
ZÁPADOČESKÁ UNIVERZITA V PLZNI

Fakulta aplikovaných věd

Katedra kybernetiky

BAKALÁŘSKÁ PRÁCE
Model-predictive control of helicopter model

PLZEŇ, 2021 ŠMÍD MATĚJ

PROHLÁŠENÍ

Předkládám t́ımto k posouzeńı a obhajobě bakalářskou práci zpracovanou na závěr studia
na Fakultě aplikovaných věd Západočeské univerzity v Plzni.

Prohlašuji, že jsem bakalářskou práci vypracoval samostatně a výhradně s použit́ım odborné
literatury a pramen̊u, jejichž úplný seznam je jej́ı součást́ı.

V Plzni dne 11.5.2021 ..

vlastnoručńı podpis

1

Acknowledgements
I would like to thank Ing. Martin Goubej PhD. for supervising my thesis
and staying patient with my incessant questions regarding the work. I would
also like to express my deepest gratitude towards my friends and family who
supported me during the making of this thesis.

Poděkováńı
Chtěl bych poděkovat panu Ing. Matrinu Goubejovi PhD. za vedeńı mé práce
a za to, že zachoval trpělivost i přes mé neustálé dotazy ohledně daľśıho pos-
tupu. Také bych chtěl vyjádřit moji nehlubš́ı vděčnost mým přátel̊um a
rodině, kteř́ı mě podporovali při mé tvorbě.

2

Abstract

The aim of this thesis is the design of an MPC controller tuned to a nonlinear
mathematical model of a helicopter. This model is first modeled and identi-
fied using experiment data gathered on Humusoft CE150. The principle of
MPC is described. The identified model is used to tune a MPC controller.
Performance of this MPC controller is then compared with classical cascade
PI-P control loop. Computational comparisons of different methods of solv-
ing the quadratic programming problems that arise from the MPC controller
are also discussed.

Keywords: Model predictive control, Humusoft, 2DoF helicopter, Cascade
control, quadprog, qpOASES, quadratic programming

Abstrakt

Ćıl práce je vytvořeńı MPC regulátoru pro ř́ızeńı matematického modelu he-
likoptéry. Tento model je vytvořen a identifikován za použit́ı experimentálńıch
dat naměřených na Humusoft CE150. Navržený MPC regulátor je porovnán
s klasickou PI-P kaskádou pro ř́ızeńı namodelované helikoptéry. Je zde také
provedeno porovnáńı výpočetńı náročnosti r̊uzných metod pro řešeńı problémů
kvadratického programováńı, které je nutné řešit pro MPC regulátor.

Kĺıčová slova: Model predictive control, Humusoft, 2DoF helikoptéra, Kaskádńı
ř́ızeńı, quadprog, qpOASES, kvadratické programováńı

3

Contents

1 Introduction 5

2 Motivation 5

3 Humusoft CE150 6

4 Linearization of a nonlinear pendulum system 6
4.1 Pendulum model . 6

5 Classical control 9
5.1 PI control . 9
5.2 PD control . 11
5.3 PID control . 13
5.4 PI control of velocity . 14

5.4.1 Cascade control . 16
5.5 Linear control conclusion . 17

6 System identification 17
6.1 Linear identification . 17
6.2 Nonlinear identification . 19
6.3 Zero-phase filter . 21

6.3.1 FIR ZP filter . 21
6.3.2 IIR ZP filter . 21
6.3.3 Fourier analysis . 22

6.4 Actuator model . 24
6.4.1 Static characteristic . 24

6.5 Measurement data identification . 26
6.5.1 Finding the offset angle ϕoffset . 29
6.5.2 Statistical evaluation of identification accuracy 32
6.5.3 Useful linearized positions . 33

7 MPC control 34
7.1 MPC principle . 34

7.1.1 Prediction . 34
7.1.2 Optimal control . 36
7.1.3 Unconstrained MPC . 37

7.2 State estimator for input disturbance rejection 40
7.3 MPC constraints for helicopter model . 41
7.4 Showcase of MPC control . 41
7.5 Comparison to classical cascade control . 44

7.5.1 Simulation results . 48
7.6 qpOASES . 55

7.6.1 Comparison between quadprog and qpOASES 55
7.6.2 Comparison conclusion . 62

8 Conclusion 63

4

1 Introduction

Model-predictive control is a control scheme utilising an internal model of the controlled
plant to make predictions about its future states. It then uses these states together with
past measured states to decide on the best possible control action by solving a quadratic
programming problem. Model-predictive control has been demonstrated to be useful when
it comes to control in industrial applications in the last 4 decades [1].

This thesis discusses the differences between a classical PID control scheme and Model
Predictive Control. These different control laws are compared on a 2 Degree of Freedom
helicopter model, whose mathematical model is devised in chapter 4 and 6. The aim is to
show the possible limitations of both control schemes and decide on which is best suited for
our model.

The first half of this paper explains the theory behind a SISO nonlinear model of the he-
licopter and its linearization, discusses the identification process, implements a zero-phase
filtering mechanism for data gathered from an experiment and explains how the identifi-
cation process can be used for gathering model parameters not calculated directly by the
identification algorithm.

The second part of this paper then uses this identified model as the controlled plant. The
principle of MPC control, of PID control, and of cascade PI control is explained. A cascade
control loop is designed to control the identified model.
The MPC controller is designed and tuned using the linearized version of the identified model
as its internal model. Methods of input disturbance rejection are discussed for both control
schemes.

2 Motivation

The objective of this project is to decide whether the MPC control scheme is better suited
for our helicopter model. MPC offers various advantages over classical PID control, namely,
it allows us to set hard limits on the applied manipulated variable. This is especially useful
when our available actuators are at risk of running in saturation when traditional PID control
is used. It also allows us to limit the speed at which the manipulated variable changes. This
allows us to limit the amount of nonlinear behaviour induced by the controller in the plant.
Another advantage of MPC is its simple applicability for MIMO (Multi-Input Multi-Output)
systems. An MPC controller can be implemented using only modification to computational
algorithm but does not need any more complex parameter optimization to perform correctly.
MIMO systems are notoriously hard to design using traditional PID control which makes
MPC the ideal candidate for controlling such systems.
A great advantage of traditional PID control is its simplicity, both in the amount of pa-
rameters and in its computation. In contrast, MPC control is much more computationally
intensive, forcing us to limit its sample rate and predictive capacities if we intend to use it
in real time using slower hardware.

5

3 Humusoft CE150

Humusoft CE150 is a model helicopter designed for educational purposes. It is a MIMO
system, with 2 actuators for pitch and yaw, and 2 sensor for each respective value. During
this thesis we are only concerned about modeling the pitch axis, meaning we will be dealing
with a SISO system only.

Figure 1: Model helicopter discussed in this thesis

Modeling of this exact helicopter model was discussed before in [2]. We chose to model
the pitch of this helicopter using a second order nonlinear pendulum equation.

4 Linearization of a nonlinear pendulum system

In this section we will discuss a nonlinear model of a pendulum and its subsequent lineariza-
tion about 5 different linearization points. This is done because the pendulum model behaves
in a similar manner to the pitch axis part of the 2DoF helicopter model.

4.1 Pendulum model

The nonlinear model of a pendulum we will consists of a point massm attached to a weightless
arm of length l rotating around a pivot with friction b in a g. The pendulum is acted upon
in the pivot with torque T .

6

Figure 2: Nonlinear pendulum

The equation of motion of this system can be found using the Newton−Euler method.
We determined them to be:

mϕ̈l2 + bϕ̇+mlgsin(ϕ) = T (4.1)

The system is nonlinear thanks to the sin(ϕ) term. Its phase space diagram is shown in
figure 3.

Figure 3: Phase space of an undampened pendulum

We can see that the pendulum oscillates around 0± 2πk, k ∈ Z. This corresponds to its
lowest point. We can also see that the pendulum is not able to stay still around π±2πk, k ∈ Z,
this is because the there pendulum behaves in an unstable way. This matches our intuitive
conceptions of a pendulum.

We will linearize this system at different points to better understand its behaviour. We
will then also use the obtained linear models to test various classical control schemes.
For us to be able to perform linearization, the system has to be in a steady state. A system
is in a steady state when its states are unchanging in time. Since the pendulum is a 2nd
order system we only need to satisfy 2 equations. Namely ϕ̈∗ = 0 and ϕ̇∗ = 0. When we
apply these conditions to our equation of motion we get the equation for the steady state
input T ∗.

T ∗ = mlgsin(ϕ) (4.2)

This is the torque required to keep the pendulum at a given angle ϕ. We can see from the
steady state equations that we can linearize this system in any position. However, for our
purposes, we will only perform this linearization at points [0, π

4
, π

2
, 3π

4
, π] since these cover all

the principal eigenvalue positions.

7

To perform the linearization we first choose the states of our linear system x and their
corresponding state equations. In our case these are ϕ̈ and ϕ̇. We use basic algebra to
separate the second time derivative from equation (4.1) and set the equation for the first
time derivative. The input of out system u is the torque T .

ϕ̈ = x1 = −bϕ̇+mlgsin(ϕ)− T
ml2

(4.3)

ϕ̇ = x2 =
∂ϕ

∂t
(4.4)

We also have to specify the relationship between the states of the system x and the output
y. In a physical system this is often given by the sensor configuration, however, in our case
we can choose this freely. For simplicity, we will use this output equation

y = ϕ (4.5)

We structure the state and output equations as follows

ẋ =

[
ϕ̈
ϕ̇

]
= f(x, T) (4.6)

y = ϕ = h(x, T) (4.7)

To obtain the state space representation in the form

ẋ = Ax + Bu

y = Cx

of this nonlinear system we use the following formulae

A =
∂f(x, T)

∂x
|ϕ̈∗,ϕ̇∗,T ∗ B =

∂h(x, T)

∂u
|ϕ̈∗,ϕ̇∗,T ∗

C =
∂h(x, T)

∂x
|ϕ̈∗,ϕ̇∗,T ∗ D =

∂h(x, T)

∂u
|ϕ̈∗,ϕ̇∗,T ∗

The system linearized around an angle ϕ∗ is as follows

ẋ =

[
0 1

−gcos(ϕ∗)
l

− b
ml2

]
x +

[
0
1
ml2

]
u (4.8)

y =
[
1 0

]
x (4.9)

The system’s poles lie in

−b+
√
b2 − 4m2l3gcos(ϕ∗)

2ml2
,

−b−
√
b2 − 4m2l3gcos(ϕ∗)

2ml2

To progress further we need to set the parametersm, l, b to particular values that approximate
the real values of the model:

m = 0.4kg

l = 0.15m

b = 0.005

8

For these values we created a plot of the possible pole locations for angles ϕ∗ from 0 to π.
The blue diamonds in the plot are the location of one of the poles for ϕ∗ = [0, π

4
, π

2
, 3π

4
, π].

(a) Pole map for the linearized system (b) Close up of the root locus zoomed at stable values

Figure 4: Root locus of the various linearized systems

The poles for ϕ∗ = 0 start as complex conjugates at −0.278± 8.082i and as ϕ∗ increases
their imaginary part gets closer to zero, until ϕ∗ = 1.571 where the two poles meet at
[−0.278, 0] and they start moving in opposite direction on the real axis. At precisely ϕ∗ = π

2
,

the system starts exhibiting the behaviour of an integrator. For ϕ∗ > π
2
, one of the poles

crosses over into the right hand half of the complex plane. This makes the system unstable.
The real part of the complex conjugate poles is Re(p) = − b

2ml2
= −0.277. The system’s gain

is K = 1
ml2

= 111

5 Classical control

In this section, we will design linear controllers using classical design methods. We will test
these controllers on the linearized systems discussed in the previous section.

5.1 PI control

The most widely used control scheme is a PI controller in a feedback loop around the con-
trolled plant. We will design a PI controller for ϕ∗ angles: [0, π

4
, π

2
, 3π

4
, π] using the following

form:

C = Kp(1 +
1

Tis
) (5.1)

9

0 20 40 60
0

0.2

0.4

0.6

0.8

1

Step Response

Time (seconds)

A
m

p
lit

u
d

e

-4 -2 0 2
-40

-30

-20

-10

0

10

20

30

40

Root Locus

Real Axis (seconds-1)

Im
a

g
in

a
ry

 A
x
is

 (
s
e

c
o

n
d

s
-1

)

Figure 5: Closed loop step response and the root locus plot of the system linearized around ϕ∗ = π
4

In theory, a PI controller in a negative feedback loop is capable of stabilising the pendulum
model linearized around any angle ϕ∗. However, for any angles between π

2
and 3π

2
the system

cannot be controlled with a satisfying degree of robustness (Phase margin < 2◦) , unless the
dissipation factor b is disproportionately large. As can be seen from the root locus plot. A
PI controller is well suited for control of the stable versions of the system (linearized around
ϕ ≤ π

2
).

10

-10 -5 0 5 10
-8

-6

-4

-2

0

2

4

6

8

Root Locus

Real Axis (seconds-1)

Im
a
g
in

a
ry

 A
x
is

 (
s
e
c
o
n
d
s

-1
)

Figure 6: Root locus plot of the PI controlled system linearized around ϕ∗ = π

The linearized system pole’s are almost symetrical about the imaginary axis, only being
offset to the left on the real axis by −b

2ml2
. Because the PI controller adds one zero and one pole

to the open loop system, the location of the 2 free poles in the root locus tends asymptotically
towards infinity with the angles π

2
and 3π

2
. The intersection point of asymptotes on the real

axis is called the centroid. We can calculate the location of the centroid α using this formula:

α =

∑
Re(poles)−

∑
Re(zeros)

numberofpoles− numberofzeros

In our case the sum of real poles is the offset factor −b
2ml2

. The only zero in our open loop
system is the one added by the PI controller. To achieve the best robustness in stability
possible, we want to choose the location of the zero such that the centroid is as far left as
possible. The best case scenario for this is placing the zero in the origin. However, this will
will only allow us to move the centroid to the offset factor. This can be expressed using this
equation:

lim
zeroPI→0

α =
−b

2ml2

From this, we can see that using a PI controller for control of an unstable pendulum
system is not advisable.

5.2 PD control

PD controller with a filtering term is able to move the poles of the controlled plant more
freely than a PI controller, however, since it lacks an integrator pole, it does not guarantee
the error term will reach 0 when following a constant reference value. We will design a PD
controller for ϕ∗ angles: [0, π

4
, π

2
, 3π

4
, π] using the following form:

C = Kp(1 +
Td s

Td
N
s+ 1

) (5.2)

Using the same intuition about the root locus plots from the previous section we can
study if this type of controller is viable for this system.

11

A PD controller adds one negative zero and one even more negative pole to the open
loop system. This means that the root locus has 2 free poles that will asymptotically tend
towards infinity with angles π

2
and 3π

2
from the centroid. This centroid can be located using

the same formula as in the previous section. The pole added by the filtered term of the
PD controller is farther to the left on the complex plane than the zero. From this we can
conclude that this controller can shift the centroid of this open loop system into the left
hand plane, thus stabilising the closed loop system.

-200 -150 -100 -50 0 50
-200

-150

-100

-50

0

50

100

150

200

Root Locus

Real Axis (seconds-1)

Im
a
g
in

a
ry

 A
x
is

 (
s
e
c
o
n
d
s

-1
)

Figure 7: Root locus plot of the PD controlled system linearized around ϕ∗ = π

However, while using the PD controller, the open loop system has no integrator (with
the exception of the system linearized around ϕ∗ = π

2
). This means that the closed loop

system lacks the intrinsic ability to follow a step signal without a constant error term. This
can be partly mitigated by introducing a open loop amplification term, which will move the
closed loop amplification of the control loop to 1. We will solve this issue by introducing an
integrator term into the controller, thus making it a PID controller. This will be discussed
in the next section.

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response

Time (seconds)

A
m

p
lit

u
d

e

Figure 8: Closed loop step response of PD controlled systems

12

5.3 PID control

A PID controller with a filtering term combines the strenghts of PI and PD controllers.
It enables the feedback loop to reach zero error when following a constant reference, but
also allows us to move the poles of the controlled plant more freely. We will design a PID
controller for ϕ∗ angles: [0, π

4
, π

2
, 3π

4
, π] using the following form:

C = Kp(1 +
1

Tis
+

Tds
Td
N
s+ 1

) (5.3)

The root locus plots we get by using a PID controller are very similar to the ones we get
by using a PD controller. This is because the PID controller with a filtering term adds one
pole and one zero on top of the pole and zero introduced by a PD controller. This means
that the open loop system still has 2 more poles than zeros and thus the root locus forms
two arms which asymptotically tend towards infinity with angles π

2
and 3π

2
from the centroid.

The location of the centroid can be set using the controller variables to be in the left hand
plane. Therefore we can conclude that a PID controller can stabilize these systems.

-120 -100 -80 -60 -40 -20 0 20
-300

-200

-100

0

100

200

300

Root Locus

Real Axis (seconds-1)

Im
a
g
in

a
ry

 A
x
is

 (
s
e
c
o
n
d
s

-1
)

Figure 9: Root locus plot of the PID controlled system linearized around ϕ∗ = π

Thanks to the pole located in the origin introduced to the open loop system by the PID
controller, the closed loop system is capable of following a step signal without a constant
error term.

13

0 0.05 0.1 0.15 0.2 0.25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Step Response

Time (seconds)

A
m

p
lit

u
d

e

Figure 10: Closed loop step response of PID controlled systems

5.4 PI control of velocity

We can change our controlled model of the plant by introducing a derivator (zero in origin)
after the plant output. This effectively mimics how the plant would behave if we were to
measure the pendulum velocity instead of its angle. This is equivalent to changing the output
matrix C in equation (4.9) to

C =
[
0 1

]
(5.4)

This approach allows us to introduce an additional zero into the loop, similar to what
would happen when using a PD controller. We can then use a PI controller to control
the angular velocity of the pendulum plant. We will design a PI controller for ϕ∗ angles:
[0, π

4
, π

2
, 3π

4
, π] using the following form:

C = Kp(1 +
1

Tis
) (5.5)

The pendulum transfer functions are set up in such a way that their output is the position
of the pendulum in time (ϕ). Since angular velocity is the derivative of position we can
simply add a transfer function with a zero in the origin in series after the pendulum transfer
function. We can combine these two transfer functions into one using block diagram algebra.

14

Into

The resulting transfer function shares the dynamics of the original system, but its output
is the angular velocity of the pendulum ϕ̇.

Figure 11: Block algebra diagram of ϕ̇ plant controlled by a PI controller

The PI controller adds a pole to the origin. This cancels out the zero added to the origin
by changing the system output to velocity. The resulting open loop system has 2 poles and
one zero. This changes the shape of the root locus plot in comparison to the plots in the
previous section where we controlled the location. As long as the zero added by the PI
controller is in the left half plane, the rightmost pole will tend toward the location of the
zero, while the leftmost pole will tend towards − inf on the real axis. This means that we
can make all of our linear plants stable.

-50 -40 -30 -20 -10 0 10
-3

-2

-1

0

1

2

3

Root Locus

Real Axis (seconds-1)

Im
a

g
in

a
ry

 A
x
is

 (
s
e

c
o

n
d

s
-1

)

Figure 12: Root locus plot of the PI controlled ϕ̇ plant linearized around ϕ∗ = π

However, because the integrator introduced by the PI controller cancels out with the zero
in the origin of the linear plant, the closed loop system lacks the ability to follow a constant
reference signal without a constant error term. This can be seen in figure 13.

15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

1.2

Step Response

Time (seconds)

A
m

p
lit

u
d
e

Figure 13: Step response of ϕ̇ using PI control

5.4.1 Cascade control

To use the designed PI velocity control system to control the location of the pendulum,
we can place an integrator after it and use this as feedback value in a negative feedback
loop. This will convert the output to the angle ϕ, instead of the angular velocity ϕ̇. The
outer feedback loop will also ensure a zero steady state error term when following a constant
reference signal. We can also add a P controller to the outer feedback loop to change the
aggression of the control loop.

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.2

0.4

0.6

0.8

1

1.2

Step Response

Time (seconds)

A
m

p
lit

u
d
e

Figure 14: Step response of ϕ using cascade control

16

5.5 Linear control conclusion

When we compare all the linear control methods we used to stabilise the pendulum system,
we can see that both the PID controller for the position, and the cascade control scheme,
outperform the possible closed loop dynamics that are achievable with only a PI controller.
With the cascade control being clearly better than the designed PID controller.

6 System identification

In order to tune the controllers correctly, we need to know the exact parameters of the
system. In other words we need to identify the system. The nonlinear ordinary differential
equation which we will use to model our system is

ml2ϕ̈+ bϕ̇+mlgsin(ϕ) = ku (6.1)

The right hand side of the equation represents the torque applied to the pendulum by a
motor. We chose to model this as constant gain k times input voltage u. We divide the
equation by ml2 to reduce the number of different parameters used.

ϕ̈+
b

ml2
ϕ̇+

g

l
sin(ϕ) =

k

ml2
u (6.2)

We can substitute the parameters used in the rearranged equation such that a1 = b
ml2

,

a0 = g
l
, b0 = k

ml2
.

ϕ̈+ a1ϕ̇+ a0sin(ϕ) = b0u (6.3)

To fully identify the parameters of the model, we only need to identify a1, a0 and b0. This
simplifies the identification, but doesn’t allow us to identify the physical parameters of the
system m, l, b, k.

6.1 Linear identification

One of the possible approaches to the identification problem is to create a regression model
linear in both the parameters and the system states. To do this we linearize the nonlinear
ODE (6.3) around a equilibrium point ϕ∗.

ẋ =

[
0 1

−a0cos(ϕ
∗) −a1

]
x +

[
0
b0

]
u (6.4)

y =
[
1 0

]
x (6.5)

Next, we convert the plant into a transfer function and then discretize it using zero-hold
method with sample time T . We get a transfer function in the z-domain

G(z) =
Y (z)

U(z)
=

B1z +B0

A2z2 + A1z + A0

17

Where

B1 = −b0(4e((−a1+
√
a21−4a0cos(ϕ))T)/2a0cos(ϕ) + 4e−((a1+

√
a21−4a0cos(ϕ))T)/2a0cos(ϕ)

−8a0cos(ϕ)e−Ta1 + e((−a1+
√
a21−4a0cos(ϕ))T)/2a1

√
a2

1 − 4a0cos(ϕ)− e((−a1+
√
a21−4a0cos(ϕ))T)/2a2

1

−e−((a1+
√
a21−4a0cos(ϕ))T)/2a1

√
a2

1 − 4a0cos(ϕ)− e−((a1+
√
a21−4a0cos(ϕ))T)/2a2

1 + 2a2
1e
−Ta1)

B0 = −b0(4e((−a1+
√
a21−4a0cos(ϕ))T)/2a0cos(ϕ) + 4e−((a1+

√
a21−4a0cos(ϕ))T)/2a0cos(ϕ)

−e((−a1+
√
a21−4a0cos(ϕ))T)/2a1

√
a2

1 − 4a0cos(ϕ)− e((−a1+
√
a21−4a0cos(ϕ))T)/2a2

1+

e−((a1+
√
a21−4a0cos(ϕ))T)/2a1

√
a2

1 − 4a0cos(ϕ)− e−((a1+
√
a21−4a0cos(ϕ))T)/2a2

1 − 8a0cos(ϕ) + 2a2
1)

A2 = 2e((−a1+
√
a21−4a0cos(ϕ))T)/2e−((a1+

√
a21−4a0cos(ϕ))T)/2(−a2

1 + 4a0cos(ϕ))a0cos(ϕ)

A1 = 2(−e((−a1+
√
a21−4a0cos(ϕ))T)/2 − e−((a1+

√
a21−4a0cos(ϕ))T)/2)(−a2

1 + 4a0cos(ϕ))a0cos(ϕ)

A0 = 2(−a2
1 + 4a0cos(ϕ))a0cos(ϕ)

To convert this z-domain transfer function into the discrete time domain, we perform the
inverse Z-transform.

A2y(k) + A1y(k − 1) + A0y(k − 2) = B1u(k − 1) +B0u(k − 2)

We rearrange this difference equation to separate the y(k) term.

y(k) = −A1

A2

y(k − 1)− A0

A2

y(k − 2) +
B1

A2

u(k − 1) +
B0

A2

u(k − 2)

This is the equation we can use to build the linear regression model to identify the system
parameters using measurement data. The equation can be expressed in matrix form for l
data samples

y = ΦΘ + ε

18

Where

y =


y(k)

y(k + 1)
...

y(k + l)

 ,

Φ =


−y(k − 1) −y(k − 2) u(k − 1) u(k − 2)
−y(k) −y(k − 1) u(k) u(k − 1)

...
...

...
−y(k + l − 1) −y(k + l − 2) u(k + l − 1) u(k + l − 2)

 ,

Θ =



A1

A2

A0

A2

B1

A2

B0

A2


, ε =


ε(k)

ε(k + 1)
...

ε(k + l)



We define the least squares criterion for this system of equations as

J(Θ) = εT (Θ)ε(Θ)

The vector Θ that minimizes this criterion is the optimal vector of parameters Θ∗

Θ∗ = argmin[J(Θ)]

Unfortunately, this approach yields sub par results for our system and because of the
complicated transform functions from parameters the model a1, a0, b0 to the parameters of
the regression model Θ it would be very difficult to find the inverse transform to identify
the model. Because of these reasons, we will not pursue this method here any further.

6.2 Nonlinear identification

Another approach to the identification problem is to create a regression model that will be
linear in its parameters, but will be nonlinear in the system states. To do this we need to
perform an experiment with the helicopter model and obtain the angle ϕ, velocity ϕ̇, accel-
eration ϕ̈ and input u data. We are able to directly measure the angle ϕ and the input u
is chosen by us. However, we are not able to measure the velocity and acceleration directly,
owing to the fat that the Humusoft CE150 helicopter lacks the appropriate sensors, we will
have to compute them numerically from the angle signal.

We will compute them using the first and second central differences

ẏ(k) = ϕ̇(k) =
ϕ(k + 1)− ϕ(k − 1)

2TS
(6.6)

ÿ(k) = ϕ̈(k) =
ϕ(k + 1)− 2ϕ(k) + ϕ(k − 1)

T 2
s

(6.7)

19

We then created a regression model from the ODE in (6.3), thanks to making a substitu-
tion into discrete time domain with kTs = t, where Ts is the sample time.

ÿ(k) = −a1ẏ(k)− a0sin(y(k)) + b0u(k) (6.8)

This difference equation expands into multiple time samples which can be expressed using
the matrix form

ÿ = ΦΘ + ε (6.9)

where

ÿ =


ÿ(k)

ÿ(k + 1)
...

ÿ(k + l)

 , (6.10)

Φ =


−ẏ(k) −sin(y(k)) u(k)
−ẏ(k + 1) −sin(y(k + 1)) u(k + 1)

...
...

...
...

−ẏ(k + l) −sin(y(k + l)) u(k + l)

 (6.11)

This regression model is linear in the parameters Θ. This is a requirement for the method
of identification we will use.

To obtain our parameters Θ we will use the least squares criterion defined as

J(Θ) = εT (Θ)ε(Θ)

The vector Θ which minimizes this criterion is the optimal vector of parameters Θ∗

Θ∗ = argmin[J(Θ)]

The vector Θ is made up of the parameters of the ODE

Θ =

a1

a0

b0


The disadvantage of this method of identification is that the differences ϕ̈(k) and ϕ̇(k) are

calculated from the location data ϕ and any measurement noise present will be multiplied in
the differences, thanks to the property of derivation to amplify high frequency noise. This
can be remedied by filtering the measurement data of any noise. However, standard filtering
methods shift the phase of the signal which would make the signal unusable for identification
purposes.

To solve this, we will use a method of digital signal filtering called zero-phase filtering.

20

6.3 Zero-phase filter

Zero-phase (ZP) filter is a a kind of digital filter in which the phase shift introduced by the
filter is 0 on all frequencies. In other words, this kind of filter only changes the amplitude of
the filtered signal. This property makes ZP filters non-causal and so they cannot be directly
used in real time application. Thankfully this non-causality is not an issue, because the data
gathering for the identification is done before the filtering, therefore the filter in time step k
has access to the future, as well as the past measurement signal. This makes the ZP filters
ideal for our purposes. We will discuss 2 different methods of implementing a ZP filter.

6.3.1 FIR ZP filter

Finite impulse response zero-phase filter is a digital filter whose impulse response function
is finite, has a odd number of time steps and is symmetric about time step 0. An example
of this filter is

HFIR(z) = z−1 + 2 + z (6.12)

It can be seen that this filter is non-causal, because it uses future signal to compute the
filtered signal at the current time step. The number of terms in the impulse response function
has to be odd to achieve the symmetry needed for the filter to be zero-phase.

This filter can be generally written as

HFIR(z) =
N∑

k=−N

bkz
−k (6.13)

where the symmetry is ensured by the fact that b−k = bk.

6.3.2 IIR ZP filter

Another way to implement a zero-phase filter is to use a causal infinite impulse filter to filter
a signal, then to filter the filtered signal in reverse time order. Finally reverse the time order
of this twice filtered signal once more. The result is a signal, whose amplitude is amplified
by the square of the amplitude characteristic of the used IIR filter, and whose phase shift is
zero.

For a causal IIR filter

HC(z) =
2N∑
k=0

akz
−k (6.14)

the filtering is reverse time order using the same IIR filter is non causal and written as

HC(z−1) =
2N∑
k=0

akz
k (6.15)

The composite filtering as described above can be expressed as

HNC(z) = HC(z−1)HC(z) (6.16)

The properties of this type of filtering can be seen in Fourier space (z → eiω)

21

HNC(eiω) = HC(e−iω)HC(eiω) = (6.17)

= HC(eiω)HC(eiω) = (6.18)

=|HC(eiω)|2 (6.19)

HNC is strictly real and greater than 0 in Fourier space and therefore does not introduce any
phase shift into the filtered signal.
A IIR ZP filter can be implemented using the MATLAB function filtfilt() with a standard
IIR filter.

6.3.3 Fourier analysis

To determine the appropriate lowpass frequency for our filter we looked at the frequency
spectrum of our signal obtained using MATLAB’s fft() function. This signal is sampled
with the sampling frequency fs = 50Hz. The Nyquist–Shannon sampling theorem states
that frequencies higher that the Nyquist frequency fN = fs/2 cannot be reconstructed. Our
Fourier transform therefore only considers frequencies up to the Nyquist frequency 25Hz.

0 5 10 15 20 25

0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 15: Fourier spectrum of the ϕ value obtained from the experiment

The experiment was measured in such a way as not to introduce any high frequency
information into the data. We can use this to help us determine the appropriate lowpass
frequency for filtering.

22

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Figure 16: Fourier spectrum of the ϕ value obtained from the experiment zoomed on the relevant frequency
range

Most of the energy of the signal lies on the frequencies from 0 to 0.5Hz. We will assume
that anything over 1Hz is noise which should be removed prior to continuing with the
identification.

For this removal we will use a FIR lowpass filter of 100th order with lowpass frequency
1Hz.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

Figure 17: Energy removed from the data by the filtering process

As can be seen from the figure, the filter does not remove energy evenly across the
frequency range. Most importantly it also filters before our lowpass frequency. This fact can
however be ignored, since the relative reduction on low frequencies is minor compared to the
relative reduction on the higher frequencies.

23

6.4 Actuator model

The pitch angle of the helicopter model as described above is

mϕ̈l2 + bϕ̇+mlgsin(ϕ) = T (6.20)

This equation assumes a input torque T, we however cannot directly influence T. Instead
we can only influence it indirectly by applying a voltage u on a actuator unit. The actuator
itself has its own dynamic behaviour described by

L
di(t)

dt
+Ri(t) = u(t)− keω(t) (6.21)

This first order linear ODE describes the dynamics of the electrical circuit, ie. the way the
input voltage u(t) influences the electrical current i(t) and how this direct relationship is
hampered by the rotational velocity of the blades of the helicopter ω(t). The constant ke
is the electromotoric constant of the motor. L is the inductance of the motor. R is the
electrical resistance in the circuit. ω(t) is measured in rad/s

J
dω(t)

dt
= kti(t)− αω|ω| (6.22)

This first order nonlinear ODE describes the dynamic behaviour of how the circuit current
i(t) affects the rotational velocity ω(t). This relationship is again hampered by the rotational
velocity ω(t), this time however, the |x| denotes the absolute value of x. ω|ω| has the is
identical to ω2 for positive values of ω, but has the characteristic of −ω2 for the negative
values. J is the moment of inertia of the blades. kt is the momentum constant of the motor
(i(t) → generated T). α is the parameter describing the changing resistance of the blades
based on their rotational velocity.

F = βω|ω| (6.23)

This nonlinear static equation describes how the rotational velocity ω(t) generates lift force
F . This force creates a torque T about the centre of mass of the helicopter. Assuming the
simplified pendulum model, this torque is calculated as T = F · l where l is the length of the
pendulum arm.

6.4.1 Static characteristic

The above described motor equations are dynamic in nature. We wanted to see the simplified
relationship between the input voltage u0 and the output force F0 in steady-state. To do
this we set all the derivatives to 0 to obtain the steady-state equations

Ri0 = u0 − keω0 (6.24)

0 = kti0 − αω0|ω0| (6.25)

F0 = βω0|ω0| (6.26)

24

And algebraically combined the first two into

αω0|ω0|+
kekt
R

ω0 =
kt
R
u0 (6.27)

The solution of this equation is

ω0 =


kekt
R
−
√

(
kekt
R

)2−4
kt
R
u0

2α
u0 ≤ 0

− kekt
R

+
√

(
kekt
R

)2+4
kt
R
u0

2α
u0 ≥ 0

(6.28)

Therefore, the static function F0(u0) is obtained by substituting this solution into the
output equation

F0(u0) = βω0|ω0| (6.29)

We are only interested in the positive branch of this characteristic (positive voltage gen-
erating positive force) i.e.

ω+
0 =

−kekt
R

+
√

(kekt
R

)2 + 4kt
R
u0

2α
u0 ≥ 0 (6.30)

An example plot of this characteristic for parameters: [ke = 1, kt = 1, R = 1, α = 1, β =
1].

0 2 4 6 8 10

0

1

2

3

4

5

6

7

8
Static characteristic F_0(u_0)

Figure 18: Static characteristic for arbitrarily chosen physical parameters

This plot exhibits a quadratic behaviour around the origin, but quickly moves into an
almost linear shape.

25

6.5 Measurement data identification

An experiment was performed on the helicopter model.Measurement data from the physical
model helicopter was purposefully taken with care to not excite the dynamic response of the
actuator. The measurement was taken over approximately 120 seconds with 20ms sample
time.

Only measurements available to us are the measured angle of pitch ϕmeas from an optical
sensor [◦] and the input voltage applied to the motor u. This voltage is expressed as a
fraction of the maximum power the motor is capable of providing with 0 being turned off
and 1 being full power. The optical sensor used for this measuring has a quantization step of
0.36◦. This quantization intruduces noise into our measurement, which is amplified when we
calculate the first and second order derivatives to obtain the velocity and the acceleration.
This noise is then filtered out by using a FIR filter to smooth this data out and to remove
the higher frequency noise.

0 20 40 60 80 100 120

10

15

20

25

30

35

40

45

50

55

Figure 19: Pitch angle data used for identification

0 20 40 60 80 100 120

0.21

0.215

0.22

0.225

0.23

0.235

0.24

0.245

0.25

Figure 20: Input voltage data used for identification

The measured pitch angle ϕmeas is not the true pitch angle measured from the vertical,
rather only the angle measured from an unknown offset angle ϕoffset. To correctly identify
the whole model we need to find this angle as will be discussed below. To progress further

26

we have to set the offset angle to an arbitrary value and add it to the pitch angle data. For
our purpose we can choose to set it as ϕoffset = 0.

The angles ϕmeas are used to calculate the angular velocity ϕ̇ and the angular acceleration
ϕ̈. For these we no longer need to consider the unknown offset angle ϕoffset since the
calculations used to find them cancels the offset angle out.

ϕ̇ =
ϕ(k + 1)− ϕ(k − 1)

2T
(6.31)

ϕ̈ =
ϕ(k + 1)− 2ϕ(k) + ϕ(k − 1)

T 2
(6.32)

0 20 40 60 80 100 120

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Figure 21: Calculated first derivative used for identification

0 20 40 60 80 100 120

-40

-30

-20

-10

0

10

20

Figure 22: Calculated second derivative used for identification

As was said earlier, the numerical derivation amplifies the limited quantized values. This
is solved in the next step where the data is filtered through a lowpass FIR filter of order 100
to remove any signal with frequency above 1Hz. This also smooths out the data.

27

0 20 40 60 80 100 120

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 23: Filtered pitch angle used for identification

0 20 40 60 80 100 120

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Figure 24: Filtered first derivative used for identification

0 20 40 60 80 100 120

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Figure 25: Filtered second derivative used for identification

28

The filtering algorithm shortens the filtered data by half of the filter order at the beginning
and another half at the end. In our case of a 100 order FIR filter this equals to one second
at the beginning and 1 second at the end of data loss. This is not significant and does not
affect the identification process in any meaningful way.

Using the data filtered this way and the input voltage we measured we begin the identi-
fication part proper. We build the matrix of regressors

Φ =


−ϕ̇f (k) −sin(ϕf (k)) u(k)
−ϕ̇f (k + 1) −sin(ϕf (k + 1)) u(k + 1)

...
...

...
...

−ϕ̇f (k + l) −sin(ϕf (k + l)) u(k + l)

 (6.33)

And calculate its pseudo-inverse as

Φ† = (ΦT ·Φ)−1 ·Φ (6.34)

And obtain the identified parameters of the model Θ as

Θ = Φ† · ϕ̈f (6.35)

6.5.1 Finding the offset angle ϕoffset

With the above described we are able to identify the model for any offset angle ϕoffset.
However, only one value is correct. To find this correct offset value ϕ∗offset we will perform the
identification for multiple different offset angles ϕoffset and for each of these try to quantify
the validity of the identified parameters. We should see a roughly quadratic relationship
between the ϕoffset and the chosen error criterion with the minimum being in ϕ∗offset.

Using the identified parameters Θ we simulate the model using the input voltage u as the
input. As our error criterion we will use the difference between the simulated pitch angle
and the pitch angle obtained from the real world experiment. If our mathematical model
were to describe the system exactly we would expect and was correctly identified we would
expect a error value of 0 over the whole simulation time. Since we are not aiming at a exact
model, only at an usable estimate, we are content for the simulation to roughly follow the
real world data.

Because of the non-exact nature of our model, its output error will tend to accumulate
over the simulation time. Because of this, it would be difficult to simply measure the error
value since the simulated dynamics would be different from the real world data. The solution
here is to periodically reset the simulation, using the real world data as initial values. This
ensures that our error has the same dynamic behaviour over the long term as the real world
data while still functioning as a measure of the short-term validity of our model.

29

With this method the model output over time is

0 10 20 30 40 50
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7
Real world experiment data

1s prediction horizon

Figure 26: Model simulation with identified parameters where its states are set to real world data every
second

This simulation was performed for ϕoffset between 0 and 100 degrees and for each of them
the euclidean norm of error over simulation time was taken.

|e|=

√√√√i=N∑
i=0

ei (6.36)

This norm was then visualized over the whole ϕoffset space to obtain this figure.

30

Figure 27: Simulink solution used for error prediction

31

0 20 40 60 80 100
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

1s prediction horizon

Figure 28: The error of our model compared to experimental data for different ϕoffset

The model error has a clear local minimum at ϕoffset = 40◦. This corresponds to an
approximate estimate taken when performing the experiment.

Our identified model parameters Θ for ϕoffset = 40◦ are

Θ =

 0.4554
3.2503
13.3097

 (6.37)

The identified model we will use further for developing control algorithms is

ϕ̈+ 0.4554ϕ̇+ 3.2503sin(ϕ) = 13.3097u (6.38)

The angle sensor data provided by the physical system is always offset by −40◦ from this
mathematical model and has to be manually adjusted to fit correctly. Input u ∈< 0, 1 >.

6.5.2 Statistical evaluation of identification accuracy

After we have completed the identification process, we can perform a statistical analysis of
it to decide whether or not the results are satisfactory.

The analysis we are going to perform is inspired by the theoretical background from [3].
We are going to take the difference between the experiment data and the prediction data
measured with the 1s prediction horizon e. We are going to calculate its variance s2 as

s2 =
eTe

N
= 1.3e−4 where N is the length of e (6.39)

And use it to calculate the covariance matrix Cov(Θ) of the identified parameters as

Cov(Θ) = s2(ΦTΦ)−1 = 1e−3

0.0014 0.0011 0.0046
0.0011 0.0066 0.0271
0.0046 0.0271 0.1113

 (6.40)

These values are relatively small compared to the identified parameters, this tells us that
we can be relatively certain that the identification was successful. Of course, this method of

32

statistical evaluation relies on the presupposition that the predictors in Φ are uncorrelated.
This is not true, as in our case we compute the velocity and acceleration predictors from the
position predictor so these results have to be understood only as rough estimates.

6.5.3 Useful linearized positions

We linearized this identified nonlinear differential equation around 3 points. We will use these
linearized systems as a intermediate step in the design process. We will design controllers to
control these linearized systems and then we will test whether or not they are able to control
the original identified nonlinear system.
The system linearized around ϕ∗ = 90◦ has the following transfer function.

F90(s) =
13.31

s2 + 0.4554s
(6.41)

This system will also function as the internal MPC model used to build the prediction
matrices of the MPC control algorithm.

The system linearized around ϕ∗ = 50◦ has the following transfer function.

F50(s) =
13.31

s2 + 0.4554s+ 2.089
(6.42)

The system linearized around ϕ∗ = 130◦ has the following transfer function.

F130(s) =
13.31

s2 + 0.4554s− 2.089
(6.43)

33

7 MPC control

7.1 MPC principle

Model Predictive Control is a control loop mechanism where the controller contains an
internal linear model of the controlled plant and for each time step the MPC controller
calculates the optimal correction based on predictions calculated over the internal model.

MPC considers the output error e as well as the input u for its optimal control calcula-
tions. It can also be expanded to consider the difference ∆u between time steps to penalize
aggressive changes in control.

Our particular MPC implementation uses definitions described in [4] and [5].

7.1.1 Prediction

The predictions are performed using an internal discrete linear model in the form

xk+1 = Axk +Buk (7.1)

yk = Cxk +Duk (7.2)

where A ∈ Rn×n, B ∈ Rn×1, C ∈ R1×n, D ∈ R1×1, xk ∈ Rn×1, uk ∈ R1×1 and n is the system
order.

The state vector xk has to be augmented by the piecewise reference value w in order for
the output to track a piecewise signal. It also convenient to augment it the previous input
vector u˙-1. The augmented state equation has the following form

 xk+1

wk+1

∆uk−1


︸ ︷︷ ︸

x̃k+1

=

A 0 0
0 1 0
0 0 1


︸ ︷︷ ︸

Ã

 xkwk
u−1


︸ ︷︷ ︸

x̃k

+

B
0
0


︸ ︷︷ ︸
B̃

uk (7.3)

ek =
[
C 1 0

]︸ ︷︷ ︸
C̃e

x̃k (7.4)

This formulation considers the output error e as the output of the model. This allows us to
directly use it for the optimization.

This state equation is then modified to calculate states further into the future than only
one time step. This is done by defining state prediction matrices Px, Hx and output pre-
diction matrices P a H. These allow us to simply compute the system output for known
manipulated variable values np steps into the future. The scalar np is called the prediction
horizon length. Increasing this allows us to compute optimal control over longer time frames
but at the cost of increased computational complexity.

State prediction matrices:
x̃k+1

x̃k+2
...

x̃k+np


︸ ︷︷ ︸
x̃k+1,np

=


Ã

Ã2

...

Ãnp


︸ ︷︷ ︸

P̃x

x̃k +


B̃ 0 · · ·
ÃB̃ B̃ · · ·

...
...

. . .

Ãnp−1B̃ Ãnp−1B̃ · · ·


︸ ︷︷ ︸

H̃x


uk
uk+1

...
uk+np−1


︸ ︷︷ ︸

uk,np−1

(7.5)

34

Output prediction matrices:


ỹk
ỹk+1

...
ỹk+np−1


︸ ︷︷ ︸

ỹk,np−1

=


C̃

C̃Ã

C̃Ã2

...

C̃Ãnp−1


︸ ︷︷ ︸

P̃

x̃k +


D̃ 0 0 · · ·
C̃B̃ D̃ 0 · · ·
C̃ÃB̃ C̃B̃ D̃ · · ·

...
...

...
. . .

C̃Ãnp−2B̃ C̃Ãnp−3B̃ C̃Ãnp−4B̃ · · ·


︸ ︷︷ ︸

H̃


uk
uk+1

uk+2
...

uk+np−1


︸ ︷︷ ︸

uk,np−1

(7.6)

MPC controller computes the system states np steps into the future, but for simpler com-
putation we will only look for optimal control nc time steps into the future where nc ≤ np.
The manipulated variable is set to the nc−th value and remains constant. This strategy
(called Move blocking) front loads the manipulated variable variability, but its not neces-
sarily optimal. Another approach would be to divide the nc computed u values evenly over
the prediction horizon. Move blocking is implemented using the following:

H̃b,x = H̃xMb (7.7)

H̃b = H̃Mb (7.8)

Where the matrix Mb has dimensions np × nc

Mb =


1

. . .
1
...
1

 (7.9)

We will also define the way the manipulated variable ui is transformed into the first order
difference ∆ui. For each time step the form is ∆ui = ui − ui−1. This is expressed in matrix
form over the prediction horizon as

∆uk
∆uk+1

...
∆uk+nc−1


︸ ︷︷ ︸

∆uk,nc−1

=


I 0 0 · · ·
−I I 0 · · ·
0 −I I · · ·
...

...
...

. . .


︸ ︷︷ ︸

K∈Rnc×nc


uk

uk+1
...

uk+nc−1


︸ ︷︷ ︸

uk,nc−1

+


−I
0
...
0


︸ ︷︷ ︸

M

uk−1 (7.10)

The last term uk−1 can be obtained from our augmented state vector x̃k as

uk−1 =
[
0 0 I

]︸ ︷︷ ︸
L̃

x̃k (7.11)

With this we have defined how to compute the behaviour or the controlled plant over the
prediction horizon. Next we will use this information to compute the optimal control, to
minimize a selected cost function.

35

7.1.2 Optimal control

To use the term optimal, we have to decide on a cost function that will quantify our loop
performance. For our purposes we will use the following cost function

J =
1

2
(

k+np−1∑
i=k

eTi Qei +
k+nc−1∑
i=k

∆uTi R∆ui) (7.12)

This cost function weighs the deviation of our plant from reference e and the manipulated
variable first order differences ∆u. These are multiplied by the weighting matrices Q ∈
Rnp×np and R ∈ Rnc×nc . These weighting matrices allow us to better customize our cost
function. Q and R have to be symmetric and positive-definite. The lower the value of J ,
the closer we are to our desired state. We will therefore use this function to compute the
optimal u.

This cost function can be expressed using our above defined prediction matrices using
algebraic manipulations as

J =
1

2
(P̃x̃k + H̃buk,nc−1)TQ(P̃x̃k + H̃buk,nc−1) (7.13)

+
1

2
(Kuk,nc−1 + MLx̃k)

TR(Kuk,nc−1 + MLx̃k) (7.14)

This is then expanded and simplified to obtain the following quadratic function

J =
1

2
uTk,nc−1Guk,nc−1 + fTuk,nc−1 + c, (7.15)

where

G = H̃
T

b QH̃b + KTRK (7.16)

fT = x̃Tk (P̃
T
QH̃b + LTMTRK) (7.17)

c =
1

2
x̃Tk (P̃

T
QP̃ + LTMTRLM)x̃k (7.18)

The optimal control is then computed by solving the following quadratic optimization
problem for each time simulation time step

minimize
1

2
uTk,nc−1Guk,nc−1 + fTuk,nc−1 + c (7.19)

over uk,nc−1 with subject to constraints (7.20)

This quadratic programming problem is solved at each time step k to compute the control
law uk,nc−1. The first step of this vector is applied to the controlled plant as the MPC
manipulated variable action. The rest is used for future prediction that is used to form the
cost function at the next time step k + 1.

36

7.1.3 Unconstrained MPC

When no constraints are present in a MPC controller, the controller reduces to a time-
invariant state feedback controller as shown in [4].
The QP optimality condition looks for the minimum of J , meaning it searches for gradJ = 0.
The gradient of the objective function is Gu + f. This can be simply solved as u = −G−1f.
Since u is a vector in Rnc×1, we need to select just the first input to be applied. This is done
by

uk = −NG−1f (7.21)

,where N =
[
1 0 . . . 0

]
∈ R1×nc

We can substitute G and f using the equations (7.16) and (7.17) to obtain uk in the
following form

uk = −N(H̃
T

b QH̃b + KTRK)−1(H̃
T

b QP̃ + KTRML)︸ ︷︷ ︸
Z

x̂k (7.22)

The matrix Z can be divided into three submatrices, corresponding to the original physical
states, the augmented reference value and the last controller output u−1.

uk = −
[
Z1 Z2 Z3

]  xkwk
u−1

 (7.23)

During this analysis we will assume that we are able to directly measure the states of the
controlled plant xk. This is equivalent to setting its output matrix C to an identity matrix.
In reality, we would use a state estimator, but that would complicate the analysis process,
as the estimator would introduce additional dynamic behaviour into the loop.
The transfer function FC is the controlled plant’s transfer function with the output matrix
set to an identity matrix. The schema implementing the equation (7.23) is

Figure 29

Using simple block algebra, we separate the part computing u−1 into a block in series
with the controlled plant FC(z)

37

Figure 30

The separated block is described by this difference equation

uk+1 = −Z3uk + u′k (7.24)

where uk is the output and u′k is the input. We transform this equation into a transfer
function of z using the Z-transform.

zU = −Z3U + U ′ (7.25)

Fu(z) =
U

U ′
=

z

z + Z3

(7.26)

Figure 31

We define F (z) = Fu(z) · FC(z) as the series connection of the two transfer functions.
The transfer function G from ug to xz can be then infered using the following equations
made using the schematic in 31. During this derivation we have to be mindful of the fact
that Z1 ∈ Rn×1 and the output of FC is a n×1 vector, where n is the system order. Meaning
we are working with vectors of transfer functions and have to rely on matrix properties when
doing algebra.

38

Xz(z) = F · (Ug(z)Z1Xz(z)) (7.27)

(I + F (z)Z1)Xz(z) = F (z)Ug(z) (7.28)

Xz(z) = (I + F (z)Z1)−1F (z)Ug(z) (7.29)

G(z) = (I + F (z)Z1)−1F (z) (7.30)

G(z) is a n × 1 vector of transfer functions. The scalar feedback loop transfer function (w
to y) Fz(z) is then derived as

Fz(z) = −CG(z)Z2 (7.31)

Another way to interpret this is that the u−1 introduces an additional state rk into the
closed loop, where

xk+1 = Axk +Brk (7.32)

rk+1 = −Z3rk − Z1xk − Z2wk (7.33)

Making the closed loop dynamics more complicated than is usually the case for a classical
LQR controller.

Yet another useful finding from this schema is the open loop transfer function from the
controlled plant input to the controller output

Fo(z) = −Fu(z)Z1FC(z) (7.34)

This transfer function is useful because it allows us to find the stability margins of the control
loop.

Unconstrained MPC can be used to gain an insight into the control loop stability, as
it allows us to see the closed loop poles and therefore to use classical frequency domain
methods. The stability of a constrained MPC control loop is however much more difficult to
theoretically prove. This is because the constraints cause the MPC controller to behave in a
nonlinear fashion. Therefore, the stability of a MPC control loop is most often investigated
using simulations.

39

7.2 State estimator for input disturbance rejection

The real world model is under influence of a number of unmodeled behaviours. The effects
of gravity change as the model moves farther from the angle around which the controller
was designed. The motor used to move the helicopter also has an influence on the dynamics
that are not modeled. Totally unknown phenomena can also influence it, such as wind.

All of these can be approximately modeled as an input disturbance acting on our physical
model. We make the assumption that these disturbances have dynamics close to constant
and can therefore be generally modelled using the following state space model.

Gz : ẋz(t) = 0; xz(t0) = 1 (7.35)

z(t) = xz(t) (7.36)

This model is a first order integrator system, whose pole lies in 0.
The output of this system z(t) is not directly measurable, but we can build an identical
estimator to estimate it.
The discrete linearized model used to build the MPC controller serves as a baseline for this
estimator. The state matrices (A,B,C,D) were augmented by an additional integrator state.
This is because we assume the input disturbance to be a piecewise function whose internal
model is an integrator. Therefore we include an additional integrator state into the estimator.
This state will estimate the current input disturbance present in the system allowing us to
use this estimation to compensate the presence of the disturbance.
Since we are designing the estimator directly in the Z-domain, the integrator is introduced
as a state with its pole in 1.

Aest =

[
A B 0
0 0 1

]
(7.37)

Best =

[
B
0

]
(7.38)

Cest =
[
C 0

]
(7.39)

When designing this estimator we need to chose its poles. We need to make sure the
estimator is stable, but beyond that we need to select a viable compromise between speed
of estimation and noise amplification. Placing all the estimator’s poles in 0 would result
in a deadbeat response, which has the fastest speed of estimation, but greatly amplifies
any noise present. This is not a viable solution. Instead, we chose to place the poles in[
0.4 0.4 0.4

]
making the estimation speed slower, but ensuring any noise does not get

unreasonably amplified. We used the Matlab command acker() to obtain the innovation
matrix Lc.
This innovation matrix was then used to obtain the estimator’s matrix of dynamics Fest =
Aest − LcCest.

This estimator is capable of estimating the input disturbance present in the system. We
can then use this information to subtract the compensate for the disturbance by subtracting it
from the MPC control output. This essentially eliminates the effects of the input disturbance,
assuming our estimation is correct. In the physical system, this subtracting would be done
by the computer running the MPC algorithm. Meaning we need to make sure we do not

40

overstep the bound the MPC control loop operates in. To do this, we add the estimated
disturbance to the MPC constraints lbu and ubu in each MPC time step.

7.3 MPC constraints for helicopter model

We will discuss the use of Model Predictive Control. We will use a linearized model of our
system in a equilibrium point as our internal model because of the ease of calculating the
predictions.

To solve the quadratic programming problem in our simulation we use the Matlab com-
mand quadprog() (Later also qpOASES). This allows us to easily set constraints of our
system. Most important of these is the limitation on the manipulated variable values. The
pitch actuator of our helicopter model operates on values between 0 (no torque) to 1 (max-
imum torque). Any control outside this range is nonsensical for our system. We therefore
define the following bounding vectors

ubu =

1
1
...


︸︷︷︸
∈Rnc×1

lbu =

0
0
...


︸︷︷︸
∈Rnc×1

(7.40)

The bounded quadratic programming problem then becomes

minimize
1

2
uTk,nc−1Guk,nc−1 + fTuk,nc−1 + c (7.41)

over uk,nc−1 (7.42)

where lbu ≤ uk,nc−1 ≤ ubu (7.43)

7.4 Showcase of MPC control

The MPC controller described above was tested on both the linearized model and the non-
linear model. The controller has to be able to control the nonlinear model, since that’s the
closest mathematical description we have of the real-world system.

These simulations were performed with the following parameters

np 50
nc 10
Q I
R 0.1I

Table 1

The ratio between Q and R determines the aggressiveness of the controller. Higher R
forces the controller to use gentler action, which we can use to avoid exciting the unmodeled
nonlinear behaviour of the real-world model at the cost of more overshoot and slower time
response.

41

Linear plant model
In this simulation we set the controlled system to be the linear version of the equation of
motion in equation (6.38), linearized around ϕ∗.

0 5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

0 5 10 15 20 25 30

-0.1

-0.05

0

0.05

0.1

0 5 10 15 20 25 30

-0.2

0

0.2

0.4

0.6

0.8

Figure 32: MPC control for system linearized around ϕ∗ = 90◦

The MPC controller uses an internal model of the system. This internal model is identical
to the system linearized around ϕ∗ = 90◦. We can use a different linear model for the internal
model, but this one is the closest to the state we will want to use the helicopter model in.
As we can see, the controller is able to follow the reference signal and is also able to reject
the input disturbance z.

Nonlinear plant model
For this simulation, the MPC controller is used to control the nonlinear model of our he-

licopter system. That means that the internal model in the controller is not an exact match
to the controlled plant. They should match when close to the angle ϕ∗ = 90◦ = 1.57rad. But
the farther from this point we move, the less the MPC controller understands the controlled
plant.
Since the MPC controller uses a linear version of the controlled plant that is linearized
around 90◦ we need to make some adjustments to use it to control the nonlinear model.

• The angle ϕNS measured as the nonlinear system output is the physical angle present.
However, since the MPC controller uses an internal model linearized around ϕ∗, we need
to subtract ϕ∗ from the measured nonlinear system output before we use it to estimate
the system states. ϕMPC = ϕNS − ϕ∗

• Similarly, the reference value w = 0 to the MPC controller corresponds to the nonlinear

42

system output 90◦. Meaning we need to add ϕ∗ to the reference value for it to correctly
line up with the nonlinear system output ϕNS.

• The linear model assumes a steady-state input u0 to hold the nonlinear system steady
in ϕ∗. When starting the simulation with the nonlinear system initial conditions ϕNS =
ϕ∗, ˙ϕNS = 0 the output would immediately start falling until the estimator managed
to estimate ẑ = −u0 (Negative, because u(k) = uMPC(k) − ẑ(k), see (7.2)), which
would hold the system in steady state. We can set the estimator’s initial conditions to[
0 0 −u0

]
to prevent this.

0 5 10 15 20 25 30

1.6

1.8

2

2.2

0 5 10 15 20 25 30

-0.4

-0.2

0

0.2

0 5 10 15 20 25 30

-0.2

0

0.2

0.4

0.6

0.8

(a) True values

0 5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

0 5 10 15 20 25 30

-0.1

-0.05

0

0.05

0.1

0.15

0 5 10 15 20 25 30

-0.2

0

0.2

0.4

0.6

0.8

(b) Values from the point of view of the MPC con-
troller

The MPC controller is able to reliably control the nonlinear system. The output reaches
the setpoint and the controller rejects disturbances soon after they appear. In the figure
33b, the estimated disturbance ẑ is rid of its u0 part. Even then the estimated disturbance
doesn’t match the disturbance we apply directly. This is because as the nonlinear model
gets farther from the internal model of the MPC controller is less and less accurate. This
inaccuracy is modeled as the additional input disturbance estimated and allows the loop to
reach steady state even when the internal MPC model does not match the controlled plant
exactly.

43

7.5 Comparison to classical cascade control

We will use a cascade control scheme as a baseline for evaluating the performance of our
MPC control law.

The plant F’s velocity (Our model plant augmented by adding a zero to its transfer
function) is controlled by a PI controller C2(s). This control loop’s is then integrated to
obtain the position which is controlled by another outer feedback loop using a P controller
C1(s).

We designed the inner PI controller using MATLAB Control System Designer as:

C2(s) =
0.387s+ 0.2528

s
(7.44)

and the outer P controller

C1(s) = 1.3355 (7.45)

This designed cascade loop was tested on 3 linearized positions of the nonlinear helicopter
model, namely (6.42), (6.41), (6.43). Figure 33 shows the time responses of this simulation.

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

1.2

Figure 33: Cascade control scheme used for control of the nonlinear plant linearized at various equilibrium
points

44

The control loop is reasonably robust, being able to bring the 50◦ and 130◦ systems to
reference.

Input disturbances are present in our real-world model. The disturbances enter our con-
trol loop as can be seen in figure 34

Figure 34: Input disturbances present in our cascade loop

The cascade loop has an intrinsic ability to reject these input disturbances, as can be seen
from figure 35

0 5 10 15 20 25 30 35 40 45 50

0

0.2

0.4

0.6

0 5 10 15 20 25 30 35 40 45 50

-0.1

-0.05

0

0.05

0.1

Figure 35: Disturbance rejection capability

To bring this control loop more in line with the physical reality, we need to discretize
the controllers. We will discretize them with the zero-order hold method, with sample time
Ts = 0.02s to match that of the MPC controller. The discretized controllers become

C2d(z) =
0.387(z − 0.9869)

z − 1
(7.46)

C1d(z) = 1.3355 (7.47)

45

Since we are taking a derivative of the position by the zero in origin introduced for velocity
control, it is useful to add a low-pass filter after the derivative to prevent any high-frequency
noise amplification. We found out earlier that all useful dynamics or our system are below
1Hz. We will therefore use a simple low-pass single order discrete filter with passband
frequency 1Hz in the form of

G(z) =
Ts
T
z−1

1 + Ts
T−1

z−1
(7.48)

where Ts = 0.02 is the sample time and T = 1
2π1

is the filter time constant that corresponds
to the 1Hz passband.

Figure 36: Cascade control loop with velocity filtration

In our real-world model, the only sensor available measures the angle and has a limited
quantization step of roughly 0.00628rad. To get an approximation of the velocity we will
need to take the numerical difference from the position data. The position data will be
weighted down by the quantization. For simplicity, we will use the first order backward
difference defined as

ẏnum(k) =
y(k)− y(k − 1)

Ts
(7.49)

This numerical differentiation process is an implementation of the zero added to the
transfer function.

Figure 37: Cascade control loop with quantization and numerical differentiation

Figure 38 shows how the capability to reject disturbances slightly worsens when the
schematic includes a quantizer. This is to be expected, as the schematic without the quantizer
is more idealized and less in line with our physical system.

46

0 5 10 15 20 25 30 35 40 45 50

0

0.2

0.4

0.6

0 5 10 15 20 25 30 35 40 45 50

-0.1

-0.05

0

0.05

0.1

Figure 38: Disturbance rejection capability with filtration and quantization

47

7.5.1 Simulation results

The performance of the cascade control loop was compared with the performance of the MPC
control loop. We simulated 5 different scenarios and measured the process variable and the
manipulated variable time response for both control schemes. The different scenarios are:

1. Different reference step amplitudes. Input disturbance present. Controlled plant was
designed for.

2. Different reference step amplitudes. Input disturbance present. Controlled plant is a
different linear system.

3. Different reference step amplitudes. Input disturbance present. Controlled plant is a
different linear system.

4. Different reference step amplitudes. Input disturbance present. Controlled plant is a
model of the nonlinear system.

For each time response we evaluated its ITAE value defined as

ITAE =

∫ tend

0

ty(t)dt (7.50)

and the system input energy defined as

Eu =

∫ tend

0

u(t)2dt (7.51)

The MPC controller used 0.02s sample time, np = 50, nc = 10. The PID controllers were
discretised to the same sample time.

The MPC control input is bounded using hard constraints. This is because of the physical
limitations of our real-world system. This means it struggles more as the reference values
increase in amplitude. For this comparison we did not consider the cascade input bounded
the same way, as that would introduce a nonlinear element into the cascade control loop.

48

Scenario 1 The control loops were simulated using different reference step amplitudes (0.5,
-0.5, 1, -1). Input disturbance in the form of

z(t) =


0 t ≤ 10

−0.1 10 ≤ t ≤ 15

0 15 ≤ t ≤ 20

0.1 20 ≤ t

(7.52)

Both control loops were designed around the nonlinear helicopter model linearized around
ϕ∗ = 90◦.

0 5 10 15 20 25 30

0

0.1

0.2

0.3

0.4

0.5

0.6

(a) y(t) for w0 = 0.5

0 5 10 15 20 25 30

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

(b) y(t) for w0 = −0.5

0 5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

1.2

(c) y(t) for w0 = 1

0 5 10 15 20 25 30

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

(d) y(t) for w0 = −1

0 5 10 15 20 25 30

-0.4

-0.2

0

0.2

0.4

0.6

0.8

(e) u(t) for w0 = 0.5

0 5 10 15 20 25 30

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

(f) u(t) for w0 = −0.5

0 5 10 15 20 25 30

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(g) u(t) for w0 = 1

0 5 10 15 20 25 30

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

(h) u(t) for w0 = −1

Figure 39: Time response comparison for exact system model

ITAE Eu
MPC Cascade MPC Cascade

w0 = 0.5 462 2452 41 37
w0 = −0.5 477 2445 30 37
w0 = 1 516 2738 54 103
w0 = −1 561 2724 36 103

Both control schemes have comparable amount of overshoot when rejecting disturbances,
however, the time is takes for the cascade control to reject this disturbance is significantly
longer.

49

Scenario 2 The control loops were simulated using different reference step amplitudes (0.5,
-0.5, 1, -1). Input disturbance in the form of

z(t) =


0 t ≤ 10

−0.1 10 ≤ t ≤ 15

0 15 ≤ t ≤ 20

0.1 20 ≤ t

(7.53)

Both the MPC loop and the cascade loop use their own methods of disturbance rejection.

Both control loops were designed around the nonlinear helicopter model linearized around
ϕ∗ = 90◦ (transfer function in (6.41)). For this scenario we set the controlled plant to the
same nonlinear helicopter mode, but linearized around ϕ∗ = 50◦ (transfer function in (6.42)).
This means that the controlled plant does not match the plant the controllers were designed
for, meaning this scenario is an useful indicator of the robustness of the controllers.

0 5 10 15 20 25 30

0

0.1

0.2

0.3

0.4

0.5

0.6

(a) y(t) for w0 = 0.5

0 5 10 15 20 25 30

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

(b) y(t) for w0 = −0.5

0 5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

1.2

(c) y(t) for w0 = 1

0 5 10 15 20 25 30

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

(d) y(t) for w0 = −1

0 5 10 15 20 25 30

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(e) u(t) for w0 = 0.5

0 5 10 15 20 25 30

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

(f) u(t) for w0 = −0.5

0 5 10 15 20 25 30

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(g) u(t) for w0 = 1

0 5 10 15 20 25 30

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

(h) u(t) for w0 = −1

Figure 40: Time response comparison for plant linearized around ϕ∗ = 50◦

ITAE Eu
MPC Cascade MPC Cascade

w0 = 0.5 469 25595 54 41
w0 = −0.5 487 24998 66 41
w0 = 1 529 30347 131 126
w0 = −1 3671 29179 147 124

The most important result of this scenario is that in the case of wm = −1, the MPC
controller was not able to reach the setpoint. This is caused by the MPC being constrained
and not being able to produce negative enough outputs.

50

Scenario 3 The control loops were simulated using different reference step amplitudes (0.5,
-0.5, 1, -1). Input disturbance in the form of

z(t) =


0 t ≤ 10

−0.1 10 ≤ t ≤ 15

0 15 ≤ t ≤ 20

0.1 20 ≤ t

(7.54)

Both control loops were designed around the nonlinear helicopter model linearized around
ϕ∗ = 90◦ (transfer function in (6.41)). For this scenario we set the controlled plant to
the same nonlinear helicopter mode, but linearized around ϕ∗ = 130◦ (transfer function in
(6.43)). This means that the controlled plant does not match the plant the controllers were
designed for, meaning this scenario is an useful indicator of the robustness of the controllers.

0 5 10 15 20 25 30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(a) y(t) for w0 = 0.5

0 5 10 15 20 25 30

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

(b) y(t) for w0 = −0.5

0 5 10 15 20 25 30

0

0.5

1

1.5

2

2.5

3

3.5

4
10

14

(c) y(t) for w0 = 1

0 5 10 15 20 25 30

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

(d) y(t) for w0 = −1

0 5 10 15 20 25 30

-0.4

-0.2

0

0.2

0.4

0.6

0.8

(e) u(t) for w0 = 0.5

0 5 10 15 20 25 30

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

(f) u(t) for w0 = −0.5

0 5 10 15 20 25 30

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(g) u(t) for w0 = 1

0 5 10 15 20 25 30

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

(h) u(t) for w0 = −1

Figure 41: Time response comparison for plant linearized around ϕ∗ = 130◦

The characteristic numbers for the time responses are

ITAE Eu
MPC Cascade MPC Cascade

w0 = 0.5 626 2459 83 37
w0 = −0.5 591 1470 48 37
w0 = 1 +inf 2669 282 94
w0 = −1 688 2690 127 94

The most important finding of this scenario is that the system goes unstable for w0 = 1 in
the case of the MPC controller, while the cascade loop remains stable. This is a potentially
dangerous situation. Otherwise, both control schemes retain much of their performance.

51

Scenario 4 This simulation was performed on the nonlinear system model. Input distur-
bance in the form of

z(t) =


0 t ≤ 10

−0.1 10 ≤ t ≤ 15

0 15 ≤ t ≤ 20

0.1 20 ≤ t

(7.55)

Both the MPC loop and the cascade loop used its own estimators for disturbance rejec-
tion. Both control loops were designed around the nonlinear helicopter model linearized
around ϕ∗ = 90◦. However, they were used to control the nonlinear helicopter model iden-
tified earlier. Also, the Simulink block Quantizer was used with 0.0063 quantization step,
corresponding to rougly 1

3
of a degree estimated on the physical optical sensor present on

the helicopter model. This quantization introduces a degree of measurement noise into our
system that will also be present in the real world model and allows us to gauge how the
control schemes will behave under such conditions. The simulations were performed with
the nonlinear system having the following initial conditions: ϕ0 = π

2
, ϕ̇0 = 0.

For these simulations we slowed the speed of the estimator to
[
0.7 0.7 0.7

]
.This is be-

cause the estimator also acts as a lowpass filter with slower estimation speeds resulting in
lower passband frequencies. This is an useful property as it allows us to filter some of the
measurement noise. Too slow of a estimation causes the estimator dynamics to negatively
affect the control loop, but on the other hand, fast estimation increases the measurement
noise present. The chosen estimator poles are a good compromise between these two facts.

0 5 10 15 20 25 30 35 40 45 50

1.4

1.6

1.8

2

2.2

2.4

2.6

(a) y(t) for w0 = 1.5ϕ0

0 5 10 15 20 25 30 35 40 45 50

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

(b) y(t) for w0 = 0.5ϕ0

0 5 10 15 20 25 30 35 40 45 50

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

(c) y(t) for w0 = ϕ0

0 5 10 15 20 25 30 35 40 45 50

1.5

2

2.5

3

3.5

4

(d) y(t) for w0 = 2ϕ0

0 5 10 15 20 25 30 35 40 45 50

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(e) u(t) for w0 = 1.5ϕ0

0 5 10 15 20 25 30 35 40 45 50

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

(f) u(t) for w0 = 0.5ϕ0

0 5 10 15 20 25 30 35 40 45 50

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

(g) u(t) for w0 = ϕ0

0 5 10 15 20 25 30 35 40 45 50

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

(h) u(t) for w0 = 2ϕ0

Figure 42: Time response comparison when controlling the nonlinear helicopter model

The characteristic numbers for the time responses are

52

ITAE Eu
MPC Cascade MPC Cascade

w0 = 0.5 816 4896 264 253
w0 = −0.5 803 5053 252 246
w0 = 1 196 3492 377 376
w0 = −1 2415 6902 204 201

The measurement noise can be seen on the MPC control output more easily than on
the cascade control output. This is because the cascade control quantizer is applied on the
velocity, rather than on the position like in the case of the MPC controller. Also, the cascade
loop also includes a lowpass filter after the quantized measurement. This means that the
effect of quantization is stronger for the MPC controller.
The u(t) control of MPC can be filtered more by slowing the speed of estimation. This op-
tion should be considered if the noise on u(t) induces an unmodeled high frequency response
from the real-world system.

In all of these scenarios, the MPC controller is able to reject disturbances with much
higher speed and with less overshoot while still only moving within the constraints put on
the MPC output.
The cascade control is significantly slower, taking more than 10 seconds to stabilise the
helicopter. The MPC controller is more aggressive, which allows it to reach its target much
faster, but this aggressiveness could excite some of the behaviour of the real world system
that we did not model, as it would be prohibitively difficult to do so. Thankfully, the MPC
controller allows us to easily curb its aggressiveness by assigning a higher weight to changes
in control in the cost function.

53

Comparison with extreme input disturbances present We performed a simulation where the
controlled plant is the nonlinear system model. The point of this simulation is to show how
the MPC controller is able to function in extreme circumstances better that the classical
cascade control.
The applied disturbance was in the form of

z(t) =


0 t ≤ 20

0.2 20 ≤ t ≤ 25

−0.3 25 ≤ t ≤ 30

−0.3 30 ≤ t

(7.56)

For this comparison we used a saturation block on the cascade controller output as that
is equivalent to the saturation that would be present in the real-world system.

0 5 10 15 20 25 30 35 40 45 50

1

2

3

4

5

6

7

8

(a) y(t)

0 5 10 15 20 25 30 35 40 45 50

-0.4

-0.2

0

0.2

0.4

0.6

0.8

(b) u(t)

The simulation shows how the cascade control was not able to reject the disturbance fast
enough, causing the pendulum to fall over and then swing back upwards. The successful
rejection at the end was more a matter of chance on the part of the cascade control rather
than of a controlled effort. The cascade control does not deal well with the constraints
present causing its behaviour around saturation to be very aggressive. This is mainly due
to the low amplification of the outer P control loop. Increasing the amplification causes the
loop to be have faster dynamics that are able to reject the input disturbances present in this
simulation. This however comes at a cost of a decreased gain margin.
On the other hand the MPC controller was able to reject the disturbance almost without it
being visible on the output. It is able to function within the set constraints very naturally,
which is one of its main strengths over classical control schemes.

54

7.6 qpOASES

qpOASES is an open source package written in C++ designed for solving quadratic program-
ming problems. qpOASES was designed specifically for solving QP problems that arrise from
MPC controllers. It uses the so called active-set method and offers faster computation speed
than the standard quadprog() solver. The package is described in [6] (package is availiable
at https://github.com/coin-or/qpOASES). qpOASES offers a Matlab interface using MEX
functions.

The package includes two main ways to solve QP problems. The standard qpOASES()
function and qpOASES sequence(). The qpOASES() functions in much the same way as
quadprog(), solving the QP problem from scratch at each sample time.

The qpOASES sequence() implements a so called hot-start variant designed to be utilised
mainly for MPC purposes. Since the positive-definite matrix G does not change over time,
the qpOASES sequence() performs one slower computation at the beginning and then uses
the previous results to compute the following solutions. This can potentially speed up the
computation time for very complex QP problems, but offers only marginal improvements for
simple ones.

The article [4] performs numerical comparisons of computation speed between various QP
solvers including quadprog() and qpOASES for MPC problems similar to those discussed
here. We perform comparisons of computation speed between these solvers on our particular
system.

We ensured used the qpOASES option ”MPC” to tell the qpOASES algorithm to use pa-
rameters tuned for general use in MPC applications. These options include the numerical
tolerances used to search for the QP optimum and influence the computational time needed.
The MPC option uses the fact that MPC QP problems are always strictly convex and dis-
ables some of the more costly algorithmic features to ensure the computation is carried out
as fast as possible.

7.6.1 Comparison between quadprog and qpOASES

We performed simulations to determine the computational time needed for each solver (quad-
prog, qpOASES, qpOASES sequence) to compute the MPC control action at each time step
over the simulation duration. This comparison is important because we aim to use the MPC
controller in online mode, meaning the controller needs to solve the QP problem at each
sample time faster than the next the sample comes. If it cannot compute fast enough the
controller becomes essentially unusable.

When tuning the MPC controller we have 4 main parameters that influence the compu-
tation time. The prediction horizon nc, the control horizon nc, the MPC sample time Ts and
the chosen QP solver. We can use the first three to directly improve the MPC performance
at the cost of longer computation time. If we were not able to run the MPC controller
online using our chosen horizons, we would be forced to choose a slower sample time. We
can circumvent this issue by using a better solver.

55

To perform the comparisons we took 4 measures to gauge the computational intensity. The
total time used for computing during the simulation in seconds (Total time). The longest
time needed to compute the solution over the samples (Max time). The mean time needed
to compute a solution (Mean time). The number of times the solver took longer to compute
the solution than is the chosen MPC sample time Ts. And the number of times the solver
took longer to compute the solution than a tenth of the sample time Ts.

The simulations for each horizon value were performed 10 times in succession and then the
computational times were averaged. This was done to prevent any sudden slowdown caused
by the operating system the simulations took place on. The simulations were performed on
a Windows 10 machine with Intel(R) Core(TM) i5-8300H CPU @ 2.30GHz.

56

Comparison for np = 50, nc = 10 Simulations were performed to estimate the computational
time for np = 50, nc = 10. These horizon values are conservative estimates. But were used
for the comparisons between MPC and PID, meaning they are very much usable.

0 1 2 3 4 5 6 7 8 9 10

0

0.005

0.01

0.015

0.02

0.025

(a) Simulation time

2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

0

1

2

3

4

10
-4

(b) Close up

Figure 43: Computation time per sample over simulation time for np = 50, nc = 10

Total time Max time Mean time Over Ts Over Ts

10
quadprog 2.1737 0.0237 0.0022 2 253
qpOASES 0.0955 0.0005 0.0001 0 0
qpOASES hotstart 0.0931 0.0006 0.0001 0 0

Table 2: np = 50, nc = 10

57

Comparison for np = 100, nc = 20 Simulations were performed to estimate the computational
time for np = 100, nc = 20.
All three algorithms are almost identical in its computational time when compared to the
previous scenario. This is likely because the bulk of their computational time is spent on
overhead for horizon values so small.

0 1 2 3 4 5 6 7 8 9 10

0

0.005

0.01

0.015

0.02

0.025

(a) Simulation time

2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

10
-4

(b) Close up

Figure 44: Computation time per sample over simulation time for np = 100, nc = 20

Total time Max time Mean time Over Ts Over Ts

10
quadprog 2.3881 0.0233 0.0024 2 0
qpOASES 0.1048 0.0005 0.0001 0 0
qpOASES hotstart 0.0929 0.0005 0.0001 0 4

Table 3: np = 100, nc = 20

58

Comparison for np = 200, nc = 40 Simulations were performed to estimate the computational
time for np = 200, nc = 40.
Here we can see that the quadprog algorithm takes longer than tenth of the sample time
for almost all samples. This is not an issue in and of itself, but is a clear indication that
if we increase the horizons further, quadprog will not be able to keep up. The qpOASES
algoritms keep way below the Ts

10
threshold.

0 1 2 3 4 5 6 7 8 9 10

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

(a) Simulation time

2 2.2 2.4 2.6 2.8 3

0

1

2

3

10
-4

(b) Close up

Figure 45: Computation time per sample over simulation time for np = 200, nc = 40

Total time Max time Mean time Over Ts Over Ts

10
quadprog 3.7868 0.0175 0.0038 0 946
qpOASES 0.1491 0.0005 0.0001 0 0
qpOASES hotstart 0.1069 0.0007 0.0001 0 0

Table 4: np = 200, nc = 40

59

Comparison for np = 400, nc = 80 Simulations were performed to estimate the computational
time for np = 400, nc = 80.
This simulations shows the trend of quadprog needing more and more time to complete, with
0.0183s being the max time needed to perform one computation. This is 10 times longer
than qpOASES. We can also see that while almost all time samples for quadprog took longer
than Ts

10
, they never took longer than TS. This means that while computationally intensive,

quadprog computation time is relatively stable.

0 1 2 3 4 5 6 7 8 9 10

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

(a) Simulation time

2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

0

1

2

3

4

5

6

10
-4

(b) Close up

Figure 46: Computation time per sample over simulation time for np = 400, nc = 80

Total time Max time Mean time Over Ts Over Ts

10
quadprog 5.1249 0.0183 0.0051 0 999
qpOASES 0.3835 0.0015 0.0004 0 0
qpOASES hotstart 0.1428 0.0013 0.0001 0 0

Table 5: np = 400, nc = 80

60

Comparison for np = 800, nc = 160 Simulations were performed to estimate the computational
time for np = 800, nc = 160.
For this simulation we opted out of including quadprog, as it was obvious that it would not
be able to keep up with the online computational requirement.
Here we can see that while before, qpOASES and its hot-start variant were comparable with
one another. The standard variant is getting slower faster. This is to be expected as the
optimalization offered by the hot-start variant is more effective for larger QP problems. Here,
the total time needed to compute the hot-start variant was 5 times less than the standard
qpOASES solver.

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

1.5

2

2.5

3

3.5

4
10

-3

(a) Simulation time

2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

0

0.5

1

1.5

10
-3

(b) Close up

Figure 47: Computation time per sample over simulation time for np = 800, nc = 160

Total time Max time Mean time Over Ts Over Ts

10
quadprog - - - - -
qpOASES 1.5211 0.0035 0.0015 0 80
qpOASES hotstart 0.2586 0.0035 0.0003 0 2

Table 6: np = 800, nc = 160

61

Comparison for np = 1600, nc = 320 Simulations were performed to estimate the computa-
tional time for np = 1600, nc = 320.
The trend here continues, as the hot-start variant is 10 times faster than the standard
qpOASES solver, which is starting to struggle with the computational demands.

0 1 2 3 4 5 6 7 8 9 10

0

0.005

0.01

0.015

0.02

0.025

(a) Simulation time

2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

1

2

3

4

5

6

7

8

9

10
-3

(b) Close up

Figure 48: Computation time per sample over simulation time for np = 1600, nc = 320

Total time Max time Mean time Over Ts Over Ts

10
quadprog - - - - -
qpOASES 8.0393 0.0203 0.008 2 999
qpOASES hotstart 0.8558 0.0221 0.0009 2 10

Table 7: np = 1600, nc = 320

7.6.2 Comparison conclusion

From these simulations we found out that the Matlab QP solver quadprog is significantly
slower than the open-source alternative qpOASES. When available, qpOASES should be
used instead of quadprog, since it offers the same structure, while being more efficient.
The hot-start variant of qpOASES was also measured. Its computational time was generally
shorter than qpOASES, especially for large scale QP problems.
Since we are getting satisfactory results from the MPC controller when using the least
performance heavy horizons, we need not worry about the solver used too much. But moving
further, we will only use the standard version of qpOASES as it allows us plenty of breathing
room while minimizing the additional overhead needed to use the hot-start variant.

62

8 Conclusion

A mathematical model of the Humusoft CE150 helicopter was developed using first princi-
ples. An experiment was performed on the model helicopter to gather data for measurement.
This data was then used to numerically compute its first and second derivatives which were
then filtered using a FIR zero-phase discrete filter. The model was then identified using the
least squares regression method.

An model-predictive controller was designed and implemented using Matlab and Simulink
to control this mathematical model. This thesis shows that MPC is a viable method of
controlling the Humusoft CE150 model helicopter. The MPC controller outperforms clas-
sical cascade control when following a piece-wise reference signal and when rejecting input
disturbances. It is able to apply the appropriate control law while satisfying the constraints
we set on the system thanks to the limited saturation ranges of the physical actuator.

A open source alternative qpOASES to the Matlab quadprog was found to be significantly
faster when computing the MPC control. This finding shows us that the MPC controller
will be able to be used to control the helicopter model in online mode, as we are able to
reach satisfactory control even when using computationally unintensive MPC parameters.
Moving further, the MPC could be upgraded to include constraints on the pitch angle of the
helicopter that correspond to the physical barriers on the real-world model.
The MPC controller was not tested on the real-world helicopter. All the results of this thesis
were done using only computer simulation. The next developmental step is to implement
the MPC control algorithm in REXYGEN and then attempt to apply it on the helicopter
model using a microcomputer.

63

References

[1] Paul Serban Agachi, Mircea Vasile Cristea, Alexandra Ana Csavdari, and Botond Szi-
lagyi. 2. Model predictive control. De Gruyter, 2016.

[2] Edin Dragolj, Jasmin Velagic, and Nedim Osmic. Modelling of nonlinear helicopter model
and loopshaping based controller synthesis. pages 3603–3608, 11 2013.

[3] Kristofer Jennings. Statistics 512: Applied linear models. Internet.[Google Scholar], 2012.

[4] Ondřej Mikuláš. Quadratic programming algorithms for fast model-based predictive
control. Copyright©[cit. 27.05. 2020]. Dostupné z: https://support. dce. felk. cvut.
cz/mediawiki/images/9/94/Bp , 2013.

[5] J.A. Rossiter. Model-Based Predictive Control: A Practical Approach. CRC Press, 2003.

[6] Hans Joachim Ferreau, Christian Kirches, Andreas Potschka, Hans Georg Bock, and
Moritz Diehl. qpoases: A parametric active-set algorithm for quadratic programming.
Mathematical Programming Computation, 6(4):327–363, 2014.

64

	Introduction
	Motivation
	Humusoft CE150
	Linearization of a nonlinear pendulum system
	Pendulum model

	Classical control
	PI control
	PD control
	PID control
	PI control of velocity
	Cascade control

	Linear control conclusion

	System identification
	Linear identification
	Nonlinear identification
	Zero-phase filter
	FIR ZP filter
	IIR ZP filter
	Fourier analysis

	Actuator model
	Static characteristic

	Measurement data identification
	Finding the offset angle _offset
	Statistical evaluation of identification accuracy
	Useful linearized positions

	MPC control
	MPC principle
	Prediction
	Optimal control
	Unconstrained MPC

	State estimator for input disturbance rejection
	MPC constraints for helicopter model
	Showcase of MPC control
	Comparison to classical cascade control
	Simulation results

	qpOASES
	Comparison between quadprog and qpOASES
	Comparison conclusion

	Conclusion

