a sliding-window technique. This would reduce the time complexity a little
bit further as it would no longer require iterating over the array k-times
with each sample. We need to keep track of the current sum, and with each
sample, we need to remove the last calculated area and add the new one.

25

Implementation

Algorithm 2 High-water leak detection (2)
1: procedure detect_high_leak(Y , k, limit, sampling_period)
2: s = 0 . total area
3: n = len(Y) . number of samples
4: for i = 1 to k do
5: s1, s2 = calculate_areas(i, i− 1) . calculate areas
6: s = s + s1 + s2 . update total area s

7: if s >= limit then . test if the limit has been exceeded
8: return 1 . high leak detected
9: for i = k to n do
10: s1, s2 = calculate_areas(i− k + 1, i− k) . calculate areas
11: s = s− (s1 + s2) . substract the last area
12: s1, s2 = calculate_areas(i, i− 1) . calculate areas
13: s = s + s1 + s2 . add the latest area
14: if s >= limit then . test if the limit has been exceeded
15: return 1 . high leak detected
16: return 0 . high leak not detected

Conclusion

As you can see in the code above, a nested loop is no longer needed to
calculate the area. This is the main reduction in terms of time complexity
using a sliding-window technique. However, as all the samples still need to
be kept in memory, the space complexity does not change at any rate.

6.2.3 High-water leak detection algorithm 3

Description

Another approach is to consider the input of the algorithm as shown in figure
6.4. The goal is to detect a high-water leak as visualized in figure below 6.9.

Essentially, each pulse represents a certain amount of water flown through
the sensor. So in order to detect a high leak, all we need to do is to keep
counting the pulses, and if a certain limit is reached, there has been a high
leak detected. This value is shown as Ncritical in the figure below. Also, the
counter needs to be set back down to zero if a pulse has not been detected for
a certain amount of time. The period is represented as tcritical. For instance,

26

if there are more than 10 pulses within 5 minutes, there is most likely a
high-water leak taking place in the house.

time

signal

signal

1

0

1

0

time

high-water
leak occurence

Ncritical

Figure 6.9: Occurrence of a high-water leak

Implementation

Algorithm 3 High-water leak detection (3)
1: procedure detect_high_leak(Ncritical, tcritical)
2: counter = 0 . init counter
3: t1 = time() . get current time (start of one period)
4: t2 = t1 . end of one period
5: while 1 do
6: if input() == 1 then . read input value (1/0)
7: t1 = time() . a pulse has been detected
8: counter = counter + 1 . increment counter
9: if counter ≥ Ncritical then
10: return 1 . high leak detected
11: t2 = time() . get current time
12: if t2 − t1 ≥ tcritical then . no pulse detected for tcritical

13: counter = 0 . reset counter
14: return 0 . high leak not detected

Conclusion

What makes this algorithm more efficient is the constant number of oper-
ations that need to be done with every pulse detected on the input pin.
Another considered advantage is that there are only three variables needed

27

to detect a high-water leak, unlike in algorithms 6.2.1 and 6.2.2, where we
need a whole array of flow values. Hence, the space complexity as well as
the time complexity is O(1).

It could be argued that the time complexity of the previous algorithms is
also, analytically, O(1). This is true, but it is the constant size of the array
that makes the time complexity O(1) while here, a single variable is being
updated without any need of using a loop.

6.3 Low-water leak
It is assumed that a low-water leak is defined as in section 3.1. As a first
step, a period during which the user wants to monitor their overall water
consumption needs to be specified. For example, a day, but it could be
anything satisfying the user’s needs. And secondly, there must be another
period specified, during which the level of water consumption should be less
than a defined limit. In other words, there must be at least three hours
every day without any water consumption.

Similarly to section 6.2, two different forms of input of the algorithms
will be considered.

6.3.1 Low-water leak detection algorithm 1

Description

time

flow

24 hours

3 hours

S >= limit

Figure 6.10: 3 hours within 24 hours exceeding the limit of a low-water leak

28

time

flow

24 hours

3 hours

S < limit

Figure 6.11: 3 hours within 24 hours classifying the whole day as low-leak
free

As you can see in the figure above, this algorithm is a slight modification
of the algorithm discussed in section 6.2.1. Instead of iterating back k steps
with every new sample of the current flow value, the entire monitoring period
is analyzed. In this case, twenty-four hours. Within the twenty-four hours,
the same algorithm as in section 6.2.1 is used, and if we manage to find a
window of time that does not exceed the defined limit, the whole monitoring
period will be classified as low-leak free. This algorithm would be run every
twenty-four hours. The consequential steps in case of a leak being detected
are the same as when it comes to a high-water leak.

Conclusion

The time complexity is O(k ∗ n), where n is the number of samples within
the monitoring period, and k is the amount of sample making up the time
window in the monitoring period. However, the same technique as in section
6.2.2 could be used to reduce it, resulting in the time complexity in a total of
O(n). As far as space complexity is concerned, n samples need to be stored
for every run of the algorithm, hence the overall space complexity is O(n).

6.3.2 Low-water leak detection algorithm 2

Description

For this algorithm, the input is given in a format shown in figure 6.4. After
the monitoring period has been defined, e.g. twenty-four hours, the time
differences between pulses need to be analyzed.

29

time

signal

1

0

monitoring periode.g. 24h

t1 t2 t3 tn.

Figure 6.12: time differences between pulses in low-water leak detection

Also, the size of the time window characterizing a low-water leak needs to
be specified. For instance, three hours. Once these two parameters have been
defined, whether or not there is a low-leak taking place could be determined
using the following formulas.

(∀i ∈ {1, 2, ..., n− 1} : ti+1 − ti ≤ limit)⇒ low-water leak has occurred

(∃i ∈ {1, 2, ..., n−1} : ti+1−ti > limit)⇒ monitoring period is low-leak free

Implementation

Algorithm 4 Low-water leak detection (2)
1: procedure detect_low_leak(treset, tcritical)
2: set = 0 . a flip-flop variable
3: ts = −1 . flip-flop set time
4: tl = −1 . time of last pulse
5: tc = −1 . current time
6: while 1 do
7: if input() == 1 then . there is a new pulse
8: tl = time() . update time of the last pulse
9: if set == 0 then
10: set = 1 . set flip-flop if it is not already set
11: ts = time() . update flip-flop set time
12: tc = time() . update current time
13: if set == 1 ∧ tc − ts >= tcritical then
14: return 1 . low leak detected
15: if set == 1 ∧ tc − tl >= treset then
16: set = 0
17: return 0 . low leak not detected

30

The algorithm above takes two parameters. The first one, treset, is the
window of time required to be without any water consumption, e.g. four
hours. The second parameter, tcritical, represents the monitoring period, for
example, forty-eight hours. Naturally, tcritical is supposed to be greater than
treset. The variable set is being set to logical one with every pulse occurrence
on the input pin of the microcontroller. If there is no pulse for treset, the
value of the variable will be set back to logical zero. However, if the variable
has been set to logical one for more than tcritical, it is a sign that there is a
low-water leak taking place.

Conclusion

The algorithm does not require any use of loops with its time complexity
being O(1). In comparison to algorithm 6.3.1, the space complexity is O(1),
since there are only a few variables needed to implement the whole logic.

6.4 Total-water leak
Having a similar definition, a total-water leak detection would be imple-
mented in the way as a high-water leak detection. Therefore, instead of
implementing another algorithm, we can take advantage of the algorithms
described in section 6.2 and use them with different parameters. To put it
another way, a total-water leak could be thought of as a high-leak stretched
out over a longer period of time. For example, a high-water leak would be
defined as 100 liters of water within 3 minutes, and a total-water leak, on
the other hand, would be defined as 700 liters of water within 24 hours. The
high-water detection algorithms are general enough to be used for this type
of water leak as well, having the same advantages and disadvantages.

31

7 Microcontrollers

Choosing a suitable microcontroller for the project is just as important as
the algorithm it is supposed to implement. In terms of functionality, several
critical factors should be focused on when it comes to choosing the right
one.

1) Software support
I believe that supporting a variety of libraries is one of the most critical
things for this project for reasons such as sending email notifications,
implementing a user interface, etc.

2) Memory
The more functionality is supposed to be implemented, the more memory
it will take, especially RAM. Thus, it is vital to make sure the micro-
controller has enough memory for all the features being implemented
within this project.

3) Security
This is a great issue in IoT in general, as smart devices, including this
project, have access to the internet. Therefore, a responsible choice is
essential in order to prevent security issues in the future.

4) Other
There are many other factors that need to be taken into consideration
as well. Into this category falls, for example, hardware architecture,
cost, power efficiency, etc. [7].

7.1 Raspberry Pi
Raspberry Pi is a widely used single-board computer that comes with its
own operating system, Raspbian, which is based on Linux. It provides a
suitable amount of memory for all the features of this project, as well as
their possible extensions in the future. Furthermore, it supports services
such as SSH, Apache, FTP, SCP, or SAMBA. All of which can be found at
raspberrypi.org [10]. When it comes to Raspberry Pi, we are not limited by a
programming language, so we can use any programming language we want,
such as C/C++, Python or Java. While it provides such great functionality,
it could be considered more vulnerable to hackers than some ATmega-based
microcontrollers, such as Arduino.

32

7.2 Arduino
Arduino is a very popular microcontroller finding its applications in many
different fields. It comes with great library support as well as tutorials that
could be found at arduino.cc [1]. The tutorials cover everything, from a
basic LED blinking to network-related features, such as a mail-box reader
or HTTP client. Arduino also comes in many flavors. For example, Arduino
Nano, which is the smallest of all the boards having 2KB of SRAM along
with 22 digital I/O pins, or Arduino Mega 2560, which has 8KB of SRAM
and 54 digital I/O pins [2]. Also, a board can be extended by additional
shields, such as the Ethernet shield, which allows the Arduino board to be
connected to a network. The programming language for Arduino is based
on top of C/C++.

7.3 STM microcontrollers
Using this brand of microcontrollers could be another possible way to im-
plement all the features of this project. As the company claims, the 32-bit
Arm microcontrollers are suitable for both small projects and end-to-end
platforms [15]. They are divided into several categories in order to meet
the user’s requirements. For example, they can go with STM32F2 for its
high performance or STM32L0 for its ultra-low power. Additionally, some
external modules for Arduino can be used with this type of microcontrol-
ler as well. The company STMicroelectronics provides a variety of software
tools and libraries that come in handy throughout the whole process of de-
velopment. For instance, their so-called STM32Cube Ecosystem, which is a
complete software solution for STM32 microcontrollers and microprocessors
[16].

33

8 Water valves

As you can see in figure 5.1, a water valve is the last component making up
the whole system. Simple functionality is required. If any kind of water leak
is present, a control signal should be sent from the microcontroller to close
the valve for reasons mentioned in chapter 3. The valve must be electrically
controlled as a microcontroller is used to send the signal. However, other
parameters, such as temperature, pressure, or cost, should be taken into
account as well.

8.1 Solenoid valve
This type of valve is controlled by an electric current running through a
solenoid core that changes the valve’s state from open to close and vice
versa. It is fast, and it could be used for either gas or liquid flowing through
a pipe. The main advantage of solenoid valves is the ability to automatize
changing their state by sending electromagnetic signals. It is also important
to be familiar with the behavior of the valve in case the power goes out. If
there has been a leak detected and the power goes out, the valve may open
again, which would cause a situation as if there was no leak detection system
at all.

8.2 Valve driven by an electric motor
Unlike a solenoid valve, this type of valve may not be as fast since it is driven
by an electric motor. However, a couple of second latency does not make
a considerable difference as far as this project is concerned. A particular
example of this kind of valve could be a ball valve made by the BELIMO
company. The company offers a variety of valves and actuators, so the user
can purchase whatever suits them the most. For instance, they can purchase
the standard actuator, which has a running time of 90 seconds, or they can
decide to use the very fast running actuator, which reduces the running time
down to 9 seconds [5]. In case the power goes out, the valve remains in its
last position as the motor driving the valve has no power anymore.

34

9 IDE

Since I decided to use Arduino Mega (see chapter 7) as the microcontroller
for this project, Arduino IDE seemed to be the first option that came to
mind. However, I found this IDE to be too basic for maintaining a project
of this size. I required synchronization with a GitHub repository, a nice-
looking syntax highlighter, adding possible extensions, and other features to
make the developing process easier. Other possible alternatives were CLion
or Atmel Studio, both of which are widely used in the software industry.

In the end, I decided to use Visual Studio Code, shortly VSCode, for its
extensions that allow the user to customize the environment to their wish.
Although VSCode does not come with tools for embedded development out
of the box, several extensions conveniently allow the developer to do so.

The best of which I find to be the PlatformIO [8] extension, which not
only has support for Arduino development but also comes with tools for unit
testing. Unit testing is an essential part of the project as it must be proven
to work correctly before installation in the house. The way this is done will
be discussed further in section 12.

35

10 SW structure of the system

Throughout the project, I use mostly object-oriented programming (OOP).
I believe that with this approach, it is easier to carry out unit testing and
possibly extend the already built-in functionality of the system. The Arduino
language is based on top of C/C++, which allows creating classes. It is also
a convenient way of keeping things structured and organized.

Leak detection

Storing/loading
settings

Logging

Remote control
(web server)

LCD display

External libraries

HW components
modules,

shields, and circuits

void setup() {

 init();

}

void loop() {

 update();

}

update

update

update

update

update

C
om

m
on

 C
on

tr
ol

le
r

In
te

rf
ac

e

Arduino main sketchSW controllers

Figure 10.1: Block diagram of the SW structure of the project

As you can see in the figure above, the design has an OOP Bottom-Up
structure, where the top is represented by individual SW controllers linked
up together via a common interface. Each of the controllers implements a
different functionality of the system. For example, the logging controller is
used for debugging and troubleshooting. Some of the controllers require the
use of an external library. For instance, when storing data on an SD card
or when creating an instance of a web server. All the parts of the system
are being periodically updated from the loop function in the main sketch.
Therefore, the time complexity of the update methods plays a vital role as

36

the whole system should be updated, ideally, without delay. All the logical
parts will be discussed in detail in the following sections.

10.1 Common Controller Interface -
IControllable

This interface defines the common functionally for all the controllers. It is
a layer of abstraction that allows the main sketch to treat all of them the
same way without a need of knowing their internal implementation.

«Singleton»
LeaksController

«Singleton»
Logger

«Singleton»
WebServer

«Singleton»
LCDController

IControllable

virtual void update() = 0
public methods

DailyOverview

Figure 10.2: UML diagram of the interface IControllable1

Although a feature has already been implemented, it could be easily
disabled if needed. For example, the Logger controller is primarily used for
troubleshooting. Therefore, before deploying, it is usually disabled using
macros after a bug has been fixed (see the User manual 14.13).

10.2 Leak detection controller
As far as the algorithms are concerned, for their entire explanation, see
sections 6.2.3, 6.3.2, and 6.4. As the next step, I will explain the role each
class plays in the hierarchy shown below in figure 10.3.

This part of the system takes care of water leak detection. It involves
reading data from the water meter, analyzing them, and, if needed, closing
the main valve.

Moreover, each of the water leak detection algorithms can be bypassed.
For example, if the user expects a high-water consumption, and they do not
want the device to close the main valve. For instance, when watering their
backyard.

1All the UML diagrams were created using PlantUML

37

«Singleton»
LeaksController

IControllable

Consumption

ALeakDetectableLeakDetectionConfig_t PulseCounter

Button

HighLeakDetection LowLeakDetection

TotalLeakDetection

1

0..n

1 1 1 1

1

1

1

1

1 1

1

0..2

Figure 10.3: UML diagram of the leak detection system of the device

10.2.1 class PulseCounter

Since I decided to use the Iron Cyble sensor [6], the input of all the algorithms
looks as shown in figure 6.4.

The sensor works as a simple one-button circuit, where a certain level of
voltage must be provided on its input, for example 5V. When there is no
flow of water in the pipe, the output is inactive (0V). After every 10 liters
of water flown through the sensor, the sensor closes the circuit for a period
of 70ms, letting the 5V appear on the output.

38

+5V

22
0
Ω

GND

SENSOR

PIN 2

Arduino Mega

flow sensor
Iron Cyble

IN OUT

+5V 22
0
Ω

Figure 10.4: Electric circuit for reading pulses from the sensor

This class represents the source of data for all the detection algorithms.
Also, it could be considered as the primary input of the whole system. The
UML diagram of the class can be seen with its description in the attachments
(14.1).

10.2.2 class Button

When a leak has been detected, the user is required to manually press the re-
set button as a confirmation of them having dealt with all the consequences.
As soon as the button is pressed, the device will reset all the detection
algorithms.

The hardware implementation is similar to PulseCounter (section 10.2.1).
However, this time, it is not the flow sensor that closes the circuit but the
user as they press the button. All the variables the class holds are described
in the UML diagram in the attachments (14.2).

10.2.3 structure LeakDetectionConfig_t

Since every household is different, there is a requirement to have the ability
to change the parameters of the water leak detection algorithms. This is
where LeakDetectionConfig_t comes into place. It holds all the necessary
variables that are mentioned in sections 6.2.3, 6.3.2, and 6.4.

However, not every variable held in this structure is used by every al-
gorithm. It was designed in a more general way, so the structure would not
have to differ for every kind of water leak detection algorithm. In particular,
the low-water leak detection algorithm does not use the limitPulseAction
variable for its functioning. The whole structure can be seen in the attach-
ments (14.3).

39

It is also possible to change the parameters in real-time. This is meant
to be done by the owner of the house through the interface (the web server)
discussed later in the document (section 10.5).

To change the settings of a running algorithm, the new values need to
be passed into the class using a particular method. For safety reasons, the
new settings will not be applied immediately since a leak might be close to
being detected. Instead, a flag will be set, and when the algorithm resets,
the new settings will be put in place.

This feature is required in all the detection algorithm. Therefore, in order
to follow the OOP approach, it is done entirely in class ALeakDetectable.

10.2.4 abstract class ALeakDetectable

This class represents an abstraction of a leak detection algorithm. It en-
capsulates the common features, variables, and functionality of all three
algorithms, so they do not have to be implemented three times, but only
once. It also implements features such as updating settings or changing
them according to the state of the home alarm, which will be discussed in
this section.

Settings of a leak detection algorithm

Each algorithm has its settings depending on the parameters of the house,
such as size, type, etc. This is represented by structure
LeakDetectionConfig_t, previously discussed in section 10.2.3.

Home alarm settings

When the house is empty, ideally, there should not be any water consumption
whatsoever. Based on the state of the home alarm, which was used an
indication of nobody being at home, the current settings could be changed
to another set of values that have been adjusted for this particular situation.

It is up to the user how they want to set the parameters of the algorithms
when the house is unoccupied. For instance, the limits could be twice as low
in order to detect even tinier leaks. However, they should not be set entirely
down to zero as there still might be some devices operating, such as a washing
machine finishing up its cycle.

From the implementation point of view, the class will hold two instances
of LeakDetectionConfig_t. One for ordinary use and the other for the
situation when there is nobody at home. These are further referenced as
normalConfig and alarmConfig.

40

ALeakDetectable

LeakDetectionConfig_t normalConfig
LeakDetectionConfig_t alarmConfig
LeakDetectionConfig_t *config
int stateOfHomeAlarm

protected data

void changeStateOfHomeAlarm(bool state)
public method

«Singleton»
LeaksController

HighLeakDetection LowLeakDetection

TotalLeakDetection

changeStateOfHomeAlarm(true/false);

Home alarm

ON/OFF

Figure 10.5: Diagram of changing settings by the state of the home alarm

The diagram above illustrates a simple principle of how changing settings
by the home alarm works. When the user leaves the house, they usually set
the home alarm before locking the door. The microcontroller reads the state
signal in a form of 1/0 and changes the settings accordingly. As mentioned
previously, the settings will not be applied immediately but with the restart
of each algorithm.

Depending on the value of stateOfHomeAlarm, which is set up externally
by LeaksController, the pointer config points either at
normalConfig or alarmConfig. The UML diagram of ALeakDetectable
shown in figure 10.5 does not show all the variables and methods contained in
the class but only those used for changing settings of the water leak detection
algorithms by the state of the home alarm. The entire class description could
be found in the attachments (14.4).

Perhaps, this feature may not be required in every house. Therefore,
it can be disabled using macros, and the normalConfig will be used at all
times regardless of the state of the home alarm. How to disable it is shown
in chapter 14.13.

41

10.2.5 class HighLeakDetection

This class mainly implements the methods regarding a high-water leak defined
in its parent class, ALeakDetectable. In particular, the algorithm imple-
mented within this class can be found explained in section 6.2.3.

To provide more information about the progress of the algorithm, two
more methods were implemented returning percentage information about a
leak being detected and the algorithm being reset.

10.2.6 class TotalLeakDetection

As explained in section 6.4, a total water leak could be interpreted as a high
water leak with different parameters. In terms of implementation, almost all
the functionality is the same as in HighLeakDetection. The only difference
is the way this algorithm resets. Unlike the high-water leak detection, where
the algorithm resets with pulse inactivity for a certain amount of time, this
algorithm resets periodically every twenty-four hours. This value is set by
the user through the user interface (section 10.5).

10.2.7 class LowLeakDetection

The LowLeakDetection class represents a particular implementation of the
algorithm mentioned in section 6.3.2. It implements similar functionality as
HighLeakDetection and TotalLeakDetection. All three water leak detec-
tion algorithms can be seen in the attachments (14.5).

Since all the water leak detection algorithms implement the same functional-
ity, most of the methods and variables can be seen along with their descrip-
tions in the ALeakDetectable class (see attachment 14.4), which is their
parent class. They may only differ by their additional parameters related
to the particular algorithm. These, however, can be found in sections 6.2.3,
6.3.2, and 6.4.

10.2.8 class LeaksController

LeaksController is the controller of the whole hierarchy taking care of
water leak detection. It holds instances of the algorithms described above
and periodically updates them. It also updates the PulseCounter as well as
the Consumption class (section 10.2.9), which is used to keep track of how
much water the user consumes over a certain amount of time.

42

The LeaksController class was designed as a singleton because there
is no need to create multiple instances of this class within the project and
thus, it is unique [20, chapter 10.5 The SINGLETON Pattern]. Most of the
controllers and classes within this project are implemented similarly. The
UML diagram of the class can be seen in the attachments (14.6).

Closing the main valve

This class also reads the state of the home alarm and passes it on to the
algorithms to switch their settings accordingly. However, perhaps the most
important feature of the class is closing the main valve. If any of the not
currently bypassed algorithms detect a water leak, it will send a signal to
close the main valve. The valve will then remain closed until the user presses
the reset button.

K2

K1
VCC
IN2
IN1

GND

RELAY_2_SRD

~220V

+5V

PIN 8

GNDGND

22
0
Ω Arduino Mega

1 - close
0 - open

electric valve
BELIMO

no water flow when
the valve is closed

electric valve
(open/close)

relay to control 220AC
using the output from Arduino

output of the leak
detection algorithms

Figure 10.6: Diagram of controlling the main valve from the microcontroller

Once a signal is sent from the Arduino board, it takes a couple of seconds
for the valve to change its state. As the valve needs 200AC voltage for its
operating, a relay needs to be used since the microcontroller provides only
5V on its output.

Manual close of the main valve

Also, the user has the option to open or close the main valve manually by
pressing one button if they need to (see the User manual 14.13). This feature
might be a convenient way of turning water off for the entire house.

43

10.2.9 class Consumption

The class Consumption is used to monitor how much water has been con-
sumed within a day, week, or month. It uses the PulseCounter class to
keep counting the pulses generated by the flow sensor. The counter will be
reset back to 0 after the amount of time set through the constructor when
creating an instance has passed. The content of the class is described in the
attachments (14.7).

10.3 Logging controller
Logging was used throughout the process of development of this project. It
is used for visualization, validation, and troubleshooting of various kinds of
functionality. For instance, it may be used for printing out the current state
of the algorithms and their progress as the pulses are being read off the input
pin. In order to follow the OOP approach, a hierarchy regarding the logging
process was implemented in the project (figure 10.7).

If a class is supposed to be included in the logging process, it needs to
implement two methods as it is shown in the UML diagram below. The first
method, getLogID(), returns an identification of the class. For instance,
“HIHG_LEAK”. The other method, getLogDescription(), is the content to
be printed out on the screen. The log itself has then the following structure:

1 [d:h:m:s:ms][LOG_ID][LOG_DESCRIPTION]

Or in particular, it may look like:

1 [0:00:00:05:618][RAM][FREE=5212B]

As you can see above, each log being printed out on the screen is consist
of a time stamp, its ID, and the content of the log itself. The time stamp is
the up-time of the Arduino board.

44

«Singleton»
Logger

static Logger* instance
std::vector<ILoggable*> logs
TimePeriod timePeriod = LOG_PERIOD

private data

Logger(){}
Logger(Logger const&)
Logger& operator=(Logger const&)
__ public methods __
static Logger* getInstance()
void addEntity(ILoggable* log)
void update() override

private methods

«Singleton»
FreeMemoryMeasurement

int getFreeRAM() const
public methods

«Singleton»
LeaksController

«Singleton»
LCDController

IControllable

virtual void update() = 0
public methods

ILoggable

virtual const String getLogDescription() const = 0
virtual const String getLogID() const = 0

public methods

LowLeakDetection HighLeakDetection

TotalLeakDetection

1

0..n

Figure 10.7: UML diagram of the logging system of the project

The UML diagram does not contain all the methods of all the classes but
only those supposed to be mentioned as a part of the logging system. Each
class implementing the ILoggable interface must explicitly implement both
methods defined by this interface.

The process of logging (printing out information to the terminal) works
periodically. It means that at the beginning, a logging period is specified,
e.g. 3 seconds. Then every 3 seconds, the latest information about the
classes registered to the logging system will be printed out.

This structure provides an easy way of both adding and removing classes

45

from the logging system. Also, the user can entirely disable this feature of
the system or change the logging period. More information about how it is
done could be found in the User manual 14.13.

Listing 1: An example of a log being printed out on the screen

1 [0:00:00:04:089][HIGH LEAK][BYPASS=0 | ACTIVE=0 | ACTIVE=3.33%
| RESET=4.69% | CONFIG=NORMAL | PULSE_COUNT=1]↪→

2 [0:00:00:04:140][LOW LEAK][BYPASS=0 | ACTIVE=0 | ACTIVE=1.37%
| RESET=4.55% | FLIP_FLOP=1 |
FLIP_FLOP_SET_TIME=0:00:00:03:621 | CONFIG=NORMAL]

↪→

↪→

3 [0:00:00:04:290][TOTAL LEAK][BYPASS=0 | ACTIVE=0 |
ACTIVE=2.50% | RESET=0.23% | CONFIG=NORMAL |
PULSE_COUNT=1]

↪→

↪→

4 [0:00:00:04:406][LEAKS_CONTROLLER][VALVE_STATE=0 | HOME
ALARM=0 | MANUAL_CLOSE=0]↪→

5 [0:00:00:04:493][RAM][FREE=5322B]

Additionally, there is another piece of information printed out on the screen.
However, this type is not being printed out periodically but only when an
event occurs. In particular, this regards the boot-up process of the system
or when the system receives an HTTP request (see section 10.5).

Listing 2: Information regarding the boot-up process of the system

1 pins configuration...
2 loading settings...
3 adding instances to logging...
4 adding instances of all the controllers...
5 web server initialization...
6 server is at 10.10.2.118
7 SUCCESS - SD card initialized.
8 INDEX~1.HTM exists.
9 program is now running...

10.3.1 class Logger

This class is the main SW controller of the logging part of the system. It
implements the same design pattern, singleton, as LeaksController. Thus,
almost all the methods have the same description as in section 10.2.8.
All instances registered in the logging system are held in a vector data
structure, which was added as an external library to the project [4].

46

10.3.2 class FreeMemoryMeasurement

As the SW structure of the project grows, it is useful to keep track of how
much of the SRAM memory is still free. Arduino Mega comes with 8KB
of SRAM, but this value reduces with each additional library added to the
project. Therefore, it comes in handy to have this value printed out as a
part of the logging system. It is also implemented as a singleton, and besides
the compulsory methods, it contains one method that returns the current
value of the free SRAM memory. The compulsory methods are indeed the
pattern-related methods and the interface this class implements.

10.4 LCD controller
There are essentially two ways of displaying information about the system
to the user. If the user, for their own reasons, does not want to have the
web server functionality enabled in the system, they will still be able to see
what is going on via the LCD display.
The hierarchy of this part of the system is similar to the logging system 10.3,
If a class is meant to print some information on the LCD display, it needs
to implement the IDisplayable interface.

10.4.1 intereface IDisplayable

As you can see in the UML diagram shown below (figure 10.9), the interface
defines only one method which is used to return a particular row of the
content the class is supposed to print out on the LCD display. The number
of rows depends on the size of the display. In this case, a 20x4 LCD [18]
display was used, so each class can print out content up to four rows, where
each row is made of twenty columns.

OVERVIEW

VALVE STATE=0

HOME ALARM=0

MANUA L CLOSE=0

FREE SRA

5152B

MLOW WATE

BYPAS S=0
 ACTIV E

R LEAK

VACTI E =0

=2.32%

RESET=7.75%

1. content 2. content n. content

3 sec 3 sec 3 sec

3 sec

current content
of the LCD display

Figure 10.8: A principle of displaying multiple pages on the display

47

IControllable

virtual void update() = 0
public methods

«Singleton»
LCDController

static LCDController* instance
LiquidCrystal_I2C lcd = {0x20, 20, 4}
std::vector<IDisplayable *> items
TimePeriod delay = SEC_TO_MILLIS(3)
int index

private data

LCDController()
LCDController(LCDController const&)}
LCDController& operator=(LCDController const&)

private methods

static LCDController* getInstance()
void update() override
void addItem(IDisplayable *item)

public methods

«Singleton»
FreeMemoryMeasurement

«Singleton»
LeaksController

IDisplayable

virtual const String getRow(int row) const = 0
public methods

LowLeakDetection HighLeakDetection

TotalLeakDetection

1

0..n

Figure 10.9: UML diagram of the hierarchy used for printing information on
the LCD display

10.4.2 class LCDController

The LCDController class deals with printing information out on the LCD
display. It uses a paging system where each class represents a single page
consist of four rows, as explained in section 10.4.1. There is also a delay of
three seconds between two pages, so the user can read the status from the
display effortlessly. Its principle is shown in figure 10.8.
This class, as any other SW controller within the project, is implemented as
a singleton.

48

10.5 Web server
The web server represents the main interface the user uses for interaction
with the system. Not only does it provide various kinds of information about
the system, but it also allows them to change the parameters of the water
leak detection algorithms.

POWER HOME WATER LEAKS
DETECTION

RESET
DETECTIONS

MANUAL
CLOSE

VALVE STATE

HIGH LEAK
 bypass

 LOW LEAK
 bypass

TOTAL LEAK
 bypass

HIGH LEAK
detected

LOW LEAK
detected

TOTAL LEAK
detected

HOME ALARM

USER INTERFACE
- data visualization
- changing settings

flow sensormain valve

water leak detection device

smart devices the user uses
to interact with the system

Figure 10.10: The concept of the user interface

10.5.1 Providing HTML content
The interface is implemented using the Ethernet library and an Ethernet
shield, which is attached to the Arduino board. Using the ethernet shield,
the microcontroller board works as a simple web server capable of providing
static HTML content.
However, there are a couple of issues that need to be tackled. The HTML
code cannot be stored directly in the source code as there is only 8KB of
SRAM available. The entire content has over 30KB in total, which exceeds
the maximum Arduino Mega provides. As a solution, the code is stored on
an SD card plugged into the SD card slot that is a part of the Ethernet
shield. The SD card is formatted to FAT16 file system since the library
supports only FAT16 and FAT32.

49

Loading the page content

When a client connects to the web server, the program will load the
content of the index.html file stored on the SD card. The content of
the file is not read all at once, but instead, it is read line by line, so
the web page could be provided to the client without using too much
of the SRAM memory. Since the longest line in the HTML code is 161
characters long, it could be assumed that the loading process does not
exceed more than 161B of SRAM at a time. However, since the entire
HTML code consists of 1063 lines, it could consequently slow down the
updating process of other parts of the system. Therefore, the other SW
controllers are being updated simultaneously with each line read off the card.

SD card

INDEX∼.HTM # the content of the website - index.html

CONFIG.txt # settings of the device

Due to the size of the web page and the overall performance of Ar-
duino Mega, it takes a few seconds for the site to load up. Nevertheless, the
most important part of the system, the water leak detection algorithms, is
being updated frequently regardless of the website being read off the SD
card.

Replacing static HTML with real-time values

As the content is being read line by line, some of the lines contain a piece
of information about the system. For example, the state of the home alarm,
daily water consumption, state of the main valve, etc. In order to identify
these lines, there was a unique sequence of characters defined within the
code, indicating that this part should be replaced with a value. This value
can either represent an actual value, such as the current water consumption,
or it could be used to specify a CSS class, for example, when changing colors.

Listing 3: Unique sequence of characters identifying a value in HTML

1 %*<value_id>*%

Listing 4: An example of a line that needs to be replaced with a value

1 <td>time since the last pulse was detected</td>
2 <td class="table-border-left">%*12*%</td>

50

index.html sored
on the SD card web browser on

the user's PC

read another line of
the HTML code

Replace all the '%**%'
sequences with the
appropriate values

Process of loading the HTML contnent

Figure 10.11: The process of loading index.html from the SD card

Different kinds of data belong to different parts of the system. Therefore,
if a class should work as a source of data for the HTML code, it needs
extend HTMLDataSource (see attachment 14.8). The web server controller
then goes over individual classes registered as a source of data until it finds
the one that holds the data matching the particular number. For instance,
the number 12 represents the time since the last pulse was detected and is
held in PulseCounter.
Each class internally uses a map taking advantage of its quick lookup times.
The map itself is consists of the value_id and a pointer to a function that
returns the associated String value. This brings the advantage of imple-
menting extra logic within the function. For instance, when requesting a
background color for a progress bar, multiple colors can be returned based
on how close a leak is to being detected. The process of finding the class
holding the particular data is visualized in figure 10.12.

51

if (bypass)

 return "red";

else

 return "green";

if (valveState)

 return 1;

else

 return 0;

internal logic

class A

class B

internal logic

class C

class DWebController

<td class="table-border

-left">%*11*%</td>

current line:

id 11?✓
id 11? ╳

22
11

103

value_id handler

2
111

value_id handler

internal logic

id 11? ╳

id 11? ╳

Figure 10.12: The process of inserting data into the HTML code

The UML structure of this part of the system is reminiscent of the previously
discussed ones. The HTMLDataSource class works as an interface defining
the method which each class needs to implement. The method returns a
value according to the id given as a parameter. In case the value with this
id is not held within the class, an “UNDEFINED” string will be returned.

10.5.2 Sending e-mail notifications
Sending e-mails is a way of notifying the user about different changes within
the system. As an example, if there has been a leak detected, the user will
be immediately notified via e-mail. There are several types of e-mails the
user can receive regarding the state of system (see table 10.1).
The Ethernet library defines an EthernetClient which could be used for
connecting to a mail server. This part of the system was inspired by a setup
article for Arduino that could be found at smtp2go.com [14]. SMTP2Go is
an e-mail service provider through which the Arduino board sends e-mails
directly to the user’s e-mail account.

52

POWER HOME WATER LEAKS
DETECTION

RESET
DETECTIONS

MANUAL
CLOSE

VALVE STATE

HIGH LEAK
 bypass

 LOW LEAK
 bypass

TOTAL LEAK
 bypass

HIGH LEAK
detected

LOW LEAK
detected

TOTAL LEAK
detected

HOME ALARM

flow sensormain valve

water leak detection device

smart devices the user uses
to interact with the system

smtp2go.com gmail.com

EXTERNAL SERVICES

@

@

@

Figure 10.13: The e-mail notification system of the system

In order to keep the project structured, there was a singleton class defined
within this project taking care of sending e-mail notifications. This class
holds a lookup table of different kinds of e-mails. The UML description of
the class can be found in the attachment (14.9).
If a class wants to send off an email, it will pass the type, subject, and content
of the e-mail on to the EmailSender class. Then, using the lookup table,
EmailSender will check if the particular type of e-mail has been enabled
by the user (see the User manual 14.13). If the particular type of e-mail is
enabled, the device will connect to the smtp2go server in order to send the
e-mail to the user. The whole process of sending an e-mail does not take
more than 3 seconds based on the information printed out on the screen as
a part of the logging system.

53

type of e-mail state

1) the device boots up OFF
2) a leak has been detected ON
3) daily overview ON
4) state of the valve has changed ON
5) device has been reset OFF
6) state of the home alarm changes OFF
7) the user has changed settings OFF
8) new settings have been applied OFF
9) bypass of a water leak detection has changed OFF

Table 10.1: The lookup table stored within the EmailSender class

10.5.3 Changing settings
The user has the option to change two kinds of settings. The first type is
the parameters of individual water leak detection algorithms. The device
has pre-defined settings, which are supposed to be changed by the user after
installation. The second type of settings is a selection of different types of
e-mail notifications the user wants to receive.
When the user wants to change either of the settings, they enter the new
parameters through the web interface of the device. As soon as they click
on the update button, a piece of JavaScript code built-in the website will
generate an HTTP request, so the data could be passed to the device. Due to
memory limitation as well as security reasons, the device was programmed in
a way, so it does not store more than 160B of the HTTP request. However,
this number of bytes is enough for all possible variations of the settings the
user may require.

10.5.4 Changing e-mail notifications

Listing 5: An example of an HTTP request to change e-mail notifications

1 http://10.10.2.118/?notification=0;0;0;0;0;1;0;0;0;
jakub.sil@seznam.cz;↪→

This type of an HTTP request is defined by its starting sequence of char-
acters, which is “/?settings=”. If the device finds this sequence at the
beginning of the request, it will treat the rest as the new parameters of the

54

settings. There are currently nine different kinds of e-mails the user may re-
ceive (see table 10.1). Each type of notification is represented in the request
either as 1, the notification is enabled, or 0, this type of notification will
not be sent to the user. The parameters are supposed to be separated by a
semicolon, and their order is the same as in table 10.1. The last parameter
is meant to be the user’s e-mail address, to which all future e-mails will be
sent.

10.5.5 Changing parameters of the water leak detec-
tion algorithms

Listing 6: An example of an HTTP request for changing parameters of the
water leak detection algorithms

1 http://10.10.2.118/?settings=400;30000;200;15000;
26000;40000;13000;20000;600;180000;300;90000;↪→

The fundamental structure of this type of HTTP request is the same as when
changing e-mail notification settings. The request begins with its defining
sequence, "/?settings=", and has the parameters separated by semicolons.
There are twelve values in total. These could be divided into three groups,
where each group represents a water leak detection algorithm. Each of the
algorithms requires two values - the thresh-hold value of a leak discovery and
the reset value of the algorithm. Additionally, there are two sets of setting
for each algorithm - normalConfig and alarmConfig (see section 10.2.4).

Listing 7: The order of the parameters in an HTTP request

1 http://10.10.2.118/?settings=HIGH_NORMAL_ACTION;
HIGH_NORMAL_RESET;HIGH_ALARM_ACTION;HIGH_ALARM_RESET;
LOW_NORMAL_ACTION;LOW_NORMAL_RESET;LOW_ALARM_ACTION;
LOW_ALARM_RESET;TOTAL_NORMAL_ACTION;TOTAL_NORMAL_RESET;
TOTAL_ALARM_ACTION;TOTAL_ALARM_RESET;

↪→

↪→

↪→

↪→

The values are supposed to be in liters, in case they represent an amount
of water, or in milliseconds, in case it is a time value. The meanings of the
variables are mentioned in sections 6.2.3, 6.3.2, and 6.4

As far as security is concerned, the device analyzes all the paramet-
ers before applying them. In particular, it checks if the values are numbers,
if they do not overflow nor underflow, etc. Multiple different scenarios have
been carried out as a part of the testing process (chapter 12).

55

10.6 Storing setting on an SD card
The main purpose of storing the current settings is to have a backup in case
the power goes out. When the electricity is turned back on, the user will
not have to set up all the parameters again as they will be read off the SD
card on the start of the device.

10.6.1 Reading data from the configuration file
When the device boots up, it will check if there is a file called CONFIG.txt
on the SD card. If the file is found, the device will read its content. Upon
successful validation of the content, all the water leak detection algorithms
will be assigned their appropriate parameters. On the other hand, if the file
does not exist or its content does not have the right format, default settings
will be used, which are defined in include/LimitsDefinition.h.

Listing 8: An example of content of CONFIG.txt 2

1 30000;30;15000;20; # high water leak
2 40000;26000;20000;13000; # low water leak
3 180000;30;90000;15; # total water leak
4 1;0;0;0;0;0;1;1;0;jakub.sil@seznam.cz;

As far as the structure is concerned, the values on each line have the
same meaning. For example, the first two values on the first line repres-
ent the reset time and limit of the high-water leak detection algorithm when
normalConfig is applied. The other two values are for the alarmConfig
settings. All the time values are in milliseconds, and all values representing
an amount of water are in pulses, where one pulse corresponds to ten liters
of water. The structure of the last line has been described in section 10.5.4.

10.6.2 Storing data to the configuration file
When the user changes settings, the whole process of storing the new values
works in four steps. First of all, a new temporary file called backup.txt is
created, which works as a backup before overwriting the main configuration
file. As the second step, new parameters are stored in this backup file.
Thirdly, the main configuration file is overwritten with the new data. And
lastly, the temporary backup file is deleted.

2The comments are only for explanation purposes. They are not stored within the file.

56

10.7 Remote connection
If the user is on a business trip or vacation, they can still keep track of
their water consumption by visiting the website of the device. As mentioned
previously, the website provides information about daily as well as monthly
water consumption. Since the device is accessible only from within the LAN,
first, they need to connect to their home network using a technology such
as SSH or VPN to be able to get onto the website.

10.7.1 API for data analysis
Additionally, the system could define an API for third-party applications
allowing them to gain read-only access to data for statistical analysis. This
data could be, for example, how much water has been consumed so far, the
states of the bypass buttons, how frequently the pulses occur, etc. Such
applications would periodically store data off of the device into a database
where additional look-ups and filters could be performed. The outcome
would be in a form of charts with a user-friendly look giving the user a
summary of how their water consumption has been evolving.
However, the idea of API and external compatibility was left as a thought
for a future extension. Also, it would be worth considering using a more
equipped board, such as Raspberry PI, that would have more stable support
of working with databases, data analysis, providing external connections,
and other such features than Arduino-based microcontrollers.

57

11 HW structure of the system

The system is composed of several HW modules that will be discussed in
this chapter. The main board of the device is represented by Arduino Mega
2560 with an Ethernet shield attached to it. This board was mainly chosen
for its 8KB of SRAM and great library support.

R
X
 0

T
X
 12

~
3

S
D

C
S

~
5

~
678

~
9

C
S

~
1
1

~
1
2

~
1
3

G
N

D

A
5

A
4

A
3

A
2

A
1

A
0

vi
n

G
N

D
G

N
D

5
V

3
.3

V
R
E
S
E
T

IO
R
E
F

S
C
L

S
D

A
R
X
1

T
X
1

R
X
2

T
X
2

R
X
2

T
X
3

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

A
8

A
9

A
1
0

A
1
1

A
1
2

A
1
3

A
1
4

A
1
5

52
50
48
46
44
42
40
38
36
34
32
30
28
26
24
22

53
51
49
47
45
43
39
37
35
33
31

52

29
27
25
23

RX 0
TX 1

2
~3

SDCS
~5
~6

7

8
~9
CS

~11
~12
~13
GND

A5
A4
A3
A2
A1
A0

vin
GND
GND
5V
3.3V
RESET
IOREF

Arduino Mega 2560
with Ethernet shield W5100Ethernet shield W5100

Figure 11.1: The Ethernet shield attached to Arduino Mega 2560

The Ethernet shield is used as a web server, e-mail sender, and storage for
settings with its SD slot. After plugging an UTP cabel into the port on the
Ethernet shield, the device will be assigned an IP address, assuming there
is a DHCP server in the local network. Otherwise, an IP will have to be set
up manually in the source code.

11.1 I2C bus communication
There are two devices in the system controlled via the I2C communication
protocol. The first one is a DS3231 real-time module, which is used for
replacing the Arduino time with date-time in order to visualize information
in a more user-friendly way. The second device is the LCD display used
for visualizing information regarding the current state of the device. The
devices are distinguished by their assigned addresses on the bus. The entire
circuit can be seen in figure 11.2.

58

RX 0
TX 1

2
~3

SDCS
~5
~6

7

8
~9
CS

~11
~12
~13
GND

A5
A4
A3
A2
A1
A0

vin
GND
GND
5V
3.3V
RESET
IOREF

SCL
SDA
RX1
TX1
RX2
TX2
RX2
TX3

21
20
19
18
17
16
15
14A8

A9
A10
A11
A12
A13
A14
A15 5

2
5
0

4
8

4
6

4
4

4
2

4
0

3
8

3
6

3
4

3
2

3
0

2
8

2
6

2
4

2
2

5
3

5
1

4
9

4
7

4
5

4
3

3
9

3
7

3
5

3
3

3
1

5
2

2
9

2
7

2
5

2
3

3
2
K

S
Q

W
S
C
L

S
D

A
V
C
C

G
N

D

SCL
SDA
GND
VCC

DS3231
addr = 0x68

I2C LCD display
addr = 0x27

SCL

VCC
GND

SDA

Arduino Mega 2560
with Ethernet shield
W5100

Figure 11.2: Devices connected to the I2C bus

11.2 LED signalization

22
0Ω

22
0Ω

22
0Ω

GND

R
X

 0
T
X

 12
~

3
S
D

C
S

~
5

~
678

~
9

C
S

~
1

1
~

1
2

~
1

3
G

N
D

A
5

A
4

A
3

A
2

A
1

A
0

v
in

G
N

D
G

N
D

5
V

3
.3

V
R

E
S
E
T

IO
R

E
F

S
C

L
S
D

A
R

X
1

T
X

1
R

X
2

T
X

2
R

X
2

T
X

3

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

A
8

A
9

A
1

0
A

1
1

A
1

2
A

1
3

A
1

4
A

1
5

52
50
48
46
44
42
40
38
36
34
32
30
28
26
24
22

53
51
49
47

37
35
33
31

52

29
27
25
23

45
43
39

PIN
48

PIN
46

PIN
44

Arduino Mega 2560
with Ethernet shield W5100

high low total

Figure 11.3: LED signalization of different kinds of leaks

When a leak is detected, a simple yet efficient way of visualization is using
LEDs. This works as a first signal that something is out of the ordinary.
It gives the user a brief picture of what is happening without the need of
walking up to the device to read the state from the LCD display.

59

In order to limit the flow of current thought an LED, a 220Ω resistor was
used. Having 5V on the output of the Arduino board, it reduces the current
down to 22,72mA (I = U

R
)1. The states of the LEDs correspond to the states

of the water-leak detection algorithms. If a leak is detected, the appropriate
LED turns on and vice versa.

11.3 Buttons and switches
As mentioned previously, the user has the option to bypass every type of a
water-leak detection algorithm if they want to. This might find its reason
when they expect an abnormal water consumption that is not meant to be
caught by one of the water leak detection algorithms. Also the user can
manually change the state of the valve using the appropriate switch button.
The last component is the reset button, which is used to reset all three
detection algorithms.

R
X

 0
T
X

 12
~

3
S
D

C
S

~
5

~
678

~
9

C
S

~
1

1
~

1
2

~
1

3
G

N
D

A
5

A
4

A
3

A
2

A
1

A
0

v
in

G
N

D
G

N
D

5
V

3
.3

V
R

E
S
E
T

IO
R

E
F

S
C

L
S
D

A
R

X
1

T
X

1
R

X
2

T
X

2
R

X
2

T
X

3

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

A
8

A
9

A
1

0
A

1
1

A
1

2
A

1
3

A
1

4
A

1
5

52
50
48
46
44
42
40
38
36
34
32
30
28

24
22

47
45
43
39
37
35
33
31

52

29
27
25

GND

VCC

Arduino Mega 2560
with Ethernet shield W5100

switch for manual close
of the main valve

switch for bypassing the
total-water leak detection

reset button
of the device

resistor 220Ω

switch for bypassing the
low-water leak detection

switch for bypassing the
high-water leak detection

23

53

26

51
49

PIN 49

PIN 47

PIN 45

PIN 23

PIN 26

Figure 11.4: Input of the system in a form of buttons and switches

11.4 Output of the main valve
Whenever a water leak is detected, or the user wants to close the main valve
manually, the system needs to send a signal to close the main valve. How-
ever, the BELIMO valve used in this project works with ∼220AC voltage.
Therefore, a relay module was used to control the higher voltage from the

1I is electric current, U is voltage, and R is resistance.

60

Arduino board. The relay closes when 5V is provided on its input. For
visualization purposes, an extra LED was connected in parallel to the input
of the relay.

VCC
IN1

GND
IN2

GND
VCC
VCC

K1

K2

R
X
 0

T
X
 12

~
3

S
D

C
S

~
5

~
678

~
9

C
S

~
1
1

~
1
2

~
1
3

G
N

D

A
5

A
4

A
3

A
2

A
1

A
0

vi
n

G
N

D
G

N
D

5
V

3
.3

V
R
E
S
E
T

IO
R
E
F

S
C
L

S
D

A
R
X
1

T
X
1

R
X
2

T
X
2

R
X
2

T
X
3

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

A
8

A
9

A
1
0

A
1
1

A
1
2

A
1
3

A
1
4

A
1
5

52
50
48
46
44
42
40
38
36
34
32
30
28
26
24
22

53
51
49
47

37
35
33
31

52

29
27
25
23

45
43
39

Arduino Mega 2560
with Ethernet shield W5100

22
0Ω

GND

VCC

PIN 8

state of the main valve
(open/closed)

2-Channel 5V
Relay Module

Figure 11.5: Controlling the main valve

11.5 Reading pulses from the flow sensor
The electronic circuit for reading pulses could be thought of as a simple
one-button circuit where the button is pressed whenever ten liters of water
have flown through the sensor. When this happens, the circuit closes for a
period of 70 milliseconds allowing the Arduino board to register the change
of states.
For testing purposes, the Arduino itself can work as a pulse generator, so
different water-leak detection scenarios can be tested out. The pulses are
generated on pin A15 and read on pin A14. This circuit is only used when
testing different kinds of water leak-related scenarios.

61

R
X
 0

T
X
 12

~
3

S
D

C
S

~
5

~
678

~
9

C
S

~
1
1

~
1
2

~
1
3

G
N

D

A
5

A
4

A
3

A
2

A
1

A
0

vi
n

G
N

D
G

N
D

5
V

3
.3

V
R
E
S
E
T

IO
R
E
F

S
C
L

S
D

A
R
X
1

T
X
1

R
X
2

T
X
2

R
X
2

T
X
3

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

A
8

A
9

A
1
0

A
1
1

A
1
2

A
1
3

A
1
4

A
1
5

52
50
48
46
44
42
40
38
36
34
32
30
28

24
22

47
45
43
39
37
35
33
31

52

29
27
25
23

53

26

51
49

flow sensor

VCC
GND 220Ω

220Ω

pulse generator and
reader for testing purposes

(water leak simulation)

PIN 2

Figure 11.6: The circuit for reading pulses from the flow sensor

11.6 Reading the state of the home alarm

R
X

 0
T
X

 12
~

3
S
D

C
S

~
5

~
678

~
9

C
S

~
1

1
~

1
2

~
1

3
G

N
D

A
5

A
4

A
3

A
2

A
1

A
0

v
in

G
N

D
G

N
D

5
V

3
.3

V
R

E
S
E
T

IO
R

E
F

S
C

L
S
D

A
R

X
1

T
X

1
R

X
2

T
X

2
R

X
2

T
X

3

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

A
8

A
9

A
1

0
A

1
1

A
1

2
A

1
3

A
1

4
A

1
5

52
50
48
46
44
42
40
38
36
34
32
30
28
26
24
22

53
51
49
47

37
35
33
31

52

29
27

23

45
43
39

Arduino Mega 2560
with Ethernet shield W5100

GND

VCC

PIN 24
25

22
0Ω

home alarm

Figure 11.7: Reading the state of the home alarm

Reading the state of the home alarm works essentially the same way as
reading pulses from the flow sensor. A certain level of voltage is provided
on the alarm’s input, and when the user leaves the house, the alarm closes
the circuit, letting the voltage appear on the output where it can be read by
Arduino.
The settings of the water leak detection algorithms will be changed according
to the state of the home alarm. The principal of switching between two set
of settings has been explained in section 10.2.4.

62

12 Testing

The testing part is arguably one of the most crucial steps of the whole process
of development. The tests were designed to test both the SW implementation
and proper functioning of the electronic circuits. The device was tested in
multiple different ways, all of which will be described in this chapter.

12.1 Unit testing
Unit testing mainly focuses on separate fundamental parts of the project.
In particular, this involves simulating multiple water leak-related scenarios
and receiving an HTTP request when the user changes settings.

12.1.1 Water leak detection algorithms

Scenarios

For clarity, all scenarios were defined in a JSON file that is then loaded
into a template test file for its execution. Each type of water leak detec-
tion algorithm has its JSON file containing different scenarios related to the
particular kind.

Listing 9: An example of a high-water leak scenario 1

1 {
2 "positive": [
3 {
4 "number_of_generated_pulses": 15,
5 "delay_high": 100,
6 "delay_low": 100,
7 "pulses_limit_action": 15,
8 "reset_time": 300
9 }

10],
11 "negative:" []
12 }

The file essentially holds two arrays. The array positive defines all the
scenarios that result in a water leak. The second array called negative

1The variables delay_high and delay_low define the shape of each generated pulse

63

contains scenarios that should not cause a water leak. The array in which a
scenario is defined determinates the expected result of the test.

Test templates

The template file is a sketch test file with marked blank spots in it, which
are meant to be filled with the parameters of the particular scenario. The
template file has the same structure for all three algorithms. All tests are
generated automatically by a Python script that parses all the JSON files,
and for each scenario, it creates a test file off of the template file.

Running tests

PlatformIO comes with unit testing support which was used to run and
validate all the tests. PlatformIO provides a guide on how to carry out unit
testing along with some examples on their website [9].

Listing 10: Summary of unit testing

1 Test Environment Status Duration
2 ------------------- -------------- ------ ------------
3 test_high_leak_NE_1 megaatmega2560 PASSED 00:00:23.442
4 test_high_leak_NE_2 megaatmega2560 PASSED 00:00:18.189
5 test_high_leak_NE_3 megaatmega2560 PASSED 00:00:16.599
6 test_high_leak_PO_1 megaatmega2560 PASSED 00:00:19.310
7 test_high_leak_PO_2 megaatmega2560 PASSED 00:00:18.967
8 test_high_leak_PO_3 megaatmega2560 PASSED 00:00:16.569
9 test_low_leak_NE_1 megaatmega2560 PASSED 00:00:19.242

10 test_low_leak_NE_2 megaatmega2560 PASSED 00:00:17.996
11 .
12 .
13 .
14 test_total_leak_NE_3 megaatmega2560 PASSED 00:00:17.400
15 ==============19 succeeded in 00:05:54.570 ================

All tests are supposed to be located in the test folder, which was created
by the PlatformIO extension in VSCode. When all tests are finished, a final
overview is printed out on the screen, so the user can see which tests have
failed and which ones have successfully passed.

64

12.1.2 Receiving an HTTP request
This functionality was tested similarly to the water leak detection al-
gorithms. The only difference in how the tests are executed is the absence
of JSON files. Instead, all scenarios were defined directly in the test file, as
the initialization is usually a few lines long.

Changing e-mail notifications

Listing 11: A valid HTTP request to change e-mail notifications

1 /?notification=1;1;1;0;0;1;0;0;0;jakub.sil@seznam.cz;

The structure of this kind of HTTP request is explained in section 10.5.4.
A valid HTTP request of this kind must follow several rules:

1) The number of parameters must be ten.
2) Each of the parameters must end with a semicolon.
3) The first nine parameters must be either a zero or one.
4) The user’s email must not be empty.

If any of these rules are broken, the whole HTTP request is ignored and
discarded.

Listing 12: Examples of invalid HTTP requests

1 /?notification=0;0;00;0;0;1;0;0;0;jakub.sil@seznam.cz;
2 /?notification=0;0;0;0;0;1;0;0;0;;
3 /?notification=0;0;0;0;0;165;0;0;0;jakub.sil@seznam.cz;
4 /?notification=
5 /?notification=AA;0;0;0;0;1;0;0;0;jakub.sil@seznam.cz;

Changing parameters of the detection algorithms

Listing 13: A valid HTTP request for changing parameters of the water leak
detection algorithms

1 /?settings=400;30000;200;15000;26000;40000;13000;20000;600;
180000;300;90000;↪→

The meaning of the values is explained in section 10.5.5. Whether an HTTP
request of this type is valid or not comes down to several rules:

65

1) The total number of parameters must be twelve (three water leak de-
tection algorithms and two kinds of settings).

2) Each of the parameters must end with a semicolon.
3) Each number must be an integer less than 232 − 1 (UINT_MAX).
4) Additionally, each number must be a positive number greater than 0.

Listing 14: Examples of invalid HTTP requests

1 /?settings=400;30000;0;15000;26000;40000;13000;20000;600;
180000;300;90000;↪→

2 /?notification=
3 /?settings=400;30000;200;15000;26000;5294967295;13000;20000;

600;180000;300;90000;↪→

4 /?settings=400;30000;200;15000;26000;40000;13000;20000;600;
180000;-300;90000;↪→

5 /?settings=15.968;30000;200;15000;26000;40000;13000;20000;600;
180000;300;90000;↪→

6 /?settings=400;30000;200;abcd;26000;40000;13000;20000;600;
180000;300;90000;↪→

12.1.3 Running Unit tests
If the user wants to run the unit tests described above, they first need to
enable testing. To do so, they need to uncomment line
"// define UNIT_TEST" in the include/Setup.h file. As the next step,
they need to save the file and go to the unit_tests folder. Once in the
folder, all they need to do is run the following commands.

1 python test_http_rqst.py # test detection algorithms
2 python test_leaks.py # test receiving HTTP request

12.2 System testing
System testing was carried out once all the unit tests had been successful
and all the parts of the device were wired up and put in an enclosure. This
part of testing did not focus on the internal implementation as much as on
the overall required functionality.

66

12.2.1 Scenarios
1) When a water leak is detected and the bypass is off, the valve must be

closed.
2) When a water leak is detected and the bypass is on, the valve must

not be closed.
3) If the valve is closed due to a water leak, using the switch for manual

closing of the valve must not affect the state of the valve – it must
remain closed.

4) When pressing the reset button, all the water leak detection algorithms
must be reset.

5) If the valve is manually closed, pressing the reset button must not
change the valve’s state.

6) After a leak has been detected, and the valve has not been manually
closed, pressing the reset button must open the valve again.

All the scenarios listed above were carried out manually by pressing the
buttons and observing the output. The LEDs indicating a detected water
leak should work regardless of the state of the bypass switch.

12.3 Interface testing
The last part of the testing process gave attention to the user interface.
This testing was carried out at the end of the project. Its main purpose was
to test if the website shows up-to-date information regarding the system
accurately. All the information shown on the website should match both
the values displayed on the LCD and the states of LEDs. Also, when the
user changes settings, they should see the update once the website refreshes.

12.3.1 Testing e-mail notifications
Whether or not e-mail notifications are working correctly was tested by
manually invoking circumstances under which an e-mail would be sent off.
This was done for all the e-mail notifications defined within this project. All
of them can be seen listed in table 10.1.

67

13 Conclusion

The purpose of this project was to design a device that would detect water-
leak occurrences in a family house, such as a cracked or leaking pipe.
In the first part of the thesis, different kinds of water leaks were taken into
consideration, along with possible ways of detecting them. All the options
were then narrowed down to using a flow sensor attached to the main pipe
entering the house. Having the flow sensor as the main input of the device,
three types of water leaks were defined, covering the most common scenarios
of what could happen.
The core of the system is represented by Arduino, which implements all
three water leak detection algorithms. By reading data from the sensor, the
micro-controller analyzes whether or not there is a water leak taking place
somewhere in the house. If a water leak has indeed been detected, the device
will respond by closing the main valve of the house in order to avoid any
potential damages. Also, taking advantage of the state of the home alarm,
the device offers the option to adjust the parameters when there is nobody
at home, as there should be no water consumption whatsoever.
The user is provided information regarding the state of the device in mul-
tiple different ways. A simple yet efficient way was implemented by using
LEDs, which visualize two-state information such as the state of the main
valve, which type of water-leak has been detected, state of the home alarm,
etc. More detailed information about the system can be then seen on an
LCD. Also, the system has a built-in web server that works as a user inter-
face, providing a variety of information regarding the system, such as the
daily water consumption or the current settings of the device. Through the
interface, the user can set up multiple kinds of e-mail notifications that will
be sent off to them whenever the associated event happens.
As for the interaction with the system, the user can manually close the main
valve, reset the device, or bypass any of the water leak detection algorithms.
Bypassing the algorithms be may useful when they are expecting an abnor-
mal water consumption that should not be detected, such as when watering
their backyard. They can also adjust the parameters of the algorithms on
the website according to their needs.
In the end, multiple tests were carried out to test the system thoroughly
before installation. This part included unit testing of the fundamental parts
of the device as well as overall system testing by scenarios once the device
had been put into its enclosure.

68

Bibliography

[1] Arduino - tutorials [online]. [cit. 2021/9/2]. Available at:
https://www.arduino.cc/en/Tutorial/HomePage.

[2] Arduino Products (Arduino Nano, Arduino Mega 2560) [online].
[cit. 2021/9/2]. Available at:
https://www.arduino.cc/en/Main/Products.

[3] ArduinoDS3231 (external library) [online]. Free Software Foundation, Inc.
[cit. 2021/12/4]. Available at:
https://github.com/jarzebski/Arduino-DS3231.

[4] ArduinoSTL (external library) [online]. Free Software Foundation, Inc.
[cit. 2021/15/3]. Available at:
https://github.com/mike-matera/ArduinoSTL.

[5] BELIMO water applications technical brochure [online]. BELIMO, 2020.
[cit. 2021/27/2 - chapter 9 - Ball valves; page 56]. Available at:
https://www.belimo.at/mam/europe/technical-documentation/
technische_brosch%C3%BCren/water_solutions/belimo_
water-applications_technical-brochure_en-gb.pdf.

[6] Cyble Sensor data-sheet [online]. Itron, 2011. [cit. 2021/24/1]. Available at:
https://www.itron.com/-/media/feature/products/documents/
brochure/cyble_sensor_pb_en_1211.pdf.

[7] Key factors to consider when choosing a microcontroller [online]. John
Koon, 2019. [cit. 2021/8/2 - the list of the key factors]. Available at:
https://www.microcontrollertips.com/
key-factors-consider-choosing-microcontroller/.

[8] PlatformIO (platform for embedded development) [online]. [cit. 2021/5/3].
Available at: https://platformio.org/.

[9] PlatformIO (Unit Testing) [online]. [cit. 2021/2/4]. Available at:
https://docs.platformio.org/en/latest/plus/unit-testing.html.

[10] Raspberry Pi (Remote Access) [online]. [cit. 2021/9/2]. Available at:
https://www.raspberrypi.org/documentation/remote-access/.

[11] Renesas FS2012 data-sheet [online]. Renesas Electronics Corporation, 2018.
[cit. 2021/22/1 - 9. Analog Output]. Available at:
https://www.renesas.com/us/en/document/dst/fs2012-datasheet.

69

https://www.arduino.cc/en/Tutorial/HomePage
https://www.arduino.cc/en/Main/Products
https://github.com/jarzebski/Arduino-DS3231
https://github.com/mike-matera/ArduinoSTL
https://www.belimo.at/mam/europe/technical-documentation/technische_brosch%C3%BCren/water_solutions/belimo_water-applications_technical-brochure_en-gb.pdf
https://www.belimo.at/mam/europe/technical-documentation/technische_brosch%C3%BCren/water_solutions/belimo_water-applications_technical-brochure_en-gb.pdf
https://www.belimo.at/mam/europe/technical-documentation/technische_brosch%C3%BCren/water_solutions/belimo_water-applications_technical-brochure_en-gb.pdf
https://www.itron.com/-/media/feature/products/documents/brochure/cyble_sensor_pb_en_1211.pdf
https://www.itron.com/-/media/feature/products/documents/brochure/cyble_sensor_pb_en_1211.pdf
https://www.microcontrollertips.com/key-factors-consider-choosing-microcontroller/
https://www.microcontrollertips.com/key-factors-consider-choosing-microcontroller/
https://platformio.org/
https://docs.platformio.org/en/latest/plus/unit-testing.html
https://www.raspberrypi.org/documentation/remote-access/
https://www.renesas.com/us/en/document/dst/fs2012-datasheet

[12] Residential End Uses of Water Version 2 [online]. The Water Research
Foundation, 2016. [cit. 2021/3/1 - Figure 4. Average daily indoor per
household water use REU1999 and REU2016]. Available at: https://www.
circleofblue.org/wp-content/uploads/2016/04/WRF_REU2016.pdf.

[13] Residential End Uses of Water Version 2 [online]. The Water Research
Foundation, 2016. [cit. 2021/3/1 - Figure 1. Indoor household use by
fixture]. Available at: https://www.circleofblue.org/wp-content/
uploads/2016/04/WRF_REU2016.pdf.

[14] Setting up Arduino with SMTP2GO [online]. [cit. 2021/22/3]. Available at:
https://www.smtp2go.com/setupguide/arduino/.

[15] STM32 32-bit Arm Cortex MCUs [online]. STMicroelectronics.
[cit. 2021/9/2 - the first paragraph]. Available at:
https://www.st.com/en/microcontrollers-microprocessors/
stm32-32-bit-arm-cortex-mcus.html.

[16] STM32Cube Ecosystem [online]. STMicroelectronics. [cit. 2021/9/2 - the
first paragraph]. Available at:
https://www.st.com/content/st_com/en/stm32cube-ecosystem.html.

[17] Sliding Window Algorithm [online]. Said Sryheni, 2020. [cit. 2021/4/2 - 3.3.
Sliding Window Algorithm]. Available at:
https://www.baeldung.com/cs/sliding-window-algorithm.

[18] eses I2C 20x4 display [online]. eses. [cit. 2021/16/3]. Available at:
https://dratek.cz/docs/produkty/0/756/eses1474620659.pdf.

[19] House Meter Check for Leaks [online]. Home Water Works. [cit. 2021/7/1 -
section - Leaks; paragraph - Whole House Meter Check for Leaks].
Available at:
https://www.home-water-works.org/indoor-use/leaks?fbclid=
IwAR17yanHGw56pPT-5pdO4N7f7NZEAETIKkHnZvxLmJFNZ6WhP3DNgw8I7-k.

[20] Horstmann, C. Object-Oriented Design and Patterns. John Wiley & Sons,
2005. ISBN 0471744875.

70

https://www.circleofblue.org/wp-content/uploads/2016/04/WRF_REU2016.pdf
https://www.circleofblue.org/wp-content/uploads/2016/04/WRF_REU2016.pdf
https://www.circleofblue.org/wp-content/uploads/2016/04/WRF_REU2016.pdf
https://www.circleofblue.org/wp-content/uploads/2016/04/WRF_REU2016.pdf
https://www.smtp2go.com/setupguide/arduino/
https://www.st.com/en/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus.html
https://www.st.com/en/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus.html
https://www.st.com/content/st_com/en/stm32cube-ecosystem.html
https://www.baeldung.com/cs/sliding-window-algorithm
https://dratek.cz/docs/produkty/0/756/eses1474620659.pdf
https://www.home-water-works.org/indoor-use/leaks?fbclid=IwAR17yanHGw56pPT-5pdO4N7f7NZEAETIKkHnZvxLmJFNZ6WhP3DNgw8I7-k
https://www.home-water-works.org/indoor-use/leaks?fbclid=IwAR17yanHGw56pPT-5pdO4N7f7NZEAETIKkHnZvxLmJFNZ6WhP3DNgw8I7-k

List of Abbreviations

LDD - leak (water) detetection device
RAM - random-access memory
SRAM - static random-access memory
IDE - integrated development environment
OOP - Object Oriented Programming
SW - software
HW - hardware
IoT - Internet of Things
UML - Unified Modeling Language
MAC - Media Access Control
I/O - input/output
LCD - liquid crystal display
SD - Secure Digital
HTTP - Hypertext Transfer Protocol
HTML - Hypertext Markup Language
LED - light emitting diode
SSH - Secure Shell
FTP - File Transfer Protocol
SCP - Secure, Contain and Protect
SCCM - standard cubic centimeters per minute
I2C - Inter-integrated circuit bus communication
UTP - Unshielded Twisted Pairs
DHCP - Dynamic Host Configuration Protocol
IP - Internet Protocol
JSON - JavaScript Object Notation
ID - Identification
API - Application Programming Interface
LAN - Local Area Network
VPN - Virtual Private Network

71

14 Attachments

14.1 PulseCounter class

PulseCounter

int inputPin
time_t lastPulseTime
int previousInputValue
int pulseDown

private data

PulseCounter(int inputPin)
void update()

public methods

int isActive() const
time_t getLastPulseTime() const

Getters

Figure 14.1: UML diagram of class PulseCounter

• PulseCounter - private data

– int inputPin - The number of the input pin where the pulses
are supposed to occur.

– time_t lastPulseTime - The last time when a pulse wast de-
tected on the input pin.

– int previousInputValue - The last state of the input pin. A
pulse is detected when the state of the pin goes from low to high.

– int pulseDown - A flag indicating if a pulse has been detected.

• PulseCounter - public methods

– PulseCounter(int inputPin) - The constructor of the class. It
takes one parameter, which is the number of the input pin.

– void update() - This method is used for updating the class. It
includes reading the current state of the input pin and determin-
ing whether or not there is a pulse on the input pin.

72

• PulseCounter - getters

– int isActive() const - If there is a pulse on the input pin, it
returns 1. Otherwise, 0 will be returned.

– time_t getLastPulseTime() const - It returns the Arduino
time when the last pulse was detected. This information is used
by the algorithms in order to find out if there has been a water
leak detected.

14.2 Button class

Button

int pin
int currentInputValue
int previousInputValue

private data

Button(int pin);
int isPressed();

public methods

Figure 14.2: UML of the reset button

• Button - private data

– int pin - The number of the pin the button is connected to.
– int currentInputValue - The current voltage value read off the

input pin. This value is either high or low.
– int previousInputValue - The previous state of the input pin.

• Button - public methods

– Button(int pin) - The constructor of the class. It takes one
parameter, which is the number of the pin the button is connected
to.

– int isPressed() - It reads the voltage on the input pin and
compares it to the previous one. If the previous value is low
and the current one is high, 1 will be returned as the button is
currently being pressed. Otherwise, the method will return 0.

73

14.3 LeakDetectionConfig_t class

LeakDetectionConfig_t

time_t limitResetTime
time_t limitActionTime
int limitPulseAction
int bypassPin

public data

bool operator!=(const LeakDetectionConfig_t &other) const
public methods

Figure 14.3: UML of the LeakDetectionConfig_t structure

• LeakDetectionConfig_t - public data

– time_t limitResetTime - The time limit determining if the al-
gorithm should be reset. This depends on the particular imple-
mentation of the algorithm. For example, limitReset time is
treated differently in a high-water leak detection algorithm and a
low-water leak detection algorithm.

– time_t limitActionTime - The time limit defining a low-water
leak (see section 6.3.2).

– int limitPulseAction - The number of pulses defining a high-
water leak and total total-water leak (see section 6.2.3).

– int bypassPin - The number of the pin that the bypass button
is connected to. The user can manually bypass (switch off) the
detection algorithm for as long as they want to.

• LeakDetectionConfig_t - public methods

– bool operator!=(const LeakDetectionConfig_t &other)
const - Overloaded operator for comparison of two different sets
of settings.

74

14.4 ALeakDetectable class

ALeakDetectable

enum Type {Low, High, Total}
public data

PulseCounter *pulseCounter
LeakDetectionConfig_t normalConfig
LeakDetectionConfig_t alarmConfig
LeakDetectionConfig_t *config
int bypass
int oldBypassValue
int active
int stateOfHomeAlarm
String timeOfDetection
Type type
LeakDetectionConfig_t newNormalConfig
LeakDetectionConfig_t newAlarmConfig
int requestUpdateNormalConfig
int requestUpdateAlarmConfig

protected data

virtual void testActiveLeak() = 0
virtual void testResetLeak() = 0

private methods

void applyNewConfig()
String getType() const

protected methods

ALeakDetectable(PulseCounter *pulseCounter, Type type,
LeakDetectionConfig_t normalConfig,
LeakDetectionConfig_t alarmConfig)
virtual ~ALeakDetectable()
int isActive()
void changeStateOfHomeAlarm(bool state)
LeakDetectionConfig_t getAlarmConfig()
LeakDetectionConfig_t getNormalConfig()
virtual String getFormatOfSettingsToSave() = 0
void updateNormalConfig(LeakDetectionConfig_t newNormalConfig)
void updateAlarmConfig(LeakDetectionConfig_t newAlarmConfig)
virtual void update() = 0
virtual void reset() = 0

public methods

Figure 14.4: UML diagram of abstract class ALeakDetectable

• ALeakDetectable - public data

– enum Type - An enumeration for distinguishing different types of
water leak detection algorithms - high, low, and total.

• ALeakDetectable - protected data

– PulseCounter *pulseCounter - A pointer to an instance of
PulseCounter (section 10.2.1) used for counting pulses generated
by the flow sensor.

75

– LeakDetectionConfig_t normalConfig -
The settings of the algorithm when the house is occupied.

– LeakDetectionConfig_t alarmConfig -
The settings of the algorithm when the house is empty.

– LeakDetectionConfig_t *config - The current settings being
used by the algorithm at the moment. This depends on the state
of the home alarm, as explained in section 10.2.4.

– int bypass - The current state of the bypass pin. If the bypass
is on, the output of the algorithm has no affect on the state of
the main valve.

– int oldBypassValue - The previous state of the bypass pin.
This value is used to keep track of the change of voltage on the
input pin (from high to low or from low to high).

– int active - The value indicating whether or not a leak has been
detected by the algorithm (1/0).

– int stateOfHomeAlarm - The current state of the home alarm.
This value is used to decide which of the two set of configurations
should be used for the algorithm.

– String timeOfDetection - The time when a leak was detected
stored in a String format.

– Type type - The type of the water leak detection algorithm. This
is used when debugging or sending e-mail notifications to distin-
guish different types of algorithms.

– LeakDetectionConfig_t newNormalConfig - New normal set-
tings to be applied when the user decides to change some of the
current parameters.

– LeakDetectionConfig_t newAlarmConfig - New alarm set-
tings to be applied when the user decides to change some of the
current parameters.

– int requestUpdateNormalConfig - A flag indicating the user
has changed the settings, and they need to be put in place when
the algorithm resets.

– int requestUpdateAlarmConfig - A flag indicating the user has
changed the alarm settings, and they need to be put in place when
the algorithm resets.

76

• ALeakDetectable - private methods

– virtual void testActiveLeak() = 0 - This method tests if
the algorithm has detected a water leak. This is determined by
the logic of the algorithms described previously.

– virtual void testResetLeak() = 0 - This method tests if the
algorithm should be reset. This is determined by the logic of the
algorithms described previously.

• ALeakDetectable - protected methods

– void applyNewConfig() - This method applies the new settings
according to the value of the flags requestUpdateNormalConfig
and requestUpdateAlarmConfig. This method is called when
the algorithm resets.

– String getType() const - It returns the type of the particular
water leak detection algorithm in a String format.

• ALeakDetectable - public methods

– ALeakDetectable(PulseCounter *pulseCounter,
Type type,
LeakDetectionConfig_t normalConfig,
LeakDetectionConfig_t alarmConfig) -
This is the constructor of the class. As far as the parameters are
concerned, it takes a pointer to an instance of PulseCounter as
the input of the algorithm along with default settings and the
type.

– virtual ∼ALeakDetectable() - The descructor of the class.
– int isActive() - It returns 1 if a leak has been detected. Oth-

erwise, 0 will be returned.
– void changeStateOfHomeAlarm(bool state) - This method is

used to notify the class about the new state of the home alarm.
– LeakDetectionConfig_t getAlarmConfig() -

After calling this method, the current alarm configuration will be
returned.

– LeakDetectionConfig_t getNormalConfig() -
After calling this method, the current normal configuration will
be returned.

77

– virtual String getFormatOfSettingsToSave() = 0 - It re-
turns both types of settings of the algorithm in a String format,
so they could be stored on the SD card.

– void updateNormalConfig(LeakDetectionConfig_t
newNormalConfig) - This method is called when the current nor-
mal settings are required to be changed from the outside of the
class.

– void updateAlarmConfig(LeakDetectionConfig_t
newAlarmConfig) - This method is called when the current alarm
settings are required to be changed from the outside of the class.

– virtual void update() = 0 - This method is called to update
the whole class. The class is supposed to be updated periodically
as frequently as possible.

– virtual void reset() = 0 - This method is called to reset the
algorithm from the outside of the class. For instance, when the
user presses the reset button (see section 10.2.2).

78

14.5 Hierarchy of the water leak detection
algorithms

ALeakDetectable

TotalLeakDetection

time_t startDayPulseTime
private data

float getPercentLeakDetectionReset() const
void testResetLeak() override

protected methods

TotalLeakDetection(PulseCounter *pulseCounter,
Type type,
LeakDetectionConfig_t normalConfig,
LeakDetectionConfig_t alarmConfig)
~TotalLeakDetection()
void reset() override

public methods

HighLeakDetection

int pulseCount
protected data

void testActiveLeak() override
void testResetLeak() override

protected methods

HighLeakDetection(PulseCounter *pulseCounter,
Type type,
LeakDetectionConfig_t normalConfig,
LeakDetectionConfig_t alarmConfig)
~HighLeakDetection()
void update()
void reset()
String getFormatOfSettingsToSave()
float getPercentLeakDetectionReset()
float getPercentLeakDetected()

public methods

LowLeakDetection

int flipFlop
time_t flipFlopSetTime

private data

void testActiveLeak() override
void testResetLeak() override

private methods

LowLeakDetection(PulseCounter *pulseCounter,
Type type,
LeakDetectionConfig_t normalConfig,
LeakDetectionConfig_t alarmConfig)
~LowLeakDetection()
void update() override
void reset() override
String getFormatOfSettingsToSave() override
float getPercentLeakDetectionReset() const
float getPercentLeakDetected() const

public methods

Figure 14.5: UML diagram of the water leak detection algorithms and their
hierarchy

79

14.6 LeakController class

«Singleton»
LeaksController

static LeaksController* instance
std::map<ALeakDetectable::Type, ALeakDetectable*> leaks
Button manualResetButton = RESET_PIN
int valveState
int stateOfHomeAlarm
int manualValveClose
PulseCounter *pulseCounter = NULL
Consumption *dailyConsumptionCounter = NULL
Consumption *monthlyConsumptionCounter = NULL

private data

LeaksController()
LeaksController(LeaksController const&)
LeaksController& operator=(LeaksController const&)

private methods

static LeaksController* getInstance()
void addLeakDetection(ALeakDetectable::Type type, ALeakDetectable* leak)
int getNumberOfLeakDetections() const
void setPulseCounter(PulseCounter *pulseCounter)
void update() override
String getFormatOfSettingsToSave()

public methods

Figure 14.6: UML diagram of the class LeakController

• LeakController - private data

– static LeaksController* instance - The only existing in-
stance of the class. This is a part of the singleton design pattern.

– std::map<ALeakDetectable::Type,
ALeakDetectable*> leaks - A map of instances of different wa-
ter leak detection algorithms. In order to have quick access to the
instances of the algorithms by their type, an std::map 1 was used.
Taking advantage of this data structure, the look-up time reduces,
in average, down to O(1). For example, if the user changes the
parameters of the high-water leak detection, new settings need to
be passed on to the particular instance.

– Button manualResetButton = RESET_PIN - The reset button
the user is required to press after a leak was detected and they
have dealt with all the consequences.

1std::map was added as a part of an external library, ArduinoSTL [4]

80

– int valveState - The state of the main valve. This value is sent
from the microcontroller to the valve as shown in figure 10.6.

– int stateOfHomeAlarm - The state of the home alarm. This
value determines which of the two settings should be used in the
detection algorithms.

– int manualValveClose - An indication if the user has manually
closed the main valve (1/0).

– PulseCounter *pulseCounter = NULL - A pointer to an in-
stance of the class PulseCounter, which is used for counting the
pulses generated by the flow sensor.

– Consumption *dailyConsumptionCounter = NULL - A pointer
to an instance of the Consumption class used for keeping track of
total daily water consumption.

– Consumption *monthlyConsumptionCounter = NULL -
A pointer to an instance of the Consumption class used for keeping
track of total monthly water consumption.

• LeakController - private methods

– LeaksController() - The constructor of the class. A private
constructor is one of the major characteristics of the singleton
design pattern.

– LeaksController(LeaksController const&) - The copy con-
structor of the class.

– LeaksController& operator=(LeaksController const&) -
An overload assignment operator.

• LeakController - public methods

– static LeaksController* getInstance() - The instance of
the class will be returned.

– void addLeakDetection(ALeakDetectable::Type type,
ALeakDetectable* leak) - This method is used to add another
water leak detection algorithm to the class.

– int getNumberOfLeakDetections() const - It returns the
total number of leak detection algorithms held within the class.

– void setPulseCounter(PulseCounter *pulseCounter) -
This method is used to set the pointer to an instance of
PulseCounter.

81

– void update() override - This method is called to update
all the instances and variables held in the class. For example,
stateOfHomeAlarm, manualValveClose, or manualResetButton.
It cascadingly updates all the instances of the algorithms as well.

– String getFormatOfSettingsToSave() - This method is used
when storing settings of all the algorithms on the SD card.

14.7 Consumption class

«Singleton»
Consumption

enum Type {DAY, WEEK, MONTH}
public data

PulseCounter *pulseCounter
RTCDateTime initialDateTime
int count
Type type

private data

Consumption(PulseCounter *pulseCounter, Type type)
void update()
int getConsumptionCount() const

public methods

Figure 14.7: UML diagram of the class Consumption

• Consumption - public data

– enum Type DAY, WEEK, MONTH - An enumeration defining the
period of monitoring water consumption.

• Consumption - private data

– PulseCounter *pulseCounter - A pointer to an instance of the
PulseCounter class, which is used for counting pulses generated
by the flow sensor.

– RTCDateTime initialDateTime - Initial date-time of the mon-
itoring period. It is used as a reference to when the monitoring
process began. 2

– int count - This variable holds the number of pulses detected
during the monitoring period.

2RTCDateTime is a part of the Arduino-DS3231 library [3]

82

– Type type - The type of the monitoring period. This can be set
to either a day, week, or month.

• Consumption - public methods

– Consumption(PulseCounter *pulseCounter, Type type) -
This method is the constructor of the class. It takes as a para-
meter a pointer to an instance of PulseCounter and the Type of
the monitoring period.

– void update() - This method is called from the outside of the
class when it needs to be updated. The process of updating in-
cludes checking if there is a pulse generated by the sensor, and if
so, incrementing the counter by 1.

– int getConsumptionCount() const - It returns the number of
pulses detected so far within the monitoring period.

83

14.8 WebServer class

IControllable

virtual void update() = 0
public methods

«Singleton»
WebServer

static WebServer* instance
std::vector<HTMLDataSource*> htmlDataSources
byte mac[6] = { 0x00, 0xAA, 0xBB, 0xCC, 0xDE, 0x02 }
EthernetServer server = 80
File webFile
String buff
LeaksController *leaksController
bool online

private data

WebServer()
WebServer(WebServer const&){}
WebServer& operator=(WebServer const&)
const String replaceHTMLWithData(String html) const
int setEthernet()
void saveSettings()

int processHTTPRequest(String &httpRequest)
int processHTTPRequestSettings(int startPos,
String &httpRequest,
int numberOfValues)
int processHTTPRequestNotification(int startPos,
String &httpRequest,
int numberOfValues)

private methods

static WebServer* getInstance()
void setup(LeaksController *leaksController)
void update() override
void addHTMLSource(HTMLDataSource* source)

public methods

HTMLDataSource

const static String UNDEFINED_DATA = "UNDEFINED"
public data

virtual const String getHTMLData(const int id) const = 0
public methods

1

0..n

Figure 14.8: UML diagram of the WebServer class

• WebServer - private data

– static WebServer* instance - The instance of the class.
– std::vector<HTMLDataSource*> htmlDataSources - A list of

classes registered as a data source for the HTML code.

84

– byte mac[6] = { 0x00,0xAA,0xBB,0xCC,0xDE,0x02 } - The
chosen MAC address of the Ethernet shield. This is supposed to
be a unique address within the network.

– EthernetServer server = 80 - An instance of an Ethernet
server running on port 80.

– File webFile - An instance of a file stored on an SD card. This
could represent index.html when loading the web site.

– String buff - A String buffer used to store an HTTP request
when changing settings.

– LeaksController *leaksController -
A reference to LeaksController, so it could be updated simul-
taneously with each line being read off the SD card.

– bool online - A flag indicating if the server is up and running.

• WebServer - private methods

– WebServer() - The constructor of the class.
– WebServer(WebServer const&) - The copy constructor of the

class.
– WebServer& operator=(WebServer const&) - An overload as-

signment operator.
– const String replaceHTMLWithData(String html) const -

This method inserts appropriate data into the String given as a
parameter using the technique explained previously. The para-
meter represents one line of the HTML code.

– int setEthernet() - This method is used to initialize the Eth-
ernet shield. It is called only once when the system boots up.
If everything goes well and the server starts running, 1 will be
returned. Otherwise, 0 will be returned as a flag that something
went wrong.

– void saveSettings() - This method saves the current settings
of the device. This is discussed more in detail in section 10.5.3.

– int processHTTPRequest(String &httpRequest) -
This method processes a received HTTP request. The method
will analyze the request and validate it. This HTTP requests
are used when changing settings of the device. If the request is
invalid, the method will return 0. Otherwise, 1 will be returned.

85

– int processHTTPRequestSettings(int startPos, String
&httpRequest, int numberOfValues) - This method is used
to process an HTTP request sent to change the current settings
of the leak detection algorithms. The meaning of the return
values is the same as in method processHTTPRequest.

– int processHTTPRequestNotification(int startPos,
String &httpRequest, int numberOfValues) - This method
is used to process an HTTP request sent to change the settings
of the current e-mail notifications. The meaning of the return
values is the same as in method processHTTPRequest.

• WebServer - public methods

– static WebServer* getInstance() - It returns the instance of
the WebServer.

– void setup(LeaksController *leaksController) -
This method is used to set the LeaksController, so it could be
updated regardless of a file being read off the SD card.

– void update() override - This method is called in order to
update the controller.

– void addHTMLSource(HTMLDataSource* source) -
Another source of data for the website can be added to the system
using this method.

86

14.9 EmailSender class

«Singleton»
EmailSender

enum Type
public data

std::map<Type, bool> enabled
static EmailSender* instance
EthernetClient client
byte mac[6] = { 0x00, 0xAA, 0xBB, 0xCC, 0xDE, 0x02 }
String receiverEmailAddress = ""

private data

EmailSender()
~EmailSender()
EmailSender(EmailSender const&) {}
EmailSender& operator=(EmailSender const&)
int setEthernet()
byte eRcv()
void efail()
byte sendEmail(String subject, String data)

private methods

static EmailSender* getInstance()
void sendEmail(Type type, String subject, String data)
void enableNotification(Type type, bool state)
void setReceiverEmailAddress(String email)
String getFormatOfSettingsToSave()

public methods

Figure 14.9: UML diagram of the EmailSender class

• EmailSender - public data

– enum Type - An enumeration defining different types of e-mails.

• EmailSender - private data

– std::map<Type, bool> enabled - The lookup table used for
finding out whether or not the particular type is enabled.

– static EmailSender* instance - The instance of the class.
– EthernetClient client - An Ethernet client used for connect-

ing to the smtp2go server when sending an e-mail.
– byte mac[6] = {0x00,0xAA,0xBB,0xCC,0xDE,0x02} - The

MAC address of the Ethernet shield. This is used for initial-
ization of the shield in case it has not been initialized yet.

– String receiverEmailAddres - The user’s e-mail address.

• EmailSender - private methods

87

– EmailSender() - The constructor of the class.
– ∼EmailSender() - The destructor of the class.
– EmailSender(EmailSender const&) - The copy constructor of

the class.
– EmailSender& operator=(EmailSender const&) - An over-

load assignment operator.
– int setEthernet() - Initialization of the Ethernet shield in case

if has not been initialized yet. Upon successful initialization, 1
will be returned. Otherwise, the method will return 0.

– byte eRcv() - This method is used for reading data using the
Ethernet client. If the reading fails, 0 will be returned. Otherwise,
the method returns 1.

– void efail() - This method is used for closing the Ethernet
client after the connection has failed.

– byte sendEmail(String subject, String data) -
This method is used to send an e-mail to the user’s e-mail account.
If sending the e-mail fails, 0 will be returned. Otherwise, the
method will return 1.

• EmailSender - public methods

– static EmailSender* getInstance() - It returns the instance
of the class.

– void sendEmail(Type type, String subject, String
data) - This method is used externally to send an e-mail of a
specific type.

– void enableNotification(Type type, bool state) - This
method is called to either enable or disable an e-mail notifica-
tion.

– void setReceiverEmailAddress(String email) -
This method is used to change the user’s e-mail address.

– String getFormatOfSettingsToSave() - It returns a String
formatted so it could be stored on the SD card (see section 10.6).

88

14.10 Assembly process of the device

Figure 14.10: Process of assembling the device (1)

Figure 14.11: Process of assembling the device (2)

89

Figure 14.12: Process of assembling the device (3)

Figure 14.13: Process of assembling the device (4)

90

Figure 14.14: Process of assembling the device (5)

Figure 14.15: Process of assembling the device (6)

91

14.11 E-mail notifications

Figure 14.16: Examples of e-mail notifications the user may receive (1)

Figure 14.17: Examples of e-mail notifications the user may receive (2)

92

Figure 14.18: Examples of e-mail notifications the user may receive (3)

Figure 14.19: Examples of e-mail notifications the user may receive (4)

93

14.12 The user interface in a web browser

Figure 14.20: the user interface tab (1)

Figure 14.21: the user interface tab (2)

94

Figure 14.22: the user interface tab (3)

Figure 14.23: the user interface tab (4)

95

Figure 14.24: the user interface tab (5)

96

14.13 User manual
The user manual describes the content the user can see on the website, the
meaning of individual components on the lid of the box, which the device has
been put in, and some fundamentals instructions on how to make changes
within the source code.

14.13.1 Website of the device
The website works as a user interface through which the user can see various
kinds of information about the whole system as well as change settings if
needed.

1

2

3

4

Figure 14.25: The website user interface (1)

97

1) Tabs with different content

(i) Home - A tab containing an overview about the current state of
the device.

(ii) Statistics - Once this tab is selected, the user can see the progress
of all three water leak detection algorithms.

(iii) Settings - On this tab, the user can change the parameters of all
the water leak detection algorithms.

(iv) Notifications - A tab for changing e-mail notifications.
(v) Information - This tab contains a brief description of the para-

meters of the water leak detection algorithms.

2) States of all three water leak detection algorithms - The states
are represented as circles. If a water leak detection algorithm is by-
passed, the appropriate circle will turn yellow. If a leak is detected,
its associated circle will turn red.

3) Other information

(i) An indication whether or not the valve has been manually closed.
(ii) The current state of the home alarm.
(iii) Daily and monthly water consumption.
(iv) Time since the last pulse was detected. This could be used as an

indication that the device is detecting the pulses correctly.
(v) The time when the device started.
(vi) Remaining free SRAM of the device.

4) The progress of a water leak detection algorithm - This tab
provides more detailed information about water leaks, including states
of the bypasses, time of detection, etc.

98

5

6

7

8

Figure 14.26: The website user interface (2)

5) A list of e-mail notifications the user can receive

6) The user’s e-mail address - All selected e-mails will be sent to this
e-mail address.

7) The update button - As soon as the user clicks on the button, all
changes will be applied.

8) Settings of a water leak detection algorithm - Each algorithm
has two kinds of settings depending on the state of the home alarm.
The home alarm settings are marked with a bell symbol.

14.13.2 Enabling and disabling functionality
Before the code is compiled and uploaded to Arduino, the user can either
enable or disable several different features of the device. For instance, they
may want to turn on debugging or entirely disable the home alarm op-
tion if they do not have it. All changes are supposed to be done within
include/Setup.h, which works as an initialization configuration file.

99

Listing 15: the configuration file

1 //#define UNIT_TEST
2

3 #ifndef UNIT_TEST
4 //# define DEBUG
5 //# define HOME_ALARM_SETTINGS
6 # define WEB_SERVER
7 # define LCD_DISPLAY
8 #else
9 # define GENERATE_PULSES

10 # define EMAIL_NOTIFICATION
11 #endif
12

13 #ifdef WEB_SERVER
14 # define EMAIL_NOTIFICATION
15 #endif

All changes will be applied after the code is re-built and uploaded to the
Arduino board. In the listing above, the red-highlighted lines represent
functions that have been disabled, and the green lines represent the currently
enabled functionality of the device. For example, if the user wants to disable
email-notifications, they need to comment out line 14.

100

14.13.3 Description of the physical device

HIGH LEAK
 bypass

 LOW LEAK
 bypass

TOTAL LEAK
 bypass

HIGH LEAK
detected

LOW LEAK
detected

TOTAL LEAK
detected RESET

DETECTIONS

MANUAL
CLOSE

POWER

VALVE OFF

SD cardHome alarm

1

2

3

4 5

HOME
ALARM ON

6
7

8

910

11

12

Figure 14.27: Final description of the device

1) The LCD display visualizing information about the system.
2) The switch for manual closing of the main valve of the house.
3) The reset button of the device. As soon as the button is pressed, all

the water leak detection algorithms will be reset.
4) The LED indicating the current state of the home alarm.
5) The LED indicating that the device is up and running.
6) The LED indicating the current state of the main valve. It will turn

on when the valve closes.
7) The power cable of the Arduino board.
8) The UTP cable plugged into the Ethernet shield attached to the Ar-

duino board.
9) The bypass buttons of all three kinds of water leak detection al-

gorithms.
10) The LEDs indicating whether or not a water leak has been detected.
11) The SD card, which works as storage for the HTML code as well as

the settings of the device.
12) The cable connected to the home alarm.

101

	Introduction
	Environmental analysis
	Water leaks classification
	Low-water leak
	Low-water leak description
	Low-water leak definition

	High-water leak
	High-water leak description
	High-water leak definition

	Total-water leak
	Total-water leak description
	Total-water leak definition

	Water leaks detection
	Using a water meter
	How to carry it out?

	Using humidity sensors
	Using flow sensors
	Using one flow sensor

	Block diagram of the system
	Algorithms for leak detection
	IO of the algorithms
	Input data format
	Output data format
	Time and space complexity

	High-water leak
	High-water leak detection algorithm 1
	High-water leak detection algorithm 2
	High-water leak detection algorithm 3

	Low-water leak
	Low-water leak detection algorithm 1
	Low-water leak detection algorithm 2

	Total-water leak

	Microcontrollers
	Raspberry Pi
	Arduino
	STM microcontrollers

	Water valves
	Solenoid valve
	Valve driven by an electric motor

	IDE
	SW structure of the system
	Common Controller Interface - IControllable
	Leak detection controller
	class PulseCounter
	class Button
	structure LeakDetectionConfig_t
	abstract class ALeakDetectable
	class HighLeakDetection
	class TotalLeakDetection
	class LowLeakDetection
	class LeaksController
	class Consumption

	Logging controller
	class Logger
	class FreeMemoryMeasurement

	LCD controller
	intereface IDisplayable
	class LCDController

	Web server
	Providing HTML content
	Sending e-mail notifications
	Changing settings
	Changing e-mail notifications
	Changing parameters of the water leak detection algorithms

	Storing setting on an SD card
	Reading data from the configuration file
	Storing data to the configuration file

	Remote connection
	API for data analysis

	HW structure of the system
	I2C bus communication
	LED signalization
	Buttons and switches
	Output of the main valve
	Reading pulses from the flow sensor
	Reading the state of the home alarm

	Testing
	Unit testing
	Water leak detection algorithms
	Receiving an HTTP request
	Running Unit tests

	System testing
	Scenarios

	Interface testing
	Testing e-mail notifications

	Conclusion
	Bibliography
	List of abbreviations
	Attachments
	PulseCounter class
	Button class
	LeakDetectionConfig_t class
	ALeakDetectable class
	Hierarchy of the water leak detection algorithms
	LeakController class
	Consumption class
	WebServer class
	EmailSender class
	 Assembly process of the device
	 E-mail notifications
	 The user interface in a web browser
	 User manual
	 Website of the device
	 Enabling and disabling functionality
	 Description of the physical device

