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Abstract
This master’s thesis describes standards for storing electrophysiological data
in order to find a suitable standard for data conversion from the BrainVision
standard, which is used in the neuroinformatics laboratory at the University
of West Bohemia. The standards are examined from several points of view,
on the basis of which the standard into which the existing data has been
converted is selected. It was verified whether the standards meet the Fair
principles. The complexity of data conversion and supporting libraries to the
standards examined was also assessed. Furthermore, a tool is created that
converts electrophysiological data from BrainVision standard to the selected
standard. A suitable data storage was selected for the converted data, in
which the data was stored.

Abstrakt
Tato diplomová práce popisuje standardy pro ukládání elektrofyziologických
dat za účelem najít vhodný standard pro převod dat z BrainVision stan-
dardu, který je používán v neuroinformatické laboratoři na Západočeské uni-
verzitě. Standardy jsou prozkoumány z několika hledisek, na základě kterých
je vybrán standard, do kterého se převedla stávající data. Bylo ověřováno,
zda standardy splňují Fair principy. Byla také posuzována složitost převodu
dat a podpůrných knihoven k prozkoumávaným standardům. Dále je vytvo-
řen nástroj, který elektrofyziologická data z BrainVision standardu převede
do vybraného standardu. Pro převedená data bylo zvoleno vhodné datové
úložiště, do kterého se data uložila.
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1 Introduction

Nowadays, standards for working with electrophysiological data are con-
stantly expanding and emerging. Several standards are constantly striving
to become a worldwide standard for all types of electrophysiological data.

Research laboratories produce large amounts of electrophysiological data,
but also produce them in various formats that are incompatible with each
other, both in terms of data structures and metadata collected. In addition
to the incompatibility between formats, the amount of information when
collected is varied and not standardized. This means that for researchers
who process this data, the amount of work is increasing to get a result.
Recent research shows that the time spent by researchers in searching for
and identifying multiple useful data sources can take up to 80% of their
time dedicated to the project or research question itself [1]. This means
large time losses and it is necessary to reduce these 80%. This is how it
works in general and it also applies to the Laboratory of Neuroinformatics
at the Faculty of Applied Sciences of the University of West Bohemia that
performs EEG experiments. They produce data that is in the BrainVision
format, uses the standard, but even so, there are huge time losses. It is
important to reduce inefficiency. However, the data is stored in an outdated
and too complex repository.

In this thesis I will analyze all available standards and also look at Fair
principles, which form abstraction above standards. The Fair principles are
described in the following chapter.There is an effort to define a standard
for electrophysiology data and there have been several attempts now and in
the history, with the fact that they already reflect the abstract level of Fair
Principles to some extent. This means that the solution is to analytically
arrive at a standard that will meet the abstract level of Fair Principles and
will be usable locally for us.

I described the most widespread standardization initiatives and stand-
ards describing electrophysiological data in chapter 3.

The tools that can work with these standardization activities are de-
scribed in the following chapter 4.

Repositories in which electrophysiological data can be stored are presen-
ted in chapter 5.

There is a need to shorten the time spent on rewriting data to another
format, as I mentioned above. I created a tool in Python that converts the
data from the BrainVision format in which the laboratory currently stores

9



the data to one of the standards, specifically I chose the BIDS format. This
format is described in section 3.3.

A python tool with a graphical user interface was created, which with
the help of libraries converts data from the existing standard to the BIDS
format. This tool is described in Chapter 7.

For datasets stored in the new standard, a suitable repository has been
selected. The data was saved in this repository and a DOI file was created
for it. The repository is described in chapter 8.

The tool was tested on selected datasets, which were collected at the
Faculty of Applied Sciences at the University of West Bohemia. The quality
of the code was checked by two static analyzers. Testing is described in
chapter 9.

10



2 Fair principles

One of the recommendations for storing electrophysiological data with re-
gard to their openness and the possibility of subsequent analysis are FAIR
principles (Findability, Accessibility, Interoperability, Reusability) [2].

FAIR principles are not a standard or specification, but their main goal
is that they can be a guide for those who want to increase the reuse of their
data. They serve as principles to ensure mutual compatibility of stored data
across different systems, allowing entities to share measured data with each
other. [2]

FAIR principles determine the goals that should be achieved when design-
ing a storage method [3]:

• To be Findable:

– (Meta)data are assigned a globally unique and eternally persistent
identifier.

– Data are described with rich metadata.
– (Meta)data are registered or indexed in a searchable resource.
– Metadata specify the data identifier. [3]

• To be Accessible:

– (Meta)data are retrievable by their identifier using a standardized
communications protocol.

– The protocol is open, free, and universally implementable.
– The protocol allows for an authentication and authorization pro-

cedure, where necessary.
– Metadata are accessible, even when the data are no longer avail-

able. [3]

• To be Interoperable:

– (Meta)data use a formal, accessible, shared, and broadly applic-
able language for knowledge representation.

– (Meta)data use vocabularies that follow FAIR principles.
– (Meta)data include qualified references to other (meta)data. [3]
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• To be Re-usable:

– Meta(data) have a plurality of accurate and relevant attributes.
– (Meta)data are released with a clear and accessible data usage

license.
– (Meta)data are associated with their provenance.
– (Meta)data meet domain-relevant community standards. [3]

If a data source is intended to be FAIR, sufficient metadata must be
provided to automatically identify its structure, provenance, licensing and
potential uses, without having the need to use specialized tools. Moreover,
any access protocols should be declared where they do or do not exist. The
use of vocabularies and standard ontologies further benefit to the degree of
FAIRness of a data set. [4]

In the recent extended explanation of what these principles really mean,
the A in FAIR was redefined as “Accessible under well defined conditions”.
This means that data do not have to be open, but the data access protocol
should be open and clearly defined. In fact, data should be “as open as
possible, as closed as needed”. [4]

The recognition that computers must be capable of accessing a data ob-
ject autonomously was the core to the FAIR principles since the beginning.
The recent reinterpretation of these principles maintains their focus on the
importance of data being accesible to autonomous machines and further cla-
rifies on the possible degrees of FAIRness. While there is no such notion
as unFAIR, the authors discuss the different levels of FAIRness that can be
achieved. As such, the addition of rich, FAIR metadata is the most import-
ant step towards becoming maximally FAIR. When data objects themselves
can be made FAIR and open for reuse, the highest degree of FAIRness can
be achieved. When all of these are linked with other FAIR data, the Internet
of FAIR data is reached. Ultimately, when a large number of applications
and services can link and process FAIR data, the Internet of FAIR Data and
Services is attained. [4]

The integration and reuse of huge amounts of biomedical data currently
available in digital format has the ability to impact clinical decisions, phar-
maceutical discoveries, disease monitoring and the way population health-
care is provided globally. Storing data for future reuse and reference has
been a critical factor in the success of modern biomedical sciences [1]. In
order for data to be reused, first it has to be discovered. Finding a dataset
for a study can be burdensome due to the need to search individual repos-
itories, read numerous publications and ultimately contact data owners or
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publication authors on an individual basis. Recent research shows that the
time spent by researchers in searching for and identifying multiple useful
data sources can take up to 80% of their time dedicated to the project or
research question itself [1].
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3 Current standardization
activities

There are already several standardization initiatives and standards describ-
ing electrophysiological data. In this chapter we will describe the most
widespread. All of the following standards meet Fair principles, which were
mentioned above.

3.1 NIX
The NIX project, originally know as Pandora, aims to develop standard-
ized methods and models for storing electrophysiology and other neuros-
cience data together with their metadata in one common file format based
on HDF5. [5]

NIX uses highly generic models for data as well as for metadata and
defines standard schemata for HDF5 files which can represent those models.
NIX also aims to provide a convenient C++ library to simplify the access
to the defined format [5].

3.1.1 The model
The design principle of the data model used by NIX, was to create a rather
minimalist, generic, yet expressive model, that is able to represent data
stored in other widely used formats or models like NEO1 without any loss
of information. Due to its generic approach, the data model is furthermore
able to represent also other kinds of data used in the field e.g. image data
or image stacks [6].

The NIX model for data consists of six main elements: Block, DataArray,
Tag, MultiTag, and Source and Group [6]. You can see NIX data model in
Figure 3.2.

• A Block entity acts as a node that contains all other entities of the
data model, it can be considered as something like a collection of data
or a dataset.

• A DataArray is a multidimensional array of data that provides some
additional information about the data it contains, such as data type

1Neo is a Python package for working with electrophysiology data in Python.
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number of dimensions unit etc. Furthermore a DataArray entity has a
of dimension descriptor for each dimension that provides information
like sampling interval, unit or label. In brief: the DataArray already
provides enough information to interpret its content and e.g. generate
a plot.

• The MultiTag, Tag entities is mainly used to define regions of in-
terests or certain points inside one or many DataArray entities. There-
fore a Tags can be represent all kinds of different elements, for example
an event, a spike train, an epoch or a segment.

• Source entities can define the provenance of a Tag or DataArray.

• The Group, finally acts as a simple grouping element which, in its
current form, just expresses, that the members of the group (dataAr-
rays, tags and multiTags) somehow belong together. A Group can link
to Sources and can have metadata attached to it.

Figure 3.1: Simplified version of the data model that demonstrates how the
basic entity types can describe a dataset containing an annotated analog
signal. [6]
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3.2 odML
odML (open metadata Markup Language) is a file format (XML, JSON,
YAML) for storing metadata in an organised human- and machine-readable
way. Well organized metadata management is a key component to guar-
antee reproducibility of experiments and to track provenance of performed
analyses. [7]

This format specifies a hierarchical structure for storing arbitrary meta
information as extended key-value pairs, so called properties, which can
be logically grouped into sections and subsections. The odML defines the
format, not the content, so that it is inherently extensible and can be adapted
flexibly to the specific requirements of any laboratory. [8]

3.2.1 odML data model
The model is as simple as possible while being flexible, allowing interoper-
ability, and being customizable. The model defines four entities (Property,
Section, Value, RootSection) whose relations and elements are shown in
Figure 3.2. [9]

Figure 3.2: odML data model [9]

Property and Section are the core entities. A Section contains Properties
and can further have subsection thus building a tree-like structure. The
model does not constrain the content, which offers the flexibility essential
for comprehensive annotation of neuroscience data. [9]

3.3 BIDS
The BIDS format is currently the standard for storing neuroimaging data.
It tries to cover the most common experiments, but at the same time is in-
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tuitive and easy to adopt. The specification is intentionally based on simple
file formats and folder structures to reflect current laboratory practices and
make it accessible to a wide range of scientists coming from different back-
grounds. [10]

Figure 3.3: BIDS is a format for standardizing and describing outputs of
neuroimaging experiments (left) in a way that is intuitive to understand
and easy to use with existing analysis tools (right) [11].

3.3.1 BIDS-EEG
The extension of BIDS to EEG data closely follows the general BIDS spe-
cification: Each subject has a directory of raw data containing subdir-
ectories for each session and modality. This is accompanied by a data-
set_description.json file and a metadata file with the suffix _eeg.json, that
specifies the task, the EEG system used (amplifier, hardware filter, cap,
placement scheme, etc.). [12] This structure can be seen in Figure 3.3.

The process of converging on a list of suitable data formats for EEG-BIDS
was governed by three major requirements: A suitable data format should
(i) address the needs of a large portion of the global EEG community, (ii) be
interoperable according to the FAIR principles, and (iii) meet the technical
requirements of neuroscientific workflows, such as saving numerical data with
high precision. [13]

As a solution to this challenge, the EEG-BIDS specification incorpor-
ates only two recommended “official” data formats: The European Data
Format (EDF), which is an ongoing international effort to provide a com-
mon data format for electrophysiological recordings that began in 1992, and
the BrainVision Core Data Format, developed by Brain Products GmbH.
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While the BrainVision Core Data Format was designed by Brain Products
GmbH for its proprietary EEG recording equipment and analysis software,
it is based on the Microsoft Windows INI file and has a concise documenta-
tion. Both of these formats follow the three requirements for suitable data
formats for EEG-BIDS: (i) A recent survey indicates that they are widely
used in the community2, (ii) they have open access documentation and an
open source implementation for both reading and writing in at least two pro-
gramming languages that are widely used in the field (in this case, Python
and MATLAB, among others), and (iii) they have high numerical precision
(EDF:16 bits, BrainVision Core Data Format:32 bits). To accommodate
a larger scientific audience and facilitate adoption, the EEG-BIDS stand-
ard also allows two “unofficial” commonly used data formats: The format
used by the MATLAB toolbox EEGLAB (“.set” and “.fdt” files), and the
Biosemi format (“.bdf”). While not actively encouraged, these two formats
are included due to their popularity and their interoperability among the
major software packages. Future versions of BIDS may extend the list of
“officially” supported data formats, based on the fulfillment of the above
mentioned three requirements for suitable data formats. Independently of
the raw data format used, critical metadata about the recording are always
available in BIDS .tsv and .json files. [13]

Community Tools and Software Support

As part of the BIDS project, datasets formatted to follow the EEG-BIDS
standard can be validated using the “bids-validator”, a JavaScript applica-
tion that runs locally as a command line version (using Node.js) or within
an Internet browser3. With this validation tool, researchers can check their
newly formatted datasets and make full use of the data structure’s strengths
for instance, checking for missing data or underspecified metadata. [13]

The BIDS starter kit 4 is a collection of community-driven guides, tutori-
als, helper scripts, and wiki resources to help researchers get started with
BIDS. The resources cover two popular programming languages (Python
and MATLAB) and will be extended over time to incorporate additional
guides. [13]

2https://bids.berkeley.edu/news/bids-megeegieeg-data-format-survey.
3https://bids-standard.github.io/bids-validator/.
4https://github.com/bids-standard/bids-starter-kit.
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Directory tree of a BIDS dataset

A prototypical directory tree of a BIDS dataset containing EEG data. This
can be seen in Figure 3.4. At the root level of the directory, the README,
CHANGES, and dataset_description.json files provide basic information
about the dataset. A participants.tsv data file is accompanied by a par-
ticipants.json file, which contains the description of the columns in its asso-
ciated .tsv file. The panel in the upper right of the figure provides examples
on the typical format within a .tsv and .json file. Usually, each .tsv file is
accompanied by a .json file that provides metadata. The EEG data and
anatomical MRI scans are saved per subject within the eeg and anat sub-
directories respectively. If the original data is not supported by BIDS, it
can be included in an additional sourcedata directory. Finally, a stimuli
directory contains the stimuli that were presented to the participants in the
experiment. [12]

Figure 3.4: A prototypical directory tree of a BIDS dataset containing EEG
data. [12].

3.4 NWB
Neurodata Without Borders: Neurophysiology (NWB:N) is a data standard
for neurophysiology, providing neuroscientists with a common standard to
share, archive, use, and build common analysis tools for neurophysiology
data. NWB:N is designed to store a variety of neurophysiology data, includ-
ing data from intracellular and extracellular electrophysiology experiments,
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data from optical physiology experiments, and tracking and stimulus data.
[14]

The project includes not only the NWB format, but also a broad range
of software for data standardization and application programming interfaces
(APIs) for reading and writing the data as well as high-value data sets that
have been translated into the NWB data standard. [14]

You can clearly see what NWB is in Figure 3.5.

Figure 3.5: NWB model, what NWB is working with and what it can be
used for. [14]

NWB is more than just a file format; it defines an ecosystem of tools,
methods, and standards for storing, sharing, and analyzing complex neuro-
physiology data. [14]

3.5 Comparison of NIX, NWB and BIDS
In this section we will compare NIX, NWB and BIDS formats. These formats
will be compared on the basis of structure, source code and documentation,
as well as statistics obtained from Github. Based on this comparison, I
wanted to decide which format to choose. It was not easy to decide on
a specific format, because as you can see in the following description, the
formats are similar in terms of documentation and source code, with a few
differences. So I had to add other factors based on which to select the
format. There were two factors, namely the similarity of the BrainVision
format, so this factor was for BIDS and also for the possibility of consulting
with the developers of the format, which was NIX, as the university has some
cooperation with them. That’s why I decided between these formats and I
eliminated NWB. I also used the table in the decision, which you can see in
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NIX/odML NWB BIDS
Contributors 14 23 37
Commits 1709 3094 1743
Watch 8 22 21
Star 13 67 91
Fork 22 41 67

Table 3.1: Compare NIX and BIDS by github.

Table 3.2. It compares these two formats, BIDS and NIX in Fair Principles,
which are described in the first chapter.

NIX and NWB use the 3-Clause BSD License. Both are open source and
have their source code and documentation stored on github.

A comparison of the statistics that can be read from github on December
16, 2019 is shown in the following table. It can be seen that NIX / odML
lags the most in these statistics. NWB and BIDS are approximately at a
similar level.

3.5.1 NIX
Project documentation of NIX is split up into three parts: technical informa-
tion, general introduction and tutorial, and API documentation. The Nixpy,
which is an extension to NIX and provides Python bindings for NIX, has
a file in addition to the documentation. The file outlines the features that
have been implemented in NIX and have not yet been added to NIXPy. The
features are separated into two sections: Released features and unreleased
ones. The latter is for features that exist in nix/master but have yet to be
included in a stable release.

In another file there is a guide, which shows build options for both, 32-
and 64-bit Windows. In the manual there is a link to using the installer
provided (exe file). The instructions are brief but clear.

NIX has almost no commented code. Compared to NIX, nixpy has a
detailed commented code. In the case of a longer method, nixpy has detailed
comments that describe the entire functionality of the method. The method
has no comment if the method is short and the name clearly explains what
the method does.

If we want to use Elephant, then it would be appropriate to use NEO,
then NIX needs to be used to connect MNE with NEO. You can see this on
the model in Figure 3.6.

21



Figure 3.6: Component diagram of connection between MNE and NEO. It
is necessary to use NIX.

3.5.2 BIDS
BIDS has a library to centralize interactions with datasets conforming BIDS
format that is called pybids. If you want install the most recent release,
use pip (pip install pybids). Pybids has commented methods in great de-
tail. Methods have detailed comments on individual parameters. What the
methods do can be understood from the title, or the first sentence of the
comment explains it. Pybids has written tests for each part.

3.5.3 NWB
Pynwb doesn’t have as much commented code as nixpy or pybids. Some
files are not commented at all. Pynwb has a link to the installation guide in
readme. Pynwb contains a link to the installation instructions in the readme
file. You can easily install pynwb according to this tutorial. In addition to
the installation, the manual also includes instructions for running the tests.
As for code testing, unlike nixpy, which has all tests in one folder and pybids,
which has tests in each part of the implementation, pynwb has tests divided
into unit and integration testing.
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Criterion under
consideration

System
NIX,
odML

BIDS,
LORIS

Findable
Data are assigned a globally unique and eternally per-
sistent identifier.

YES YES

Metadata are assigned a globally unique and eternally
persistent identifier.

YES NO

Data are described with rich metadata. YES YES
(Meta)data are registered or indexed in a searchable re-
source.

YES YES

Metadata specify the data identifier. NO NO
Accessible

(Meta)data are retrievable by their identifier using a
standardized communications protocol.

NO YES

The protocol is open, free, and universally implement-
able.

YES YES

The protocol allows for an authentication and authoriz-
ation procedure, where necessary.

YES YES

Metadata are accessible, even when the data are no
longer available.

YES YES

Interoperable
(Meta)data use a formal, accessible, shared, and broadly
applicable language for knowledge representation.

YES YES

(Meta)data use vocabularies that follow FAIR prin-
ciples.

YES YES

(Meta)data include qualified references to other
(meta)data.

YES NO

Re-usable
Meta(data) have a plurality of accurate and relevant at-
tributes.

YES YES

(Meta)data are released with a clear and accessible data
usage license.

YES YES

(Meta)data are associated with their provenance. YES YES
Data meet domain-relevant community standards. YES YES
Metadata meet domain-relevant community standards. NO YES

Table 3.2: Comparison of systems in terms of FAIR principles. [3]
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4 Tools

We described current standardization activities in the previous chapter. And
we will describe the tools that can work with these standardized structures
in this chapter.

4.1 LORIS
The first tool we will describe is LORIS. LORIS is a web-based data man-
agement system for longitudinal, multisite neuroimaging research data col-
lection, with a key feature being joint management of heterogeneous data
modalities (behavioural/clinical, genetic, biosamples, and imaging). [15]

Figure 4.1: Data flow within the LORIS system. [15]

The emerging Brain Imaging Data Structure (BIDS) standard exten-
sion for EEG offers a format for organizing and describing outputs of EEG
experiments, which can easily be imported into LORIS, while enabling link-
ing to other modalities collected for the same subjects. Figure 4.1 depicts
the LORIS workflow for importing electrophysiology datasets organized in
a BIDS structure. [15]
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Figure 4.2: LORIS system architecture layers. [15]

From a system architecture point of view, LORIS can be viewed as having
three component layers: an infrastructure layer, processing layer, and web
application layer. You can see this three component layers in Figure 4.2.
Data entry, transfer, image pre-processing, visualization, and quality control
are all aspects that take place within these layers, with the ultimate goal of
serving data via the Data Querying GUI to facilitate processing and analysis.
[15]

The LORIS processing layer is indexed to provide optimized views such
that queries are executed as quickly as possible. While on the front end,
menus have been created to allow for filtering, both of the data itself as well
as the top-level view of status information, which allows project manager to
filter for status information of any dataset without the need to enter and
view individual profile data. [15]

The basic construct is developed around a structured data model called
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the “Subject Profile,” which is used to map the study-specific battery of
instruments and methodologies, including an array of external metadata
collected about the study subjects. Data is organized in a subject-centric
manner (i.e., around a study subject on which data is collected) and offers all
necessary identifying subject information to allow project managers to filter
for status information without a need to enter and view individual profiles.
Demographic information is collected and a unique set of anonymized subject
identifiers are assigned. [15]

The creation of the Subject Profile contains “timepoints”—longitudinal
extensions representing study iterations where a subject returns for multiple
visits. Timepoints are used to collect the full array of instruments and other
data collected during a subject’s visit. In case of multi-site studies, the
timepoints are associated with a specific study site enabling the researchers
to track individual subjects over time at different geographical locations.
[15]

Researchers can access LORIS modules in a seamless and intuitive fash-
ion using the following three sections of its front-end layer: (1) the Behavioral
Database, (2) Imaging Browser, and (3) Data Querying GUI (DQG). [15]

4.2 Elephant
Elephant (Electrophysiology Analysis Toolkit) is an open-source, community
centered library for the analysis of electrophysiological data in the Python
programming language. The focus of Elephant is on generic analysis func-
tions for spike train data and time series recordings from electrodes, such
as the local field potentials (LFP) or intracellular voltages. In addition to
providing a common platform for analysis codes from different laboratories,
the Elephant project aims to provide a consistent and homogeneous analysis
framework that is built on a modular foundation. [16]

4.2.1 Elephant library structure
Elephant is a standard python package and is structured into a number of
submodules. A sketch of the layout of the Elephant library (0.3.0 release) is
shown in Figure 4.3. [16]

Conceptually, modules of the Elephant library can be divided into those
related to a specific category of analysis methods, and supporting modules
that provide a layer of various core utility functions. All available modules
are available directly on the the top level of the Elephant package in the
elephant subdirectory to avoid unnecessary hierarchical clutter. [16]
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4.3 MNE
MNE is an open-source Python software for exploring, visualizing, and ana-
lyzing human neurophysiological data: MEG, EEG, sEEG, ECoG, and more.
[17]

Tutorials are available on the official website. These tutorials provide nar-
rative explanations, sample code, and expected output for the most common
MNE-Python analysis tasks. The emphasis here is on thorough explanations
that get you up to speed quickly, at the expense of covering only a limited
number of topics. The sections and tutorials are arranged in a fixed or-
der, so in theory a new user should be able to progress through in order
without encountering any cases where background knowledge is assumed
and unexplained. More experienced users (i.e., those with significant ex-
perience analyzing EEG/MEG signals with different software) can probably
skip around to just the topics they need without too much trouble. [17]

In addition to tutorials, examples are also available. The examples gal-
lery provides working code samples demonstrating various analysis and visu-
alization techniques. These examples often lack the narrative explanations
seen in the tutorials, and do not follow any specific order. These examples
are a useful way to discover new analysis or plotting ideas, or to see how a
particular technique you’ve read about can be applied using MNE-Python.
[17]

Cou can see the workflow of the MNE software in Figure D.1 and Ex-
tensive data model is in Figure D.2.

4.4 NEO
Neo is a Python package for working with electrophysiology data in Py-
thon, together with support for reading a wide range of neurophysiology
file formats, including Spike2, NeuroExplorer, AlphaOmega, Axon, Black-
rock, Plexon, Tdt, and support for writing to a subset of these formats plus
non-proprietary formats including HDF5. [18]

The goal of Neo is to improve interoperability between Python tools for
analyzing, visualizing and generating electrophysiology data by providing a
common, shared object model. In order to be as lightweight a dependency
as possible, Neo is deliberately limited to represention of data, with no
functions for data analysis or visualization. [18]

Neo is used by a number of other software tools, including SpykeViewer
(data analysis and visualization), Elephant (data analysis), the G-node suite
(databasing), PyNN (simulations), tridesclous (spike sorting) and ephyviewer
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(data visualization). OpenElectrophy (data analysis and visualization) uses
an older version of neo. [18]

Neo implements a hierarchical data model well adapted to intracellular
and extracellular electrophysiology and EEG data with support for multi-
electrodes (for example tetrodes). Neo’s data objects build on the quantities
package, which in turn builds on NumPy by adding support for physical
dimensions. Thus Neo objects behave just like normal NumPy arrays, but
with additional metadata, checks for dimensional consistency and automatic
unit conversion. [18]

You can see the class diagram of NEO in Figure D.3.

4.5 BIDS App
A BIDS App is a container image capturing a neuroimaging pipeline that
takes a BIDS formatted dataset as input. The BIDS App is mainly for the
neuroimaging pipeline, but it could also be used in our case. Each BIDS
App has the same core set of command line arguments, making them easy
to run and integrate into automated platforms. BIDS Apps are constructed
in a way that does not depend on any software outside of the image other
than the container engine. [19]

BIDS Apps rely upon two technologies for container computing:

• Docker - for building, hosting as well as running containers on local
hardware (running Windows, Mac OS X or Linux) or in the cloud.

• Singularity - for running containers on HPCs.

BIDS Apps are deposited in the Docker Hub repository, making them
openly accessible. [19]

The source code of each App is stored in separate GitHub repository.
Each repository is connected to a Continuous Integration server responsible
for building testing and deploying the corresponding App. For every new
release of an App, a new container image is deposited in Docker Hub. Users
can directly download and run the BIDS Apps container images either dir-
ectly using Docker on any Windows, Mac, and Linux machine or convert
them to Singularity and run them on an HPC. [20]

4.5.1 Command-line interface
To improve user experience and ability to integrate BIDS Apps into vari-
ous computational platforms, each App follows a set of core command-line
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arguments:[20]
runscript input_dataset output_folder analysis_level
For example:
runscript /data/ds114 /scratch/outputs participant

• input_dataset provides a path to the dataset to be analyzed (read-
only), which must conform to the BIDS standard

• output_folder is the folder where results of the analysis will be stored

• analysis_level denotes the stage of the analysis that will be performed

They also provide several utilities that make it easier to work with BIDS-
compatible directory structures-most notably, the PyBIDS Python package1,
which provides tools for simple but powerful logical queries over entities
defined in the BIDS specification (e.g., retrieving a list of all unique subjects;
getting the fieldmap files for all subjects with a valid first scanning run; etc.).
[21]

In addition to conforming to a standardized command-line argument
scheme, run scripts are also responsible for validation of the input data be-
fore running any analysis. To facilitate the process they have developed a
command-line validator that checks whether the input datasets are compli-
ant with the BIDS standard. [21]

This approach to run their workflows requires sticking with three stand-
ards: 1) a common command-line interface, 2) a Docker container to ensure
portability, and 3) a standard for organizing input data. Containers created
this way can be easily integrated into OpenfMRI as well as other data ana-
lysis platforms. Thanks to Docker-to-Singularity conversion they can also
be easily run on High Performance Computers (clusters) without the need
to install all of the dependencies. [21]

4.5.2 Command-line specification
Each workflow/pipeline will be run independently for each subject (the map
step). Results of this execution (arranged in whatever way the pipeline
prefers) can be optionally processed in a group level analysis (reduce step–see
Figure 4.4). [20]

1https://github.com/INCF/pybids.
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4.6 The BIDS Validator
The BIDS Validator is designed to work in both the browser and in Node.js.
They target support for the latest long term stable (LTS) release of Node.js
and the latest version of Chrome [22].

4.6.1 API
The BIDS Validator has one primary method that takes a directory as either
a path to the directory (node) or the object given by selecting a directory
with a file input (browser), an options object, and a callback [22].

4.7 SPM
The SPM software package has been designed for the analysis of brain ima-
ging data sequences. The sequences can be a series of images from different
cohorts, or time-series from the same subject. The current release is designed
for the analysis of fMRI, PET, SPECT, EEG and MEG. [23]

4.8 Pybids
Pybids is a Python library to centralize interactions with datasets conform-
ing BIDS (Brain Imaging Data Structure) format. [24] Pybids is a set of
tools for working with Brain Imaging Data Structure (BIDS) datasets. Py-
bids makes it easier for neuroimagers who utilize the BIDS standard to query,
summarize, and manipulate their data. A number of Python packages for
analyzing neuroimaging data, including Nipype and nistats, are optimized
to work with BIDS datasets [25].

Pybids is currently designed to work with image libraries. In the future it
is planned to expand the BIDS data standard to include MEG and EEG[25].
In this thesis we work with EEG-BIDS, which unfortunately Pybids is not
yet working with, but MNE works with EEG-BIDS.

In addition to MNE, EEG-BIDS also cooperates with SPM, which is
written in Matlab[23].

4.9 MNE-python
Magnetoencephalography and electroencephalography (MEG/EEG) meas-
ure the weak electromagnetic signals generated by neuronal activity in the
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brain. Using these signals to characterize and locate neural activation in
the brain is a challenge that requires expertise in physics, signal processing,
statistics, and numerical methods. As part of the MNE software suite, MNE-
Python is an open-source software package that addresses this challenge by
providing state-of-the-art algorithms implemented in Python that cover mul-
tiple methods of data preprocessing, source localization, statistical analysis,
and estimation of functional connectivity between distributed brain regions.
All algorithms and utility functions are implemented in a consistent man-
ner with well-documented interfaces, enabling users to create M/EEG data
analysis pipelines by writing Python scripts. Moreover, MNE-Python is
tightly integrated with the core Python libraries for scientific comptutation
(NumPy, SciPy) and visualization (matplotlib and Mayavi2), as well as the
greater neuroimaging ecosystem in Python via the Nibabel package. The
code is provided under the new BSD license allowing code reuse, even in
commercial products. Although MNE-Python has only been under heavy
development for a couple of years, it has rapidly evolved with expanded
analysis capabilities and pedagogical tutorials because multiple labs have
collaborated during code development to help share best practices. MNE-
Python also gives easy access to preprocessed datasets, helping users to get
started quickly and facilitating reproducibility of methods by other research-
ers. [26]

4.9.1 Design, Application Programming Interface (API)
and Data Structures

M/EEG data analysis typically involves three types of data containers coded
in MNE-Python as Raw, Epochs, and Evoked objects. The raw data comes
straight out of the acquisition system; these can be segmented into pieces
often called epochs or trials, which generally correspond to segments of data
after each repetition of a stimulus; these segments can be averaged to form
evoked data. MNE-Python is designed to reproduce this standard operating
procedure by offering convenient objects that facilitate data transformation.
[26]

4.9.2 Preprocessing
The major goal when preprocessing data is to attenuate noise and artifacts
from exogenous (environmental) and endogenous (biological) sources. Noise
reduction strategies generally fall into two broad categories: exclusion of

2http://mayavi.sourceforge.net/.
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contaminated data segments and attenuation of artifacts by use of signal-
processing techniques. MNE-Python offers both options at different stages
of the pipeline, through functions for automatic or semi-automatic data
preprocessing as well as interactive plotting capabilities. [26]

4.10 MNE-BIDS
MNE-BIDS links BIDS and MNE with the goal to make your analyses faster
to code, more robust to errors, and easily sharable with colleagues[27]. MNE-
BIDS is a part of MNE-Python.

4.11 Summary of tools
I described the tools that can work with these standardized structures. All
of the tools described above can be used for NIX or BIDS. Since I have
already eliminated NWB, I have not focused on tools that would be suitable
for NWB.

Elephant and NEO are tools that can be used mainly for NIX, you can
see it in Figure 3.6.

MNE is important for BIDS. It is also advisable to use the BIDS Validator
that checks if the BIDS data are in the correct format.

Data in one of the mentioned standards will need to be stored in a re-
pository; this will be the topic of the next chapter.
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Figure 4.3: Modules of the Elephant library. Modules containing analysis
functions are colored in orange shades, core functionality in grey shades [16].
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Figure 4.4: The overall structure of workflows. [20]
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5 Repositories

Data that is stored in the mentioned formats needs to be stored in a repos-
itory that will be publicly available so that everyone can access the data.
Ideally, we need a repository that will have a DOI (Digital Object Identi-
fier), a unique and permanent identifier of a digital object accessible through
digital networks, which will make our data more traceable. So I will describe
some of such repositories.

5.1 GIN
The GIN platform is a web-based repository store that you can reach from
everywhere, which is secure and which provides fine-grained access control.
This enables sharing data with collaborators or publishing your data to the
greater scientific community. Both you and your collaborators can work
independently, using versioned repositories at work, at home, or wherever
you want. All this can either be achieved through various convenient client
interfaces or by using the underlying tools (git, git-annex) directly. You can
also set up your own GIN server [28].

Figure 5.1: Schematic overview of GIN illustrating its many usage possibil-
ities. [28]
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Any GIN repository hosted on the official GIN service can be perman-
ently archived (at a given point in time) and referenced by a unique Digital
Object Identifier (DOI) [29]. You can see everything described above in
Figure5.1.

The GIN service is based on the Gogs Git service.
The data versioning, storage, and synchronisation part of the project is

built on git and git-annex[29].

5.1.1 Set up GIN
To work with GIN, you can use the web interface directly, where you register
and then you can create repositories and work with it.

However, if you want to configure GIN in your own lab, you have the
following two options:

• without Docker

• with Docker

Without Docker

There is a detailed guide to setting up a GIN on the website1. This Tu-
torial is written with respect to Ubuntu 16.04. It should work for all tuxish
distributions, however, the packages might have different names and their
installation could be different.

With Docker

The easiest way to set up a GIN server is via prebuild docker containers.
You will need a working Docker installation. There is a detailed guide to
setting up a GIN on the website2.

5.1.2 GIN search
The GIN data search provides you with a set of tools to search the gin-index
(gindex). Gindex analyses repositories for content types it knows (Text,
XML, PDF, JSON, odML, NEV to name a few ) and that are not too big.
From there, it builds a representation that is good for (full-text) searching.
[30]

There are several ways to search the gindex [30].
1https://gin.g-node.org/G-Node/Info/wiki/In+House+Without+Docker.
2https://gin.g-node.org/G-Node/Info/wiki/In+House.
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• Match search: which tries to find the terms you provide (exactly) and
returns them sorted by a score that depends on the number of matches
and the size of the document the match is in. This is probably the
best for most people. [30]

• Fuzzy term matching: which is a way to find matches to individual
terms and things that look close to the term provided (eg. bla also
matches blu). [30]

• Wildcard term matching: Matches individual terms with the possibil-
ity to provide wildcards. ? can be used to replace a single character,
and * to replace zero or more characters (eg.bl* matches on blu, blo,
and bl etc.). [30]

• Query String: This is the most powerful search and kind of a com-
bination of the three above. You can provide a full query string using
among other things, the wildcard introduced above, and also the fuzzy
operator which uses a Damerau-Levenshtein distance of 2 to find all
terms that match (eg. "Sp?ke Sortung " does match Spike Sorting and a
lot of other things ). In query strings, you can also use the boolean op-
erators AND OR and NOT. For example, "Spike NOT Sorting" would
match documents that have Spike but not Spike Sorting". If you want
you can even group those "(Spike NOT Sorting) AND train". [30]

It’s kind of obvious that wildcard and fuzzy searching can be compu-
tationally pretty costly. Therefore give gindex some time to retrieve the
results. [30]

5.1.3 GIN-proc
gin–proc is a GIN micro-service which allows the users to design efficient
workflows for their work - by automating Snakemake, and build the work-
flows with open-source version of Continuous Integration (CI) service Drone.
[31]

This tool/micro-service is required since, given the GIN user base of
neuroscientists and other pro-fessionals from the related fields, shouldn’t
be involved in writing thousands of repeated workflows for their data, and
then testing it manually. This tool will increase their efficiency by almost
exponential levels by eradicating redundancy from their work. [31]
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5.2 DANDI
DANDI is a platform for publishing, sharing, and processing neurophysiology
data funded by the BRAIN Initiative. The platform is now available for data
upload and distribution. [32]

DANDI is powered by Girder, a part of Resonant, Kitware’s open-source
platform for data management, analytics, and visualization. [32]

5.2.1 Resonant
Resonant is a platform consisting of tools that work in concert to provide
storage, analysis, and visualization solutions for your data. All Resonant
components are fully open source under the Apache v2 license. [33]

Data Management

Upload, share, and manage your data using Amazon S3, Distributed file
systems, SQL, NoSQL, and more. [33]

Analytics

Perform heavy-lifting on your data with Python and Docker containers
through a uniform interface. [33]

Visualization

Gain insight into data with flexible, scalable web visualizations. [33]

5.2.2 Girder
Girder is a Data Management Toolkit. It is a complete back-end (server
side) technology that can be used with other applications via its RESTful
API, or it can be used via its own front-end (client side web pages and
JavaScript). [33]

Girder is designed to be robust, fast, scalable, extensible, and easy to
understand. Girder is built in Python. [33]

5.3 EOSC
The European Open Science Cloud (EOSC) initiative has been proposed in
2016 by the European Commission as part of the European Cloud Initiative
to build a competitive data and knowledge economy in Europe. An extensive
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consultation with scientific and institutional stakeholders took place in 2016
and 2017. An engagement process was initiated with a first EOSC Summit
in June 2017, resulting in the EOSC Declaration endorsed by more than
70 institutions. The summary outcome of the consultation was presented
in March 2018 by the European Commission in the form of a roadmap for
implementing the EOSC. [34] What EOSC offers is shown in Figure 5.2.

Figure 5.2: EOSC [34]

The European Commission is providing financial support to implement
the EOSC by means of projects under the EU Framework Programme for
Research and Innovation (Horizon 2020). The EOSC will consist of several
projects, most of which are not yet complete. [34]

5.4 EBRAINS
EBRAINS integrated workflows at multiple scales allow users to perform
complex computational experiments, including estimation of model para-
meters, model validation and large-scale simulations including analysis and
visualisation. Workflows addressing the needs of scientists across discip-
lines and levels of expertise will be accessible through pre-configured web
applications or flexible digital notebooks. [35]
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5.4.1 The new data era
EBRAINS Data & Knowledge services promote a culture of data coopera-
tion and discovery. They offer one of the most comprehensive platforms for
sharing brain research data ranging in type as well as spatial and temporal
scale [35].

5.4.2 Share data
EBRAINS provide the guidance and tools needed to overcome the hurdles
associated with sharing data. The EBRAINS data curation service ensures
that your dataset will be shared with maximum impact, visibility, reusability,
and longevity. [35]

5.4.3 Find data
The user interface of the EBRAINS Knowledge Graph - allows you to easily
find data of interest. EBRAINS hosts a wide range of data types and models
from different species. All data are well described and can be accessed
immediately for further analysis. [35]

5.4.4 KG Ebrains
The EBRAINS Knowledge Graph bases on BlueBrain Nexus which provides
a multi-modal solution for an eventual consistent data store. [36]

In Figure 5.3 you can see that the components of the EBRAINS KG
are originating either from BlueBrain Nexus (blue boxes) or from extensions
built and/or integrated by EBRAINS (yellow boxes). The diagram shows
write (blue arrows - asynchronous are dotted) and read (green arrows) op-
erations. The arrows describe the directions of the data flow. [36]

BlueBrain Nexus

As part of the BlueBrain Nexus, Apache Cassandra stores an event log of
JSON-LD messages and is the primary storage component. The in-built
indexing mechanism then ensures the indexing of the JSON-LD into mul-
tiple index-databases: Blazegraph is a triple store, elasticsearch is used for
full-text queries. Since the indexing mechanism works asynchronously, the
databases are eventually consistent. [36]
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Figure 5.3: The components of the EBRAINS KG are originating either
from BlueBrain Nexus (blue boxes) or from extensions built and/or integ-
rated by EBRAINS (yellow boxes). The diagram shows write (blue arrows
- asynchronous are dotted) and read (green arrows) operations. The arrows
describe the directions of the data flow. [36]

KG Query API

An additional indexing client normalizes the incoming payload (full qualifica-
tion), executes inference logic, indexes the data in Arango DB and interprets
semantics (e.g. recognizes spatial anchoring payloads and indexes them after
a rasterization it in the additional Apache Solr index). [36]

KG Editor

Although nice for scalability, the eventual consistency causes problems for
applications such as the KG Editor where postponed updates can lead to
confusing states on a reactive UI with data manipulation (it e.g. can happen
that changes which were just applied by a user are not yet reflected in the
database). The KG Sync API therefore provides a synchronous alternative
API primarily created for this use-case: Creations / modifications / deletions
are applied to the Arango index directly after they have been transferred in
the Nexus API. Therefore, they are immediately reflected in queries of the
KG Query API which allows us to provide a responsive UI. The standard
indexing process will overwrite this "temporary indexing" after a while. [36]
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Import scripts

Automated import scripts (typically written in Python) which load data
from a specific source, transform it to the required JSON-LD structures and
make use of the Nexus API to upload the data to the Knowledge Graph
can be triggered externally. At EBRAINS, we’re using a job scheduler who
manages these kind of reoccurring jobs. [36]

5.5 Summary of repositories
From the above repositories, the GIN repository seems to be the best one; I
will store the converted data there. GIN is a well-known and already proven
repository that meets everything we need. Other repositories are relatively
new and constantly changing, so I don’t think they might be reliable now.
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6 Summary

I have studied all available formats and tools for processing electrophysiolo-
gical data. Before implementation, it is necessary to first summarize everything
that was found in the previous chapters and decide which standards and
tools choose and utilize. Before choosing a standard, I have to state the cri-
teria according to which I compare the individual standards. The selection
criteria are as follows:

• Fair principles adoption

• standard description complexity

• suitability for our lab

• size of community

• support of tools

• quality of documentation

• data from github

I will no longer compare NWB here, as I have already excluded it in the
subchapter 3.5. That’s why I decided between these formats and eliminated
NWB. Based on the criteria of suitability for our lab I eliminated NWB.

I put BIDS and NIX in two tables, because deciding between these two
standards was not easy so in the first table are numbers from the github of
both standards. You can see the table below and you can see that the BIDS
format shows better results in all values.

GitHub allows "watch" a project, which means you’re notified whenever
there are any updates. Later the company has added another level of watch-
ing, dubbed "stars," to the mix. When you star a project you can keep track
of it, but you won’t be notified of every change. [37] I determined the size
of the community based on Table 6.1.

The next table compares other criteria that I determined at the begin-
ning.

Both standards follow Fair Principles, differing only in a few points. You
can see them in Table 3.2. I used ratings at 3 levels (bad, good and very
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NIX/odML BIDS
Contributors 14 37
Commits 1709 1743
Watch 8 21
Star 13 91
Fork 22 67

Table 6.1: Compare NIX and BIDS by github criteria (size of community).

NIX/odML BIDS
Fair principles YES YES
standard description complexity good good
support of tools good very good
quality of documentation good good
suitability for our lab good very good

Table 6.2: Compare NIX and BIDS by selection criteria.

good) in Table 6.2. I did not use a bad evaluation even once, because all
the standards described in this thesis are of good quality. I decided between
good and very good based on the data I had to convert. So it was important
for me what suitable methods and tools the standard has for me.

I chose BIDS from the formats described above. One of the reasons is that
data from BrainVision format can be converted to BIDS format via MNE.
Data can also be converted to NIX format via MNE. That was one of the
factors why I decided between BIDS and NIX. But the BIDS format seems
more straightforward to me, because the BrainVision format is accepted as
one of BIDS default data format. NIX further parses BrainVision data, but
it is not necessary in most cases. NIX needs NEO to get the data into an
analytics tool. MNE is a very powerful tool that can work well with data and
since it is closely related to the BIDS format, I leaned towards this format.
In addition, the way through NIX has already been used at the university
in one diploma thesis, so I want to go a different way.

I also described tools that work with the described standards. As I
mentioned in the previous paragraph, MNE is closely related to BIDS, which
can be used to convert data from BrainVision to the BIDS standard. It
follows that I will use MNE for the conversion.
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Next, we need to save the data that we have converted to BIDS format to
a repository. A suitable repository is the G-Node’s hosted GIN repository.
In this repository, we can use the otherwise paid identification via DOI of
the dataset, which is a key part of compliance with FAIR principles.

An overview of all standards and repositories can be seen in Figure 6.1.

Figure 6.1: An overview of the standards, tools and repositories described
above. [38].

In the next chapter I will describe the solution using the selected stand-
ard, tools and repositories. The solution will be a python tool which will
convert data from the BrainVision format to BIDS and the resulting data
will be stored in a GIN repository.
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7 Implementation

In the previous chapters, we have described several standardization initiat-
ives and standards describing electrophysiological data, the tools that can
work with these standardization activities and we also mentioned repositor-
ies.

Now we move on to the implementation itself, when I convert BrainVision
data to BIDS format by Python tools. I will create a graphical user interface
for better user manipulation. So the user will easily convert BrainVision data
to BIDS format.

7.1 Conversion of dataset
Now when we have the BIDS data standard selected as a suitable replace-
ment for the BrainVision standard, we need to find a way to convert data
and metadata from the previous format to the selected one. The goal is
to design and implement a tool that converts data and metadata from the
BrainVision standard to the BIDS standard.

7.1.1 BrainVision data
The BrainVision data format consists of three files [39]:

• A text header file (.vhdr) containing metadata

• A text marker file (.vmrk) containing information about events in the
data

• A binary data file (.eeg) containing the voltage values of the EEG
signal

Both text files are based on the Microsoft Windows INI format consisting
of [39]:

• sections marked as [square brackets]

• comments marked as ; comment

• key-value pairs marked as key=value
In Figure 7.1 we can see that we have three separate files for each dataset.

It means that the single files have internal pointers to each other’s locations
(see the DataFile and MarkerFile keys in Figure 7.1 in red box) [39].
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Figure 7.1: Example of a text header file (.vhdr)

Structure of BrainVision dataset

The Neuroinformatics laboratory at the Faculty of Applied Sciences of the
University of West Bohemia uses the dataset structure you can see in Fig-
ure 7.2. Next I will describe the structure that can be seen in this Figure.
Each dataset contains one or more experiments. The experiment number

Figure 7.2: Directory structure of the BrainVision dataset used by the Labor-
atory of Neuroinformatics at the Faculty of Applied Sciences of the Univer-
sity of West Bohemia.

can be seen in the directory name. Each experiment contains directories
Data, License, Scenario and file metadata.xml. The Laboratory of Neuroin-
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formatics uses metadata.xml file to store metadata. This file follows the
odML structure.

The Data directory contains BrainVision data. The License directory
contains a license agreement in the form of a pdf file and the Scenario dir-
ectory contains scenarios describing the measurement process.

Conversion of BrainVision data

Each dataset contains one or more experiments. Each experiment contains
the three files listed above. To convert between the BrainVision standard
and the BIDS standard, we only need a text header file (.vhdr), from which
we can get a link to other two necessary files.

7.1.2 BIDS-EEG
The structure of the BIDS standard is described in subsection 3.3.1. Here
we describe the individual files that are in the BIDS directory tree.

As you can see in Figure 7.3, the root contains files describing the dataset
in general (“README”, “dataset_description.json”) and a file describing
the participants (“participants.tsv”) [13].

The EEG community uses a variety of formats for storing raw data, and
there is no single standard that all researchers agree on. For BIDS, EEG
data MUST be stored in one of the following formats [40]:

• European data format (.edf)

• BrainVision Core Data Format (.vhdr, .vmrk, .eeg) by Brain Products
GmbH

• The format used by the MATLAB toolbox EEGLAB (.set and .fdt
files)

• Biosemi data format (.bdf)

Figure 7.3 shows the European data format (.edf), but in our case we
will use the second option, it means BrainVision Core Data Format (.vhdr,
.vmrk, .eeg) by Brain ProductsGmbH.

In addition to these files, the eeg directory contains other files with a .tsv
and .json extension. These files (.tsv and .json) are BIDS metadata, which
makes them not only machine readable, but also human readable.

An important metadata file is the file with the suffix_eeg.json that spe-
cifies the task. Then there are the files that are recommended, such as
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suffix_channels.tsv. This file provides easily searchable information across
BIDS datasets for e.g., general curation, response to queries or batch ana-
lysis. The required columns are channel name, type and units in this spe-
cific order. To avoid confusion, the channels should be listed in the order
they appear in the EEG data file. Any number of additional columns may
be added to provide additional information about the channels. Electrode
positions should be added to suffix_electrodes.tsv. Coordinates are expec-
ted in cartesian coordinates according to the EEGCoordinateSystem and
EEGCoordinateSystemUnits fields in suffix_coordsystem.json. If an suf-
fix_electrodes.tsv file is specified, a suffix_coordsystem.json file must be
specified as well [40].

Figure 7.3: Exemplary EEG-BIDS dataset with previews of EEG files. The
left side of the figure shows a standard BIDS directory tree, The right side
of the figure shows the contents of the eeg modality directory. Figure shows
the European data format (.edf), but in our case we will use the second
option, it means BrainVision Core Data Format (.vhdr, .vmrk, .eeg) by
Brain ProductsGmbH. [13]
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7.1.3 MNE
As you can see in Figure 7.4, BIDS can communicate with MNE. We will
therefore use MNE to load data from the BrainVision format and then save
the data to the BIDS structure.

Figure 7.4: Component diagram of BIDS

MNE allows us to load BrainVision eeg data, which is a key component
for us when converting data to the BIDS format. To load the data we will
use the method:

• mne.io.read_raw_brainvision (vhdr_fname, eog = ’HEOGL’,
’HEOGR’, ’VEOGb’, misc = ’auto’, scale = 1.0, preload =
False, verbose = None)

I explained what the individual parameters mean in appendix A.
The method returns a Raw object containing BrainVision data. When

we have the data in the raw object, we can use the method from MNE-BIDS
that saves raw data to a BIDS-compliant folder structure. The method has
this form:

• mne_bids.write_raw_bids(raw, bids_basename, bids_root,
events_data=None, event_id=None, anonymize=None, over-
write=False, verbose=True)

I again described the individual parameters of the method in appendix A.
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After these actions, we have the data converted to BIDS format. Now we
still have to convert metadata from BrainVision format and odMl structure
to BIDS.

7.2 Conversion of metadata

7.2.1 BrainVision metadata
The Laboratory of Neuroinformatics use metadata.xml file to store metadata.
This file follows the odML structure.

7.2.2 BIDS metadata
Metadata in the BIDS format is stored in several files and has a given struc-
ture. These are the following files:

• *_eeg.json

• *_channels.tsv

• *_electrodes.tsv

• *_coordsystem.json

BIDS has clearly defined fields that must be listed in the above files, then
recommended and optional fields. We will describe the required fields.

*_eeg.json

This file should be present and has the following required fields:

• TaskName - Name of the task (for resting state use the rest prefix).
No two tasks should have the same name. The task label included in
the file name is derived from this TaskName field by removing all non-
alphanumeric ([a-zA-Z0-9]) characters. For example TaskName faces
n-back will correspond to task label facesnback [40].

• EEGReference - General description of the reference scheme used
and (when applicable) of location of the reference electrode in the raw
recordings (e.g., "left mastoid", "Cz", "CMS"). If different channels
have a different reference, this field should have a general description
and the channel specific reference should be defined in the _chan-
nels.tsv file [40].
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• SamplingFrequency - Sampling frequency (in Hz) of all the data in
the recording, regardless of their type (e.g., 2400) [40].

• PowerLineFrequency - Frequency (in Hz) of the power grid at the
geographical location of the EEG instrument (i.e., 50 or 60)[40].

• SoftwareFilters - A JSON object of temporal software filters applied,
or "n/a" if the data is not available. Each key:value pair in the JSON
object is a name of the filter and an object in which its parameters are
defined as key:value pairs. E.g., "Anti-aliasing filter": "half-amplitude
cutoff (Hz)": 500, "Roll-off": "6dB/Octave" [40].

*_channels.tsv

This file is recommended as it provides easily searchable information across
BIDS datasets for e.g., general curation, response to queries or batch ana-
lysis. The required columns are channel name, type and units in this specific
order. To avoid confusion, the channels should be listed in the order they ap-
pear in the EEG data file. Any number of additional columns may be added
to provide additional information about the channels. Note that electrode
positions should not be added to this file, but to *_electrodes.tsv [40].

*_electrodes.tsv

File that gives the location of EEG electrodes. Note that coordinates are
expected in cartesian coordinates according to the EEGCoordinateSystem
and EEGCoordinateSystemUnits fields in *_coordsystem.json. If an *_elec-
trodes.tsv file is specified, a *_coordsystem.json file must be specified as well.
The order of the required columns in the *_electrodes.tsv file must be as
listed below. This file has the following required fields [40]:

• name - Name of the electrode

• x - Recorded position along the x-axis

• y - Recorded position along the y-axis

• z - Recorded position along the z-axis

*_coordsystem.json

A *_coordsystem.json file is used to specify the fiducials, the location of
anatomical landmarks, and the coordinate system and units in which the
position of electrodes and landmarks is expressed. The *_coordsystem.json
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is required if the optional *_electrodes.tsv is specified. If a corresponding
anatomical MRI is available, the locations of landmarks and fiducials ac-
cording to that scan should also be stored in the *_T1w.json file which goes
alongside the MRI data [40]. This file has the following required fields:

• EEGCoordinateSystem - Refers to the coordinate system in which
the EEG electrode positions are to be interpreted [40].

• EEGCoordinateUnits - Units in which the coordinates that are lis-
ted in the field EEGCoordinateSystem are represented (e.g., "mm",
"cm")[40].

• EEGCoordinateSystemDescription - Free-form text description
of the coordinate system. May also include a link to a documentation
page or paper describing the system in greater detail [40].

In addition to these files, which are unique to each experiment, BIDS also
has files that are global to the entire dataset. The first such file is data-
set_description.json, which lists the authors, BIDS version, and dataset
name. Then there are the files participants.json and participants.tsv. The
participants.json file describes what the individual abbreviations in the par-
ticipants.tsv file mean. There is a table in the participants.tsv file, where
each row represents a participant in one experiment. The columns are par-
ticipants_id, age, sex, hand.

7.2.3 Conversion metadata from BrainVision to BIDS
As described in Subsection 7.1.3, the method from the MNE library con-
verts data from BrainVision to BIDS. However, this method also converts
some metadata that is discoverable from the *.vhdr file. Thanks to this, we
already get a BIDS structure with the required files. However, some fields
are empty because this data are not available from the .vhdr file. Unfilled
data must be obtained from the file metadata.xml, which contains all the
important information about the measurement. Then there is a .txt file that
has the same name as the .vhdr file. This file contains information about
the person being measured, such as gender, age and handedness. Because
it is not possible to map all the information from metadata.xml, this file
is additionally copied to the sourcedata directory, which BIDS recommends
for these cases so that no essential information is lost. In any case, some
information needed to be mapped to the BIDS structure. This mapping
has therefore been implemented and the created python tool can obtain
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important information from metadata.xml and add it to the BIDS struc-
ture. Specifically, these information are the names of the authors, the name
of the dataset and information about the participants. Another mapped
information are the EEGReference and EEGGround values found in the
sub-*_task-*_ eeg.json file.

7.3 Conversion tool
Libraries that can convert data between BrainVision format and BIDS format
are written in python. For this reason, the tool is also written in python.
The conversion tool consists of several classes. It contains a GUI class, which
mainly takes care of the graphical user interface, ie the visual part of the
tool. Furthermore, the BrainVisionConverter class, which has the task of
converting data from BrainVision to BIDS. The MetadataConvert class is
implemented for metadata conversion. The last class is the ProgressBar,
which starts the progress bar, ie shows the user how much of the conversion
is done. A more detailed description of the classes will follow. You can see
the class diagram in Figure 7.5

Figure 7.5: Class diagram of the conversion tool.
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7.3.1 GUI
This class provides a graphical user interface to make the application easier
for users. It contains methods that handle the buttons. These methods call
methods from other classes that convert the data. You can see the main
window of conversion tool in Figure 7.6

Figure 7.6: A tool window after its launch.

7.3.2 BrainVisionConverter
It uses methods from the MNE library to convert data from BrainVision to
BIDS. In addition, it adds data to the *_eeg.json file that was created by
the MNE method.

7.3.3 MetadataConvert
As mentioned in the previous chapter, metadata is stored in a metadata.xml
file and a .txt file. So there are methods in this class that get the necessary
data from these two files and store them in BIDS files.
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Specifically, these are methods that write data from a .txt file to parti-
cipants.tsv. These files are already described above, they are files in which
information about the participant of the experiment is stored. Furthermore,
the names of authors who are written to the dataset_description.json file
are obtained from the metadata.xml file.

There is also a method in this class that copies the metadata.xml file to
the sourcedata directory, where metadata are stored.

7.3.4 ProgressBar
The ProgressBar class shows the user how much of the conversion is done.
The class consists of a start method that starts a new window with a progress
bar, with a method that places this window in the center of the screen.
Furthermore, a method that updates the status of the progress bar and a
method that terminates the progress bar when finished.

7.4 Implementation summary
The MNE library was used to convert data from the BrainVision format
to the BIDS format. The methods from this library also created an entire
structure that did not have all the important fields filled in.

Therefore, it was necessary to retrieve metadata from other files and map
it to BIDS files. Not all metadata could be mapped, which doesn’t matter
because the BIDS format thought of it, and for these cases it allows you to
save metadata from other formats to the sourcedata directory, so we didn’t
lose any data during the conversion. In any case, some information needed
to be mapped to the BIDS structure. It was therefore necessary to study the
structure of BIDS metadata and the content of the metadata.xml file. I had
to derive some names because there was no match in the names in the BIDS
format and in the metadata.xml file, but it was the same data. Specifically,
the information from metadata.xml are the names of the authors, the name
of the dataset, the EEGReference and EEGGround values. Information
about participants (age, gender and handedness) from .txt file was used.
After finding out which metadata could be mapped, I had to implement this
mapping.

You can see the directory structure of the BIDS dataset after conver-
sion from the BrainVision dataset in Figure 7.7. The sourcedata directory
contains, as already mentioned, the metadata.xml files from the individual
experiments.
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You can see the directory structure of the BIDS dataset in illustrat-
ive Figure 7.3. It contains file in .edf format (European data format), but
our directory structure after conversion from the BrainVision dataset con-
tains instead the .edf file, .vhdr, .vmrk and .eeg files (BrainVision Core
Data Format). The sourcedata directory contains, as already mentioned,
the metadata.xml files from the individual experiments.

Then there are directories with individual experiments. The experiment
contains the file sub-*_scans.tsv, which is already described above, and the
subfolder eeg, which contains the files that are described in Section 7.1.2.
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Figure 7.7: Directory structure of the BIDS dataset after conversion from a
BrainVision dataset.

58



8 GIN repository

We need to save the data that we have converted to the BIDS format to a
repository. A suitable repository is the G-Node’s hosted GIN repository. In
this repository, we can use the otherwise paid identification of DOIdataset,
which is a key part of compliance with FAIR principles.

First, a new GIN account was created using the registration form; it
requires only username, password, and a valid email address, but adding
name and affiliation is recommended by GIN.

Furthermore, GIN-CLI was used, which is a command line client for
interfacing with repositories hosted on GIN. It offers a simplified interface
for downloading and uploading files from repositories hosted on GIN [41].
First, you have to log in to the GIN-CLI using the gin login command. Local
directory for the repository is initialized using the gin get command. Then
we move to the local directory. After that, the converted datasets can be
copied into this directory. Local gin commit adds all files with a descriptive
comment. In the last step, the local commit is uploaded into the remote
repository. All described steps are clearly visible in Listing 8.1

gin login
gin get lukko45 / dataset
cd dataset
gin commit --message "new dataset upload " .
gin upload

Listing 8.1: Step by step how to upload a dataset to a remote repository

In order to obtain a DOI, we need to have public repositories, which we
achieve by unchecking private in setting a repository in a gin environment.
In addition, we need to add the datacite.yml file into the root of the GIN
repository.

The datacite.yml file must contain at least the following entries:

• Authors - Authors are the main researchers involved in working on
the data, or the authors of the publication in order of priority. A first
and last name are required. Additionally, affiliation and ID (digital
identifier, e.g. ORCID) are highly recommended [42].

• Title - The title is the descriptive name of the dataset to be published.
Line breaks may not be used in the title field [42].
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• Description - The description contains extended information about
dataset [42].

• Keywords - The keywords entry should be used to list terms the
dataset is associated with [42].

• License - The license entry specifies the license under which the data-
set will be published [42].

References and funding may also be used to provide additional information.
You can see an example of datacite.yml in the yml code 8.1

1 authors:
2 -
3 firstname: "Lukas"
4 lastname: "Scurko"
5 affiliation: "Faculty of Applied Sciences,
6 University of West Bohemia"
7 id: "ORCID:0000-0001-2345-6789"
8

9 title: "PROJECT_DAYS_P3_NUMBERS"
10

11 description: |
12 PROJECT_DAYS_P3_NUMBERS
13 that was converted from BrainVision to BIDS.
14

15 keywords:
16 - Neuroscience
17 - Electrophysiology
18 - ERP
19

20 license:
21 name: "Creative Commons CC0 1.0 Public Domain Dedication"
22 url: "https://creativecommons.org/publicdomain/zero/1.0/"
23

24 resourcetype: Dataset
25

26 templateversion: 1.2

yml code 8.1: An example of a datacite.yml file
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Once a valid DataCite file named datacite.yml has been uploaded to the
root of a public repository, a preview of the contents is rendered below the
README section in the repository overview. A DOI is requested by clicking
the "Request DOI" button [42].
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9 Evaluation

In this chapter, we describe the code quality of the electrophysiological data
conversion tool.

The conversion tool should be tested at the level of static code analysis,
how well the code is written. Subsequently, the functionality of the code
should be tested. I will verify the functionality using unit tests. Finally, it
is necessary to verify that the converted data is really in the BIDS format
and this will be ensured by the BIDS validator.

9.1 Static analysis of the code
First of all, the code was checked by pep8. Pep81 is a tool to check the
Python code against some of the style conventions in PEP 8. Pep8 directly
underlines in the code the part that does not meet the given rules. This tool
defines and checks the conventions like Names to Avoid, ASCII Compatibil-
ity, Package and Module Names, Class Names, Type Variable Names, Excep-
tion Names,Global Variable Names,Function and Variable Names,Function
and Method Arguments, Method Names and Instance Variables, Constants,
Designing for Inheritance. You can read the description of these conventions
at the link in the footnote2. This tool did not find any error in the code.

Another static parser was pylint, which threw out a few warnings about
the use of global variables that are used in the code. If these warnings were
omitted, the code was rated 10 out of 10.

9.2 BIDS standard
The structure into which the implemented tool transferred data was tested
by the online BIDS Validator3. The entire dataset, which contained 251
experiments, was uploaded to the BIDS validator. The uploaded dataset was
the PROJECT_DAYS_P3_NUMBERS. This dataset passed the validator
without a single error. Furthermore, other datasets were created, to which
individual experiments were added and the result of the validator was the
same, ie 0 errors.

1https://www.python.org/dev/peps/pep-0008/.
2https://www.python.org/dev/peps/pep-0008/#naming-conventions.
3https://bids-standard.github.io/bids-validator/.
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9.3 UNIT tests
Unit tests have been written to check the individual methods. For unit
tests, two files are created that check if the methods are doing what they
are supposed to do. Methods for finding metadata.xml files, .vhdr files, and
.txt files that are needed for conversion have been tested. Furthermore, the
six methods that convert metadata from metadata.xml and .txt files have
been tested by unit tests.
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10 Conclusion

Standards for storing electrophysiological data were studied. The BIDS
standard was chosen from the analysis, which compared standards at both
the code and community levels and also compared the complexity of con-
verting current data to a given standard.

This standard has a specified structure into which the data needed to be
converted. The MNE library was used for this, which was used to convert
data and some metadata. Other metadata needed to be mapped according
to the BIDS specification. Metadata that could not be mapped was also
stored in the BIDS structure, as BIDS remembers these cases and allows
other standards to store metadata in the specified directory. As a result, no
data was lost. The BIDS structure was checked by a BIDS validator, which
did not find any errors.

A tool was implemented for the described data conversion and metadata.
The tool is written in python, supporting libraries such as MNE are also
written in python. A graphical user interface has been implemented to work
with the converter. The tool was tested with two static analyzers and unit
tests were also written. All code, including the necessary libraries, is stored
on github.

G-Node’s GIN was chosen to store the data. In this repository, we can
use the otherwise paid identification of DOIdataset, which is a key part of
compliance with FAIR principles.
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A MNE methods

The MNE methods that were used in the python tool to convert data from
the BrainVision standard to the BIDS standard are described in this chapter.

• mne.io.read_raw_brainvision (vhdr_fname, eog = ’HEOGL’,
’HEOGR’, ’VEOGb’, misc = ’auto’, scale = 1.0, preload =
False, verbose = None)

We will now explain what the individual parameters mean:

• vhdr_fname - Path to the EEG header file (.vhdr) [43].

• eog - Names of channels or list of indices that should be designated
EOG channels. Values should correspond to the vhdr file. Default is
(’HEOGL’, ’HEOGR’, ’VEOGb’) [43].

• misc - Names of channels or list of indices that should be designated
MISC channels (other analog channels for auxiliary signals). Values
should correspond to the electrodes in the vhdr file. If ‘auto’, units in
vhdr file are used for inferring misc channels. Default is ’auto’ [43].

• scale - The scaling factor for EEG data. Unless specified otherwise by
header file, units are in microvolts. Default scale factor is 1[43].

• preload - Preload data into memory for data manipulation and faster
indexing. If True, the data will be preloaded into memory (fast, re-
quires large amount of memory). If preload is a string, preload is the
file name of a memory-mapped file which is used to store the data on
the hard drive (slower, requires less memory) [43].

• verbose - If not None, override default verbose level [43].

The method returns a Raw object containing BrainVision data. When
we have the data in the raw object, we can use the method from MNE-BIDS
that saves raw data to a BIDS-compliant folder structure. The method has
this form:

• mne_bids.write_raw_bids(raw, bids_basename, bids_root,
events_data=None, event_id=None, anonymize=None, over-
write=False, verbose=True)
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We will again describe the individual parameters of the method:

• raw - The raw data. It must be an instance of mne.Raw. The data
should not be loaded from disk, i.e., raw.preload must be False [44].

• bids_basename - The base filename of the BIDS compatible files.
Typically, this can be generated using make_bids_basename [44].

• bids_root - The path of the root of the BIDS compatible folder. The
session and subject specific folders will be populated automatically by
parsing bids_basename [44].

• events_data - The events file. If a string or a Path object, specifies
the path of the events file. If an array, the MNE events array (shape
n_events, 3). If None, events will be inferred from the stim channel
using mne.find_events [44].

• event_id - The event id dict used to create a ‘trial_type’ column in
events.tsv [44].

• anonymize - If None is provided (default) no anonymization is per-
formed. If a dictionary is passed, data will be anonymized; identifying
data structures such as study date and time will be changed [44].

• overwrite - Whether to overwrite existing files or data in files. De-
faults to False. If overwrite is True, any existing files with the same
BIDS parameters will be overwritten with the exception of the par-
ticipants.tsv and scans.tsv files. For these files, parts of pre-existing
data that match the current data will be replaced. If overwrite is False,
no existing data will be overwritten or replaced [44].

• verbose - If verbose is True, this will print a snippet of the sidecar
files. If False, no content will be printed [44].
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B Converter user guide

A tool that converts data from the BrainVision format to BIDS is written
in Python 3.8. The tool is stored on the github (https://github.com/lukas-
45/Converter-BrainVision-to-BIDS). It is necessary to download repositories
to the local storage of your computer from the given url address.

B.1 Download python
You must have python installed for the tool to work. Everything was tested
on version 3.8. When installing, it is necessary to check the installation of
pip. So I will describe how to install Python 3.8.

B.1.1 Download and install Python 3.8
You can download the python 3.8 from the official website1. I downloaded
Windows x86 executable installer, but you can download this version for
other platforms as well. After download you can double-click to the exe file.
When the installation wizard starts, it is important to check the Add Python
3.8 to PATH option. You can see the installation window in Figure B.1.
Then you will follow the guide.

B.2 Install tool
After install Python, you can download the repository to the local repository.
It contains all the necessary files to run the tool. There is no need to install
the tool. You only need to open command line in the directory path, where
you have the conversion tool. You have to type the command which you can
see in Listing B.1

pip install mne

Listing B.1: Install the necessary library to run conversion tool

After install mne, you can run the conversion tool.
1https://www.python.org/downloads/release/python-380/.
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Figure B.1: A python installer window.

B.3 Run conversion tool
The conversion tool is started using the following command in the command
line on the directory path, where you have the conversion tool. You have to
type the command which you can see in Listing B.2.

python gui.py

Listing B.2: Run the conversion tool

After starting the tool, you will see the window which you can see in Fig-
ure B.2. We will now describe the individual parts of the window:

• Radio button(1) and radio button(5) are switches that determine whether
to add an entire dataset or just add experiment to an existing dataset.
If radio button(1) is active, then text field(2), button(3) and button(4)
are active. If radio button(5) is active, then button(6) and button(7)
are active.

• Number 2 - Here the user writes the name of the created dataset.

• Button and label(3) - Here the user selects the path to the directory
of the original BrainVision dataset using the button.

• Button and label(4) - Here the user uses the button to select the path
to the directory in which he wishes to save the newly created dataset.
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• Button and label(6) - Here the user selects the path to the directory
of the original BrainVision experiment using the button.

• Button and label(7) - Here the user uses the button to select the path
to the directory of the BIDS dataset.

• Convert data button(8) - The Convert data button converts data from
the BrainVision format to the BIDS format.

• Text area(9) - Here, the user will see all the experiments that are
loaded from the directory specified in label(3) or label(6)

• Clear exp button(10) - Here the user uses the button to clear an ex-
periment from the list.

• Clear all button(11) - Here the user uses the button to clear the list.

• Directory dataset path label(12) - Here the user can see the directory
dataset path.

Figure B.3 shows the window after filling in the required data. You can
see the window in Figure B.4 after pressing the Transfer data button. No-
tice that a pending window appears that shows how much data is already
converted. Also note that all buttons are locked so that the user cannot
change anything during the conversion. When the conversion is complete,
the buttons will be available again.
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Figure B.2: A tool window after its launch.
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Figure B.3: A tool window after filling in the required data.
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Figure B.4: A tool window after pressing the button Convert data.
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C Use case

In this section I will describe the directory, data and metadata structure
before and after the conversion.

C.1 BrainVision
Before the conversion, the data and metadata were in BrainVision and odml
standard. You can see the BrainVision directory structure in Figure 7.2. A
very important file for the conversion is the file with the .vhdr extension.
This file refers to two other files: .vmrk and .eeg. You can see the contents
of the file with .vhdr extension in Figure C.1. The convert tool uses .txt
file to fill information about participants to participants.tsv. You can see
the contents of the file with .txt extension in Figure C.3. The metadata.xml
file follows the odML structure. You can see an example of the structure of
metadata.xml in Figure C.2. This file contains all the important information
about the experiment.

C.2 BIDS
You can see the BIDS directory structure after conversion in Figure 7.7. The
individual files after conversion look as follows:

• dataset_description.json in Figure C.4

• participants.json in Figure C.5

• participants.tsv in Figure C.6

• sub-*_scans.tsv in Figure C.7

• sub-*_task-*_events.tsv in Figure C.8

• sub-*_task-*_channels.tsv in Figure C.9

• sub-*_task-*_eeg.json in Figure C.10
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Figure C.1: Content of .vhdr file. The file contains metadata.
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Figure C.2: Content of metadata.xml. The file contains metadata in odML
format.
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Figure C.3: Content of .txt file. The file contains information about parti-
cipants.

Figure C.4: Content of dataset_description file. The file contains informa-
tion about dataset (Name, version and authors).

Figure C.5: Content of participants.json file. The file contains the structure
of the Participants.tsv file.
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Figure C.6: Content of participants.tsv file. The file contains information
about participants. It means age, gender and handedness

Figure C.7: Content of scans.tsv file.
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Figure C.8: Content of events.tsv file.

Figure C.9: Content of channels.tsv file.

Figure C.10: Content of *eeg.json file.
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D Figures

Some of Figures that are referenced in the text are too large, so I decided
to attach them to appendices.

Figure D.1: Workflow of the MNE software. [45]
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Figure D.2: Data model of MNE

85



Figure D.3: Neo diagram. [46]
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