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Abstract

This work deals with the possibility of using neural networks for the repres-
entation of time-varying surfaces. The proposed method is based on the over-
fitting of a neural network in the regression of the signed distance function
of the surface. The proposed neural representation of dynamic surfaces was
tested on two different sequences of triangle meshes, and subsequently, other
techniques were proposed to improve the quality of the reconstructed surface.
The quality of the resulting representation was examined using a perceptual
metric for comparing surfaces. The results show good compression proper-
ties of the proposed representation of dynamic surfaces and demonstrate the
possibility of using this method for temporal super-resolution of the original
surface.

Abstrakt

Tato prace se zabyva moznosti pouziti neuronovych siti pro reprezentaci
casové proménnych povrchii. Navrzena metoda je zalozena na preuceni neu-
ronové sité pri regresi znaménkové vzdalenostni funkce povrchu. Navrzena
neuronova reprezentace dynamickych povrchli byla otestovana na dvou riiz-
nych sekvencich trojihelnikovych siti a nasledné byly navrzeny dalsi tech-
niky pro zlepseni kvality rekonstruovaného povrchu. Kvalita vysledné repre-
zentace byla prozkoumana s pouzitim percepéni metriky pro porovnavani
povrchu. Vysledky prace ukazuji dobré kompresni vlastnosti navrzené repre-
zentace dynamickych povrchit a demonstruji moznost pouziti této metody
pro zvyseni snimkové frekvence ptivodniho povrchu.
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1 Introduction

In computer graphics, computational geometry, and other scientific fields, we
often work with representations of three-dimensional objects. These repres-
entations can be generally divided into volume representations and surface
representations.

For volume representations, we are typically interested not only in the
shape of the object, but also in the values inside. These values can represent
the material composition of a given object, temperature, density, etc. A
typical example is an output of a CT or MRI scan, where we get values
of measured X-ray data for different points, and we can examine both the
shape of individual organs and their internal properties. On the other hand,
in the case of surface representations, we are exclusively interested in the
shape of a given object or its properties on the surface.

In the surface representation of an object, we have a choice of a number
of different methods. These methods could be further divided into mesh
methods based on a tessellation of the given surface into basic primitives.
In computer graphics, these meshes are most often made of triangles. On
the contrary, mesh-free (meshless) methods typically do not require any
tessellation. The advantage of mesh methods is their easy rendering and
their editing, while the advantage of meshfree methods is that they lead to
continuous and smooth representations, where we can easily interpolate the
data and they also offer a more compact representation of the surface.

However, the whole problem of surface representation can be further
complicated when we need to represent dynamic surfaces, i.e., surfaces which
shape changes over time. Recent research in the field of surface representa-
tion and machine learning has shown, that we can train neural network to
provide an implicit description of a static surface, so we can use this neural
network as a compact surface representation. The objective of this work is
to generalize the approach based on the use of neural networks to dynamic
surfaces and to study the properties of this representation.



2 Surfaces and their
representations

In the context of computer graphics, the term surface refers to an oriented
continuous 2D manifold in the space R®* [BKP*10]. In the case of R? a
manifold is a two-dimensional variaty or area. Otherwise, we can also char-
acterize the surface as the boundary of a three-dimensional body with a
non-zero volume. In this case, the surface is the interface between the inside
and outside of the body.

2.1 Parametric surfaces

Parametric surfaces are representations given by a function f : Q@ — S,
which assigns a specific point on the surface S = £(2) C R? to a 2D para-
meter from the set  C R? [BKP*10]. Parametric surfaces could be further
divided according to the type of parameterization into rational surfaces that
admits parameterizations by a rational function. Another group can be sur-
faces using spherical coordinates or surfaces using cylindrical coordinates.

An example of a parametric surface description can be a description of
a spherical surface. Such a description can be constructed, for example,
by rotating a circle around an axis that lies in the plane of the circle and
passes through its center. Let us have a parametric description of a unit
circle with a center at the beginning k(t) = [cos(t), sin(t)]T;t € (0, 7). Ro-
tating this circle by an angle 7 gives a description of the surface s(u,v) =
[cos(u)cos(v), sin(u)cos(v), sin(v)]";u € (0,27),v € (0,7), which will be a
spherical surface with radius » = 1 with the center at the origin [0, 0, 0]”
(see figure 2.1).

Equivalently, we can define a time-varying surface using a parametric
representation such as S(t) = f(Q,¢) C (R*) where the fourth component
of the vector in R?* represents the time. One of the possible advantages of
such a representation of dynamic surfaces is that the parametric function
is generally continuous with respect to the time parameter ¢, so we are not
limited by the finite frame rate when rendering the surface. The disadvant-
age is that finding such a representation of a dynamic surface is generally a
complex task and is therefore not widely used in practice.
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Figure 2.1: Example of spherical surface given by parametric representation.

2.2 Implicit surfaces

Another possible representation of surfaces is the so-called implicit descrip-
tion, which are defined as a set of points £ € R3 for which function F :
R3® — R takes the value zero. We can descripbe a surface S as S = {x €
R3| F(x) = 0} [BKP*10]. In general, we can also describe the implicit surface
as F(x) = h,h € R, according to the specific choice of the associated value
h, we then obtain the equations of the so-called iso-surfaces. An example of
an implicit surface description can also be an equation describing the surface
of a sphere. E.g. the surface of a sphere with a center at the origin and a
radius r = 1 is described by the equation. (2.1) Such a description thus
corresponds to the parametric description of the sphere shown in the figure
2.1

One of the advantages of the implicit description is the possibility of
visualizing the surface section by substituting a constant value ¢ € R for
one of the coordinates z,y, z. In this section, we can also easily show the
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relationship between the associated values of the implicit description and a
given iso-surface. Section of a unit sphere obtained by fixing a coordinate
y = 0 can be seen in the figure 2.2. The slice corresponding to the associated
value h = 0 is highlighted with red color in the figure, the other slices are
graded with step 1.

Z

Figure 2.2: Iso-surfaces visualisation of implicit sphere description.

Flz)=2> 4+ +2°—1=0 (2.1)

Equivalently, as in the case of a parametric representation, we can define
a time-varying surface in an implicit representation by adding a time para-
meter ¢ € R to the function F, as shows equation (2.2). Even here, however,
finding a function F'(x,t) representing a given surface is very difficult.

F(z,t) =0 (2.2)
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2.3 Triangle meshes

Triangle meshes are a commonly used representation of surfaces. This is
a special case of so-called polygonal meshes, which is an approximation of
a surface using a set of polygons. Triangle mesh M is given by the set of
vertices V), the set of triangle faces F and the set of edges £. Any point p on
the surface, which is represented by a triangle mesh can be expressed as a
point within a relevant triangle face with vertices [a, b, ¢] using barycentric
coordinates [« 3,7], as shows equation (2.3).

p = aa + b+ e,

a+p+y=1, (2.3)

a,f,7=0

Furthermore, it is appropriate to introduce the concept of a manifold

in the context of a triangle mesh. In order to declare a triangle mesh to
be a manifold, it must satisfy the condition that each inner point on the
surface is locally homeomorphic to a disc, if it is a point that lies on the
surface boundary, the point must be locally homeomorphic to a half-disc.
This statement is then equivalent to the statement that a triangle mesh is
a manifold if it does not contain so-called non-manifold vertices (see figure
2.3 on the left and on the right), non-manifold edges (viz obr. 2.3 in the
middle) and no two faces intersect.

Figure 2.3: Representation of non-manifold triangle meshes.

As in the case of parametric and implicit descriptions, we can also use
triangle meshes to represent time-varying surfaces. One possibility is to
represent the surface as a sequence of static triangle meshes. The advantage
of this representation is that such triangle meshes are generally not subject
to any special requirements. The disadvantage, however, is that when using
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a sequence of triangles, we do not have the possibility of interpolating the
surface over time. All information about the surface is only determined at
times that correspond to the given frames.

The second option is to separate the geometry and connectivity of the
triangle mesh. By the geometry of a triangle mesh, we mean the positions
of the vertices of the mesh in space, while by connectivity we mean how
the vertices of the network are connected by edges and faces. If we want
to represent a time-varying surface, we can construct the connectivity of
a triangle mesh that will be the same at all times and only the geometry
will change. This method of representation is widely used in practice, for
example in cases where we animate an originally static mesh. The animator
can use the so-called skeleton of the model. It is a hierarchical structure,
most often formed by a set of line segments. For each vertex of the triangle
mesh, we then introduce an ordered set of weights, which determines how
much the position of the given vertex is tied to the position of the given
skeleton element of the model. We can then easily create the animation
by determining only the way in which the skeleton of the model moves and
calculating the positions of the individual vertices.

Of course, even in such case, we can sample the representation in time
and obtain a representation formed by a sequence of triangle meshes. It
follows, therefore, that the representation by a mesh sequence is in a sense
more general, since it does not impose a condition on the same connectivity
of the mesh at different times.

2.4 Signed distance function

Signed distance function (or oriented distance function) is generally a func-
tion, which we define in a metric space, which for each element from the
space assignes a numerical value, whose absolute value corresponds to the
distance of the given element from the boundary of the set €2 and whose
sign corresponds to whether the element lies within the set {2, or outside.
We can write that the signed distance function sdf(x) is given by formula
(2.4), where 052 is the boundary of the set Q and d(z1,x2) is the distance
between points &1 and x5 according to the metric in this space.

d(xz,0Q) if e
sdf (@) = {—d(m,&ﬂ) if 2eQC (2.4)
d(z,09Q) = inf,cq d(x, p)
Thus, we can use the signed distance function as a representation of a
surface so that for a set {2 by marking all points within the surface 2 = S
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and distance d(x1,xs), where x1, T2 € R, we define as Euclidean distance
according to equation (2.5).

d(x1, @2) = \/(961 —22)? + (y1 — 92)? + (21 — 22)? (2.5)

In such a case, the signed distance function is actually only a special

case of the implicit description of the surface, since the set of points S C R3,

where each point s € S, for which this function takes the value 0 sdf(s) = 0,

gives the original surface S. An example of the SDF function of a three-
dimensional surface is shown in Figure 2.4.

& it8 . Decision
___ boundary
e of implicit

L]
o1 N surface

L ] [ ]
¢« SDF <0
L]

°® e
@ SDF >0

Figure 2.4: Signed distance function of the bunny surface. The signed dis-
tance function is zero on the surface of the bunny, positive inside (red region)
and negative outside (blue region). [PFS*19]

As in the previous cases, in principle, there is nothing to prevent us from
using a signed distance function to represent a dynamic surface by sampling
the surface described by one of the above representations at different times.
The possibilities of calculating signed distance function from another surface
representation are further discussed in the section 5.1.

2.5 Conversions between representations

In general, of course, it is possible to represent one surface in several different
ways, and there are therefore methods for converting individual representa-
tions. For example, a surface described by a parametric equation can gener-
ally be converted to an implicit surface equation. We achieve this in such a
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way that we try to express the parameters of the given parametric equations
from d — 1 equations, where d is the dimension of the given space, and we
substitute them into the last equation. In this way, we can get a different
representation of exactly the same surface, however, finding the analytical
formula of the implicit function in this way can be a rather complex prob-
lem. Therefore, it is often more appropriate to only approximate the original
surface, which gives a surface that differs slightly from the original, however,
the whole process of conversion can be significantly simplified.

Further in this work, for the purposes of experiments, we will deal with
the need to convert the implicit surface representation to a triangle mesh.
There are several algorithms often used in practice for this conversion.
One of the most commonly used algorithms is the Marching Cubes [LC87]
method. The Marching cubes algorithm is based on a division of the space
in which the surface is located in a grid. This grid is further traversed by in-
dividual cubes, and in each cube the vertices are classified based on whether
they are above or below the surface to be treated. Since the number of
vertices of a cube is finite (8 vertices) and only two cases can occur in each
vertex, the number of ways in which the surface that we approximate in a
given cube by a set of triangles passes through a given cube is also finite.
Thus, this set of triangles is added whose vertices are calculated by iterpol-
ating the associated value of the implicit function in the vertices of the cube.
After passing through the whole grid, we get a set of vertices and triangle
faces, including their orientation, which therefore defines the given triangle
mesh.

2.6 Overfit SDF

Overfit SDF, also called a neural implicit, is a way of representing a surface
by regressing the signed distance function using an artificial neural network.
An artificial neural network is a type of computational model in the field of
machine learning. The model for the creation of artificial neural networks
are biological structures formed by neurons and dendrites. Based on this
template, McCulloch and Pitts [MP88] described the artificial neuron model
currently used by most artificial neural networks. This artificial neuron
can be described as the transformation of the input « to the output Y by
equation (2.6), where w; are the synaptic weights, © is the threshold of the
neuron and S(z) is the activation function of the neuron.

Y = S (wiz) + ©) (2.6)
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By connecting artificial neurons into layers and chaining them, structures
are created that we can use for solving complex regression or classification
problems. Thanks to this, todays artificial neural networks are used in
various fields, including computer graphics.

A forward neural network can be used to approximate the signed distance
function of the surface, which means that the network contains several lin-
early concatenated layers, where the input of a neuron is the output of the
neurons in the previous layer. Such a network usually has 3 inputs, which are
formed by the coordinates of the points =, y and z. The output of the neural
network then represents an approximation of the signed distance function
at this point. The network contains several hidden layers, typically with
ReLU activation functions, and a hyperbolic tangent is used as the output
function.

The results that can be achieved by surface representation using SDF
overfit are shown in the work of T. Davies et al. [DNJ21]. They introduced
a suite of technical contributions to improve reconstruction accuracy, con-
vergence, and robustness when learning the signed distance field induced by
a polygon mesh and demonstrated robustness, scalability, and performance
of this representation.

Based on the results obtained using neural networks in the representation
of static surfaces, the question arises whether it is possible to use neural
networks for the representation of time-varying surfaces. Investigation of
possible approaches to the use of neural networks in the representation of
dynamic surfaces is the subject of this work.
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3 Related work

As in other application areas, neural networks are increasingly used in a
wide range of possible applications. One of this possible application is field
of shape representation in computer graphics.

An interesting use of neural networks for shape representation was in-
troduced in the work of Park et al. [PFS*19]. In contrast to the usual
representation of a static surface using DeepSDF, where the neural network
is overfitted with signed distance function data of one particular surface, the
model described in this work allows to extend the generalization capabilities
of the representation using an auto-encoder neural network of a given shape.
Using this auto-encoder, the shape is converted to a code vector. When we
then train the neural representation itself, we create a prediction of the SDF
function not only using the coordinates of the given box, but also on the
basis of this code vector (see Fig. 3.1).

Input Output

Code
(xy2) [ (] sDF E Code E D [ soF
(xy,2)

Figure 3.1: Left: Basic DeepSDF representation of single shape. Middle:
Auto-encoder. Right: Coded shape DeepSDF. [PFS*19]

The improvement of the results achieved by the use of neural networks
in the representation of surfaces using special periodic activation functions
was recently described in the work of Sitzmann et al. [SMB*20]. In contrast
to previously commonly used functions for the representation of shapes such
as ReLLU, TanH, or radial basis functions, the authors use SIRENE architec-
ture. This architecture uses the sine as a periodic activation function (see
Equations (3.1) and (3.2)).

P(x) = Wy(dp-10¢n20...0¢)(x) + by, (3.1)

Experiments in their work demonstrated, that the proposed SIREN rep-

resentation enables accurate representations of natural signals, such as im-
ages, audio, and video in a deep learning framework.
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Another approach was described in the work of Mescheder et al. [MON*19].
They use occupancy neural networks to represent a given shapes. They are
using neural network to approximate occupancy function fg, which assignes
probability of occupancy to every possible point x € R3 (see Eq. (3.3)).
Occupancy values is then 0 or 1 depending on whether point x lies outside
or inside of given shape. They proved that occupancy networks are very
expensive, but when the position of points used for training of network is
not discretized, it can be used to represent realistic high-resolution meshes.

fo : R* —0,1] (3.3)

In contrast to most other representations, [AL20] et al. in their work they
introduced the use of sign agnostic learning for the representation of static
surfaces. The advantage of using sign agnostic learning is that it does not
require information during training whether a given point is inside or outside
the surface, which is represented by a sign of a given value when using SDF.
For training of their neural representation they used loss function showed in
Eq. (3.4).

l0ss(®) = E,ups7(f(x,0), hs(x)) (3.4)

Where © are weights of neural network, f : R3 x R™ — R is the sur-
face approximating function of neural network. Function hg(x) measures
unsigned distance of point x from the surface and 7(a,b) is differentiable
unsigned similiarity function defined bz the properies described in Equa-
tions (3.5) and (3.6). Condition shown in Eq. (3.5) means that similiarity
function must be sign agnostic and condition shown in Eq. (3.6) requires
that similiarity function is monotonic. Function p : R — R is monotonically
increasing function with p(0) = 0.

7(—a,b) = 7(a,b),YVa e R,b e Ry (3.5)
or
%(a, b) = p(a—b),Ya,b € R, (3.6)

The work of Tancik et al. [TSM*20b] showed that to achieve better
results when using neural networks to represent coordinate based data, it is
possible to use the transformation of feature vectors using Fourier features
mapping. The experiments performed in this work show the advantages
of using Fourier features in the approximation of high-frequency signals of
various kinds, such as image, MRI data and shapes.
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The advantages of using neural implicit surface representation are in-
vestigated in the work of Davies et al. [DNJ21] especially in terms of its
compressive properties. Other techniques for improving results such as the
use of SIREN activations and Fourier features mapping are also mentioned
in this work. The work discusses the approach of how to sample triangle
meshes into SDF. The basic ideas for generalizing the neural representation
for the time-varying surface, which this work deals with, were drawn from
their results.
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4 Proposed time-varying
representation

In this work, several possible approaches to the application of neural net-
works in the representation of time-varying surfaces were designed and tested
for comparison. The following sections describe the neural representation for
dynamic surfaces and possible approaches to further improve results of this
representation. Examination of results of this representation is shown in the
Chapter 8.

4.1 Dynamic neural implicit representation

As in the case of the representation of a static surface, in the case of a
dynamic surface we can construct a neural network that approximates the
SDF of a given surface. However, since SDF is time-varying in the case of the
dynamic surface, we must increase the dimension of the feature space by the
time component. Thus, the feature space consists of 4-component vectors
(x,y, z,t). Furthermore, the network contains several inner dense layers and
the output layer is again formed by one neuron, because the output of the
neural network for a given feature vector will be an approximate value of
the SDF at the given point and time.

As an activation function of the inner layers, it is possible to use the ReLLU
function as in the representation of static surfaces in [DNJ21]. Similarly, the
hyperbolic tangent activation function is used for the output neuron.

Since the regression of the time-varying SDF is a significantly more com-
plex task than the regression of the static SDF, it can be expected that the
complexity of the neural network used will have to be greater than when
representing static surfaces, since a static surface is a 2D variety in a 3D
space, while a dynamic surface is a 3D variety in 4D space. The dimension
of the whole problem is therefore higher. For this reason, neural networks
with approximately 16 inner layers of 256 neurons per layer are used in the
experiments described in Chapter 8. The structure of the neural network
used is shown in figure 4.1.

The Adam algorithm [KB17], which is the first-order gradient-based op-
timization of stochastic objective functions algorithm, is used for neural
network training.
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Figure 4.1: Structure of neural network used for dynamic surface represent-
ation.

Another key hyperparameter when using a neural network is the choice
of the correct loss function. The aim of the loss function is to penalize
the current parameters of a given neural network based on the error that
the neural network makes when regressing on a training dateset. By neural
network parameters, we mean the weights of individual neurons. The process
of training a neural network then consists of minimizing this function by
finding the optimal weights of its neurons. When using a neural network to
represent a dynamic surface, it is appropriate to use Mean Absolute Error
(MAE) as a loss function, as with the representation of static surfaces.

It is important to note that when using a neural network to represent a
surface, unlike most other tasks, we try to overfit the neural network on data
corresponding to one particular surface, while in most other applications we
try to avoid overfitting the neural network.

4.2 Surface sensitive loss function

One of the possibilities that can lead to a more accurate approximation or
faster convergence to the optimal setting of the neural network weights when
using neural networks is to try to design a loss function that better corres-
ponds to the problem at hand. It is therefore worth considering whether,
even if a neural network is used to approximate the SDF dynamic surface,
it is not possible to propose a loss function that could lead to better results
than MAE.

In this work, a loss function was designed, which is based on the prop-
erties of the approximated SDF and the knowledge of how the surface is
retrospectively reconstructed when using the neural network. When re-
constructing the approximated dynamic surface from the implicit function

22



f(x,t), we perform iso-surface extraction at level zero. When converting the
implicit surface representation to a triangle mesh, a set of vertices is created
where the function f(x,t) = 0. The idea behind the creation of the new
loss function is that for this reason it would be good for the approximation
of the implicit function f(x,t) to be as accurate as possible just near the
zero iso-surface, where the approximation error causes a deformation of the
resulting surface. Conversely, at points farther from the zero iso-area, we
do not mind the approximation error, unless it causes a change in the sign
of the approximated SDF. If the sign was changed in a place where the ori-
ginal surface was not, it would mean that artifacts in the form of unwanted
triangle faces would be created during the reconstruction of the surface.

Based on these requirements, we can construct a function that depends
on the absolute value of difference beween the true value y;,... and predicted
value Ypreq, as well as the MAE, near the approximate surface. It will also
take on which value for points where the sign of the true and predicted value
differs. But at points that lie farther from the surface, and the predicted and
true values here have the same sign, the loss function will yield zero. Due to
the fact that the approximated SDF itself acquires values corresponding to
the distance of a given point from the surface, its value can be used to find
out how far a given point is from a given surface when calculating the loss
function. As in the calculation of MAE, we use the arithmetic mean when
comparing multiple samples. We can therefore define this function by an
Eq (4.1), where § > 0 is a parameter defining the distance from the surface
at which we consider points to be close enough to penalize an error in the
approximation of their SDF and n is number of samples.

’ytrue - ypred’ when ‘(ytrue‘ < 5

1 [Ytrue — Yprea| — When |[(Yprea| < 0
l rues . —— rue pre pre 4'1
OSS<yt e> Yp ed) Z |ytrue _ ypred| when Yirue - Ypred < 0 ( )

0 otherwise

(ytrue 7yp’r‘€d)

In order to be able to effectively quantify such a loss function when train-
ing a neural network, we will convert it to a more suitable form using the
signum function. Thanks to this, it is possible to calculate this function for
the whole set of pairs of true and predicted values of elementary operations,
which will ensure a sufficiently efficient calculation. We will replace indi-
vidual conditions by expressions c;, c¢o, and c3. We negate the conditions,
and say that these terms will take the value 0 if the prediction is to be pen-
alized on the basis of the relevant condition, and 1 if there is no reason to
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penalize the prediction. We obtain the following Eq. (4.2).

1
lOSS(ytru67 ypred) = E Z (1 - 610263) |ytrue - ypred| (42)

(ytrue 7yp7"ed)

The conditions themselves can then be written using Equations (4.3),

(4.4) and (4.5).

1
C1 (ytruea ypred) = ’2 (Sgn(ytrue> + Sg'n(ypred)) (43)
1 1
C2(ytruea 5) = §Sgn(‘ytrue’ - 5) 5 (44)
1

1
CS(ypred> 5) = 739”(‘ypred‘ - 5) + (45)

2 2

Such a function can already be calculated very easily when training a
neural network, however, the problem is that this function is neither differ-
entiable nor continuous, which could cause problems in optimizing the error
function.

However, we can relatively easily modify this function by using a suitable
blending function b(z) instead of the signum function. This function, like
the signum function, should be odd, for values of the argument going to
negative infinity it should take the values -1 (see Eq. (4.6)) and for values
going to positive infinity it should take the values 1 (see Eq. (4.7)). This
function should of course be continuous.

xEIElOO b(x) =—1 (4.6)
:L‘ggloo b(z) =1 (4.7)

The hyperbolic tangent function satisfies these conditions. Therefore, we
replace the signum function with the function shown in Eq. (4.8), using the
s parameter, which affects the slope of the function.

b(x) = tanh(s - x) (4.8)

The resulting condition terms are then given in the form shown in Equa-
tions (4.9), (4.10) and (4.11). The shape of this function for one sample can
then be seen in Fig. 4.2 and Fig. 4.3, where the levels of this function are
shown.
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1
C1 (ytruea ypred) - 5 (tanh(s ' ytrue) + tanh<3 ' ypred)) (49)

1
C2(Yerue, ) = Stanh(s - [Yurue| = 9) + (4.10)

N =D =

1
3 (Ypred, 0) = §tanh(s NYprea| — ) + (4.11)

(ytrue’ypred)

loss

Figure 4.2: Shape of proposed surface sensitive function.

4.3 Weights compression

By using neural data alone, it is possible to achieve a compact representation
of the dynamic surface compared to a sequence of triangle meshes. Further-
more, we can consider whether it would be possible to further compress the
trained neural network and thus achieve even greater data savings.
Consider a sequence of triangle meshes of n frames. Each frame is formed
by a mesh described by a set of vertices V; and a set of triangle faces F;. If
we store these meshes using an indexed face list, where we use 32-bit float
point numbers to describe the coordinates of individual vertices and use a
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Figure 4.3: Levels of proposed surface sensitive function.

32-bit integers to store vertex indices, we can calculate the total size of this
sequence using an Eq. (4.12).

n
size =Y 3-32-|V;| +3-32-|F| (4.12)
i=1

In the case where we convert the dynamic surface to a neural repres-
entation, we need to store the neural network weights and the constants
used in normalization. If we store all sequences using a model with the
same hyperparameters, we can consider other network settings as implicit
knowledge and we do not have to store it. The normalization constants are
then significantly smaller than the weights of the neural network, so we can
neglect them when calculating the compression. For example, a neural net-
work with 16 hidden layers with 265 neurons and one output layer with one
neuron then contains 988,417 weights. These weights can then be stored as
32-bit floating point numbers.

In the case of triangle meshes compression, quantization is often used.
Quantization is a process in which real numbers represented by floating point
numbers are divided into a number of quantization levels, which rounds the
values. These values are then represented by integers, the magnitude of
which depends on the number of quantization levels used. When quantizing
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a generally arbitrary signal, due to the rounding of the value we distort the
original signal. This distortion is called quantization noise. Thus, signal
quantization represents a lossy compression. In the experiments presented
in the Chapter 8, it is investigated whether it is possible to use quantization
for the compression of neural network weights and what impact this quant-
ization has on the resulting dynamic surface. Furthermore, the possibilities
of using a lossless compression algorithm for further compression of already
quantized data are investigated within these experiments. For this purpose,
compression by the ZIP algorithm was chosen.

When quantizing, we start from how many bits we want to represent the
resulting weights. If we want to compress the original 32-bit weights w; into
k-bit numbers using quantization, we get 2* quantization layers. Then we
can compute size of quantization layers g using Eq. (4.13). The quantization
itself is then performed using the Eq. (4.14).

mazx;(w;) — min;(w;)

o (4.13)

q:

w; — min;(w;)
q

W; = round( ) (4.14)
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5 Data preprocessing

This chapter deals with surface sampling and calculation of the signed dis-
tance function and data preprocessing methods, which were used in the ex-
periments. It is mainly the normalization of inputs and the transformation
of features into feature spaces of higher dimension.

5.1 Triangle mesh sampling

As part of training neural networks for surface representation, it is necessary
to first sample the original surface. It is therefore necessary to generate the
positions of points in space and calculate the value of the signed distance
function at these points with respect to the given surface. Specifically, in
our case, we will deal with sampling of triangle meshes.

When using the naive approach for triangle mesh sampling, we have a
relatively simple algorithm. First, we generate the coordinates of the point
x as a random vector in the bounding box of a triangle mesh extended by
a sufficiently large edge in each direction. Next, at each of these points, we
calculate the distance from all the triangle faces that make up the triangle
mesh and keep the minimum. Then we have to determine on which side our
generated point with respect to the surface, in order to determine whether
the resulting signed distance should have a positive or a negative sign. If
we are working with a closed surface, we only need to go through all the
triangle faces again and calculate whether the number of intersections with
a ray leading from the point x is even or odd. This approach gives correct
results, however, its computational complexity is too great and triangle mesh
sampling would take too long. In addition, the generation of samples from
the uniform distribution given by the bounding box mesh is usually not very
efficient due to the fact that when extracting the iso-surface of the signed
distance approximation function when rendering the surface, we need high
accuracy close to the surface.

In order to achieve a high accuracy of the approximation close to the
surface, we need to generate more samples there and with increasing distance
from the surface we want the number of samples to decrease. This is achieved
by generating samples from the even distribution given by the bounding
box mesh, as in the naive approach, however, immediately after generating
the sample and calculating the distance form the surface, we calculate the
probability whether this point should be used or not. The probability of
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preserving the sample is calculated based on the distance of the point from
the surface d(x,S) and the coefficient k according to the formula (5.1). This
formula describes a radial function that determines how the probability of
maintaining a sample with increasing distance from the surface will decrease.
The shape of the function is shown in the figure 5.1.

02 L 1 L L L
-15 -1 -05 0 05 1 15
distance

Figure 5.1: Example of sample preservation probability function for k£ = 1.

p =exp(—k-d(x,S)) (5.1)

For an easier setting of the parameter k, we express k depending on the
distance dy 5 in which we want the probability of receiving the sample to be
equal to the value 0.5. (5.2)

(5.2)

To speed up the calculation of the distance from the surface, a structure
based on octree bounding volumes hierarchy of triangle faces is used, which
allows us to avoid testing all triangle faces. Before sampling the triangle
mesh, we create an octree, where each of its nodes contains a set of triangle
faces and at the same time information about the bounding box of these
faces. The construction of the octree takes place from top to bottom. At
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the beginning all, the triangle faces are placed in the root of the tree. Next,
the bounding box aligned with the axes of these faces is calculated. This
bounding box is divided into eight identical cells, and faces are assigned to
these cells cells that it at least partially intersects. The bounding box of the
cell is then enlarged to such dimensions that all the faces assigned to this
cell are completely inside the cell. These eight cells form the children nodes
of the root in the tree structure. This procedure is recursively repeated for
all descendants until the number of triangle faces in the cell is zero or the
maximum depth of the tree is exceeded.

Thanks to the tree created in this way, we can gradually update the
upper estimate of the minimum distance of the point to the surface and
thus avoid calculating the distance from triangle faces, for which we know
that the distance to them cannot be lower, because the minimum distance
to their bounding box is greater than the current upper estimate.

When calculating the minimum distance between a point in space and a
triangle face, there can be three cases, which can be distinguished according
to whether the nearest point on the triangle is at its vertex, on an edge, or
inside the face. If we project a given point into the plane of the triangle, we
can easily recognize these cases (see figure 5.2).

Depending on whether the nearest point on the triangle face lies at the
vertex, at its edge, or inside the face, we use different methods to determine
whether the point is inside or outside the surface, so we use these methods
to determine the sign of the resulting SDF value.

If the nearest point y on the surface of the triangle mesh to the point
x where the sampling takes place is located inside the triangle face, we can
determine the sign based on the normal of the given face. Let vy, vy and
vs be the vertices of a given triangle face. The unit length normal n of this
face can then be determined using a cross product, as you can see in the
Equation (5.3).

_ (vo —vi) X (V3 —vy)
[(va = v1) x (vg = v1)|

If the condition that all trianke faces have the same counter clock wise

(5.3)

orientation is met, then this normal vector always points outwards from the
surface. The sign of the SDF itself can then be determined using the dot
product of the normal vector n and the vector from point y to point x (see
Eq. (5.4)).

sign = —sgn(n - (x —y)) (5.4)

If the nearest point y lies on the edge of triangle face F, we can determine
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the sign of the SDF by whether the edge is convex or concave. We find the
convexity of this edge on the basis of the dihedral angle, which is the angle
between two incident faces. The opossite face Fpposite is thus obtained by
using the EF query, this is a query that finds the faces incidend with give
edge. In order to determine the sign, we do not need to know the exact
size of the dihedral angle, but only whether it is greater or less than 180
degrees. This can be found, for example, by calculating the barycenter b of
the opposite face Fpposite With vertices u;, us and uz (see Eq. (5.5)) and
substituting into the normal equation the plane given by the triangle face F
(see Eq. (5.6)). Component d in the normal equation of the plane can be
computed at point y, since we know it lies in that plane (see Eq. (5.7)). If
this result is positive, then the point x lies inside and the sign of the SDF
will be positive. When the result is negative, then the point x lies outside
the given surface and the sign of the SDF will be negative.

u; + us + us

b= 5.5
: (5.5)

Nyby + nyby +n2b, +d (5.6)
d = —NgYy — NyYy — N2Y» (5.7)

In the last case, if the point y lies in the vertex of the triangle face
F, we can estimate the vertex normal direction and use dot product to
determine the sign of the SDF. Since here we estimate the normal at a
vertex, this approach may not be 100% accurate. However, in the course of
the experiments performed, it turned out that the number of cases in which
the sign of SDF is incorrectly determined in this way is negligible. We can
compute mean curvature vector of given vertex using the dictrete Laplace
operator. Specifically, cotan Laplacian is used in this work [MDSBO01]. For
an overview of the sampling algorithm see Algorithm 1.

5.2 Data normalization

In the experiments using a neural network to represent dynamic surfaces, it
has turned out that normalization of the data during the experiment stages is
extremely important in terms of the quality of the resulting representation.
Therefore, the whole process of creating a neural representation includes
three stages of normalization, namely normalization of the geometry of the
input sequence of triangle meshes, normalization of the SDF values, and
normalization of time.
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Algorithm 1: Triangle mesh SDF sampling algorithm.

In: Mesh sequence SEQ]]
Result: SDF samples SDF]
for M in SEQ do

aabb := BoundingBox(M)
oct := Octree(M)

for i=1, ..., samples per frame do
x := generatePointInBoundingBox(aabb)

y, face, edge, case := oct.nearestPoint(x)
dist := d(y, x)

probability := p(dist)

if probability > random(0,1) then

| continue
end
if case == Vertex then

¢ := meanCurvatureNormal(y)
inside := dot(c, face.normal) > 0
end
if case == Edge then
neighbor := findOppositeFace(M, face, edge)
b := barycenter(neighbor.face)
inside := pointIsAbovePlane(b, face)

end
if case == Face then
| inside := IpointIsAbovePlate(y, face)
end
if inside then
| dist := -dist
end
SEQ.add(x, i, dist)
end
end
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Figure 5.2: Visualisation of areas corresponding to their nearest point.

5.2.1 Mesh normalization

The first level of normalization takes place after loading the input sequence
of triangle meshes. A bounding box is constructed from the loaded sequence
as a set of values T,in, Tmaz, Ymin, Ymaz, Zmin, 2mae that are calculated as the
minima and maxima of the coordinates of the individual vertices of the
triangle meshes across the entire sequence. From this bounding box, the
length d of its diagonal is calculated using Eq. (5.8).

d - \/(‘CljmaﬂC - x%nm + (ymaz - ymin)2 + (Zmax - Zmin)2 (58)

The goal of this normalization is to center the entire sequence of triangle
meshes and to proportionaly scale it according to the size of the bounding
box diagonal. If we centered each mesh separately, we would create dis-
continuities with respect to the time variable of the dynamic surface and it
would therefore not be possible to represent it with a continuous function.
The position of each vertex in the sequence of triangle meshes is normalized
using the Eq. (5.9), normalization of y and z coordinates is the equivalent.

T — Tmin Tmaz — Tmin
norm — 5.9
‘ d 2d (5.9)

5.2.2 SDF normalization

After sampling the input sequence of triangle meshes, we get a set of 5-
component vectors (x,y, z, t, sdf (x, z,y,t)) that contain the SDF value for a
specific point at a specific time. These SDF values are further normalized
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to the interval [—1, 1] using Eq. (5.10).

Sdf - Sdfmm
Sdfmam - Sdfmm

$fnorm = 2 1 (5.10)

5.2.3 Time normalization

The last step of the normalization is the normalization of time. In the case of
time normalization, two different approaches were used in the experiments,
normalization of time values to the interval [0, 1], which is suitable in the
case of using Fourier features mapping, and an approach based on estimating
the speed of movement of a given surface. Assume that the time values
of the individual frames of the processed sequence with m frames before
normalization correspond to the integer indices of the given frames, so time
t takes values 0,1, ...,m — 1.

In the case of normalization to the interval [0, 1], the calculation is simple,
just divide the time component by the number of frames minus one (see Eq.
(5.11)).

t
m— 1

(5.11)

Lnorm =

The second way to normalize time values is based on the idea that if
two different surfaces perform the same motion at different speed, then the
time values of the faster surface should be normalized to a smaller interval.
Although it is obvious that in reality the velocity of movement of the surface
depends on the position of a given point and also on a given time, since
the surface can move at different speeds at different times and at different
positions, we can estimate its maximum, which we then use to normalize
time values.

We estimate this maximum velocity based on the SDF values, as the
largest SDF difference at one point in two consecutive frames. Altought the
change in SDF at a given point will generally not correspond to the actual
change in position of the point on the surface, it will serve well enough for
estimation purposes.

Another problem is that since sampling of triangle meshes is performed
at points with random coordinates, we will not have information about the
SDF value in two consecutive frames for the same point. However, we can
subtract the SDF value for point x from i-th frame and point x" from i 4 1-
th frame, which is closest from all points of this frame to point x. As
the number of samples per image increases, the error caused by replacing
point x with point x” will decrease to zero. A KD tree is used to effectively
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find the nearest point in the following frame. So we finally estimate the
maximum velocity estimate with Eq. (5.12) and then we can use Eq. (5.13)
to normalize time values.

Vmaz = mazy(mazy(|sdf (x,t) — sdf (X', t + 1)])) (5.12)

t

—Umw(m =) (5.13)

Lnorm =

5.3 Fourier features

To achieve better results when using neural networks for the representation
of time-varying surfaces, the use of so-called Fourier feature mapping was
tested. Fourier feature mapping is a technique used to improve the results of
neural networks, usually multi-layer perceptron (MLP), in cases where the
size of the feature space is low. This technique provides interesting results
in 2D image regression, 3D surfaces, MRI reconstruction and other areas
[TSM*20a].

The Fourier feature mapping method is based on a transformation of the
original feature vector into a higher dimensional space using trigonometric
sine and cosine functions of different frequencies, which allows the neural
network to respond better to an input signal when it consists of a mixture
of several non-negligible signals of different frequencies. To calculate Fourier
features y(v) from original features vector v, we need to generate a random
Gaussian matrix B, where each entry is drawn independently of the normal
distribution N(0,0?). The transformation of the feature vector is then given
by the formula (5.14).

v(v) = [cos(2nBvV), sin(2rBv)] (5.14)

A great benefit of using Fourier features mapping can be expected in the
case when the dimension of the input vector of the neural network is low.
Coordinate-based multi layer perceptrons are therefore ideal cases for use
of Fourier features, because their dimension of the feature space is typically
low. I.e. for images, we have only two coordinates, for static surfaces, videos
and generally all static scalar fields there are three coordinates, for dynamic
surfaces and other time-varying scalar fields we have four coordinates.

Another possibility that can lead to an even better result when using
Fourier features mapping is not to generate the coefficients of the matrix B
randomly, but like other parameters of the neural network, to train them
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using the same optimization algorithm. For the purposes of this work, this
method was not used.
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6 Surfaces comparison and
error measurement

In order to be able to evaluate the quality of the representation with respect
to the original surface, it is necessary to introduce some metrics that will
allow us to compare surfaces. In our case, we will compare surfaces repres-
ented by triangle meshes, however, each of these meshes will have a different
connectivity.

A commonly used metric for surface comparison is the Hausdorff dis-
tance. The problem with the Hausdorff distance, however, is that its value
typically depends on one single point on a given surface and therefore often
does not provide results with a sufficiently large telling value about how the
resulting surface visually resembles the original surface.

A commonly used metric for surface comparison is the Hausdorff dis-
tance. The problem with the Hausdorff distance, however, is that its value
typically depends on one single point on a given surface and therefore often
does not provide sufficiently correlated results with a visual distortion of
resulting surface.

For this reason, the so-called perceptual metrics are constructed, the
aim of which is to better describe the difference between two surfaces so
that their result better corresponds with the humen visual perception. One
such metric is the Fast Mesh Perceptual Distance.

6.1 Hausdorff distance

Hausdorff distance is one of the simplest methods for measuring the error
when comparing surfaces represented by triangle meshes. Hausdorff distance
can compare generally any surface using different representations and can
therefore be used to compare triangle meshes even if they do not have shared
connectivity. First, define the distance of the point p from the surface S as
the minimum distance from any point lying on the surface S with equation.
(6.1)

d(p,S) = min[lp — 'l (6.1)

Subsequently, we can establish a relation for calculating the Hausdorff
distance from the surface S to the surface &' with equation (6.2) as the
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maximum distance of any point p € S from the surface S'.

d(S,8") = maxd(p,S’) (6.2)
peS

However, since this distance from the surface S to the surface S’ is not
generally the same as the distance from the surface S’ to the surface S, as
shown in Figure 6.1, Hausdorff distance dg between surfaces S and S’ is
defined as their maximum, see equation (6.3) [AScE02].

d(s,s")

y Sl
4SS) N
S
Figure 6.1: Hausforff distance visualisation in 2D.

ds(S,8") = max[d(S, "), d(S, S)] (6.3)

Since we do not compare static surfaces, but time-varying surfaces, rep-
resented by a series of T static images, similarly to the comparison of surface
contents, we use the maximum (6.4) and average (6.5) Hausdorff distance.

s-nax(S(0), (1)) = max, (d5(S(1),S'(1) (6.4
a1, 8'(1)) = 1 3 (ds(S(0). 5 (1) (6

6.2 Fast mesh perceptual distance

Fast mesh perceptual distance (FMPD) is a perceptual metric for compar-
ing two triangle meshes proposed by Kai Wang [WTM12]. The advantage of
FMPD is that it can compare meshes with different connectivity, its calcula-
tion is very fast compared to the Haudorff distance, for example, and offers
very good results in terms of correlation of the metric values with subjective
evaluation of surface distortion by humans.

The FMPD metric is based on a local mesh roughness measure. When
calculating the FMPD, the local roughness in all vertices of both meshes is
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Figure 6.2: Block diagram illustrating the pipeline of the FMPD [WTM12].

determined first. Local roughness values are derived from Gaussian curvature
G. For local roughness computation we also need to compute the discrete
Cotan Laplacian matrix [MDSBO01]. This matrix is computed according to
formula shown in Eq. (6.6), where /\/'i(v) is the set of all the neighboring
vertices of v; and o and [ are the angles inside the triangle face opposite
the edge between vertices v; and v; (see Figure 6.3).

cotaig)+eot(Bi) g i e AP
= { 5 J i (6.6)

=25 Dij

Figure 6.3: Angles used in the calculation of the discrete Laplacian matrix.
Local roughness LR; in vertex v; is then computed by the Eq. (6.7).
Zjesz D; ;G;
ZjeN;w D; ;

The local roughness comptutation is thresholded in the interval [T'h;, T'hy]
and modulated using power function shown in the Eq. (6.8) where a is a

Zje./\/’i(“) D, ;G;
D;;

:‘Gﬁ

parameter that controls the shape of the power function and is fixed for all
meshes.

LRM; = f(LR;) = (LR;)* — (Th)* (6.8)

After that, the average values of local roughness LR for the original mesh
and LR’ for the deformed mesh are computed using formula shown in Eq.
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(6.9) where s; is one third of the total area of the incident facets of v;. These
average values are then modulated with same modulation function (see Eq.
(6.8)) and we get modulated average values LRM and LRM’.

(6.9)

As a final step of the local roughness computation, we perform second
modulation using Eq. (6.10). Threshold Thygys is obtained as minimum
from LRM and LRM' values. The value 0 < b < 1 is a parameter that
controls the magnitude of the reduction.

Once we have the final local roughness values LRFE;, global roughness is
computed by Eq. (6.11) and after that we can compute FMPD by Eq. (6.12)
where ¢ is scaling factor that brings the perceptual distance into the [0, 1]
interval. The block diagram of the FMPD calculation is shown in figure 6.2.

_ XiLRE;s;

GR > i Si

(6.11)

FMPD = ¢|GR — GR/| (6.12)
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7 Implementation

The implementation part of this work is realized as a framework enabling
easy testing of neural implicit dynamic surface representation using different
data, different parameters, different methods of normalization, etc. The
main goal of this application is to allow the execution of experiments with
different hyperparameters and the subsequent evaluation of the results.

This framework is implemented in .NET environment using C# language
and works exclusively as a Windows console application without a graphical
user interface, because due to the nature of the application, which is to serve
only as experimental software to perform the necessary experiments, a GUI
is not required.

To work with neural networks, the application uses the Keras [C*15] lib-
rary, which is available in the .NET environment using the Keras.NET pack-
age. The application also contains the Hausdorff distance evaluator based
on metro.exe software [CRS98]. The framework also includes an FMPD
evaluator, which uses the original implementation provided by Kai Wang
[WTM12]. The framework also implements a mechanism that allows run-
ning Octave and Python scripts. The source code contains full programmer
documentation directly in the source files.

7.1 Framwework use case

The implemented framework actually contains a single use case, which is
used to run an experiment to test the neural representation of a dynamic
surface with selected hyperparameters and input data. The application does
not contain any tools for displaying processed surfaces. Instead, it saves
them in the wavefront OBJ, which can be opened in most software for work-
ing with 3D models.

How to start the application is described in the user manual, which is part
of the appendix. However, before the desired experiment can be started, the
framework must be configured correctly (see Section 7.3) and the appropriate
experiment definition (see Section 7.4) must be prepared.

After running the experiment, the framework tests all possible combin-
ations of provided implementations of individual components such as SDF
samplers, normalization algorithms, neural representations, triangle meshes
comparison metrics, etc.

First, the input sequence of triangle meshes is loaded. After loading,
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the geometry of the given sequence is normalized. Next, the sequence is
sampled into SDF samples. After sampling the triangle mesh sequence, the
SDF function values and time values of these samples are normalized. Next,
a neural representation of the given dynamic surface is created and trained.
Subsequently, the created neural representation is used to reconstruct the
surface by predicting the approximated SDF on a volumetric lattice in the
bounding box of the original sequence of triangle meshes. The weights of the
trained neural network are compressed and decompressed again, so that in
the case of lossy compression, its impact on the resulting prediction is reflec-
ted. The corresponding iso-surface is then extracted from this volumetric
lattice again as a sequence of triangle meshes. The resulting sequence is
then compared to the original sequence using selected metrics. Finally, the
results recording the values of the individual metrics for the tested config-
uration are saved in a CSV file. Along with these results, the weights of the
neural network used, and the original and the resulting sequence of triangle
meshes in the wavefront OBJ format are also stored in the output folder. A
flow diagram of the whole process is shown in the Fig. 7.1

Load mesh Compress neural
sequence network weights
Mormalize mesh Decompress neural
sequence network weights
Sample mesh Create SDF
sequence to SDF reconstruction

Extract iso-surface

Normalize SDF from reconstruction

|

. Compare input and
Normalize time
E T recostructed

i SEQT Ces

Train neural
representation

;}

Save results

Figure 7.1: Flow diagram of experiment process.

7.2 Project structure

The program is divided into the following modules:
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o Neurallmplicits - The main project, which is used to run the entire ap-
plication and contains most of the calculations. It is further structured
into smaller folders.

o Neurallmplicits.OctaveProcessor - A project that contains an interface
that allows running Octave scripts. This is used for FMPD evaluation.

o Neurallmplicits.PythonProcessor - A project that contains an interface
that allows running Python scripts. This can be used if we want to
make an adjustment to the neural network that is not supported by
Keras.NET wrapper.

o Neurallmplicits.Tests - Contains several unit tests that were created
during the development of the application.

The structure of the main Neurallmplicits project is further divided into
following folders:

o Compression - Implementation of the neural network compression meth-
ods.

« DataSources - Triangle mesh data source usable in experiments.
o Dependencies - Contains a file with a list of project dependencies.

o Evaluators - Implementation of surface comparison metrics for triangle
mesh sequences.

o Experiments - Definition of experiments and logic for experiment res-
ults export.

» Extensions - Extension classes.
o Geometry - Implementation of geometric calculations.

o 10 - Working with files such as reading and saving triangle meshes into
wavefront OBJ files, plotting charts, etc.

o Maths - Implementation of mathematic calculations.

o Neural - Contains an implementation of the proposed neural repres-
entation of dynamic surfaces.

o Normalizers - Mesh, SDF and time normalizers.

o Samplers - Triangle mesh samplers.
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» Structures - Basic structures for working with triangle meshes, volume
grids, vectors, etc.

o SurfaceExtraction - Surface extraction algorithms - marching cubes
implementation.

7.3 Configuration

A runnable project Neurallmplicits contains an XML configuration file App.config,
the contents of which must be set correctly before starting the application.

It mainly deals with about setting the path to the folder with input data,
setting the path to the Python and Octave executables and configuration of
Serilog library, which is used for logging. This file contains following settings
located inside appSettings section:

o DataDirectoryPath - Directory with input OBJ mesh sequences. Each
sequence is placed further in a separate folder.

o Python - Path to python.exe file.

e Octave - Path to octave.bat file.

o serilog:minimum-level - Minimum level of logging messages.

« serilog:using:Console - Enables logging to the console.

« serilog:write-to:Console.outputTemplate - Console logging template.
 serilog:using:File - Enables logging to a file.
 serilog:write-to:File.path - File log path.

« serilog:write-to:File.outputTemplate - File logging template

Example of appSettings section is shown in Code 7.1.
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Listing 7.1: Example of appSettings section of App.config file.

<appSettings>
<add key="DataDirectoryPath" value="D:\neural-implicit
\Data" />
<add key="Python" value="C:\Python\python.exe" />
<add key="Octave" value="D:\Octave-5.2.0\mingw64\bin
\octave.bat" />
<!-- Serilog ——>
<add key="serilog:minimum-level" value="Verbose" />
<add key="serilog:using:Console" value="Serilog.Sinks
.Console" />
<add key="serilog:write-to:Console.outputTemplate" value=
"[{Timestamp:HH:mm:ss} {Level}] {Message:1j}{NewLine}
{Exception}" />
<add key="serilog:using:File" value="Serilog.Sinks.File" />
<add key="serilog:write-to:File.path" value="log.txt" />
<add key="serilog:write-to:File.outputTemplate" value="
[{Timestamp:HH:mm:ss} {Levell}] {Message:1j}{NewLine}
{Exception}" />

</appSettings>

7.4 Experiments setup

The individual experiments are defined directly in the source code within
the created framework. To create a new experiment, there must be created a
class in the Neurallmplicits project, ideally in the Fxperiments folder. This
class must implement the IEzperiment interface, which forces the imple-
mentation of the properties that are required to perform the experiment.
For array type properties, the experiment then tests all possible combina-
tions of the provided instances. The individual properties are described in
the list below:

o string Name - Name of the experiment.

e bool SwapFrames - Framework swaps frames of SDF sequence to hard
drive in order to save memory.

 TAnimationDataSource[] DataSources - Array of input mesh sequence
sources.
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IMeshSDFSampler[] Samplers - Array of triangle mesh to SDF samplers.

IMeshNormalizer[] MeshNormalizers - Array of triangle mesh normal-
1zers.

ISDFNormalizer[] SDFNormalizers - Array of SDF value normalizers.

Func<ISDFAnimationRepresentation> || Representations - Array of func-
tions, which produces instances of neural representations. To avoid the
need to keep instances of all tested representations in memory for the
duration of the experiment, the array does not directly contain the
representations themselves but only the parameterless methods that
return them.

IWeightsCompression[] WeightsCompressions - Compression algorithm
for neural network weights array.

[SurfaceExtraction SurfaceExtraction - Surface extraction algorithm
implementation.

[Evaluator|] Evaluators - Array of triangle mesh comparison metrics.

float MarginX - Margin of the triangle mesh bounding box on the
X-axis.

float MarginY - Margin of the triangle mesh bounding box on the
y-axis.

float MarginZ - Margin of the triangle mesh bounding box on the z-
axis.

int OutputResolution - Max resolution of volumetric grid used for sur-
face reconstruction.
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8 Experiment results

To verify the applicability of the neural representation of dynamic surfaces
and at the same time to investigate their properties, several experiments
were designed and implemented. These experiments were performed on two
sequences of triangle meshes. Both of these datasets capture the animation
of a moving human. First of these sequences is the jump dataset [SMPO3],
which contains 222 triangle mesh frames and each of these mesh frames
has 15,860 vertices and 31,660 faces. Second sequence is the samba dataset
[VBMPOS], which contains 175 frames with 9,971 vertices and 19,938 faces.
Both of theese triangle mesh sequences have constant connectivity, which
means we know vertex correspondence between frames. However, this in-
formation was not used in the experiments and we could perform the same
experiments on sequences with varying connectivity.

The quality of the resulting representations in the following experiments
was measured using Hausdorff distance and FMPD. Since these metrics are
used to compare static surfaces, the maximum values and average values of
these metrics over the whole sequence were calculated when measuring the
distortion of dynamic surfaces.

One of the things we can examine when creating a neural representation
of a dynamic surface is how many samples of the SDF function we should
generate for a given sequence of triangle meshes. It can be expected that this
amount should naturally depend on how many frames the sequence contains.
The longer the sequence, the more SDF samples will be needed to create the
same quality neural representation. We can therefore examine the optimal
number of samples per frame of the sequence. It can be expected that as the
number of samples per frame increases, the quality of the resulting dynamic
surface representation will increase. However, it is also possible to expect
that as the number of samples per image increases, their contribution to the
quality of the representation will decrease from a certain number of samples.
An experiment measuring the dependence of the error of the resulting neural
representation on the number of generated samples per frame was performed
on both datasets using 16 inner layers of 256 neurons with basic configuration
without the use of Fourier features mapping and with the MAE loss function.
It is important to mention that the numbers of samples are measured as the
numbers of generated samples, these samples are then created on the basis of
the probability depending on the distance of a given point from the surface,
which is described in Section 5.1. Figure 8.1 shows a graph of the dependence
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of the average FMPD on the number of generated frames per frame.
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Figure 8.1: Dependence of the average FMPD on the number of sam-ples
per frame.

Another performed experiment aims at investigating the relationship
between the compression rate of the neural representation by quantizing
the weights of the neural network and the resulting distortion of the repres-
ented surface. The second goal of this experiment is to determine whether
it makes sense to compress the quantized weight further, e.g., using the ZIP
compression algorithm. In Figure 8.2 you can see a graph of the depend-
ence of the average FMPD on the compression ratio, which was achieved by
quantizing the neural network weights using different numbers of quantiza-
tion levels. The graph shows the results for jump dataset. You can see the
same graph for the samba dataset in Figure 8.3.

From the above graphs, it is clear that for both datasets, it is possible
to find such a compression ratio, which in terms of the perceptual metric
used will be reflected only in negligible distortion of the resulting surface.
Furthermore, it can be seen from these graphs that for different data, the
results may be different in terms of FMPD using the same compression
ratio. Furthermore, from these results, we can conclude that the application
of ZIP compression on already quantized weights does not lead to a further

48



1 > T T T

—e- Quantization
—=o- Quantization + ZIP
09 - b

08 7

Mean FMPD
©
by

o
(o2}
T

L

04 —s -

03 | | L | | |

bpvf

Figure 8.2: Dependence of the average FMPD on the compressionrate for
the jump dataset.
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Figure 8.3: Dependence of the average FMPD on the compressionrate for
the samba dataset.
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Dataset | Sampling freq. | Max. Haus. | Avg. Haus. | Max. FMPD | Avg. FMPD
jump 222771 23.9540 8.3863 0.6271 0.3149
jump 111771 26.6664 7.9144 0.6709 0.3768
samba 175 - T4 0.1027 0.0508 0.4243 0.2834
samba 88 T1 0.1481 0.0704 0.4271 0.2817

Table 8.1: Table with time super-resolution results.

significant improvement in the compression ratio. Even in some cases, it
may lead to a small degradation of the compression ratio.

Another experiment is aimed at examining whether it is possible to ex-
ploit the fact that the neural representation of a dynamic surface is naturally
continuous in the spatial axes and in time to perform super-resolution of the
original surfaces. By interpolating the original frames of a sequence of tri-
angle meshes in time, we can compute additional frames at times for which
we do not have the original data. This could increase the frame rate of
a given dynamic surface represented by a sequence of triangle meshes. In
Table 8.1, you can see the results of using a neural representation for using
two different frame rates to generate data on which neural network training
is performed. In one case, the neural network is trained on data from all
frames of the original sequence of triangle meshes, while in the other case,
the neural network is trained only on data from every other frame. In both
cases, a prediction is made for the full frame rate, so in the second case, a
prediction is made even in frames that the neural network has not seen.

The results of this experiment show that using the half frame rate did not
significantly degrade the resulting surface in terms of Hausdorff distance or
FMPD, confirming the original hypothesis that the continuity of the neural
representation over time can be used for super-resolution of the original
sequence of triangle meshes.

In another experiment, a comparison of the use of the basic neural rep-
resentation using the original feature space and the use of Fourier features
mapping is performed. For each original feature, five Fourier features were
calculated using randomly generated coefficients. The dimension of the fea-
ture vector is thus five times larger. Of course, this is also related to an
increase in the number of weights in the input layer of the neural network.
However, this increase is negligible compared to the total number of weights
in other layers, and we can compare the Fourier feature mapping model
with the original feature vectors. The coefficients for calculating the Fourier
features were generated from a normal distribution with a variance o2 = 3.
Furthermore, the same experiment contains an evaluation of the use of the
original MAE loss function in comparison with the proposed surface-sensitive
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Dataset | Loss func. Fourier f. | Max. Haus. | Avg. Haus. | Max. FMPD | Avg. FMPD
jump MAE No 20.8320 7.3274 0.7364 0.4107
jump MAE Yes 9.8464 6.8367 0.7079 0.4013
jump Surf. sensitive | No 23.8126 8.0914 0.6394 0.3274
jump Surf. sensitive | Yes 23.9541 8.3862 0.6271 0.3149
samba MAE No 0.0850 0.0457 0.4943 0.3281
samba MAE Yes 0.1025 0.0523 0.4367 0.2864
samba Surf. sensitive | No 0.0854 0.0455 0.4847 0.3147
samba Surf. sensitive | Yes 0.1027 0.0508 0.4243 0.2834

Table 8.2: Table comparing results using Fourier features mapping and
surface-sensitive loss function against results without them.

loss function. The results of this experiment are recorded in table 8.2.

From these results, we can see that the use of Fourier features mapping
led to an improvement of the representation from the point of view of FMPD,
while from the point of view of the Hausorff distance, the results deterior-
ated. We can assume that the results of Fourier features mapping could be
further improved by generating the coefficients from a different normal dis-
tribution with a different variance for each feature. Another way to optimize
the values of these coefficients is to include them among the variables whose
value is optimized as well as the neural network weights in the learning pro-
cess. However, the very observation of the inconsistency between Hausdorft
distance and FMPD is interesting.

It is necessary to emphasize that in the search for optimal hyperpara-
meters of the model of neural representation, emphasis was placed on these
two metrics used. Since FMPD better describes surface distortion in terms
of human perception, we can give more weight to its result. However, both
of these metrics are primarily intended for comparing static surfaces, so it is
possible that using the average and maximum values of these metrics across
all images of a sequence of triangle meshes will not be the best possible
solution. For this reason, it would certainly be worthwhile to address the
issue of perceptualy comparing time-varying surfaces.

Furthermore, in the results shown in Table 8.2, we can notice that bet-
ter results were obtained from the point of view of both metrics using the
surface-sensitive loss function. The experiment is, of course, limited by the
amount of data used. However, we can conclude that the use of this loss
function can lead to improved results of the neural representation of the dy-
namic surface and therefore it makes sense to address the issue of choosing
a suitable loss function.

The results of the best achieved neural representation compared to the
original surface of the jump dataset can be seen in Figure 8.4. The same
comparison for the samba dataset is shown in Figure 8.5.
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Figure 8.4: A comparison of the input surface and the results of neural
representation on the jump dataset. Top row: original. Bottom row: neural
representation.

From a visual examination of the created neural representations, it is
evident that the reconstructed surfaces suffer from distortion in the form
of surface undulations. This is one of the issues that should be addressed
in future work. Suppression of this problem could possibly be achieved by
modifying the loss function in such a way that, in addition to penalizing
the error in the SDF prediction, it also penalizes the gradient error. This
concept was proposed in the work Yuzhe Lu et al. [LJLB21|, where the
properties of neural representations of general scalar fields across various
scientific applications were investigated. Another possible approach could
be to force the neural network to maintain the curvature of the original
surface.

The last experiment examines the use of a neural network for interpol-
ation over time using different numbers of surrounding frames. The neural
network was trained on the data of the previous and following frames, and
subsequently the surface was reconstructed at the time of the center frame,

52



L
L

Figure 8.5: A comparison of the input surface and the results of neural

representation on the samba dataset. Top row: original. Bottom row: neural
representation.

where the Hausdorff distance and FMPD were evaluated. The same exper-
iment was then repeated with the two preceding and two following frames
and with the three preceding and three following frames. The results of these
experiments were then compared. A comparison of the results according to
the Hausdorff distance is described in the Table 8.3 and results according to
the FMPD is described in the Table 8.4.

From the point of view of Hausdorff distance, it is evident that the best
results were obtained using the largest number of frames. From the point
of view of FMPD, the result is no longer so clear-cut, but even here, it
seems that the biggest error is obtained for interpolation using data from one
frame on each side and the best. However smallest error was achieved using
two frames on each side. It should be also noted that in this experiment,
representations using the wider neighborhood of the interpolated frame are
partially disadvantaged by having to approximate the SDF over a longer
time interval. Interpolating the sequence of triangle meshes with different
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Dataset | Frame | Hausdorff (3) | Hausdorff (5) | Hausdorff (7)

junp 2
o 50
junp 7
oy 10
jump 123
s %
oo 50
o 7
samba 100
samba 125
axyz mobil 25
axyz mobil 50
axyz mobil 75
axyz mobil 100
axyz mobil 125

Table 8.3: Table comparing the Haussdorf distance of the interpolated
frames for different numbers of neighboring frames.

connectivity is a complicated problem. The advantage of this approach is
that it uses data from the wider environment of the interpolated frame,
unlike other approaches where interpolation is performed from only two
adjacent frames.
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Dataset | Frame | FMPD (3) | FMPD (5) | FMPD (7)
jump 25
jump 50
jump 75
jump 100
jump 125
samba 25
samba 50
samba 5
samba 100
samba 125
axyz mobil 25
axyz mobil 50
axyz mobil 5
axyz mobil 100
axyz mobil 125

Table 8.4: Table comparing the FMPD of the interpolated frame for different
numbers of neighboring frames.
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9 Conclusion

This work investigated the area of static surface representation using neural
networks. Based on the existing neural representations of static surfaces,
a representation for dynamic surfaces was designed using neural networks.
This proposed representation was tested by creating a framework imple-
menting this method, including an algorithm for sampling the sequence of
triangle meshes and metrics for evaluating the quality of the resulting rep-
resentation. Several experiments were performed to verify the functionality
of the proposed neural representation of dynamic surfaces using this frame-
work. These experiments showed that the proposed representation could
be used to represent dynamic surfaces. Furthermore, the properties of this
representation were investigated. Experiments showed that the neural rep-
resentation can serve as a compact representation of dynamic surfaces due
to the high compression ratio. Another useful feature of the proposed neural
representation is the fact that it creates a naturally continuous surface, even
in the time axis. This feature can be used for super-resolution of the ori-
ginal surface by resampling the neural representation with a higher frame
rate. The experiments also showed the benefits of using the Fourier features
mapping acceleration method.

It was further demonstrated that when using a neural network to rep-
resent a dynamic surface, it is important to careful choose the loss function,
which is optimized during the neural network. In this context, a surface-
sensitive loss function was proposed, which tries to better describe the error
of the neural representation from the point of view of distortion of the result-
ing surface. In the performed experiments, it was possible to achieve better
results with the use of this proposed loss function, instead of the MAE loss
function.

Given the limited accuracy of the representation of surfaces, which was
achieved in the experiments in this work, it is possible to further address the
possibilities for improving this representation. In this regard, it would be
useful to examine the benefits of including a gradient error penalty member
in the loss function. Experiments have also shown that it is very difficult
to assess the quality of the proposed representation due to the absence of
appropriate metrics for comparing dynamic surfaces.

The results achieved in this work prove to be relevant with respect to the
current state of the art in the field of representation of dynamic surfaces.
Therefore, the results of this work were also summarized in a paper and
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submited to the conference Symposium on Geometry Processing 2021.
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A User’s guide

Before starting the application, it is necessary to install the necessary de-

pendencies that are not installed automatically using Nuget Package Man-

ager and perform the appropriate configuration of the environment (see Sec-

tion 7.3). Next, it is possible to configure experiments and run them. The

following list describes the steps required to run the application:

1.

2.

10.
11.

Install Python environment, recommended version is 3.8.

Install Python packages tensorflow and keras using pip package in-
staller.

Install GNU Octave, recommended version is 6.2.0.

Install Microsoft Visual Studio 2019 including .NET Framework SDK
version 4.7.2.

Open Neurallmplicits.sin solution file using Visual Studio.

Open configuration file App.config in Neurallmplicits project a config-
ure the environment (see Section 7.3).

To run the application using Visual studio, set project Neurallmplicits
as a startup project.

Create an experiment class in Experiments folder inside Naurallmpli-
citsProject and set up an experiment (see Section 7.4).

Add created experiment class to Experiments array property in a Pro-
gram class.

Set target platform to x64.

Build solution.

After building the project, it is possible to run the application either

directly in Visual Studio or from the command line. When starting the

application, it is necessary to provide an argument with the name of the

required experiment, which is listed in the Name property in the class with

the definition of the experiment (see Code A.1).

Listing A.1: Example of running an application from the command line.

NeuralImplicits.exe —-—experiment=experiment_name
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