
Bachelor Thesis

Voice-Enabled Smart Home
Modules

Author:
Josef äanda

Supervisor:
Ing. Martin Bulín, MSc.

A thesis submitted in fulfillment of the requirements
for the degree of Bachelor (Bc.)

in the

Department of Cybernetics

May 24, 2021

https://www.linkedin.com/in/josef-%C5%A1anda-30868510b/
http://www.kky.zcu.cz/cs/people/bulin-martin
http://kky.zcu.cz

i

Declaration of Authorship

I, Josef äanda, declare that this thesis titled, “Voice-Enabled Smart Home
Modules” and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a
research degree at this University.

• Where any part of this thesis has previously been submitted for a
degree or any other qualification at this University or any other
institution, this has been clearly stated.

• Where I have consulted the published work of others, this is always
clearly attributed.

• Where I have quoted from the work of others, the source is always
given. With the exception of such quotations, this thesis is entirely
my own work.

• I have acknowledged all main sources of help.

Signed:

Date:

ii

“Intellectuals solve problems, geniuses prevent them.”

Albert Einstein

iii

UNIVERSITY OF WEST BOHEMIA

Abstract

Faculty of Applied Sciences

Department of Cybernetics

Bachelor (Bc.)

Voice-Enabled Smart Home Modules

by Josef äanda

The bachelor thesis aims to construct several electrical circuits of devel-
opment board, sensors and lights and develop voice-enabled smart home
modules. The first step design a hardware solution and the physical im-
plementation of individual sensors and lights with development boards.
As the next step, the development boards are programmed and built en-
gine as a software environment for data communication, data storage
and voice-enabled modules. Furthermore, a VoiceKit is connected to the
engine to allow a user to control modules by voice. The central part of
the project is a web page visualizing all states of components, listed voice
commands, currently uttered user commands, and graph data from sen-
sors. The outcome of this project is a functional example use of modules
in a basic smart home.

Hlasová interakce s moduly chytré domácnosti

Tato bakalářská práce si klade za cíl zkonstruovat několik elektrick˝ch
obvodů v˝vojové desky, senzorů a světel a vyvinout hlasové inteligentní
domácí moduly. Prvním krokem je návrh hardwarového řeöení a fyzická
implementace jednotliv˝ch senzorů a světel s v˝vojov˝mi deskami. Jako
dalöí krok jsou v˝vojové desky naprogramovány a vytvořen engine jako
softwarové prostředí pro datovou komunikaci, ukládání dat a hlasové
moduly. Dále je k engine připojen VoiceKit, kter˝ umo�ňuje u�ivateli
ovládat moduly hlasem. V˝znamnou částí projektu je webová stránka zo-
brazující vöechny stavy komponent, uvedené hlasové příkazy, aktuálně
vyslovené u�ivatelské příkazy a data grafů ze senzorů. V˝sledkem to-
hoto projektu je funkční ukázkové pou�ití modulů v základní inteligentní
domácnosti.

HTTP://WWW.ZCU.CZ
http://fav.zcu.cz
http://kky.zcu.cz

iv

Keywords

Internet of things, smart home, sensor, microchip, ESP8266, Rapberry
Pi, communication diagnostics, web visualisation, speech synthesis, au-
tomatic speech recognition

Keywords

Internet věcí, chytrá domácnost, senzor, mikročip, ESP8266, Raspberry
Pi, diagnostika komunikace, webová vizualizace, syntéza řeči, automat-
ické rozpoznávání řeči

v

Acknowledgements

Throughout the writing of this thesis, I have received a great deal of
support and assistance.

I would first like to thank my supervisor Ing. Martin Bulín, MSc. whose
expertise was invaluable in formulating the thesis questions and method-
ology. Your insightful feedback pushed me to sharpen my thinking and
brought my work to a higher level.

I would also like to thank my tutor Ing. Jan ävec, Ph.D for sharing his
ideas and willing comments whenever I asked for them. You provided me
with the tools that I needed to choose the right direction and successfully
complete my thesis.

In addition, I would like to thank my parents for their continuous support
of my studies, wise counsel and sympathetic ear. You are always there
for me.

vi

Contents

Abstract iii

1 Introduction 1
1.1 State of the Art . 1

1.1.1 Comparison of SotA Assistant 3
1.2 The market gap . 4
1.3 Thesis Objectives . 5
1.4 Thesis Outline . 5

2 Dialogue Systems 7
2.1 Automatic Speech Recognition 7
2.2 Automatic Speech Synthesis 9
2.3 The SpeechCloud Platform 10

3 Backend 12
3.1 Diagram Description . 12
3.2 Database . 13
3.3 Communication . 14

3.3.1 MQTT . 14
3.3.2 WebSocket . 16
3.3.3 REST . 17

3.4 Controllers . 18
3.4.1 Keyboard . 18
3.4.2 VoiceKit . 18
3.4.3 Website . 19

4 Modules 21
4.1 Lights . 22

4.1.1 Implemented functions 23
4.1.2 Messages Structure 24

4.2 Sensors . 24
4.2.1 Implemented functions 25
4.2.2 Messages Structure 26
4.2.3 Pressure Sensor (BME280) 27
4.2.4 Temperature Sensor (DS18B20) 27
4.2.5 Illuminance Sensor (TSL2591) 28

4.3 Time . 29
4.3.1 Implemented functions 30

4.4 System . 30
4.4.1 Implemented functions 30

vii

4.5 Weather . 31
4.5.1 Implemented functions 32

5 Graphical User Interface 33
5.1 Home . 34
5.2 Analytics . 37
5.3 Modules . 39

6 Discussion 41

7 Conclusion 43
7.1 Future Work . 44

Bibliography 45

A1 Diagram of an Algorithm Running on the ESP 47

A2 Modules Calls 48
A2.1 Lights . 48
A2.2 Sensors . 50
A2.3 Time . 53
A2.4 System . 54
A2.5Weather . 55

viii

List of Figures

1.1 Connection schema of voice assistant service [1] 2
1.2 Voice assistant comparison by types of questions [8] 4

2.1 Phones boxes . 7
2.2 The relation among acoustic model, language model and

Bayes theorem . 9
2.3 Statistical parametric speech synthesis [2] 10
2.4 SpeechCloud schema . 11

3.1 Project architecture . 12
3.2 MQTT publisher/subscriber pattern 15
3.3 Diagram illustrating how communication in MQTT flow. . . 16
3.4 REST principle . 18
3.5 Photo of the assembled VoiceKit [10] 18
3.6 Diagram of messages flows during a conversation 19
3.7 Diagram of message flows to turn on/off led on ESP by the

website. 20

4.1 LED "living room" wiring diagram 22
4.2 Diagram of a process turning on a light 23
4.3 Diagram of a process measuring current temperature . . . 25
4.4 BME 280 wiring diagram . 27
4.5 DS18B20 wiring diagram . 28
4.6 TSL2591 wiring diagram . 28
4.7 Diagram of a timer function 29
4.8 Diagram of a process VoiceKit answering forecast 31

5.1 The creenshot of the horizontal menu on the web page . . . 33
5.2 The screenshot of the web page on the Home page 34
5.3 The screenshot of the Current event log box on the Home

page . 35
5.4 The screenshot of the Lights state box on the Home page . 35
5.5 The screenshot of the Weather box on the Home page . . . 36
5.6 The creenshot of the Sensors state box on the Home page . 36
5.7 The screenshot of the Currently measured values on the

Home page . 37
5.8 The Screenshot of the Analytics page 38
5.9 The plot of measured illuminance data by the sensor

TSL2591 . 38
5.10 The screenshot of the list of all modules on the Modules

page . 39

ix

5.11 The screenshot of the list of calls for the module Sensors
on the Modules page . 40

x

List of Tables

3.1 MongoDB terminology . 13

4.1 Implemented functions of the Lights module (for detail see
appendix A2.1) . 23

4.2 Implemented functions of the Sensors module (for detail
see appendix A2.2) . 25

4.3 Implemented functions of the Time module (for detail see
appendix A2.3) . 30

4.4 Implemented functions of the System module (for detail see
appendix A2.4) . 30

4.5 Implemented functions of the Weather module (for detail
see appendix A2.5) . 32

xi

List of Algorithms and Code
Parts

4.1 Template for creating a new module 22
4.2 Structure of JSONmessage to turn on/off the light in module

Lights . 24
4.3 Structure of JSON message to asking for the state of the

light in module Lights . 24
4.4 Structure of JSON message to receive state of the light in

module Lights . 24
4.5 Structure of JSON message for receiving data from sensors

in module Sensors . 26
4.6 Structure of JSON message for receiving data from temper-

ature sensor DS18B20 in module Sensors 26
4.7 Structure of JSON message to command sensor to measure

current data in module Sensors 26
4.8 Structure of JSON message to command sensor DS18B20 to

measure current data in module Sensors 27

xii

List of Abbreviations

ASR Automatic Speech Recognition
CLI Command-Line Interface
HMM Hidden Markov Models
HTTP Hypertext Transfer Protocol
JSON JavaScript Object Notation
MQTT Message Queuing Telemetry Transport
TTS Text to Speech
REST REpresentational State Transfer

1

Chapter 1

Introduction

The use of modern technologies in the home opens up new possibilities
for managing the user’s time and efficient energy management. The
smart home responds to the user’s needs and uses automatic control to
increase the comfort of living in the home. The smart home centre is
a complex system with various separate modules which collects locally
measured data. Based on this data and active interventions from the
user, it automates operation in the home. The features of a smart home
include the ability for the user to interact with the system easily. This
is often addressed through a website or voice interaction. This project
focuses on one aspect of the smart home - enabling the user to built
modules and control them by voice.

The voice-enabled modules help the user control the smart home more
easily, and the entire solution’s comfort is increased. Thus, the user can
minimize the energy expended on operating a smart home. The user
simply says his command or question and gets answers in a voice with
the system’s action, so the user does not have to go anywhere or even
interrupt his work.

The work aims are to build a modular functional system with voice-
enabled modules for the smart home, which fulfil specific real applica-
tions. The project consists of several development boards connected to
several lights and sensors measuring different physical quantities. These
control and analytical components are connected to a central modular
functional system. An essential part of this thesis is creating voice-
enabled modules implemented in the central control system and their
connection to a virtual assistant. By using this virtual assistant, the user
can control the function modules by voice. The entire project is accessi-
ble to the user via a web interface, which clearly provides all available
information.

1.1 State of the Art

The most famous intelligent personal assistants include Alexa, Siri,
Google Assistant. These virtual assistants work on a very similar prin-
ciple as follows. The assistant constantly listens to its surroundings to
see if a wake-up word has been spoken. Assistant process this analy-
sis of wake-up word on its hardware. After saying the wake-up word,

Chapter 1. Introduction 2

the assistant starts recording a sound and analyzes simultaneously if
no one is talking anymore. This recorded sound then assistant send to
the appropriate servers for processing. The server handles the relevant
device or service according to the processed user command and sends a
synthesized audio response back to the assistant.

Siri’s first assistant was created by Apple in 2010 and shortly followed by
Cortana by Microsoft in 2013 and Alexa by Amazon in 2014. The growing
power of computers and advancing cloud technology allows scientists
and software engineers to train voice assistants more easily. Over time,
voice assistants can respond to the user more naturally and give the user
the feeling of talking to a person.

In addition to these tasks, the user can connect the voice assistant to web
services (see Fig. 1.1) like Tasker, IFTTT and other features (often called
"skills") developed by third-party developers. By these additions, the
user adds a new palette of commands such as automating social media
posts, ordering a usual drink from a local Starbucks or summoning an
Uber or Lyft using connected account data.

Figure 1.1: Connection schema of voice assistant service
[1]

Chapter 1. Introduction 3

Although each currently available voice assistant has unique features,
they share some similarities and are able to perform the following basic
tasks [7]:

• send and read text messages, make phone calls, and send and read
email messages;

• answer basic informational queries (“What time is it? What’s the
weather forecast? How many ounces are in a cup?”);

• set timers, alarms, and calendar entries;

• set reminders, make lists, and do basic math calculations;

• control media playback from connected services such as Amazon,
Google Play, iTunes, Pandora, Netflix, and Spotify;

• control Internet-of-Things-enabled devices such as thermostats,
lights, alarms, and locks; and

• tell jokes and stories.

1.1.1 Comparison of SotA Assistant

Because each company develop its voice assistant independently and
protect its knowledge, these assistants are quite different despite their
common ground. Figure Fig. 1.2 determine the most capable assistant
by asking 800 questions that consist of categories like [8]:

• Local – Where is the nearest coffee shop?

• Commerce – Order me more paper towels.

• Navigation – How do I get to Uptown on the bus?

• Information – Who do the Twins play tonight?

• Command – Remind me to call Jerome at 2 pm today.

Google Assistant has answered 93% correctly and has understood all 800
questions correctly. Siri has been next, has answered 83% correctly and
has misunderstood only two questions. Alexa has answered 80% cor-
rectly and has misunderstood only one. According to the data shown in
Fig. 1.2, Google Assistant has better results overall but lacks in the com-
mand category. Amazon Alexa has excellent results only in the informa-
tion category, where it climbs just below the results of Google Assistant.
Siri is brilliant in the command category for such functions as a calling,
sending SMS or playing music.

Chapter 1. Introduction 4

Figure 1.2: Voice assistant comparison by types of ques-
tions [8]

If several users occupy the room, each voice assistant has its way of
handling this situation. For example, Amazon Alexa and Google Assistant
create multiple voice profiles, which allows the user to train the assistant
to recognize his voice specifically and therefore offer different data and
use separate accounts for services. This is a very complex task, and no
one can cope with it at the desired level.

1.2 The market gap

This project responds to the gap in the market given by the following
factors:

• Dialogue in the Czech Language: The Czech language is a signif-
icant gap in the market in the virtual assistant sector. This gap
in the market is caused by the number of people who speak this
language. Because the development of this technology is still not
complete and costs much money, this low demand market is not
interesting for large institutions building virtual assistants.

Another reason why large technological institutions are not inter-
ested in developing virtual assistants for Czech-speaking people is
the grammatical and verbal complexity of the Czech language. The
Czech language is much more complicated than English. It has
many declension, gradation of adjectives, words depending on the
sentence and different conjugation.

Chapter 1. Introduction 5

So far, known activities in this market are that Siri does not speak
in the Czech language, and there are no publicly known prospects
that she would be able to do shortly. Google Assistant does not
offer to speak in the Czech language either, but it has TTS and ASR
support in the Czech language.

• Modularity of Virtual Assistants: Although this problem has been
largely resolved, as described in Section 1.1, the user is still widely
limited and cannot ask the virtual assistant anything he would like.
However, technology companies are working hard to resolve this
issue to become more and more an issue of the past overtime.

• Open-source Projects: There are several open-source projects on
the market, such as openHAB, Home Assistant and OpenMotics.
However, setting them up is complicated and requires much tech-
nical knowledge. These projects already have a relatively large
community and have many packages and modules to connect.

1.3 Thesis Objectives

The objectives of this study are:

1. to test selected modules for use in the project;

2. to implement hardware-dependent modules physically;

3. to design an interface for communication between the user and
selected modules;

4. to add an interface for voice interaction;

5. to enrich the project with other modules according to the time pos-
sibilities.

1.4 Thesis Outline

This thesis consists of 7 chapters following the standard skeleton of sci-
entific publications.

Chapter 1 describes the current trends of virtual assistants and com-
pares them. It then explains the gap in the market that this project
meets and its advantages over other solutions.

Chapter 2 lists the general methods used in automatic speech recogni-
tion and automatic speech synthesis fields and briefly describes them.
Furthermore, the chapter briefly describes the functions and architec-
ture of the SpeechCloud used as ASR and TTS interface for the project.

Chapter 1. Introduction 6

Chapter 3 discusses in more detail the architecture used for the system
running on the server. The chapter further specifies the type of database
used and its benefits for the project. Furthermore, three used commu-
nication protocols and their benefits for the project are listed here. At
the end of this chapter, we describe the three controllers users use to
communicate with the modules and how they work or when they are
used.

Chapter 4 lists five created modules. The chapter describes its functions,
a code diagram of the functions, the voice commands triggering the func-
tions (a detailed list of the voice commands is then given in appendix A2),
used electrical circuits and message structures in more detail for each
module.

Chapter 5 shows and describes the created web controller. The chapter
defines the used libraries, frameworks and server address. It also de-
scribes all the available features and how the data on the page changes
over time.

Chapter 6 comes with the discussion about the results. It also contains
a comparison of the developed system to the presented state-of-the-art
technology from section 1.1. Then, ideas for future work are suggested.
The study is concluded in Chapter 7.

Appendix A1 contains a figure of algorithm diagram of the ESP that did
not fit the main text but can still be interesting for some readers. As
mentioned above, appendix A2 gives a detailed list of voice commands
for each module described in chapter 4.

7

Chapter 2

Dialogue Systems

2.1 Automatic Speech Recognition

Automatic Speech Recognition (ASR) is a way of converting sound into
text.

Sound is nothing more than vibrations of the air that we humans are
trained exceptionally well to decode. Moreover, now, we are teaching
our computers how to do this. In the beginning, we have a stream of
words that a person has uttered. The sound is picked up by a microphone
and converted to a digital signal through a sound card, which means a
stream of ones and zeroes.

One of the possible approaches in ASR modelling is, for example, at the
level of phonemes or the level of whole words. We will only give an
example here at the phoneme level, as the other approaches are very
similar.

The first step the ASR system do is process the sound. It steps the
sound to have chunks of speech that can be worked with and that can be
mapped to letters. These chunks are called phones.

The part of ASR responsible for mapping sound to phones is called the
acoustic model as a set of building blocks, boxes which contain models
for all phones in a given language as showing in Fig. 2.1.

Figure 2.1: Phones boxes

There are boxes labelled, for example, A, B, C, depending on which
phones are used in the particular language. On top of that, part of this
construction set is also contextual probabilities. It means how likely a
phone is to follow another. The acoustic model’s task is to guess which
phones have been pronounced and how they combine into a word. The

Chapter 2. Dialogue Systems 8

acoustic model processes the sound and compares it to the models of
individual phones from its boxes. Since speech is very complex in a real
scenario, the chunks that a person uttered will be similar to more than
one box. The acoustic model takes this into account and also looks at the
neighbouring chunks and their contextual probabilities. For example, in
the string "HELLO", the second phoneme that a person uttered might
have been E. However, it also could have been @, A or even I, with dif-
ferent degrees of certainty. The next phoneme is probably L, but it also
could be R. There are different probabilities of these phones in context,
for example, H followed by E is more likely, at least in English, than H
followed by I. The ASR system combines these bits of information and
outputs the most likely result - a string of phones.[12]

The next step is to convert it into words. Nevertheless, this part can
be tricky because the ASR does not know when a word starts or ends.
Contrary to popular belief, there are no pauses between words in fluent
speech. This particular string "heloumaj..." of phones can constitute sev-
eral different phrases, for example, "hell oh my nay miss" or "hello mine
aim is", or "hello my name is". The part of ASR responsible for mapping
phones to words and phrases is called the language model.

Hidden Markov Models (HMM) are widely used for the statistical ap-
proach for automatic speech recognition. Suppose that
W = {w1, w2, . . . , wN } is a sequence of words, and O = {o1, o2, . . . , oN } is
a sequence of phones. These sequences are taken with a period of 10 ms
for segments of speech of length from 20 to 40 ms. The Bayes Theorem
for conditional probability is used to figure out which phones have been
pronounced and how they combine into a word.

W
Õ = argmax

w
P (W | O) = argmax

w

P (W)P (O | W)
P (O) (2.1)

where P(W) is the a priori probability of word W, P(O|W) is the probability
that the sequence of phones O will be generated under the conditions of
pronouncing the sequence of words W, P(O) is the a priori probability of
the sequence of phones O.

Since the probability P(O) is independent of the sequence of words W, it
is possible to modify the equation into the form shown in Fig. 2.2:

Chapter 2. Dialogue Systems 9

Figure 2.2: The relation among acoustic model, language
model and Bayes theorem

Nowadays, HMM is no longer used much, and Neural Networks tech-
niques have become more common.

2.2 Automatic Speech Synthesis

The task of generating a speech out of text information has originally
two approaches:

1. concatenative (unit selection);

2. statistical parametric.

The concatenative synthesis is based on sequential combining of shot
prerecorded samples of the speech. These samples can be stored in a
database as of whole sentences, phrases, words and different phonemes.
It depends on the application of the solutions. Building the unit selec-
tions synthesis model consists of three steps:

1. Recording of the whole selected speech units in no possible con-
text.

2. Labelling segmentation of units.

3. Choosing the most appropriate units.

The concatenative method is the most straightforward approach to the
speech generation. Disadvantages include the requirement to have
an ample storage for recorded units and an inability to apply various
changes to a voice.

The statistical parametric synthesis consists of two parts, as shown in
Fig. 2.3. The training step’s approach is to extract excitation parame-
ters like fundamental frequency and dynamic features, and spectral pa-
rameters from the speech database. Then we estimate them using one
of the statistical models. The Hidden Markov Model (HMM) is the most
widely used for this task. It should be noted that HMM is conscious
dependent. It means that in this step, in addition to phonetic context,
linguistic and prosodic context is taken into account. In the synthesis
part, at first given sentence is converted into points with a dependent

Chapter 2. Dialogue Systems 10

label sequence, and then their chance HMM is constructed according to
this sequence. Next, spectrum and excitation parameters are generated
from the utterance HMM, and finally, speech waveforms are synthesized
from these parameters using excitation generation and the speech syn-
thesis filter. The advantages of the statistical parametric approach are:

1. Small footprint

2. No need to store the speech waveforms, only statistics language
independence.

3. Flexibility in changing voice characteristics speaking styles and
emotions.

The most noticeable drawback is the quality of a synthesized speech.

Figure 2.3: Statistical parametric speech synthesis [2]

Procedures have changed over time, and Neural Networks (NN) and
Long-Term Memory (TSLM) techniques have become more common in
statistical parametric synthesis.

2.3 The SpeechCloud Platform

The SpeechCloud platform, developed at the Department of Cybernet-
ics of the University of West Bohemia, is a system that connects ASR
and TTS systems operating together via one interface. It is then possi-
ble to use these systems by many applications simultaneously through
this interface. An independent instance is created for each dialogue sys-
tem, allowing a client to create a characteristic language model, send a
speech record to recognize, and receive the synthesized speech.

SpeechCloud provides the same services to all clients unless limited or
specified otherwise. Each client should have the same functions, but
each device, experiment or project is separated from the others, so the
results are not affected by the unwanted intervention.

Chapter 2. Dialogue Systems 11

The architecture of the SpeechCloud and the connection to the client
is briefly visualized in Fig. 2.4. The SpeechCloud using the module
SCAPIServer as a primary point to establish a connection with the client
application. Thus, the module negotiates with the client a specific appli-
cation configuration, a control communication channel and the authen-
tication of the session. The SCAPIServer then provides these pieces of
information to other modules. The SIPSwitch module mediates the audio
data transfer service between the SCWorker component and the client
application. One instance of the SCWorker component is reserved for
each client that holds one ASR and TTS instance. The SCWorker com-
ponent has access to a TCP/IP network connection to collect additional
data sources.

Figure 2.4: SpeechCloud schema

Solving the subject of the connection and transmission of data to the
SpeechCloud via Internet communication protocols is not the content
of this work hence are used ready-made software components and the
SpeechCloud platform is used as a service.

12

Chapter 3

Backend

Own engine running on Raspberry Pi 4 has been developed and serves
as the backend for the project. The whole engine is coded in Python, and
adheres to the following principles:

• Simplicity: write a straightforward code that is easily understand-
able for later rewriting.

• Modifiability: write a code with the ability to admit changes due to
a new requirement or detect an error that needs to be fixed.

• Modularity: write a well-encapsulated code of modules, which do
particular, well-documented functions.

• Robustness: write a code focusing on handling unexpected termi-
nation and unexpected actions.

3.1 Diagram Description

This section briefly describes the architecture of the engine that is fig-
ured on a diagram - see Fig. 3.1.

Figure 3.1: Project architecture

Chapter 3. Backend 13

Engine uses tools like MQTT, MongoDB, Tornado web server that is de-
scribed later. Each of them runs in its thread and concurrently. These
tools create a basis for modules and mediate main functionalities such
as database, web server and communication.

The engine is designed to easily remove, add or update any mutually in-
dependent modules that define functions used by a user interface. Each
module is described in the Chap. 4.

The engine also contains a separate block for logic. This block captures a
command from the VoiceKit or keyboard interface, then browsing a pre-
defined list of each module’s commands and determines the best match
for the user voice command or command written on the keyboard.

The block has basic logic, which searches for predefined commands
(loaded together with modules from file "voicehome\modules\<module_-
name>\metadata.json") and looks for whether the uttered command
contains all the words from the predefined command. If the block finds
the match, then the function name and module name send to the engine
to be executed. If it does not find the voice command in lists, it replies
that the command has not found with the recognized command.

The block is written in a way that it is easy to change this logic at any
time, and it is up to the developers to best deal with this complex issue
of search.

3.2 Database

MongoDB is an open-source document database built upon a NoSQL
database and written in C++. Database’s horizontal, scale-out architec-
ture support vast volumes of both data and traffic. One document can
have others embedded in itself, and there is no need to declare the struc-
ture of documents to the system - documents are self-describing.[11]

Before using this type of database, we have to be familiar with different
terminology compare to traditional SQL databases:

SQL Server MongoDB
Database Database
Table Collection
Index Index
Row Document
Column Field
Joining Linking & Embedding
Partition Sharding (Range Partition)
Replication ReplSet

Table 3.1: MongoDB terminology

Chapter 3. Backend 14

We use this type of database because it is famous for its use in agile
methodologies, and the project tends to enlarge in the future. The main
benefits are:

• MongoDB is easy to scale.

• Schema-less database: we do not need to design the database’s
schema because the code we write defines the schema, thus saves
much time.

• The document query language supported by MongoDB is simplistic
as compared to SQL queries.

• There is no need for mapping application’s objects to database’s
objects in MongoDB.

• No complex joins are needed in MongoDB. There is no relationship
among data in MongoDB.

• Because of using JSON1 format to store data, it is effortless to store
arrays and objects.

• MongoDB is free to use. There is no cost for it.

• MongoDB is simple to set up and install.

For adding a new field, the field can be created without affecting all other
documents in the collection, without updating a central system catalog,
and without taking the system offline.

In the project, we save all incoming messages from MQTT to MongoDB
to a collection based on a name of interest module.

3.3 Communication

Communication is the backbone of the whole project among several
devices over the internet. Therefore, it had to be found robust, scal-
able, and cost-effective protocols that transmit messages and data se-
curely.Based on the survey, we choose three protocols that, in combina-
tion, satisfy all our requirements, and we will delve deeper into them in
the following sections.

3.3.1 MQTT

MQTT is a standardized protocol by the OASIS MQTT Technical Com-
mittee used for message and data exchange. The protocol is designed
specifically for the Internet of Things. The protocol is developed in vast
language diversity from low-level to high-level programming language
and designed at light versions for low-performance devices. Hence, it

1JavaScript Object Notation - an open standard file format and data interchange for-
mat that use human-readable text to store and transmit data objects consisting of at-
tribute–value pairs and arrays (or other serializable values).[13]

Chapter 3. Backend 15

suits our use-case perfectly because each module possesses tons of vari-
ous devices with limited resources that are already included or will arise
later on. [5]

Figure 3.2: MQTT publisher/subscriber pattern

The design principles are to minimize network bandwidth and device
resource requirements whilst also attempting to ensure reliability and
some degree of assurance of delivery. The protocol determines errors by
TCP and orchestrates communication by the central point - broker. The
protocol architecture uses a publish/subscribe pattern (also known as
pub/sub) shown in Fig. 3.2, which provides an alternative to traditional
client-server architecture. Architecture decouples publishers and sub-
scribers who never contact each other directly and are not even aware
that the other exist. The decoupling give us the following advantage:

• Space decoupling: publisher and subscriber do not need to know
each other.

• Time decoupling: publisher and subscriber do not need to run at
the same time.

• Synchronization decoupling: operations on both components do
not need to be interrupted during publishing or receiving.

When the publisher sends his message, it is handled by the broker who
filters all incoming messages and distributes them to accredited sub-
scribers. The filtering is based on topic or subject, content and type.

In the case of MQTT, the filtering is subject-based and therefore, ev-
ery message including a subject or a topic. The client subscribes to the
topics he is interested in, and the broker distributes the messages ac-
cordingly as shown in Fig. 3.3.

Chapter 3. Backend 16

Figure 3.3: Diagram illustrating how communication in
MQTT flow.

The topics are generally strings with a hierarchical structure that allow
different subscription levels. It is feasible to use wildcards to subscribe,
for example, sensors/# to receive all messages related to the sensors,
for example, sensors/temperature or sensors/illuminance.

The MQTT protocol has the Quality of Service (QoS) levels essential to
any communication protocol. The level of QoS can be specified for each
message or topic separately according to its importance.

In MQTT, there are 3 QoS levels:

• QoS 0 : This level is often called "fire and forget" when a message
is not stored and retransmitted by a sender.

• QoS 1 : Is is guarantees that a message is delivered at least one
time to the receiver. The message is stored on a sender until it gets
a PUBACK packet from a receiver.

• QoS 2 : It is the highest level, and it guarantees that each message
received only once by the intended recipients.

It is vital to mention MQTT have the feature retained messages that are
mechanisms where the broker stores the last retained message for a
specific topic. This feature allows a client does not have to wait until a
new message is published to know the last known status of other devices.

3.3.2 WebSocket

In this work, WebSockets are used to provide communication between
the client and the engine. WebSocket provides a low-latency, persistent,
full-duplex connection between a client and server over TCP. The pro-
tocol is chiefly used for a real-time web application because it is faster
than HTTP concerning more transfers by one connection. The protocol

Chapter 3. Backend 17

belongs to the stateful type of protocols, which means the connection be-
tween client and server will keep alive until either client or web server
terminate it. The protocol fits for us in use between client and web server
in case of real-time response.[4]

The main benefits are:

• Persistent : After an initial HTTP handshake, the connection keeps
alive using a ping-pong process, in which the server continuously
pings the client for a response. It is a more efficient way than estab-
lishing and terminating the connection for each client request and
server response. Server terminating connection after an explicit
request from the client, or implicitly when the client goes offline.

• Secure: WebSocket Secure uses standard SSL and TLS encryption
to establish a secure connection. Although we do not pursue this
issue in our work, it is a valuable feature to add later.

• Extensible: Protocol is designed to enabling the implementation
of subprotocols and extensions of additional functionality such as
MQTT, WAMP, XMPP2, AMQP3, multiplexing and data compression.
This benefit makes WebSockets a future-proof solution for the pos-
sible addition of other functionalities.

• Low-latency: WebSocket significantly reduces each message’s data
size, drastically decreasing latency by eliminating the need for a
new connection with every request and the fact that after the ini-
tial handshake, all subsequent messages include only relevant in-
formation.

• Bidirectional - This enables the engine to send real-time updates
asynchronously, without requiring the client to submit a request
each time, as is the case with HTTP.

We will apply this protocol for transfer between clients such as VoiceKit,
keyboard or web interface and engine in case of real-time response.

3.3.3 REST

In other cases like fetching data only once or data that is not required
very frequently, we use RESTfull web service on a web server. This ser-
vice enables us to transfer a lightweight data-interchange format JSON
trivially and reliably - see Fig. 3.4. We use a standard GET REST request
on a defined URI and then decode it like JSON for fetching data.

2Extensible Messaging and Presence Protocol - an messaging and presence protocol
based on XML and mainly used in a near-real-time exchange of structured data.

3Advanced Message Queuing Protocol - an open standard application layer protocol
for message-oriented middleware.

Chapter 3. Backend 18

Figure 3.4: REST principle

3.4 Controllers

3.4.1 Keyboard

The keyboard is a python script with a particular purpose for developing
new voice commands. This script opens up a CLI built upon a voicehome
controller. The developer can quickly type a voice command with high
accuracy through the command-line and debug the command thoroughly
in various forms.

3.4.2 VoiceKit

VoiceKit (see Fig. 3.5 is a building kit made by Google [14] that lets users
create their natural language processor and connect it to the Google
Assistant or Cloud Speech-to-Text service. By pressing a button on top,
users can ask questions and issue voice commands to their programs.
All of this fits in a handy little cardboard cube powered by a Raspberry
Pi.

Figure 3.5: Photo of the assembled VoiceKit [10]

Fig. 3.6 show a diagram of messages flows during a conversation. It is
evident from the diagram that all communication with a user and the
SpeechCloud mediate VoiceKit thus engine can manipulate just with a
text.

Chapter 3. Backend 19

Figure 3.6: Diagram of messages flows during a conver-
sation

3.4.3 Website

The second interface next to the already mentioned Voice Kit is a web-
site. The web server is implemented in Python using the Tornado frame-
work.

The website’s architecture aims to use it via a portable device like a
smartphone and tablet or touch screen attached to the wall. Therefore
the website is constructed to be responsible, straightforward and touch-
friendly. The website’s use-cases are to able the user to monitor ESP,
sensors, lights, weather and voice commands, display historical sensors
data, feasible voice commands and description of them, trigger lights
and modules.

The website communicates with the engine by the already mentioned
WebSocket. Figure 3.7 show an example of communication between the
web site and the ESP to turn on an onboard led. Communication uses
JSON as a data format and is evident from the figure that web site and
engine use for communicating protocol WebSocket, whereas ESP and
engine use MQTT.

Chapter 3. Backend 20

Figure 3.7: Diagram of message flows to turn on/off led
on ESP by the website.

21

Chapter 4

Modules

Modules are well-encapsulated code written to provide functional and
control elements (moves) above home to the user. Each module inher-
its from VoicehomeModule class that provide communicating interface
to each module by WebSocket, MQTT and mediate writing and reading
from MongoDB. Each module defines its topic for MQTT and a passport
for WebSocket that subscribe from these services. Messages containing
these topics or passports are passed through the engine to the modules.

Thus each module has to be created by the following approach:

1) Create a new folder in "voicehome\modules\", the name of this
folder is the module’s name.

2) Create two mandatory files

(a) "voicehome\modules\<module_name>\metadata.json" that
include object with following variables:

• "module_id": contain the name of the module

• "description": contain a string with a brief description
of the module

• "mqtt_topics": contain a list of MQTT topics module
wants to subscribe

• "websocket_passports": contain a list of WebSocket
passports passing messages to the module

• "moves": list of objects that define moves this module is
capable of

– "move_id": a unique ID that follows the convention
<module_name>_<order_in_this_list>

– "method_name": contain the name of a Python func-
tion in <module_name>.py called when this move is ac-
tivated

– "description": contain a brief description of the
move

Chapter 4. Modules 22

– "calls": list of calls (voice commands to VoiceKit) ac-
tivating this move; it is a list of lists of words (must fit
the chosen logic algorithm)

(b) "voicehome/modules/<module_name>/<module_name>.py"
that define class of module. This class have to inherit from
VoicehomeModule and include all methods listed in the previ-
ous file metadata.json.

1 from modules.voicehome_module import VoicehomeModule
2

3

4 class Module_name (VoicehomeModule):
5

6 def __init__(self, engine, dir_path):
7 VoicehomeModule.__init__(self, engine,

dir_path)

Part of Code 4.1: Template for creating a new module

After accomplishing these requirements, it is not necessary to restart the
entire engine but can simply use the voice command "načti moduly"
from the System module. Each particular module can be turned off or
on using the web interface in the Modules tab, which is specified in more
detail in Section 5.3.

4.1 Lights

The system module provides the user commands to control lights by
voice. The user not only turns on, off or blinks lights but can also identify
the development boards by lighting an onboard LED on a specific board.
The module keeps in memory a list of all lights with their current status
and detailed description.

The onboard LEDs are mounted on the board from the factory on pin 2.
The other lights have their specific wiring, but one LED is prepared for
demonstration purposes, which by our definition is located in the living
room and is wired according to the diagram in Fig. 4.1.

Figure 4.1: LED "living room" wiring diagram

Chapter 4. Modules 23

The diagram (see Fig. 4.2) shows the steps for turning on/off light in a
simplified way. This process is the same for all types of lights. Only an ID
and type of light is different in a message. The ESP development board
have this ID connect to the pin of the light in its configuration file.

Figure 4.2: Diagram of a process turning on a light

4.1.1 Implemented functions

This subsection show table of 11 functions implemented in the Lights
module. The number of calls (commands) registered in the language
model is summed up in Table 4.1. A complete list of all possible com-
mands is provided in appendix A2.1.

ID Description of the function # calls
1 Turn on all the onboard LEDs. 2
2 Turn off all the onboard LEDs. 2
3 Turn on the light 1 4
4 Turn off the light 1 4
5 Turn on the onboard LED number 1 2
6 Turn off the onboard LED number 1 2
7 Turn on the onboard LED number 2 2
8 Turn off the onboard LED number 2 2
9 Turn on the onboard LED number 3 2
10 Turn off the onboard LED number 3 2
11 Voicekit answer which lights are turned on 1

Table 4.1: Implemented functions of the Lights module
(for detail see appendix A2.1)

Chapter 4. Modules 24

4.1.2 Messages Structure

The engine uses the following topics and messages for maintaining
lights:

• "voicehome/lights/command" - to turn the light on/off

1 {
2 "ID": integer,
3 "type": string,
4 "set": integer
5 }

Part of Code 4.2: Structure of JSON message to turn
on/off the light in module Lights

• "voicehome/lights/state/command" - to ask the light for state

1 {
2 "ID": integer,
3 "type": string
4 }

Part of Code 4.3: Structure of JSON message to asking
for the state of the light in module Lights

• "voicehome/lights/state/receive" - to receive state of the light

1 {
2 "type": string,
3 "state": integer,
4 "ID": integer
5 }

Part of Code 4.4: Structure of JSON message to receive
state of the light in module Lights

4.2 Sensors

The sensors module provides the user commands to communicate di-
rectly with sensors wired to the ESP development board or ask for statis-
tics information such as average. A diagram of the algorithm of the ESP
development board is placed in appendix A1. The sensors connected to
the module are:

• sensor measuring temperature, humidity and pressure bme280
(see Fig. 4.4);

• sensor measuring temperature ds18b20 (see Fig. 4.5);

• sensor measuring illuminance tsl2591 (see Fig. 4.6).

Chapter 4. Modules 25

The diagram (see Fig. 4.3) shows the steps for measuring current tem-
perature in a simplified way. Other current measurements are very simi-
lar to temperature measurements, and only the measured data are from
another sensor.

Figure 4.3: Diagram of a process measuring current tem-
perature

The functions to determine average use the Python library to obtain past
data from MongoDB. The functions then calculate the average on the
engine side and send it to the VoiceKit to answer.

4.2.1 Implemented functions

This subsection show table of 12 functions implemented in the Sensors
module. The number of calls (commands) registered in the language
model is summed up in Table 4.2. A complete list of all possible com-
mands is provided in appendix A2.2.

ID Description of the function # calls
1 Sends a command via MQTT to measure current temperature 3
2 Sends a command via MQTT to measure current pressure 3
3 Sends a command via MQTT to measure current humidity 3
4 Sends a command via MQTT to measure current illuminance 3
5 Voicekit answer average temperature for the last day 2
6 Voicekit answer average pressure for the last day 2
7 Voicekit answer average humidity for the last day 2
8 Voicekit answer average illuminance for the last day 2
9 Voicekit answer average temperature for the last week 2
10 Voicekit answer average pressure for the last week 2
11 Voicekit answer average humidity for the last week 2
12 Voicekit answer average illuminance for the last week 2

Table 4.2: Implemented functions of the Sensors module
(for detail see appendix A2.2)

Chapter 4. Modules 26

4.2.2 Messages Structure

The engine uses the following topics and messages for maintaining sen-
sors:

• "voicehome/sensors/quantity_type" - to receiving data from sensors

1 {
2 "location": string,
3 "sensor_id": string,
4 "state": string,
5 "timestamp": string,
6 "quantity_units": string,
7 "temperature_value": float,
8 "quantity_type": string,
9 "owner": string

10 }

Part of Code 4.5: Structure of JSON message for
receiving data from sensors in module Sensors

Example of use for temperature sensor DS18B20

1 {
2 "location":"room_2",
3 "sensor_id":"ds18b20_1",
4 "state":"ok",
5 "timestamp":"2021-05-15 03:18:19",
6 "quantity_units":"degree",
7 "temperature_value":21.5625,
8 "quantity_type":"temperature",
9 "owner":"jsanda"

10 }

Part of Code 4.6: Structure of JSON message for
receiving data from temperature sensor DS18B20 in

module Sensors

• "voicehome/sensors/command" - to command sensor to measure
current data

1 {
2 "command": string,
3 "sensor_ID": string,
4 "quantity_type": string,
5 "who_asking": string
6 }

Part of Code 4.7: Structure of JSON message to command
sensor to measure current data in module Sensors

Chapter 4. Modules 27

Example of use for temperature sensor DS18B20

1 {
2 "command":"measure_now",
3 "sensor_ID":"ds18b20_1",
4 "quantity_type":"temperature",
5 "who_asking":"voicekit"
6 }

Part of Code 4.8: Structure of JSON message to command
sensor DS18B20 to measure current data in module

Sensors

4.2.3 Pressure Sensor (BME280)

The BME280 [6] module is used to measure the barometric pressure, in-
ternal temperature and humidity. The sensor is used mainly for pressure
measuring in this thesis. The measuring range of this sensor is in case
of ambient temperature from -40 ¶C to +85 ¶C, in case of humidity from
0% to 100% and in case of barometric pressure from 300 hPa to 1100
hPa. Temperature values are measured with an accuracy of ±1 ¶C, hu-
midity values with an accuracy of ±3% and barometric pressure values
with an accuracy of ±1 Pa. The sensor is supplied with power from a 3.3
V output on the microchip and grounded to the microchip. The SDA and
SCL outputs are wired to the D6 and D5 pins of the microchip to provide
I2C communication. The wiring diagram of the BME280 sensor is shown
in Fig. 4.4

Figure 4.4: BME 280 wiring diagram

4.2.4 Temperature Sensor (DS18B20)

The DS18B20 [9] is a temperature sensor, and its waterproof variant was
chosen as an illustration. The module’s output is the value of tempera-
ture in the degree Celsius unit. The sensor’s measuring range is from -55
to +125 degrees with an accuracy of ± 0,5 ¶C within limits from -10 ¶C
to +85 ¶C. The sensor communicates via the One-Wire interface and uses
one pin for data transmission. The sensor is connected to the microchip
by three wires - one wire for power supply 3,3V, one for grounding and

Chapter 4. Modules 28

one for data communication. It is necessary to connect a resistor of re-
sistance 4.7 k� to the circuit, connecting the data and power wires. The
wiring diagram of the DS18B20 sensor is shown in Fig. 4.5

Figure 4.5: DS18B20 wiring diagram

4.2.5 Illuminance Sensor (TSL2591)

The TSL2591 [3] is a light intensity sensor that converts the light inten-
sity into a digital output transmitted by the I2C bus. The module’s output
is the value of light intensity in the lux unit with an accuracy of 4 dec-
imal places, and the measuring range is from 188 µLux to 88,000 Lux.
The value of the sensor is measured to three decimal places, although
it is not necessary to have such high accuracy. The module guarantees
measurement accuracy in temperature conditions from -30 ¶C to +80 ¶C.
The sensor is supplied with power from a 3.3 V output on the microchip
and grounded to the microchip. The SDA and SCL outputs are wired to
the D1 and D2 pins of the microchip to provide I2C communication. The
wiring diagram of the TSL2591 sensor is shown in Fig. 4.6

Figure 4.6: TSL2591 wiring diagram

Chapter 4. Modules 29

4.3 Time

This module provides commands for manipulation with the time, such as
asking for time, date, set timer. The module does not communicate with
other devices. The module’s functions exploit system information and
information available on the Internet. The module uses technique calls
web scraping to reach the web page information. The technique runs
the webpage and sucks desired pieces of information from it.

The diagram (see Fig. 4.7) shows how the function of the timer work in a
simplified way. Other different functions of the time module work on the
principle of downloading data from the Internet, and it is not necessary
to explain them further.

Figure 4.7: Diagram of a timer function

Chapter 4. Modules 30

4.3.1 Implemented functions

This subsection show table of 8 functions implemented in the Time mod-
ule. The number of calls (commands) registered in the language model
is summed up in Table 4.3. A complete list of all possible commands is
provided in appendix A2.3.

ID Description of the function # calls
1 Send command to ask the server for the current time 2
2 Send command to ask the server for the current day of year 2
3 Send a command to the server to start timer on 3 minute 1
4 Send a command to the server to stop timer 2
5 Ask the server for today’s day of the week 2
6 Ask the server for today’s sunrise time 2
7 Ask the server for today’s sunset time 2
8 Ask the server for today’s nameday 2

Table 4.3: Implemented functions of the Time module (for
detail see appendix A2.3)

4.4 System

The system module provides the user commands to test the functional-
ity and adjust some settings of the engine. The module communicates
primarily with the engine, but it is possible to establish this communi-
cation with other devices. Like other technology, the module uses the
MongoDB library from python to test the engine’s database.

4.4.1 Implemented functions

This subsection show table of 8 functions implemented in the System
module. The number of calls (commands) registered in the language
model is summed up in Table 4.4. A complete list of all possible com-
mands is provided in appendix A2.4.

ID Description of the function # calls
1 Reloads all the modules again. A fresh refresh. 3
2 Makes a testing write and read with the database. 3
3 Makes a testing MQTT publish 3

to voicehome/system/test,
which this module is also subscribing

4 Sends a testing websocket message 3
with passport system/test.

Table 4.4: Implemented functions of the System module
(for detail see appendix A2.4)

Chapter 4. Modules 31

4.5 Weather

The weather module provides the user commands to answer questions
about the weather. The module’s functions exploit the information avail-
able on the Internet. By preprocessing the information and replacing
characters like "°C" to "stupnů" or "-" to "mínus" from the Internet, we
can then send fully synthesizable text to SpeechCloud and answer the
question to the user. The module uses the same technique as the Time
module calls web scraping to reach the webpage information. The tech-
nique runs the webpage and sucks desired pieces of information from
it. Preprocessing the information uses the technique regex and essential
functions such as finding text and selecting text — a simple example of
how regex is used shown in code part 4.1.

The diagram (see Fig. 4.8) shows the steps for answer forecast questions
by VoiceKit. The forecast for other days is very similar. The module only
searches for a different day of the week on the web page.

Figure 4.8: Diagram of a process VoiceKit answering fore-
cast

Chapter 4. Modules 32

4.5.1 Implemented functions

This subsection show table of 9 functions implemented in the Weather
module. The number of calls (commands) registered in the language
model is summed up in Table 4.5. A complete list of all possible com-
mands is provided in appendix A2.5.

ID Description of the function # calls
1 Getting forecast for today from www.chmi.cz. 2
2 Getting forecast for tomorrow from www.chmi.cz. 2
3 Getting forecast for monday from www.chmi.cz 2

if it is up to four days and not today.
4 Getting forecast for tuesday from www.chmi.cz 2

if it is up to four days and not today.
5 Getting forecast for wednesday from www.chmi.cz 2

if it is up to four days and not today.
6 Getting forecast for thursday from www.chmi.cz 2

if it is up to four days and not today.
7 Getting forecast for friday from www.chmi.cz 2

if it is up to four days and not today.
8 Getting forecast for saturday from www.chmi.cz 2

if it is up to four days and not today.
9 Getting forecast for sunday from www.chmi.cz 2

if it is up to four days and not today.

Table 4.5: Implemented functions of the Weather module
(for detail see appendix A2.5)

33

Chapter 5

Graphical User Interface

The web was chosen as the visualization environment for its simplicity
and the number of possible tools to use. The website is available at
the public IP address http://147.228.124.230:8881/. The pages are writ-
ten in separate HTML files and share the same JavaScript and CSS file.
JavaScript is used to provide the necessary dynamics, such as new sen-
sor’s data, which display on the page or changes the sensor’s state icon.
The web design is defined in the CSS file. Styles for HTML elements are
stored here, such as font letters, font family, the layout of elements on
the page. Combining these three languages was created an interactive
web visualization for the presentation of measured data and control of
a smart home. Libraries and frameworks used to build the website are
Bootstrap, JQuery and Dygraphs.

The structure of the website is divided into subpages Home, Analytics,
Modules. The user can move between these subpages using the horizon-
tal menu (see Fig. 5.1), which consists of three buttons with subpages
names. The style of this navigation menu is designed using the Boot-
strap framework. This menu is changed to a slider from above for more
straightforward operation using the touch screen when using a mobile
device.

Figure 5.1: The creenshot of the horizontal menu on the
web page

When a user opens a web page, all modules, voice commands and cur-
rently connected controller are loaded using the REST service. This
information is transmitted in JSON format. The connected controller
always shows in the navigation menu next to links of subpages.

The Home page allows the user to interact with the light control, view
the current status of the sensors, current data from the sensors, the
voice commands currently in use, and display the fundamental weather
forecast for today and tomorrow. The Analytics page offers the user
detailed historical data from sensors after selecting sensors using the
switch at the sensors filter section and sending a query using the submit
button. The data from the database are displayed on the page below

Chapter 5. Graphical User Interface 34

the sensors filter. The Modules page shows the user all the programmed
modules user can use with all its voice commands. It is possible to switch
each of these modules on/off using the switch next to the module name.

5.1 Home

The Home page is the default page when the website is visited. At the
top of the page there is a menu with links to other pages. The main
container with all the information on the page is below the menu. This
container is divided into smaller boxes, which will be described below.

Figure 5.2: The screenshot of the web page on the Home
page

The first box here is the Current event log (see Fig. 5.3), the currently
spoken voice commands are displayed here. It shows the time of the

Chapter 5. Graphical User Interface 35

message and from whom the message is.

Figure 5.3: The screenshot of the Current event log box
on the Home page

The box next to the Current event log box is Lights state box (see
Fig. 5.4). All connected lights with an image of a bulb are listed in
this box. The bulb indicates whether the light is turned on, off or not
connected. When the bulb image is pressed, the light turns on or off,
depending on the initial state.

Figure 5.4: The screenshot of the Lights state box on the
Home page

The box below the Current event log is Weather (see Fig. 5.5). This box
shows the fundamental weather forecast for today and tomorrow. At the
top is placed current date and time. Below time is displayed forecast for
today, which contains icons that specify weather type (such as rain, sun,
fog, snowfall). Next to the icon is today’s forecast temperature. The row
below shows a forecast temperature for a day temperature and night
temperature with a rain volume displayed next to that. The last row in
this box display day temperature, night temperature and rain volume for
tomorrow.

Chapter 5. Graphical User Interface 36

Figure 5.5: The screenshot of the Weather box on the
Home page

The box on the left of the Weather box is the Sensors state box (see
Fig. 5.6). This box shows the indicator and description of each sensor.
The indicator is red when the sensor

• is not working correctly;

• it is an error in data;

• the sensor has a delay in communication for more than 5 minutes.

Otherwise, the indicator is green.

Figure 5.6: The creenshot of the Sensors state box on the
Home page

The last box on the page is the Currently measured values box (see
Fig. 5.7). This box shows current data from sensors that arrange by
rooms.

Chapter 5. Graphical User Interface 37

Figure 5.7: The screenshot of the Currently measured
values on the Home page

All values from ESP on this page are changed asynchronously according
to the new data arriving at the server using theWebSocket protocol (see
Section 3.3.2).

5.2 Analytics

The Analytics page (see Fig. 5.8) allows user to select specific sensors
and visualize their historical values stored in the MongoDB database.
When the user opens the page, all data from the engine are immediately
sent to the page using WebSocket (see Section 3.3.2). The user’s first
step in entering the page is to select the sensors in the list of sensors
he wants to plot below. After filling in these preferences, the user clicks
the submit button "Vykreslit data". At this point, the page begins
to transform the received data into the desired Dygraph library format.
The Dygraph library was chosen based on the benefits of an open-source
license and easy selection of the time user want to display data. The
time is selected using the banner below the graph by dragging the wick.

Chapter 5. Graphical User Interface 38

Figure 5.8: The Screenshot of the Analytics page

The Fig. 5.9 shows measured illuminance data from sensor TSL2591 vi-
sualized on the Analytics page. The sensor has been running non-stop
from 23.2. to 22.5. except for a few stages when the system had to
be shut down due to program fixes. In this graph is select time range
from ’2021/02/24 11:05:31’ to ’2021/02/26 09:44:31’. It is notice-
able that the sensor was placed in a room with a window. Each day is
separated from the other by night (about 0 lx). The graph also shows the
phenomenon of lit lamp in the evening (about 20 or 60 lx depending on
the lamp).

Feb 24, 12:00 Feb 25, 00:00 Feb 25, 12:00 Feb 26, 00:00 Feb 26, 12:00

Time 2021

-20

0

20

40

60

80

100

120

140

160

Ill
u
m

in
a
n
ce

 (
lx

)

Illuminance data

Figure 5.9: The plot of measured illuminance data by the
sensor TSL2591

Chapter 5. Graphical User Interface 39

5.3 Modules

The Modules page allows the user to view all possible voice commands
for each module. On the left, there is a list of all modules (see Fig. 5.10)
that connect to the engine. After clicking on the user-selected module,
the module name, the module description and a list of blocks of all pos-
sible voice commands show on the left side of the page (see Fig. 5.11).
The function’s name to execute, the description of the command and all
possible calls display in the block of voice command.

Figure 5.10: The screenshot of the list of all modules on
the Modules page

The following functionality is turning on or off the module. The module
turns by clicking the switch next to the module’s name in the list of
modules. This click deactivates the module in the system, and then its
functions are no longer available. The system stops responding to voice
commands in this module.

Chapter 5. Graphical User Interface 40

Figure 5.11: The screenshot of the list of calls for the
module Sensors on the Modules page

41

Chapter 6

Discussion

The overall objective of the thesis consisted of five subtasks:

1. to test selected modules for use in the project;

2. to implement hardware-dependent modules physically;

3. to design an interface for communication between the user and
selected modules;

4. to add an interface for voice interaction;

5. to enrich the project with other modules according to the time pos-
sibilities.

The thesis output indicates that with the help of now widely available
technologies, building a smart home at a low cost is possible. As used in
this project, everyone can use development boards, cheap sensors and
motors, and free web hosting with this open-source project to make a
home more like a smart home. A general open-source engine has been
built to handle any module that complies (following the primary standard
for connection to the engine). The user can communicate with modules
in Czech, unlike Siri and other assistants. Thus, we can say that the out-
put met our expectations to create an open-source, modularly functional
system with voice-enabled modules for the smart home.

The thesis provides new insight into the relationship between cheap de-
veloping technology and available speech synthesis and speech recogni-
tion. When creating a module, it does not matter the principle it works,
it can be based purely on Internet data, but it can also be linked to hard-
ware. The module developer has several tools at his disposal, such as a
database, a web interface and a communication channel that he can use.
The thesis output provides an example of a practical implication.

It is beyond the scope of this study to address the question of security
and the impossibility of leaking personal data. Due to the complexity
of this work, there is undoubtedly much room for improvement, such
as adding more modules. However, the thesis gives a basic idea and
direction for the future, where it should go.

Chapter 6. Discussion 42

Further research is required to establish whether MQTT is set correctly
for communication security. Further future research is essential to cre-
ate a more efficient database and data storage, both for search speed
and to save space.

43

Chapter 7

Conclusion

This thesis is about creating a voice-enabled smart home modules sys-
tem. The purpose is to allow the user to create various modules for the
smart home and a fully customised solution to his needs. The thesis con-
sists of connecting and programming a VoiceKit, an engine with voice-
enabled modules running on a Raspberry Pi, and three ESP development
boards controlling three sensors and four lights. The sensors together
measure four physical quantities such as temperature, illuminance, pres-
sure and humidity. The project additionally includes an automatic speech
recognition and speech synthesis system.

The first part of the thesis was designing a hardware solution and the
physical implementation of individual sensors and lights. Subsequently,
the ESP development board with the engine for data transfer from sen-
sors and light control was programmed. Then a database for storing the
data has been created. Next, we built the language processor VoiceKit
and connected it to a SpeechCloud and the engine. In the next phase,
modules were created in the engine with essential functions. At the
end of the project, a comprehensive website was created to present the
project’s output.

To sum up the thesis, it is a good start and basis for future work. Many
tasks in terms of communication and architecture of code have been
solved. During this thesis, three ESP development boards were con-
nected with three sensors and four lights. The general system has been
created for connecting modules. Subsequently, the primary five modules
were created both on a hardware basis and an Internet basis. Further-
more, a web page was created to present data, states, and voice com-
mands. However, I think we have opened some new questions, so there
is still much space to work on in this field.

Chapter 7. Conclusion 44

7.1 Future Work

Some of the ideas for the future work are listed here.

• Building a robust database. The project’s database is as simple as
possible because it is not the topic of the thesis. Therefore, is there
plenty of room for improvement and streamlining.

• Building a web application. The thesis’s website is made with-
out any model-view-ViewModel framework for the front end, so it
would be better to create a single-page application using, for ex-
ample, Vue.js.

• Making a project security. As already mentioned in the thesis field,
great emphasis is placed on security and the impossibility of leak-
ing personal data, which could not be explored due to time reasons
and complexity of work.

• Programming an ESP in the C language. Python was used in the
thesis to increase productivity and prototyping. The ESP develop-
ing boards would be better to program in C language for acceler-
ation and less memory consumption of the algorithm in the long
run.

• Extending with complex functions and modules. It is crucial for
the future of the project that the development of other modules
and functions continues. Many users would certainly appreciate
being able to control, for example, music, radio, windows or home
security in a smart home.

45

Bibliography

[1] France Robitaille et al. How the Smart Home skill API works.
2008. url: https://developer.amazon.com/en-GB/docs/alexa/
smarthome/understand-the-smart-home-skill-api.html#how-
the-smart-home-skill-api-works.

[2] Heiga Zen, Keiichi Tokuda, and Alan W. Black. “Statistical para-
metric speech synthesis”. In: Speech Communication 51.11 (2009),
pp. 1039–1064. issn: 0167-6393. doi: https://doi.org/10.1016/
j.specom.2009.04.004. url: https://www.sciencedirect.com/
science/article/pii/S0167639309000648.

[3] TSL2591 Datasheet. Version ams163.5. ams AG, Austria-Europe.
2013. url: https : / / cdn - shop . adafruit . com / datasheets /
TSL25911_Datasheet_EN_v1.pdf.

[4] Vanessa Wang, Frank Salim, and Peter Moskovits. “The WebSocket
API”. In: The Definitive Guide to HTML5 WebSocket (2013),
13–32. doi: 10.1007/978-1-4302-4741-8_2.

[5] Martin Mal˝. Protokol MQTT: komunikační standard pro IoT.
2016. url: https : / / www . root . cz / clanky / protokol - mqtt -
komunikacni-standard-pro-iot/.

[6] BME280 Combined humidity and pressure sensor. Version 1.6092018.
BST-BME280-DS002-15, 0 273 141 185. Bosch Sensortec GmbH.
2018. url: https://ae-bst.resource.bosch.com/media/_tech/
media/datasheets/BST-BME280-DS002.pdf.

[7] Matthew B. Hoy. “Alexa, Siri, Cortana, and more: An introduc-
tion to voice assistants”. In:Medical Reference Services Quarterly
37.1 (2018). doi: 10.1080/02763869.2018.1404391.

[8] Gene Munster. Annual Digital Assistant IQ Test. 2019. url: https:
//loupventures.com/annual-digital-assistant-iq-test/.

[9] Maxim Integrated Products. DS18B20 Programmable Resolution
1-Wire Digital Thermometer. Version 6. Maxim Integrated Prod-
ucts, Inc. 2019. url: https://datasheets.maximintegrated.com/
en/ds/DS18B20.pdf.

[10] Wikimedia Commons. File:Google AIY Voice Kit (34225487980).png
— Wikimedia Commons, the free media repository. [Online; ac-
cessed 22-May-2021]. 2020. url: https://commons.wikimedia.
org / w / index . php ? title = File : Google _ AIY _ Voice _ Kit _

(34225487980).png&oldid=500774098.
[11] Prashanth Jayaram. When to Use (and Not to Use) MongoDB -

DZone Database. 2020. url: https://dzone.com/articles/why-
mongodb.

https://developer.amazon.com/en-GB/docs/alexa/smarthome/understand-the-smart-home-skill-api.html#how-the-smart-home-skill-api-works
https://developer.amazon.com/en-GB/docs/alexa/smarthome/understand-the-smart-home-skill-api.html#how-the-smart-home-skill-api-works
https://developer.amazon.com/en-GB/docs/alexa/smarthome/understand-the-smart-home-skill-api.html#how-the-smart-home-skill-api-works
https://doi.org/https://doi.org/10.1016/j.specom.2009.04.004
https://doi.org/https://doi.org/10.1016/j.specom.2009.04.004
https://www.sciencedirect.com/science/article/pii/S0167639309000648
https://www.sciencedirect.com/science/article/pii/S0167639309000648
https://cdn-shop.adafruit.com/datasheets/TSL25911_Datasheet_EN_v1.pdf
https://cdn-shop.adafruit.com/datasheets/TSL25911_Datasheet_EN_v1.pdf
https://doi.org/10.1007/978-1-4302-4741-8_2
https://www.root.cz/clanky/protokol-mqtt-komunikacni-standard-pro-iot/
https://www.root.cz/clanky/protokol-mqtt-komunikacni-standard-pro-iot/
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BME280-DS002.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BME280-DS002.pdf
https://doi.org/10.1080/02763869.2018.1404391
https://loupventures.com/annual-digital-assistant-iq-test/
https://loupventures.com/annual-digital-assistant-iq-test/
https://datasheets.maximintegrated.com/en/ds/DS18B20.pdf
https://datasheets.maximintegrated.com/en/ds/DS18B20.pdf
https://commons.wikimedia.org/w/index.php?title=File:Google_AIY_Voice_Kit_(34225487980).png&oldid=500774098
https://commons.wikimedia.org/w/index.php?title=File:Google_AIY_Voice_Kit_(34225487980).png&oldid=500774098
https://commons.wikimedia.org/w/index.php?title=File:Google_AIY_Voice_Kit_(34225487980).png&oldid=500774098
https://dzone.com/articles/why-mongodb
https://dzone.com/articles/why-mongodb

Bibliography 46

[12] Petr Stanislav. “Speech recognition of patients after total laryn-
gectomy communicating by electrolarynx”. PhD dissertation. Zá-
padočeská univerzita v Plzni, 2020.

[13] Wikipedia contributors. JSON — Wikipedia, The Free Encyclope-
dia. [Online; accessed 23-May-2021]. 2021. url: https : / / en .
wikipedia.org/w/index.php?title=JSON&oldid=1023299487.

[14] Google. VoiceKit. url: https://aiyprojects.withgoogle.com/
voice/.

https://en.wikipedia.org/w/index.php?title=JSON&oldid=1023299487
https://en.wikipedia.org/w/index.php?title=JSON&oldid=1023299487
https://aiyprojects.withgoogle.com/voice/
https://aiyprojects.withgoogle.com/voice/

47

Appendix A1

Diagram of an Algorithm
Running on the ESP

The following figure shows a diagram of an algorithm running on the
ESP development board.

48

Appendix A2

Modules Calls

A2.1 Lights

The module responds to the following questions:

• Turn on all the onboard LEDs
Voice commands

– "Rozsvit’ vöechny v˝vojové desky."

– "Rozsvit’ vöechny vestavěné ledky."

Reply

– Module confirm each light separately - "V˝vojová deska jedna
je rozsvícena.", "V˝vojová deska dva je rozsvícena.", etc.

• Turn off all the onboard LEDs
Voice commands

– "Zhasni vöechny v˝vojové desky."

– "Zhasni vöechny vestavěné ledky."

Reply

– Module confirm each light separately - "V˝vojová deska jedna
je zhasnuta.", "V˝vojová deska dva je zhasnuta.", etc.

• Turn on the light 1
Voice commands

– "Zapni ob˝váku světlo."

– "Rozsvit’ ob˝váku světlo."

– "Zapni ob˝vacím pokoji světlo."

– "Rozsvit’ ob˝vacím pokoji světlo."

Reply

– "Světlo v ob˝vacím pokoji rozsvíceno."

Appendix A2. Modules Calls 49

• Turn off the light 1
Voice commands

– "Vypni ob˝váku světlo."

– "Zhasni ob˝váku světlo."

– "Vypni ob˝vacím pokoji světlo."

– "Zhasni ob˝vacím pokoji světlo."

Reply

– "Světlo v ob˝vacím pokoji zhasnuto."

• Turn on the onboard LED number 1
Voice commands

– "Rozsvit’ vestavěnou ledku v˝vojové desky číslo jedna."

– "Rozsvit’ v˝vojovou desku číslo jedna."

Reply

– "V˝vojová deska číslo jedna rozsvícena."

• Turn off the onboard LED number 1
Voice commands

– "Zhasni vestavěnou ledku v˝vojové desky číslo jedna."

– "Zhasni v˝vojovou desku číslo jedna."

Reply

– "V˝vojová deska číslo jedna zhasnuta."

• Turn on the onboard LED number 2
Voice commands

– "Rozsvit’ vestavěnou ledku v˝vojové desky číslo dva."

– "Rozsvit’ v˝vojovou desku číslo dva."

Reply

– "V˝vojová deska číslo dva rozsvícena."

• Turn off the onboard LED number 2
Voice commands

– "Zhasni vestavěnou ledku v˝vojové desky číslo dva."

– "Zhasni v˝vojovou desku číslo dva."

Reply

– "V˝vojová deska číslo dva zhasnuta."

Appendix A2. Modules Calls 50

• Turn on the onboard LED number 3
Voice commands

– "Rozsvit’ vestavěnou ledku v˝vojové desky číslo tři."

– "Rozsvit’ v˝vojovou desku číslo tři."

Reply

– "V˝vojová deska číslo tři rozsvícena."

• Turn off the onboard LED number 3
Voice commands

– "Zhasni vestavěnou ledku v˝vojové desky číslo tři."

– "Zhasni v˝vojovou desku číslo tři."

Reply

– "V˝vojová deska číslo tři zhasnuta."

• Voicekit answer which lights are turned on
Voice commands

– "Která světla svítí."

Reply

– "Aktuálně nejsou rozsvícena �ádná světla."

– "Aktuálně jsou rozsvícena tyto světla první ESP, druhé ESP..."

A2.2 Sensors

• Sends a command via MQTT to measure current temperature
Voice commands

– "Kolik je stupňů?"

– "Jaká je teplota?"

– "Změř teplotu."

Reply

– "Na senzor je odeslán dotaz. Aktuální teplota je dvacet."

• Sends a command via MQTT to measure current pressure
Voice commands

– "Kolik je tlak?"

– "Jak˝ je tlak?"

– "Změř tlak."

Reply

– "Na senzor je odeslán dotaz. Aktuální tlak je devět set de-
vadesát devět."

Appendix A2. Modules Calls 51

• Sends a command via MQTT to measure current humidity
Voice commands

– "Kolik je vlhkost?"

– "Jaká je vlhkost?"

– "Změř vlhkost."

Reply

– "Na senzor je odeslán dotaz. Aktuální vlhkost je deset."

• Sends a command via MQTT to measure current illuminance
Voice commands

– "Kolik je intenzity světla?"

– "Jaká je intenzita světla?"

– "Změř světlo."

Reply

– "Na senzor je odeslán dotaz. Aktuální intenzita světla je
třicet."

• Voicekit answer average temperature for the last day
Voice commands

– "Průměrná teplota za poslední den."

– "Dneöní průměrná teplota."

Reply

– "Teplotu nebylo mo�né vypočíst."

– "Průměrná teplota za poslední den je dvacet."

• Voicekit answer average pressure for the last day
Voice commands

– "Průměrn˝ tlak za poslední den."

– "Dneöní průměrn˝ tlak."

Reply

– "Tlak nebylo mo�né vypočíst."

– "Průměrn˝ tlak za poslední den je devět set devadesát."

• Voicekit answer average humidity for the last day
Voice commands

– "Průměrná vlhkost za poslední den."

– "Dneöní průměrná vlhkost."

Appendix A2. Modules Calls 52

Reply

– "Vlhkost nebylo mo�né vypočíst."

– "Průměrná vlhkost za poslední den je devět set devadesát."

• Voicekit answer average illuminance for the last day
Voice commands

– "Průměrná intenzita světelnosti za poslední den."

– "Dneöní průměrná intenzita světelnosti."

Reply

– "Světelnost nebylo mo�né vypočíst."

– "Průměrná intenzita světelnosti za poslední den je dvanáct."

• Voicekit answer average temperature for the last week
Voice commands

– "Průměrná teplota za poslední t˝den."

– "T˝denní průměrná teplota."

Reply

– "Teplotu nebylo mo�né vypočíst."

– "Průměrná teplota za poslední t˝den je dvacet."

• Voicekit answer average pressure for the last week
Voice commands

– "Průměrn˝ tlak za poslední t˝den."

– "T˝denní průměrn˝ tlak."

Reply

– "Tlak nebylo mo�né vypočíst."

– "Průměrn˝ tlak za poslední t˝den je devět set devadesát."

• Voicekit answer average humidity for the last week
Voice commands

– "Průměrná vlhkost za poslední t˝den."

– "T˝denní průměrná vlhkost."

Reply

– "Vlhkost nebylo mo�né vypočíst."

– "Průměrná vlhkost za poslední t˝den je devět set devadesát."

Appendix A2. Modules Calls 53

• Voicekit answer average illuminance for the last week
Voice commands

– "Průměrná intenzita světelnosti za poslední t˝den."

– "T˝denní průměrná intenzita světelnosti."

Reply

– "Světelnost nebylo mo�né vypočíst."

– "Průměrná intenzita světelnosti za poslední t˝den je dvanáct."

A2.3 Time

• Send command to ask the server for the current time
Voice commands

– Kolik je hodin?

– Čas

Reply

– Právě je pět hodin dvacet minut a pět sekund.

• Send command to ask the server for the current day of year
Voice commands

– Kolikátého dnes je?

– Datum

Reply

– Dnes je 4. 5. 2021

• Send a command to the server to start timer on 3 minute
Voice commands

– Zapni časovač

Reply

– Časovač je nastaven na 3 minuty

• Send a command to the server to stop timer
Voice commands

– Vypni časovač

– Zastav časovač

Reply

– Časovač je vypnut

Appendix A2. Modules Calls 54

• Ask the server for today’s day of the week
Voice commands

– Co je za den v t˝dnu?

– Co je za den?

Reply

– Dnes je pondělí.

• Ask the server for today’s sunrise time
Voice commands

– Kdy vychází slunce?

– V˝chod slunce

Reply

– Nebylo mo�no získat data ze serveru meteogram.cz

– Slunce vychází v öest hodin a třicet minut.

• Ask the server for today’s sunset time
Voice commands

– Kdy zapadá slunce?

– Západ slunce

Reply

– Nebylo mo�no získat data ze serveru meteogram.cz

– Slunce zapadá v osmnáct hodin a třicet minut.

• Ask the server for today’s nameday
Voice commands

– Kdo má dnes svátek?

– Svátek

Reply

– Nebylo mo�no získat data ze serveru svatky.centrum.cz

– Podle serveru svatky.centrum.cz Renata.

A2.4 System

• Reloads all the modules again. A fresh refresh.
Voice commands

– Načti moduly

– Aktualizuj moduly

– Přenačti moduly

Appendix A2. Modules Calls 55

Reply

– Moduly byly znovu načteny.

• Makes a testing write and read with the database.
Voice commands

– Otestuj databáze

– Test databáze

– Otestuj databázi

Reply

– Modul System: Databáze otestována. Vyhledáno dat jeden.

– Modul System: Chyba při testování databáze

• Makes a testing MQTT publish to voicehome/system/test, which
this module is also subscribing
Voice commands

– Otestuj MQTT

– Test MQTT

– Vyzkouöej MQTT

Reply

– Na mqtt nebylo mo�né odesla zprávu

– Zpráva na mqtt odeslána

• Sends a testing websocket message with passport system/test.
Voice commands

– Otestuj WebSocket

– Test WebSocket

– Vyzkouöej WebSockety

Reply

– Na websoket nebylo mo�né odesla zprávu

– Zpráva na websoket odeslána

A2.5 Weather

• Getting forecast for today from www.chmi.cz.
Voice commands

– Dneöní předpověd’

– Jak dnes bude?

Appendix A2. Modules Calls 56

Reply

– Nebylo mo�no získat data ze serveru chmi.cz

– Server chmi.cz předpovídá pro dneöek. Polojasno a� oblačno,
místy přeháňky...

• Getting forecast for tomorrow from www.chmi.cz.
Voice commands

– Předpověd’ zítra

– Jak zítra bude?

Reply

– Nebylo mo�no získat data ze serveru chmi.cz

– Server chmi.cz předpovídá pro zítřek. Polojasno a� oblačno,
místy přeháňky...

• Getting forecast for monday from www.chmi.cz if it is up to four
days and not today.
Voice commands

– Předpověd’ na pondělí

– Jak bude pondělí?

Reply

– Nebylo mo�no získat data ze serveru chmi.cz

– Server chmi.cz předpovídá na pondělí. Polojasno a� oblačno,
místy přeháňky...

• Getting forecast for tuesday from www.chmi.cz if it is up to four
days and not today.
Voice commands

– Předpověd’ na úter˝

– Jak bude úter˝?

Reply

– Nebylo mo�no získat data ze serveru chmi.cz

– Server chmi.cz předpovídá na úter .̋ Polojasno a� oblačno,
místy přeháňky...

• Getting forecast for wednesday from www.chmi.cz if it is up to four
days and not today.
Voice commands

– Předpověd’ na středu

– Jak bude středu?

Appendix A2. Modules Calls 57

Reply

– Nebylo mo�no získat data ze serveru chmi.cz

– Server chmi.cz předpovídá na středu. Polojasno a� oblačno,
místy přeháňky...

• Getting forecast for thursday from www.chmi.cz if it is up to four
days and not today.
Voice commands

– Předpověd’ na čtvrtek

– Jak bude čtvrtek?

Reply

– Nebylo mo�no získat data ze serveru chmi.cz

– Server chmi.cz předpovídá na čtvrtek. Polojasno a� oblačno,
místy přeháňky...

• Getting forecast for friday from www.chmi.cz if it is up to four days
and not today.
Voice commands

– Předpověd’ na pátek

– Jak bude pátek?

Reply

– Nebylo mo�no získat data ze serveru chmi.cz

– Server chmi.cz předpovídá na pátek. Polojasno a� oblačno,
místy přeháňky...

• Getting forecast for saturday from www.chmi.cz if it is up to four
days and not today.
Voice commands

– Předpověd’ na sobotu

– Jak bude sobotu?

Reply

– Nebylo mo�no získat data ze serveru chmi.cz

– Server chmi.cz předpovídá na sobotu. Polojasno a� oblačno,
místy přeháňky...

• Getting forecast for sunday from www.chmi.cz if it is up to four
days and not today.
Voice commands

– Předpověd’ na neděli

– Jak bude neděli?

Appendix A2. Modules Calls 58

Reply

– Nebylo mo�no získat data ze serveru chmi.cz

– Server chmi.cz předpovídá na neděli. Polojasno a� oblačno,
místy přeháňky...

	Abstract
	Introduction
	State of the Art
	Comparison of SotA Assistant

	The market gap
	Thesis Objectives
	Thesis Outline

	Dialogue Systems
	Automatic Speech Recognition
	Automatic Speech Synthesis
	The SpeechCloud Platform

	Backend
	Diagram Description
	Database
	Communication
	MQTT
	WebSocket
	REST

	Controllers
	Keyboard
	VoiceKit
	Website

	Modules
	Lights
	Implemented functions
	Messages Structure

	Sensors
	Implemented functions
	Messages Structure
	Pressure Sensor (BME280)
	Temperature Sensor (DS18B20)
	Illuminance Sensor (TSL2591)

	Time
	Implemented functions

	System
	Implemented functions

	Weather
	Implemented functions

	Graphical User Interface
	Home
	Analytics
	Modules

	Discussion
	Conclusion
	Future Work

	Bibliography
	Diagram of an Algorithm Running on the ESP
	Modules Calls
	Lights
	Sensors
	Time
	System
	Weather

