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This article discusses the existing linear model predictive control concepts in a 
unified theoretical framework based on a stabilizing, infinite horizon, linear quad- 
ratic regulator. In order to represent unstable as well as stable multivariable systems, 
the standard state-space formulation is used for the plant model. The incorporation 
of a nominally stabilizing constrained regulator eliminates the current requirement 
of tuning for nominal stability. Output feedback is addressed in the well-established 
framework of the linear quadratic state-estimation problem. This framework allows 
the flexibility to handle nonsquare systems, noisy inputs and outputs, and nonzero 
input, output, andstate disturbances. This formulation subsumes the integral control 
schemes designed to remove steady-state offset currently in industrial use. The on- 
line implementation of the controller requires the solution of a standard quadratic 
program that is no more computationally intensive than existing algorithms. 

Introduction 
Linear model predictive control refers to a class of control 

algorithms that compute a manipulated variable profile by 
utilizing a linear process model to optimize a linear or quadratic 
open-loop performance objective subject to linear constraints 
over a future time horizon. The first move of this open loop 
optimal manipulated variable profile is then implemented. This 
procedure is repeated at each control interval with the process 
measurements used to update the optimization problem. 

This class of control algorithms, which is also referred to 
as receding horizon control or moving horizon control, has 
several advantages for application in chemical process control. 
The controller uses a linear transfer function, state space, or 
convolution plant model. These models can be obtained from 
process tests using time series analysis techniques that do not 
require a significant fundamental modeling effort. Multivar- 
iable processes can easily be handled by superposition of the 
linear models. Optimization of the open-loop performance 
objective is performed by either linear or quadratic program- 
ming algorithms. These algorithms are efficient and robust, 
which is essential for on-line applications. Constraints on the 
manipulated and controlled variables are incorporated into the 
performance objective optimization. This allows operation 
close to process constraints, which is necessary for economi- 
cally optimal control of chemical processes. 

A number of implementations of linear model predictive 
control have been developed by industry to address con- 
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strained, multivariable processes. The emphasis in the devel- 
opment of these controllers was a robust algorithm with 
acceptable performance that could be implemented on-line. 
Therefore, several aspects of these controllers were designed 
based on a heuristic approach with little theoretical justifi- 
cation. This produced controllers that performed very well for 
a specific class of plants, but were unable to adequately address 
others. These remarks are not intended to minimize the sig- 
nificance of the contribution made by industry. Were it not 
for the willingness of the process industries to develop and 
implement these approaches, there would be little need for a 
sound theoretical framework to further their development. 

The industrial implementations began with model algo- 
rithmic control (MAC) developed by Richalet et al. (1978) and 
dynamic matrix control (DMC) developed by Cutler and Ra- 
maker (1980). The implementation by Richalet et al. is also 
referred to as IDCOM. Linear dynamic matrix control 
(LDMC), which uses a linear objective function and incor- 
porates constraints explicitly, is outlined by Morshedi et al. 
(1985). Garcia and Morshedi (1986) discuss quadratic dynamic 
matrix control (QDMC), which is an extension of DMC in- 
corporating a quadratic performance function and explicit in- 
corporation of constraints. Grosdidier et al. (1988) present 
IDCOM-M, which is an extension of IDCOM using a quadratic 
programming algorithm to replace the iterative solution tech- 
nique of the original implementation. Marquis and Broustail 
(1988) discuss Shell multivariable optimizing control (SMOC), 
which is a state-space implementation. 
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In addition to the industrially developed controllers, there 
have been other implementations of linear model predictive 
control commonly cited in the literature. These include a con- 
strained, multivariable algorithm similar to quadratic dynamic 
matrix control discussed by Ricker (1985) and receding horizon 
tracking control (RHTC) presented by Kwon and Byun (1989). 
lmplernentations developed for use in adaptive control include 
extended horizon adaptive control (EHAC) presented by Ydstie 
(1984), extended prediction self-adaptive control (EPSAC) pre- 
sented by De Keyser and Van Cauwenberge (1985), and Gen- 
eralized Predictive Control (GPC) presented by Clarke et al. 
(1987a). 

A more complete discussion of model predictive control 
implementations is contained in the review articles by De Key- 
ser et al. (1988), Byun and Kwon (1988), and Garcia et al. 
(1989). These articles present comparisons of several of the 
implementations listed previously. The differences between 
these implementations are in the form of the linear model and 
performance objective, the choice of horizon, and the tuning 
parameters. However, these controllers all share the same gen- 
eral structure with many of the features that originated with 
the industrial controllers. 

lmpulse or step response models are used in several of these 
implementations including model algorithmic control and dy- 
namic matrix control. The advantage of these convolution 
models is the ability to represent any stable dynamic response. 
One of the disadvantages is that unstable plants cannot be 
represented. Morari and Lee (1991) and Eaton and Rawlings 
(1992) present a finite step response model that can represent 
an integrating process. Integrating processes can also be rep- 
resented by using an impulse or step response model for the 
derivative of the process dynamics. In order to use these im- 
plementations on an unstable plant, the plant must be modeled 
as an integrator with one of the approaches above. This im- 
poses a limitation on the performance that can be achieved by 
the controller due to the structural error in the model. 

A serious limitation to the model predictive controllers out- 
lined above is that they must be tuned for nominal stability. 
The stability results available for these controllers require re- 
strictions on either the tuning parameters or the plant models 
that can be considered. The following results are also limited 
to the unconstrained controller. Rouhani and Mehra (1982) 
discuss stability of model algorithmic control for stable sys- 
tems. Garcia and Morari (1982) discuss stability of dynamic 
matrix control in the framework of internal model control for 
stable systems. For the finite receding horizon linear quadratic 
regulator, Kwon and Byun (1989) and Bitmead et al. (1990) 
discuss sufficient conditions on the horizon length and terminal 
penalty weights to ensure stability. Clarke et al. (1987b), Clarke 
and Mohtadi (1989), and Clarke (1991) discuss stability of the 
Generalized Predictive Control algorithm by the choice of both 
tuning parameters and horizon length. Scattolini and Bittanti 
(1990) discuss stability of both generalized predictive control 
and extended horizon adaptive control by the choice of horizon 
length for stable systems. Byun and Kwon (1988) discuss suf- 
ficient conditions for stability of generalized predictive control 
and extended horizon adaptive control based on tuning pa- 
rameters. Maurath et al. (1988) present a necessary condition 
for the stability of a SISO model predictive controller for stable 
systems. 

For the constrained controller, there are fewer stability re- 
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sults. Gutman and Hagander (1985) present a stabilizing sat- 
urated linear state feedback controller. Zafiriou (1990) and 
Zafiriou and Marchal(l991) discuss the contraction properties 
of quadratic dynamic matrix control subject to output con- 
straints. Sznaier and Damborg (1990) present a modified re- 
ceding horizon formulation that is stable for certain classes of 
constraints. Rawlings and Muske (1992) present a constrained 
receding horizon regulator that is stabilizing for both stable 
and unstable plants for all choices of tuning parameters. 

This article presents a model predictive controller formu- 
lation that addresses the stability and plant modeling issues 
discussed above. In order to represent unstable as well as stable 
plants, the state-space formulation is used as the plant model. 
The incorporation of the stabilizing constrained regulator de- 
sign of Rawlings and Muske eliminates the requirement to tune 
for nominal stability. Output feedback is performed with the 
use of linear quadratic filtering theory. This allows flexibility 
in the design of the noise model for the system within a well- 
established framework that extends to the output feedback 
schemes of the industrial implementations. Target tracking and 
integral action in the controller are obtained by using results 
from standard linear quadratic regulatory theory. 

Receding Horizon Regulator Formulation 
The discrete dynamical system model used by the controller 

is the state-space formulation shown below in which y is the 
vector of outputs, u is the vector of inputs, and x is the vector 
of states. 

Discrete transfer function and convolution models are easily 
transformed into an equivalent discrete state-space model as 
discussed by Prett and Garcia (1988). Li et al. (1989) discuss 
a reduced order state-space form of the step response con- 
volution model. Dead time can be added to a state-space model 
with state augmentation as shown by Franklin and Powell 
(1980). 

The receding horizon regulator is based on the minimization 
of the following infinite horizon open-loop quadratic objective 
function at time k. 

m 

Q is a symmetric positive semidefinite penalty matrix on the 
outputs with yk+j computed from Eq. 1. R is a symmetric po- 
sitive definite penalty matrix on the inputs in which uk+/ is the 
input vector at time j in the open-loop objective function. S 
is a symmetric positive semidefinite penalty matrix on the rate 
of change of the inputs in which Auk+J = ukcJ - u ~ + ~ - ,  is the 
change in the input vector at time j .  The vector uN contains 
the N future open-loop control moves as shown below. 
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At time k +  N ,  the input vector Uk+,  is set to zero and kept at 
this value for all j 2 N in the open-loop objective function 
value calculation. 

The receding horizon regulator computes the vector uN that 
optimizes the open-loop objective function in Eq. 2.  The first 
input value in uN, uk, is then injected into the plant. This 
procedure is repeated at each successive control interval with 
feedback incorporated by using the plant measurements to 
update the state vector at time k.  

The infinite horizon open-loop objective function in Eq. 2 
can be expressed as the finite horizon open-loop objective 
shown below. 

The output penalty term in Eq. 2 has been replaced with the 
corresponding state penalty term in Eq. 4. Determination of 
the terminal state penalty matrix, a, depends on the stability 
of the plant model. 

Stable systems 

in Eq. 5 .  
For stable systems, Q in Eq. 4 is defined as the infinite sum 

m - Q=C A~'C'QCA' 
i = O  

This infinite sum can be determined from the solution of the 
following discrete Lyapunov equation. 

There are standard methods available for the solution of this 
equation. 

Straightforward algebraic manipulation of the quadratic ob- 
jective presented in Eq. 4 results in the following quadratic 
program for uN. 

The matrices H ,  G ,  and F a r e  computed as shown below with 
Q determined from Eq. 6. 

H =  [ 
- 

B T a B + R + 2 S  B'A'QB-S ... BTAT"QB 
B'QAB-S BTQB+R+2S . * *  BTAT" :- 

B ~ Q A  - I B 

B'QA 
G = [  B'QA~ : 

B~QA" 

264 

Unstable systems 
The discussion of unstable systems begins with partitioning 

the Jordan form of the A matrix into stable and unstable parts 
in which the unstable eigenvalues of A are contained in J,,. 

A =  V J V - ~ = [ V .  v,] [: ;][ ;] 
The stable and unstable modes, zs and z' respectively, then 
satisfy the following relationships. 

[ ;:] = [ 3 (9) 

For unstable plants, the finite horizon open-loop objective 
function in Eq. 4 is subject to the following equality constraint 
on the unstable modes at time k + N .  

This equality constraint is required if the unstable modes are 
not brought to zero at time k + N ,  they evolve uncontrolled 
after this time and do not converge to zero. Therefore, the 
optimal solution to Eq. 4 must be a vector uN that zeroes the 
unstable modes at time k + N .  

With the equality constraint ensuring that only the stable 
modes contribute to the value of @k after time k + N -  1, for 
unstable systems can be computed from the stable modes in a 
manner similar to Eq. 5 .  

i = O  

The infinite sum in Eq. 13 can be obtained from the solution 
of the following discrete Lyapunov equation. 

For unstable plants, uN is then determined as the solution 
to the quadratic program in Eq. 7 subject to the equality 
constraint in Eq. 11. This equality constraint can be represented 
as the following matrix equation in uN. 

The matrices H and G in Eq. 7 for unstable systems consist 
of the sum of the contribution from the finite horizon terms 
in Eq. 4 and the contribution from the terminal state penalty 
on the stable modes. The contribution from the finite horizon 
terms, H I  and GI, is computed as shown below. 
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BTKoAN-2B BTKoB+R+2S I 

Computation of the contribution from the terminal state pen- 
alty, H2 and G2, is shown below with determined from Eq. 
12. 

B'L,%-2AB BTLN-2B . B ~ A ~ " - ~ L ~ B  1 
H: = I :  

The matrix F in  Eq. 7 for unstable systems is the same as that 
presented for stable systems. 

Implementat ion of the receding horizon regulator based on 
the quadratic program in Eqs. 7 and 15 requires feasibility of 
the equality constraint for an optimal solution to exist. There- 
fore, the regulator must be restricted to stabilizable systems 
with N z r ,  in which r is the number of unstable modes in the 
system. This ensures that the equality constraint is feasible for 
every x,. 

If the system is not stabilizable, then there exist uncontroll- 
able unstable modes that cannot be brought to zero. If the 
number of control moves is less than the number of unstable 
modes, then the unstable modes cannot all be brought to zero 
from an arbitrary initial condition. Both of these cases will 
result in infeasibility of the equality constraint in Eq. 15, which 
allows the regulator to detect that the system cannot be sta- 
bilized. 

Nominal stability of the infinite horizon regulator 
Muske and Rawlings (1992) show that this regulator for- 

mulation guarantees nominal stability for all choices of tuning 
parameters satisfying the conditions outlined in the previous 
sections. Nominal stability comes from the evaluation of the 
state penalty on an infinite horizon even though there are a 
finite number of decision variables. Previous model predictive 
controller formulations are finite horizon. The absence of 
nominal stability in these implementations is a direct conse- 
quence of the finite horizon formulation of the control al- 
gorithm. Bitmead et al. (1990) demonstrate that nominal 
stability cannot be guaranteed for a finite receding horizon 
regulator. 

Kwon and Pearson (1978) propose a nominally stabilizing 
receding horizon regulator based on a finite horizon objective 
subject to a terminal state constraint. The terminal constraint 
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forces all of the modes of the system to be zero at the end of 
the horizon instead of only the unstable modes. This constraint 
leads to aggressive control action with small values of N for 
both stable and unstable systems since the regulator approaches 
a deadbeat controller. Feasibility of this terminal constraint 
also requires that the system be completely controllable. The 
example below demonstrates the limitations imposed by this 
stronger controllability condition. 

Consider the isothermal CSTR example pre- 
sented by Ray (1981) with the following irreversible first-order 
reactions. 

Example I .  

ki kz 
A - B - C  

It is required to control the concentration of B in the reactor, 
CB, by adjusting the inlet concentration of B, C'f. The discrete 
time modeling equations are presented below in which 6 is the 
residence time of the reactor and A is the sample time. I t  is 
assumed that k,  #k2 .  

The controllability matrix of this equation is given below. 

Since the controllability matrix is singular, the system is not 
completely controllable and the approach of Kwon and Pear- 
son cannot be used. However, the uncontrollable mode is sta- 
ble. The system is therefore stabilizable and the regulator 
presented in this article can be implemented on this example. 

Constraints 
Input and output constraints of the following form are con- 

sidered. 

U , , , ~ ~ S U X + ~ < U , , , ~ ~ ,  j = O ,  1, ..., N -  1 (16) 

Yrnin(Yk+j<Yrnax, j = j i 9  j i  + 1, ..., j 2  (17) 

A U , , , ~ ~ ~ A U ~ + ~ ~ A U ~ ~ ~ ,  j=O, 1, ..., N (18) 

The output constraints are applied from time k + j , ,  j l z  1, 
through time k + j 2 ,  j 2 z j l .  The value of j 2  is chosen such that 
feasibility of the output constraints up to time k+j2 implies 
feasibility of these constraints on the infinite horizon. The 
value of j ,  is chosen such that the output constraints are feasible 
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at time k.  The constrained regulator will remove the output 
constraints at the beginning of the horizon up to  time k + j ,  
in order to  obtain feasible constraints and a solution to the 
quadratic program. Rawlings and Muske (1992) show the ex- 
istence of finite values for both j ,  and j2. 

Equations 16, 17, and 18 can be expressed as the following 
constraint on uN. 

The matrices D and W are computed as shown below with 
A’-’ defined to  be 0 for all j< i .  

The values of the right-hand side vectors in Eq. 19 are the 
following. 

1 ,  = 

Urnax 

In order to  ensure that a consistent constraint set is specified, 
the following restrictions are imposed on the constraints. These 
restrictions guarantee feasibility of the origin. 

Nominal stability of the constrained regulator 
Muske and Rawlings (1992) prove that the feasibility of the 

quadratic program in Eqs. 7 and 19 for stable systems or Eqs. 
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7 ,  15 and 19 for unstable systems guarantees nominal stability 
of the constrained receding horizon regulator. For stable sys- 
tems, the input constraints are feasible independent of x, and 
the output constraints can be made feasible by the choice of 
j , .  Since feasibility implies stability of the regulator, this for- 
mulation relaxes the output constraints at the beginning of the 
horizon to  retain feasibility and, therefore, stability of the 
constrained regulator. The importance of specifying the output 
constraints on the infinite horizon is demonstrated in the fol- 
lowing example. 

Example 2. Consider the SISO plant with the following 
discrete transfer function that has an unstable zero at z= 3/2. 

-2z+3 
G ( z )  = 32? - 42+ 2 

A minimal state-space realization of the discrete transfer func- 
tion is shown below. 

4/3 - 2 / 3  
A = [  1, B = [ A ] ,  C = [ - 2 / 3  I] 

In this example, the input is unconstrained with the following 
regulator tuning parameters. 

Q = I ,  R = l ,  S = O ,  N=5 

The output target is zero with a maximum output constraint 
of 0.5. At time k=O, a state disturbance of [ 3 ,  31‘enters the 
system. This results in a disturbance of unity magnitude in the 
output. The figures below demonstrate the unconstrained and 
constrained responses for both the finite horizon and infinite 
horizon regulators. 

With the finite horizon regulator, the output constraint is 
enforced N sample periods into the future at each execution. 
Forcing the output to meet this constraint causes the controller 
to  invert the unstable zero of the plant. The input then increases 
without bound as the output remains at  the maximum con- 
straint value as shown in Figures 1 and 2. There are no choices 
of the regulator tuning parameters, N, Q, R ,  and S,  that can 
eliminate the instability in this example. Note that the uncon- 
strained regulator is stable. Further examples of instability due 
to  output constraints with the QDMC algorithm are presented 
by Zafiriou (1990) and Zafiriou and Marchal (1991). 

Enforcing the constraint on the infinite horizon results in 
the stable response shown in Figures 3 and 4. The constraint 
is infeasible at time k = 0 for j ,  = 1 due to the limitation on the 
speed of response imposed by the nonminimum phase plant. 
To achieve feasibility a t  time k=O, j ,  must be increased to 2. 
The constraint is then violated at time k =  1. After this time, 
the constraint is feasible for j ,  = 1 and it is enforced for all 
k r 2 .  

As shown in Figure 3, the magnitude of the constraint vi- 
olation at time k =  1 is greater for the constrained regulator 
than for the unconstrained regulator. Although the constraint 
is violated for only one sample period, the magnitude of the 
violation may not be acceptable. A method for influencing the 
magnitude of the constraint violation is to  minimize a weighted 
norm of the violation as discussed by Ricker et al. (1988). 
However, this procedure is not stabilizing. In this formulation, 
the magnitude of the constraint violations are influenced by 
the value of j , .  As shown in Figure 5 ,  the magnitude of the 
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Figure 1. Output response for the finite horizon controller. 

0 1 2 3 4 5 6 7 8 9 10 
Time 

Figure 2. Input response for the finite horizon controller. 
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Figure 3. Output response for the infinite horizon controller. 
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Figure 4. Input response for the infinite horizon controller. 
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Figure 5. Output response for the infinite horizon regulator varying i,. 

constraint violation can be decreased by increasing the value 
of j ,  from 2 to 3 at time k=O. This results in the constraint 
being violated for two sample periods instead of only a single 
sample period, but the magnitude of the violations are reduced. 
This procedure guarantees stability of the constrained regulator 
for all choices o f j ,  that result in a feasible quadratic program. 

Constrained stabilizability 
For unstable systems, the constraints in Eqs. 15 and 19 may 

not be feasible. If  the input constraints in Eqs. 16 and 18 are 
too restrictive for a given initial condition and value of N, it 
will not be possible to zero the unstable modes of a stabilizable 
system at time k + N. Since the input constraints represent 
physical limits on the plant and cannot be changed arbitrarily, 
feasibility can only be achieved by increasing N. However, a 
bounded value of N that makes the constraints feasible does 
not always exist. If the unstable modes grow faster than the 
constrained input can reduce them at each time k, then there 
is no bounded value of N that can stabilize the system. In this 
case, the system is not constrained stabilizable. 

A system is constrained stabilizable if the unstable modes 
can be brought asymptotically to the origin by an admissible 
input sequence. When a stabilizable system is not constrained 
stabilizable, there are unstable modes that cannot be controlled 
by any regulator. This has the same implications as an unsta- 
bilizable system. Infeasibility of the equality constraint in Eq. 
15 allows the constrained regulator presented in this article to 
detect that a system is not constrained stabilizable. 

Constrained stabilizability is a function of the plant, input 
constraints, and initial state. Since it depends only on these 
factors, there are options available to stabilize the system. 
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These include increasing the manipulated variable action, de- 
creasing the operating range, and decreasing the magnitude of 
disturbances entering the system. If none of these are possible, 
the plant must be redesigned to be stabilizable. 

Consider the nonisothermal, nonadiabatic 
CSTR example with an irreversible first-order reaction pre- 
sented by Uppal et al. (1974). The dimensionless modeling 
differential equations are shown below where xI is the con- 
version, x2 is the reactor temperature, 0 is the heat-transfer 
coefficient, xzc is the heat-transfer medium temperature, B is 
the heat of reaction, and Da is the Damkohler number. 

Example 3. 

_- dx2 - - x2 + Da( 1 - xI)Bexz - P (x2 - xk) 
dt 

The parameter values used in this example are taken from 
Patwardhan et al. (1990) and result in an open-loop unstable 
steady state. A SISO discrete linear system is obtained from 
the CSTR model above by linearization of the modeling equa- 
tions about the unstable steady state with 0. l as the sampling 
interval, as the manipulated variable, and xz as the controlled 
variable. The linearized model is used as the plant in the fol- 
lowing discussion. This plant has an unstable pole at z = 1.166. 
A minimal state-space realization is shown below. 

A =  [ 1.0759 0.13821, B =  [ 0.10361 C = [ - 3  -61 
0.1036 1.0068 0.0051 ’ 
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Figure 6. Temperature responses for the unstable CSTR. 

At time k=O, a state disturbance of 11, - 11‘ enters the 
plant. The regulator is to  maintain the output target at zero 
with no output constraints, a minimum input constraint, and 
the following regulator tuning parameters. 

Q=1 ,  R = l ,  S=O, N = 5  

Figures 6 and 7 show the closed-loop response of the system 
for three values of the minimum input constraint. When this 
constraint is - 0.5, the regulator is able to  reject the disturbance 
with the tuning shown above. In this case, the input does not 
reach the input constraint since it is never the first value cal- 
culated in uN. This illustrates the sometimes nonintuitive be- 
havior of model predictive control caused by the moving 
horizon. When the minimum input constraint is increased to 
-0.25, the constraints in Eqs. 15 and 16 are infeasible for 
N =  5. Increasing N from 5 to 11 makes these constraints fea- 
sible and the regulator is able to reject the disturbance. When 
the minimum input constraint is further increased to -0.2, 
the system is no longer constrained stabilizable. In this case, 
the input constraint is too restrictive to  control the unstable 
mode of the system excited by the state disturbance. The dashed 
line in Figure 6 shows the unstable response of the system from 
attempting to  control the unstable mode by saturating the input 
at the minimum constraint value. 

Target Tracking 
The presentation of the regulator in the previous sections 

was for a zero target. If the controller is to  track step changes 
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in a nonzero output target vector, y,, then state and input 
vectors, x, and us, are required which bring the system to y ,  
at steady state. These vectors can be determined from the 
output target vector by the following quadratic program. 

subject to: 

In this quadratic program, U is the desired value of the input 
vector at steady state and R, is a positive definite weighting 
matrix for the deviation of the input vector from U. The equal- 
ity constraints in Eq. 21 guarantee a steady-state solution and 
offset free tracking of the target vector. 

If there are not enough degrees of freedom to track the 
output target vector without offset, then the quadratic program 
in Eqs. 20 and 21 will be infeasible. In this case, x, and u, can 
be determined from the quadratic program below in which Q, 
is a positive definite weighting matrix for the output tracking 
error. 

subject to: 
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Figure 7. Input responses for the unstable CSTR. 
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Figure 7. Input responses for the unstable CSTR. 

This quadratic program will track the output target in a least- 
squares sense. A steady-state solution is guaranteed by the 
equality constraints in Eq. 23. The actual value of the output 
that will be achieved at steady state is y ,  = Cx,. 

The approach outlined above yields similar results to the 
procedure used in the IDCOM-M controller as described by 
Grossdidier et al. (1988). Both implementations perform least- 
squares control for nonsquare or constrained systems. In this 
implementation, is is equivalent to the IDCOM-M ideal resting 
value for inputs. It is used to move the input toward a desired 
steady-state value when there are degrees of freedom present 
in the system. 

Example 4. Consider the discrete transfer function matrix 
given below. 

2.52- 1.5 
1.52 

2.52- 1.5 

A minimal state-space realization of this transfer function ma- 
trix is the following. 

0.5 0 0 0 0.5 0 
A = [  0 0.6 0 0 1, B = [  0.25 0'4], 0 C=[,,, 1 1 0 0  ,] 

0 0 0.5 0 
0 0 0 0.6 0 0.6 

The output target is y ,  = 11, - l]*. When both u, and u2 are 
available, the quadratic program in Eqs. 20 and 21 is feasible. 
However, there are no degrees of freedom and the unique 
values of x, and us are shown below. 

1 - 2.251 

When only the first input, u, ,  is available, the quadratic pro- 
gram in Eqs. 20 and 21 is infeasible. The target tracking error 
is then minimized using the quadratic program in Eqs. 22 and 
23. With Q,=I ,  the following values of x,, us, and ys are 
obtained. 

ro.41 

L O 1  
When both inputs are available, but only the first output is to 
be controlled to y:= 1, the quadratic program in Eqs. 20 and 
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21 results in the following values of x, and us for R,= I and 
u = o .  - 

x,= I 1, [0*5], 0.5 A= [ 0.25 

Lo.751 

Target tracking regulator objective function 

ratic objective function is used for the regulator. 
When tracking a nonzero target vector, the following quad- 

The terminal state penalty matrix, G, is determined from Eq. 
6 for stable systems or Eq. 12 for unstable systems. The steady- 
state vectors x, and us are computed from the quadratic pro- 
gram in Eq. 20 or Eq. 22. This results in the discrete nonzero 
setpoint optimal regulator discussed by Kwakernaak and Sivan 
(1972). 

The input and state penalties in this objective function pen- 
alize deviations from the steady-state target values. Therefore, 

1 

0.8 

0.6 

0.4 

0.2 

0 

-0.2 

-0 .4  

-0 .6  

-0 .8 

-1 

the u -  us input penalty term is required along with the x - x ,  
state penalty term to prevent offset in the regulator. This is 
equivalent to shifting the origin of the system to the steady 
state described by x, and us and using the regulator presented 
earlier. The input vector & + j  is then set to us for all j r N  in 
the open-loop objective function calculation. Stability of the 
target tracking regulator then follows from the same arguments 
as the zero target regulator. 

Tuning of the target tracking regulator represents a tradeoff 
between deviation of the state and of the input from their 
steady-state values. In the limit as Q-0 and S - 0 ,  the regulator 
approaches a steady-state controller since only the input de- 
viation is penalized. In the limit as R - 0  and S - 0 ,  the regulator 
approaches a deadbeat controller since only the state deviation 
is penalized. The Au penalty matrix, S, is used to penalize rapid 
movement of the input. This prevents the regulator from taking 
overly aggressive control action whenever the output target is 
changed as demonstrated in the following example. 

Consider the system from Example 4 with the 
following output target vector and tuning parameters. 

Example 5. 

y , = [  -:I, Q = I ,  R = I ,  N = 2  

Figures 8 and 9 show the closed-loop response of the outputs 
and inputs for an output target change from zero toy,. When 
S = 0 the input moves to nearly the steady-state value at time 
zero. If  this input action is unacceptably fast, the input velocity 
penalty can be increased to slow down the input response. This 
is shown in Figures 8 and 9 for S =  51. 

Output #1 Target 
Output #2 Target - - - - -  
output #1, s = 0 - 
output #2,  s = 0 Jt 

Output #1, S = 51 * 
Output #2, S = 51 + 

---% " A 

......................................................................... _.......__.._... " e 

I I I I I I I I I I I 

0 1 2 3 4 5 6 7 8 9 10 
Time 

Figure 8. Output response for target change. 
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- 

- 
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T i m e  

Figure 9. Input response for target change. 

Reference trajectory tracking regulator 
The target tracking regulator presented in the previous sec- 

tion is designed to track step changes in the output target 
vector. In order to track a reference trajectory from the current 
state to the output target vector, the following quadratic ob- 
jective function is used for the regulator. 

0 A' 

The initial condition for the augmented state vector is shown 
below in which the matrix J' is specified when the order of 
the reference trajectory model differs from the plant model. 

In this objective function, the state penalty penalizes deviations 
from the specified reference trajectory over the infinite hori- 
zon. The reference states, xL+,, are computed from the dynamic 
system below in which A'and C' describe the desired trajectory 
of the output from the initial state at time k to the origin. As 
in the previous section, the origin of the system is shifted to 
the steady state described by x, and us. 

As discussed by Kwakernaak and Sivan (1972) and Bitmead 
et al. (1990), the reference trajectory dynamics can be combined 
with the plant dynamics to form an augmented system model. 
The reference trajectory tracking regulator can then be im- 
plemented as the zero target regulator presented previously for 
the following augmented system. 

The target tracking regulator can be recovered from this for- 
mulation by setting both A' and C' to zero. 

Stabilizability of the augmented system requires that A' be 
a stable matrix. This restriction prevents the regulator from 
tracking reference trajectories, such as ramps, that are not 
norm bounded. However, an unbounded reference trajectory 
specified on an infinite horizon cannot actually be imple- 
mented. A ramp is used in a finite horizon regulator to move 
the process from one operating point to another. Once the 
process has reached the new operating point, the ramp is re- 
placed with some bounded reference. In this implementation, 
the reference trajectory that the process is to follow to the new 
operating point is specified on the infinite horizon by A' and 
c'. 

In this example, the system from Example 4 
is reconsidered with the following output target vector and 
tuning parameters. 

Example 6. 
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Figure 11. input response for the trajectory tracking regulator. 
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.v,= [-:I, Q=Z, S=O, N=2 

Both outputs are to track the first-order trajectory described 
by the following system. 

.75 .75]& 0 

The reference trajectory part of the augmented 
tracking dynamic system model is shown below. 

trajectory 

.75 0 
C = I ,  s=c 

. 4 r =  [ 0 . 7 5 ] ~  

Figures 10 and I 1  show the closed-loop response of the outputs 
and inputs for an output target change from zero to y ,  with 
R = 0 and R = 0.21. When R = 0, both outputs follow the ref- 
erence trajectory exactly due to the deadbeat regulatory tuning. 
Since the dynamics of the trajectory are slower than the plant, 
the input response is less aggressive. When R = 0.21, the input 
response is more aggressive because of the input penalty. Con- 
sequentially, the output response is faster than the reference 
trajectory. 

Output Feedback 
The previous discussion assumed that the states are measured 

at each time k. In most applications, however, the states are 
not directly measured. If the state-space model came from a 
discrete transfer function, then the states will usually have no 
physical meaning and not be measurable. Even if the states 
are physically meaningful, sensors may not be available to 
measure each state. In these cases, output feedback must be 
performed using an observer that reconstructs the states from 
the output measurements. 

The industrial implementations of model predictive control 
outlined in the first section are all based on one simple output 
feedback method. In these controllers, the difference between 
the model prediction and the measured output at the current 
time is assumed to be caused by a step output disturbance that 
remains constant in the future. This disturbance model has the 
advantage of being very easy to implement with convolution 
models and also yields integral action in the controller. The 
disadvantage is that it is unrealistic for most processes and, 
therefore, cannot adequately address many practical appli- 
cations without external signal processing or controller detun- 
ing. Li et al. (1989), Ricker (1990), and Morari and Lee (1991) 
discuss more general disturbance modeling while retaining the 
convolution model for these implementations. 

Since the controller presented in this article is in the state- 
space linear quadratic framework, it can take direct advantage 
of the results from Linear quadratic filtering theory. This allows 
for the specification of a number of output feedback schemes 
for a given process. Included in these schemes is the output 
feedback method of the industrial controllers, which retains 
its simplicity and ease of implementation. 
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Optimal linear observer 
The standard linear observer is constructed for the system 

below in which wk and vk are zero-mean, uncorrelated, nor- 
mally distributed, stochastic variables appended to the plant 
model in Eq. 1. 

The optimal h e a r  observer for this system in which f k +  Ik is 
the estimate of the state vector at time k+l given output 
measurements up to time k is (Astrom, 1970): 

The discrete Kalman filter gain, L, minimizes the mean-square 
error of the state estimate & + I l k .  It is computed from the 
solution of the following discrete filtering steady-state Riccati 
equation with Qw and R,  the covariance matrices of wp and Uk 

respectively. 

P = A [ P - P C ' ( C P C ~ + R , ) - ' C P ] A T +  G,QwGE (29) 

L = A P C ~ (  CPC~+ R,)  - I  (30) 

This observer optimally reconstructs the states from the output 
measurements given the noise assumptions above. The steady- 
state Riccati formulation guarantees nominal stability of the 
filter in Eq. 28 provided R,>O, [C, A] detectable, and 
[ A ,  GWQY2] stabilizable. 

Since the states are stochastic variables that are not directly 
measured, the objective function for the regulator becomes 
the minimization of the expected value of +k.  The expected 
value can be computed by replacing Xk+j by f k + , l k  in the * k  

calculation in which , fk+,lk is the expected value of xk+, given 
output measurements up to time k. It is computed by the 
following recursion starting with Eq. 28. 

Step disturbance observer 
If a step disturbance enters the system, the combined ob- 

server/regulator discussed in the previous section will exhibit 
offset from the output target. In order to eliminate this offset, 
the observer must be redesigned to incorporate the step dis- 
turbance. Even when step disturbances are not expected to be 
present in the process, this modification can be made to obtain 
integral action in the controller. The presence of integral action 
leads to zero steady-state tracking error which can compensate 
for mismatch between the plant and the model. 

Output Step Disturbance. The most common method to 
obtain integral action in the controller is to include a step 
disturbance in the output as discussed previously. This ap- 
proach can be represented within the state-space framework 
by augmenting the system with a vector of additional states, 
p ,  that represent the output step disturbance. 
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The state estimates are then updated as shown below in which 
f i  is the estimate of the output step disturbance. 

(34) 

The Kalman filter gain for the augmented system in Eq. 32 
using this approach is L = [O,r]'. This output step disturbance 
filter results in a deadbeat observer for the output disturbance 
vector, 6, and an open-loop observer for the model states. 
This formulation is equivalent to the observer in SMOC pre- 
sented by Marquis and Broustail (1988). 

Although this is the standard method for feedback in model 
predictive control formulations, it is optimal only for output 
step disturbances. Example 8 demonstrates the performance 
of this method in the presence of measurement noise. This 
filter cannot be used with unstable plants since the observer 
poles contain the plant poles. 

Another method to obtain integral 
action is to include a step input disturbance. In this imple- 
mentation, it is assumed that the difference between the pre- 
dicted output and the measurement is caused by an input step 
disturbance. This is analogous to the assumption made above 
for the step disturbance in the output. The input step disturb- 
ance can be viewed as a particular step disturbance to the states. 
The corresponding filter can be used for unstable plants. 

This approach can be represented by augmenting the system 
with a vector of additional states, z, to represent the input step 
disturbance. 

Input Step Disturbance. 

(35) 

The state estimates are then updated as shown below in which 
2 is the estimate of the input step disturbance and [L,, L]' is 
the partitioned Kalman filter gain. Equation 30 is used to 
calculate this filter gain with the augmented system in Eq. 35 
assuming a nonzero covariance matrix for the z states only. 

The input step disturbance filter results in a deadbeat observer 
for both the input disturbance vector, 2, and the model state 
vector. This is a special case of the observer presented by 
Kwakernaak and Sivan (1972) for the zero steady-state error 
discrete linear quadratic regulator. 

Step disturbance regulator 
Augmenting the system with a step disturbance vector as 

discussed in the previous section includes states that are not 
asymptotically stable. Since these additional states are also 
uncontrollable, the augmented system is not stabilizable. 
Therefore, the regulator presented in this article cannot be 
implemented on the augmented system. However, these states 
are observable and the corresponding observer can be made 
stabilizing. The estimate of these states can be used to remove 
the disturbance from the nominal system with the constant 
disturbance regulator formulation discussed by Kwakernaak 
and Sivan (1972). The resulting control law is identical to that 
obtained with the nonzero target tracking regulator presented 
earlier. 

The input and state target vectors, us and x,, that remove 
the step disturbance at steady state can be determined from 
the quadratic program below in which yr is the output target, 
f i  is the estimate of the output step disturbance, and i is the 
estimate of the input step disturbance. 

subject to: 

[ iB] [ ;I = [ y:d] 
(39) 

Depending on which step disturbance model is chosen, one of 
the step disturbance vectors will not be present in the system 
and is set to zero. If  both step disturbance vectors are set to 
zero, then this quadratic program reduces to the quadratic 
program of Eqs. 20 and 21. 

If the quadratic program in Eqs. 38 and 39 is infeasible, 
then the output target vector cannot be tracked without offset. 
The output tracking error is then minimized with the following 
quadratic program. 

subject to: 

This quadratic program is analogous to Eqs. 22 and 23. 

function and state-space models shown below. 
Example 7. Consider two plants with the discrete transfer 

Table 1. Observer Filter Gain Matrices 

Observer Plant A Plant B 

Zero-Mean State Noise L = (0.51 L = [0.9] 

Output Step Disturbance 

Input Step Disturbance 
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Z Plant A: G ( z )  =-- A =0.5, B=0.5,  C= 1 
22- I ’  

Z 
Plant B: G ( z )  =-* A =0.9, B=0.1,  C= 1 

102-9’ 

Both plants are unity gain and first-order with the dynamic 
response of Plant A faster than Plant B. The following reg- 
ulator tuning, which results in deadbeat control action, is used 
for each plant. 

Q = 1 ,  R=O, S=O, N = 2  

A zero-mean state noise, output step disturbance, and input 
step disturbance filter is designed for each plant. The zero- 
mean state noise filter is computed from Eq. 30 assuming no 
measurement noise. The output step disturbance filter is pre- 
sented in Eqs. 33 and 34. The input step disturbance filter is 
presented in Eqs. 36 and 37. The filter gain matrices for each 
augmented plant are shown in Table 1. 

A unity magnitude state disturbance, output step disturb- 
ance, and input step disturbance enters each plant at time k = 0. 
The output response from each of these feedback schemes is 
shown in Figures 12 through 17. As expected, each observer/ 
regulator perfectly rejects the disturbance that the observer 
was designed for. The performance of each observer/regulator 
for the other two disturbances is discussed below. 

The state noise observer/regulator results in offset for both 
the output and input step disturbances. As shown in Figures 
14 through 17, the magnitude of this offset is a function of 

the plant dynamics. The larger offset is associated with the 
faster plant since the observer design assumes a state disturb- 
ance that will decay with the plant dynamics. 

The output step observer/regulator has the slowest disturb- 
ance rejection response for the disturbances that it was not 
designed for as shown in Figures 12, 13, 16, and 17. This is 
due to the open-loop observer design for the model states. 
Since the disturbance passes through the plant dynamics, the 
response is worse for the slower plant although the magnitude 
of the disturbance is less. 

The input step observer/regulator is able to reject the other 
disturbances in two time periods since both the observer and 
the regulator are deadbeat and there are two states in the 
augmented system. However, it has the largest target deviations 
of the three observer/regulator pairs. This is expected due to 
the input step disturbance observer being the most aggressive. 
The deviations are a function of the plant dynamics only for 
the output step as shown in Figures 14 and 15. 

Measurement noise 
The observers in Example 7 were designed assuming no 

measurement noise. This assumption, common to most im- 
plementations of model predictive control, is unrealistic for 
practical applications. The framework presented in this article 
allows for the explicit design of noise in the system by ap- 
pending the step disturbance states discussed earlier to the 
stochastic plant model presented in Eq. 27. 

c, 
5 a 
cl 
5 
0 

0 1 2 3 4 5 6 7 8 9 1( 
T i m e  

Figure 12. Output response for a state disturbance in Plant A. 
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Zero Mean State Noise Filter 
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Input Step Disturbance Filter -0 . -  
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Figure 13. Output response for a state disturbance in Plant B. 
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c, 
3 
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Figure 14. Output response for an output step disturbance in Plant A. 
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Output Step Disturbance Filter + 
Input Step Disturbance Filter -0 . -  

+J 
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c, 
3 
0 
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Time 

Figure 15. Output response for an output step disturbance in Plant B. 

The state estimates are then computed as shown below in which 
the filter gain is partitioned into a state filter, L,, an output 
step disturbance filter, Lp, and a state step disturbance filter, 
, 

In this representation, w k ,  cdkt v k ,  and v k  are zero-mean, un- 
correlated, normally distributed, stochastic variables with co- 
variance matrices Qw, Q,, Q,, and R, respectively. The dynamics 

L;. of the output stepbisturbkce vector, p k ,  are contained in Gp. 
When Gp=I,  the disturbance becomes the output step dis- 
turbance presented earlier. The dynamics of the state step [ :+ll'] -[ "k-l] 
disturbance vector, z k ,  are contained in G,. When G,= B, the 
disturbance becomes the input step disturbance presented ear- 
lier. 

P k + l l k  = A  &k- I +k 
Z k + l l k  Z k l k - l  

The system in Eq. 42 can be represented by the following 
augmented state-space matrices. 

Gw 0 0 
C = [ C  Gp 01, G = [ :  ; ;] 

The observer gain is computed using these augmented matrices 
in Eq. 30 along with the following augmented covariance mat- 
rices. 

The step disturbance regulator for this system is constructed 
as shown previously with the following modifications to the 
quadratic programs. In Eqs. 39 and 41, Bi is replaced with 
Gzi.  In Eqs. 39 and 40, 8 is replaced with G#. 

Ranging from the simple output step disturbance model of 
the industrial model predictive controllers to the combined step 
disturbance and noise model presented in this section, this 
framework allows for a great deal of flexibility in the design 
of the disturbance model for the process. However, an im- 
portant limitation in this design is the detectability restriction 
on [e, A]. This restriction requires that both thep and z vectors 

AIChE Journal February 1993 Vol. 39, No. 2 279 



0.5 

0 .45  

0.4 

0 .35 

0 . 3  
+J 

3 

3 
0 

+J a 0.25 

0.2 

0.15 

0 . 1  

0.05 

0 

O u t p u t  S t e p  D i s t u r b a n c e  F i l t e r  4- 
I n p u t  S t e p  D i s t u r b a n c e  F i l t e r  -0.-  

I I I I I I I I I I 1 
0 1 2 3 4 5 6 7 8 9 10 

Time 
Figure 16. Output response for an input step disturbance in Plant A. 

be completely observable in the augmented system. This im- 
poses a limitation on the dimension of these vectors. In general, 
the combined number of states in the p and z vectors cannot 
be greater than the number of outputs. 

Consider the SISO plant with the following 
discrete transfer function. 

Example 8. 

A minimal state-space realization of this discrete transfer func- 
tion is shown below. 

A = [  4/9 1/9 o ] .  .=[A], c=[4/9 01 

In this example, there are no constraints with the following 
regulator tuning parameters. 

Q=1, R=O,  S=O, N = 2  

Measurement noise with a variance of 0.1 and output step 
disturbances with a variance of 0.001 enter this process. At 
time k = 0, the output target is changed from zero to one. The 
output is to track the following first-order reference trajectory 
dynamical system to the new target. 

A'=0.7, C=l,  S = C  

The performance of the standard output feedback filter dis- 
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cussed earlier is compared to the optimal filter computed using 
Eq. 43. In this example, the optimal filter for the noise entering 
the process is L = [0, 0, 0.0951'. Figures 18 and 19 show the 
response of the standard output feedback method and the 
optimal output feedback. As shown in Figure 19, there is much 
more manipulated variable action using the standard output 
feedback. This is due to the standard method's assumption 
that all of the prediction error is attributable to output step 
disturbances that must be removed by control action. The 
optimal output feedback design incorporates measurement 
noise in the observer. As shown in Figure 18, this allows the 
optimal method to track the output reference trajectory with- 
out excessive manipulated variable action. The manipulated 
variable action could be reduced with the standard output 
feedback method by increasing the input penalty S, however, 
this will decrease the performance of the regulator. 

Constrained optimal observer 
The observers outlined in the previous sections are optimal 

for zero-mean, uncorrelated, normally distributed noise. Al- 
though process noise rarely follows these assumptions, they 
are used since the actual stochastic process is generally un- 
known. However, spurious measurements can significantly ef- 
fect the estimate when using these observers. This section 
presents a constrained optimal observer to prevent physically 
unrealistic estimates. The observer is a finite quadratic program 
formulation for the steady-state Kalman filter when there are 
no constraints. 

Consider the minimization of the following quadratic ob- 
jective function at time k in which Qw is the covariance of the 
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Figure 17. Output response for an input step disturbance in Plant B. 
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Figure 19. Input response for a set point change. 

state noise vector, R,  is the covariance of the measurement 
noise vector, and P is the steady-state discrete filtering Riccati 
matrix determined from Eq. 29. Note that both Qw and R ,  
must be positive definite for the inverses to exist. 

Subject to: 

The initial condition for the state estimate is the following. 

The solution to this quadratic program is a series of estimated 
state noise vectors, +J, that are used to compute the smoothed 
state estimates at time k ,  fJlk. The estimated state noises are 
contained in the vector fl as shown below. 

Estimated state noise vector and smoothed state constraints 
of the following form are considered. 

G m I n ~ G J < G m a x ,  j - k - N -  1,  k - N ,  ..., k -  1 (47) 

The constrained observer is implemented as the quadratic pro- 
gram in Eqs. 44, 47, and 48. Construction of the quadratic 
program matrices is analogous to those presented for the con- 
strained regulator. 

Measured Disturbances 
The discussion of output feedback in the preceding section 

was concerned with the construction of a noise model and the 
estimation of unmeasured disturbances. This section addresses 
feedforward control of measured disturbance. A linear system 
is first presented to represent the measured disturbance. This 
allows for the optimal estimation of the disturbance in the 
presence of measurement noise. The feedforward linear system 
model that describes the effect of the measured disturbance 
on the output of the plant is then presented. Feedforward 
control of the measured disturbance is discussed for stable 
disturbances. 

Measured disturbance models 
In this formulation, measured disturbances are described by 

the following linear system in which dk is the measured dis- 
turbance vector, x," is the measured disturbance model state 
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vector, and w,d, uf are zero-mean, uncorrelated, normally dis- 
tributed, stochastic vectors. 

An optimal estimate of the measured disturbance model state 
vector given measurements up t o  time k can be determined as 
shown below in which Ld is the discrete Kalman filter gain for 
the linear system in Eq. 49. 

The filter gain in Eq. 50 can be determined using Eq. 30 with 
the system in Eq. 49 and the covariance matrices of vd and 
Wd.  

The expected future values of the measured disturbance vec- 
tor given measurements up to  time k can be computed by the 
following recursion starting with Eq. 50. 

The standard assumption that the measured disturbance re- 
mains constant in the future can be represented in this frame- 
work by setting A d =  I and Cd=I .  

The effect of the measured disturbance on the output of the 
plant is described by the following dynamic system. 

The input to this feedforward model is the measured disturb- 
ance computed from Eq. 51. 

Measured disturbance regulator 
Combining the feedforward model in Eq. 52 with the plant 

model and the measured disturbance dynamics results in the 
following augmented system that describes the output response 
of both the input and measured disturbance. 

The initial condition of x" and x d  in the augmented state vector 
is computed using Eqs. 50 and 52 respectively. Feedforward 
control of the measured disturbance and feedback control are 
implemented as the standard controller formulation on this 
augmented system. This is analogous to  the trajectory tracking 
controller presented earlier. 

If it is assumed that the measured disturbance remains con- 
stant in the future, then A d = I  and the augmented system is 
not stabilizable. In this case, the estimate of the measured 
disturbance can be used to  remove its effect on the output in 
a manner entirely analogous to  the step disturbance regulator 
presented earlier. The input and state target vectors, us and 
x,, that remove the step disturbance at  steady state can be 
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determined from the following quadratic programs in which 
y,  is the output target, fl  is the estimate of the unmeasured 
output step disturbance, 2 is the estimate of the unmeasured 
state step disturbance, and 4 is the steady-state value of the 
feedforward model state vector. 

subject to: 

If this quadratic program is infeasible, then the output target 
vector cannot be tracked without offset. The output tracking 
error is then minimized with the following quadratic program. 

min 9 = ( y ,  - Cx, - GpCi - C"x,") 'Q, 
Ix,. 41T 

x ( Y , - C X , - G ~ C ~ - C " X ~ )  ( 5 5 )  

subject to: 

[ I - A  - B ] [ : ]  =G,2 

The steady-state value of the feedforward model state vector 
is computed as shown below. 

Example 9. Consider the SISO plant and reference trajec- 
tory presented in Example 8. A measured disturbance that 
evolves with Ad=0.5 and C d =  1 enters this plant. The effect 
of the measured disturbance on the output of the plant is 
described by the nonminimum phase system presented in Ex- 
ample 3. The following augmented system represents the plant 
model, feedforward model, measured disturbance dynamics, 
and reference trajectory dynamics. 

Each of the individual state-space models are shown below. 

A" = 
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Figure 21. Input response for feedforward control of a measured disturbance. 
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Figure 22. Input response for feedforward control of a constant measured disturbance. 

In this example, there are no constraints and no measurement 
noise with the following regulator tuning parameters. 

Q=1,  R=O, S=O, N = S  

At time k = 0, the output target is changed from zero to one. 
Also at time k = 0, a measured disturbance of unity magnitude 
enters the plant. Figures 20 and 21 show the response of the 
combined feedforwardlfeedback controller. Since the regu- 
lator is tuned as a deadbeat controller and there is no noise, 
the controller is able to exactly reject the measured disturbance 
and track the reference trajectory perfectly. 

I f  the measured disturbance remains constant in the future, 
then the measured disturbance model dynamics are removed 
from the augmented system and the modified target tracking 
regulator formulation presented in this section is used. Figure 
22 shows the input response of the controller in this case, which 
eventually settles to zero since the measured disturbance to the 
plant has unity gain. The output still tracks the reference tra- 
jectory perfectly as shown in Figure 20. 

Conclusions 
Model predictive control has become one of the dominant 

methods of process control in terms of successful industrial 
applications and as a focus of academic research. The control 
papers presented at recent AIChE meetings, American Control 
Conferences, and the Chemical Process Control Conferences 
(CPC 111 & IV) dearly illustrate this fact. This article describes 
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the implementation of a new model predictive control theory. 
By building the control algorithm around an infinite horizon, 
nominally stabilizing constrained regulator, nominal stability 
has been guaranteed independent of the controller tuning. The 
features of model predictive control necessary to treat difficult 
applications have been retained or in several instances ex- 
panded. Some of the features of many implementations that 
have unnecessarily restricted the approach have been removed. 
By exploiting the strong connections of linear model predictive 
control to the extensive linear quadratic regulator/estimator 
theory, many of the extensions are straightforward conse- 
quences of known results in that immense body of literature. 

After cursorily scanning the plethora of articles that have 
been written on model predictive control, the reader naturally 
may wonder about the need for, and significance of, yet an- 
other approach. We would only comment that one of the 
primary functions of academic research in this area is to ensure 
that the implementations available for industrial use are 
founded on a rigorous and flexible theory. The technical ma- 
chinery and mathematical detail required for that purpose may 
at times obscure the rather intuitive, simple, and appealing 
ideas that lie at the core of model predictive control. If a useful 
theory can be developed, however, it more than compensates 
with a simpler, more intuitive controller that requires fewer 
case-by-case exceptions and fixes. Our hope is that these results 
are a step in the right direction and will allow model predictive 
control to be further developed so that it can address several 
remaining challenges. These include off-line selection of tuning 
parameters ( N ,  Q, R ,  S )  to make the controller insensitive to 
plant modeling errors, and the control of plants described by 
nonlinear models. 
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Notation &,,, = maximum estimated state constraint vector 
.?,,,,” = minimum estimated state constraint vector 

yllla, = maximum output constraint vector 
y,,, = minimum output constraint vector 

y‘ = reference trajectory output vector 
y ,  = output target vector 
z’ = stable modes of A 
zu = unstable modes of A 
i = estimated state step disturbance vector 

y = output vector A ,  B, C = state-space model matrices 
Ad,  Cd  = measured disturbance state-space model matrices 

A‘, C‘ = reference trajectory state-space model matrices 
A’”, B’”, C’” = feedforward state-space model matrices 

A ,  b, C = measured disturbance augmented state-space model 
matrices 

A ,  B, C = trajectory tracking augmented state-space model ma- 
_ _ _  

trices 
A, B, c = output feedback augmented state-space model ma- 

trices 
D, W = quadratic program constraint matrices 

d = estimated measured disturbance vector 
F, G ,  H = quadratic program matrices 

GI = finite horizon contribution to matrix C 
G2 = terminal state penalty contribution to matrix G 
G, = state noise dynamics matrix 
Gt = disturbance model state noise dynamics matrix 
G, = output feedback augmented state noise dynamics ma- 

HI = finite horizon contribution to matrix H 
H2 = terminal state penalty contribution to matrix H 

J = eigenvalue matrix of A 
J‘ = trajectory tracking initial condition matrix 
J, = stable eigenvalue matrix of A 
J, = unstable eigenvalue matrix of A 
L = filter gain matrix 

L d  = disturbance model filter gain matrix 
L, = output step disturbance filter gain matrix 
L, = state filter gain matrix 
L,  = state step disturbance filter gain matrix 
N = number of future input moves to compute 
P = steady-state discrete filtering Riccati matrix 
3 = estimated output step disturbance vector 
Q = output penalty matrix 
Q. = covariance matrix of Y 
Qu = covariance matrix of o 
Q, = target tracking output error penalty matrix 
Q, = covariance matrix of w 
Q = terminal state penalty matrix 

Q, = output feedback augmented state noise covariance 

trix 

matrix 
R = input penalty matrix 
R, = target tracking input penalty matrix 
5, = covariance matrix of u 
R ,  = output feedback augmented output noise covariance 

matrix 
S = input rate of change penalty matrix 
u = input vector 
uN = vector of N future input vectors 

u,,, = maximum input constraint vector 
umin = minimum input constraint vector 

u = desired input vector at steady state 
us = steady-state input vector 
V = eigenvector matrix of A 
V, = stable eigenvector matrix of A 
V, = unstable eigenvector matrix of A 

u = zero-mean, normal output noise vector 
0 = estimated output noise vector 
w = zero-mean, normal state noise vector 

- 

fl = vector of N +  1 estimated state noise vectors 
= maximum state noise constraint vector 

Qi, = minimum state noise constraint vector 
GJ = estimated state noise vector 
x = model state vector 

xd = disturbance model state vector 
x’” = feedforward model state vector 
x‘ = reference trajectory state vector 
x, = steady-state state vector 

x: = steady-state feedforward model state vector 
j2  = trajectory tracking augmented state vector 
.? = estimated state vector 

f d  = estimated disturbance model state vector 
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Greek letters 
A M  = change in the input vector 

Au,,,, = maximum input rate of change constraint vector 
Au,,, = minimum input rate of change constraint vector 

= constrained observer objective function at time k 
ak = regulator objective function value at time k 
I = target tracking objective function value 
u = zero-mean, normal output step disturbance noise vec- 

w = zero-mean, normal state step disturbance noise vector 
tor 
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