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Abstrakt Tato práce se zabývá návrhem a implementaćı metod Iterative Learning
Control pro zlepšeńı výkonnosti systémů ř́ızeńı pohybu. V úvodńı části jsou představeny
metody Iterative Learning Control a je řešena otázka jejich konvergence. Druhá část se
zabývá implementaćı a testováńım jednotlivých metod ILC v prostřed́ı Matlab. V této
části je také zkoumán vliv konstant jednotlivých metod ILC na jejich chováńı. Třet́ı část
se zabývá implementaćı metod ILC v prostřed́ı reálného času. Čtvrtá část popisuje
implementaci metod ILC pro ř́ızeńı reálného systému. Čtvrtá část také obsahuje
výsledky experiment̊u s reálným systémem a diskusi k výsledk̊um.

Kĺıčová slova: Iterativńı uč́ıćı se ř́ızeńı, ř́ızeńı pohybu, mechatronika, elektrické pohony

Abstract This thesis deals with the design and implementation of Iterative Learning
Control methods to improve the performance of motion control systems. The beginning
part introduces Iterative Learning Control methods and addresses the question of their
convergence. The second part covers the implementation and testing of individual ILC
methods in Matlab. In this part, the effects of the constants of the different ILC
methods on their behaviour are also examined. The third part deals with the
implementation of ILC methods in a real-time environment. The fourth part describes
the implementation of ILC methods for real system control. The fourth section also
contains the results of experiments with a real system and a discussion of the results.

Keywords: Iterative Learning Control, motion control, mechatronics, electrical drives
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Used symbols and abbreviations

Ψ Basis functions

Θ Vector of coefficients

α Learning constant

ej(k) k th element of vector of errors in j th iteration

uj(k) k k th element of feedforward input in j th iteration

D unit circle

I Identity matrix

N Length of the reference signal r

kp Learning constant

kp Learning constant

m Number of basis functions

C PID regulator

G Controlled system

ILC Iterative Learning Control

L Learning function (PD ILC) / Filter (FD ILC) / Learning matrix (BF ILC)

Q Filter (PD and FD ILC) / Robustness matrix (BF ILC)

r A reference trajectory

RMS Root Mean Square

RMSE Root Mean Square Error

S Sensitivity function 1
1+CG
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1. Theory of Iterative Learning
Control

If the feedback-controlled system performs the task repeatedly, the error is very similar,
as shown in Figure 1.2.a . Thus, there is no improvement and the control performance is
constant.

The main idea of Iterative Learning Control is to use the fact that a controlled system
will execute the same task multiple times. With the error information from past tasks, we
can predict an error in a future task and try to compensate for it. [13, 9]
ILC can be summarized as the repeated execution of the following steps:

1. The result of the last execution of task is measured and the error is calculated.

2. Based on the calculated error, a new feedforward control is calculated.

3. The computed feedforward control is fed into the system the next time the task is
executed.

4. The task is executed.

The calculation of the feedforward signal after each iteration is usually done not only
based on the error in the last iteration, but also based on the feedforward signal in the last
iteration. Different ways of calculating feedforward signal will be discussed in the following
sections The feed-forward signal is stored in memory and fed as f into the system during
the task as described in Figure 1.1.

If we compare the performance of the system controlled by a PID controller and ILC,
Figure 1.2.b , with the performance of the system controlled only by a PID controller ,
Figure 1.2.a , we can see a gradual improvement in the performance of the system with
ILC. The improvement can also be seen by comparing the root mean square error in the
iterations in Figure 1.2.c . The ILC performance stabilizes at asymptotic error after several
iterations. This value will be non-zero due to simulated noise and other limitations. Due
to ILC, the error is significantly reduced after several iterations.

Figure 1.1: Control scheme

ILC is usually implemented together with a feedback controller, which helps with non-
repeating disturbances. ILC is sensitive to nonrepeating disturbances and noise. Offline
computation used in ILC allows advanced filtering, for example zero-phase filtering. Of-
fline filtering reduces ILC sensitivity to noise. Due to working with data from the previous
iteration, discrete time is the natural environment for ILC. ILC can significantly increase
control performance compared to pure feedback control. ILC offers high-performance
control after enough iterations. ILC is also highly robust to system uncertainties, if im-
plemented correctly.
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ILC can be used to improve the performance of systems that perform a repetitive task.
This includes in particular systems in manufacturing, robotics and chemical processing.
For example, ILC has already been successfully applied to industrial robots, injection-
molding machines, semibatch chemical reactors and wafer stage motion systems. [9]

(a) System controlled only by PID controller (b) System controlled by PID controller and ILC

0 2 4 6 8 10 12 14 16 18 20

iteration

2

4

6

8

10

12

14

16
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M

S

10
-3 RMS during iterations

With ILC

Without ILC

(c) RMS error comparison

Figure 1.2: Comparison of simulated error without and with ILC

1.1 PD-ILC

The PD type of ILC is probably the most widely used type of learning function [9]. PD
ILC learning function consists of proportional and derivation part. Both parts have an
independent learning gain that can be manually tuned. The difference between k+1 and k
element in the error vector is used to approximate derivation. [4, 10] PD learning function
can be written as

uj+1(k) = Q[uj(k) + kpej(k + 1) + kd(ej(k + 1)− ej(k))]

Q is sometimes set as Q = 1, which means that the algorithm does not contain Q filtering.
This choice is necessary for perfect tracking. On the other hand, choosing a non-unit
Q filter can improve the robustness of the control algorithm and guarantee monotone
convergence, as discussed in Section 1.3 . The value of constants kp and kd is usually
selected by manual tuning. The Q filter is often chosen as a low pass filter to improve
robustness and filtering of high frequency noise.
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Figure 1.3: Mixed time/task-domain block diagram of PD ILC

One possible tuning approach is:

1. Choose the order and type of filter.

2. Manually tune the value of kp, kd and the bandwidth of the Q filter. Start with
lower values and try to get stable transient behaviour.

3. After achieving stable behaviour, increase the value of kp, kd and the bandwidth of
the Q filter for better performance. Repeat this until unstable behaviour is achieved.
Then set the value of kp, kd and the bandwidth to the best performing and stable
combination.

Another possible tuning approach is [9]:

1. Choose the order and type of filter.

2. Manually tune the value of kp and kd. Consider a Q filter with constant and low
bandwidth. Choose value of kp and kd. Run a simulation for a sufficient num-
ber of iteration to determine transient behavior and asymptotic error. Choose the
combination of kp and kd with the best performance.

3. Tune the bandwidth of the Q filter. Choose the highest possible bandwidth with
stable transient behavior.

The value of kp and kd determines the convergence rate and asymptotic error; usually
a higher value of kp and kd means faster convergence. The bandwidth of the Q filter
for constant values of kp and kd have almost no effect on the convergence rate, but it
determines the value of asymptotic error.
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1.2 FD-ILC

The main idea of Frequency Domain ILC is to design L as an approximate inversion of
GS. [16] Consider a learning function in the form of

uj+1 = Q(uj + Lej)

Then error propagation, as proven in 1.3 is

ej+1 = Q(1−GSL)ej + (1−Q)Sr

If L was GS−1 and Q was 1, the error would be zero after one iteration. [13] This makes
it desirable that L ≈ (GS)−1 and Q ≈ 1 . Zero phase digital filtering is used to prevent a
phase shift of the Q filter. In order to avoid a large response to non-repetitive disturbances,
the learning function can be modified to the form

uj+1 = Q(uj + αLej)

A low value of α causes longer convergence but reduces the response to non-recurrent
disturbances and may lead to lower asymptotic error.

Figure 1.4: Mixed time/task-domain block diagram of FD ILC

One possible approach of implementing FD-ILC is:

1. Create a model of the system and calculate the sensitivity function S, then create L
as L ≈ (GS)−1. For example by ZPTEC, as described in 1.2.1.

2. Design a low-pass Q filter. The Q filter should be designed based on (1-GSL) so
that the convergence conditions described in 1.3 are satisfied. If zero phase digital
filtering is used, then the convergence conditions described in section 1.3.3 have to
be met.
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1.2.1 ZPTEC

The Zero Phase Error Tracking Algorithm [17] produces a stable inversion of GS, called
L, for which the LGS transfer has zero phase and at low frequencies, the gain is close to
1. The transfer function GS can be written as

GS(z−1) =
z−dBs(z

−1)Bu(z−1)

A(z−1)

• z−d delay

• Bs(z
−1) zeros strictly in D

• Bu(z−1)zeros outside D

• A(z−1) poles

The unstable zeros of the GS transfer cannot be inverted to the L poles because unstable
poles would be created. It is also not possible to omit the unstable zeros in the inversion,
as this would cause a phase shift. To get rid of the phase shift created by the unstable
zeros in GS, additional stable zeros Bu(z) must be added to L. Then

L(z−1) =
zdA(z−1)Bu(z)

βBs(z−1)

Then LGS can be written as

LGS =
Bu(z)Bu(z−1)

β

Zeros Bu(z) are created by mapping unstable zeros Bu(z−1) inside D. This is done by
substituting z for z−1 in Bu(z−1).
Bu(z)Bu(z−1) can be analysed:

Bu(z)Bu(z−1) = Bu(ejω)Bu(e−jω)

by using Euler’s formula ejω = cos(ω) + jsin(ω)

= [Re(ω)− jIm(ω))][Re(ω) + jlm(ω)] = Re(ω)2 + Im(ω)2

This expression does not have any imaginary part, which means that the phase shift will
be zero.
β is chosen as [Bu(1)]2 to create a gain close to 1 on low frequencies.
L can be then written as

L(z−1) =
zdA(z−1)Bu(z)

[Bu(1)]2Bs(z−1)

Unstable zeros and delay in GS lead to non-causal L. Non causal L can be written in
form

L = zd+s︸︷︷︸
time shift

∗ z
dA(z−1)B∗

u(z−1)

βBs(z−1)︸ ︷︷ ︸
Lc

causal

Filtering by the L filter can therefore be done as filtering a signal shifted by d+ s by the
causal filter Lc.
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1.3 Convergence of PD and FD ILC

Convergence of PD and FD ILC can be analysed to ensure theoretical convergence of
implemented ILC control. The ILC algorithm with learning update

uj+1 = Q[uj + Lej ]

was analysed. Q and L are filters that can be non-causal. First the ILC algorithm with
Q = 1 was analysed. This choice should lead to high performance. Then the ILC algorithm
with general Q was analysed. A correctly designed Q filter helps with robustness. [9, 16]

1.3.1 With Q = 1

The learning update
uj+1 = uj + Lej

The error in j iteration is given by

ej = Sr −GSuj

This equation can be modified to form

uj = (GS)−1(Sr − ej)

The equation for error in iteration is valid for all iterations

ej+1 = Sr −GSuj+1

Now we can substitute for uj+1 from the learning update

ej+1 = Sr −GSuj+1 = Sr −GS(uj + Lej)

and substitute for uj from the modified form

ej+1 = Sr −GS[(GS)−1(Sr − ej) + Lej ]

The equation can be simplified

= Sr − (Sr − ej)−GSLej = ej −GLSej

to form
ej+1 = (1−GSL)ej

The error will therefore evolve according to the chosen filter L, the sensitivity function S
and the system G.
If the expression (1−GSL) behaves like contraction mapping, then the error will converge
monotonously to a certain value. To ensure contraction mapping the gain of (1 − GSL)
must be less then 1. [9, 6, 16] Contraction mapping for all signals can be tested as:

|(1−G(ejω)S(ejω)L(ejω)| < 1 ∀ω ∈ [0, 2π]

This is the equivalent of a magnitude less then 0dB on all frequencies. [9, 16]

9



1.3.2 With general Q

The learning update
uj+1 = Q(uj + Lej)

The error in j iteration is given by

ej = Sr −GSuj

This equation can be modified to form

uj = (GS)−1(Sr − ej)

The equation for error in iteration is valid for all iterations

ej+1 = Sr −GSuj+1

Now we can substitute for uj+1 from the learning update

ej+1 = Sr −GSuj+1 = Sr −GSQ(uj + Lej)

and substitute for uj from the modified form

ej+1 = Sr −QGS[(GS)−1(Sr − ej) + Lej ]

The equation can be simplified

= Sr − (QSr −Qej)−QGSLej = Qej −QGLSej

to form
ej+1 = Q(1−GSL)ej + (1−Q)Sr

The error will therefore evolve according to the chosen Q filter, L filter, the sensitivity
function S and the system G.
With Q 6= 1, the steady-state error for a non-zero reference signal will not be 0. A
magnitude of Q can be equal to 1 for some frequencies, which allows perfect tracking.
If the expression (1−GSL) behaves like contraction mapping, then the error will converge
monotonously to a certain value. To ensure contraction mapping the gain of (1 − GSL)
must be less then 1. [9, 6, 16] Contraction mapping for all signals can be tested as:

|Q(ejω)(1−G(ejω)S(ejω)L(ejω)| < 1 ∀ω ∈ [0, 2π]

This is the equivalent of a magnitude less then 0dB on all frequencies.

1.3.3 Zero phase digital filtering

If we want to use zero phase digital filtering to get rid of the phase shift, (Matlab’s filterfilt
command) we have to consider a condition [16] in the form:

|Q(ejω)|2|(1−G(ejω)S(ejω)L(ejω)| < 1 ∀ω ∈ [0, 2π]

1.3.4 Testing convergence of PD-ILC

The learning function L of PD-ILC can be considered as a discrete transfer function

L = (kp + kd)z − kd

It is therefore possible to verify PD-ILC convergence as described above. Thus, the con-
vergence of PD-ILC will depend on the choice of the constants kp and kd and the choice
of the Q filter in the case of PD-ILC with a filter.

10



1.4 BF-ILC

The key assumption in PD and FD ILC is a constant reference during repetition. As a
result the learned feedforward signal is only optimal for a specific task. Consequently, the
extrapolation of feedforward signal to other tasks causes serious performance deterioration.
[5, 7]

In BF-ILC extrapolation ability is increased by using basis function. BF-ILC does not
learn the feedforward signal , but instead learns the vector of coefficients Θ, which when
multiplied by the basis functions gives the feedforward signal. The ideal value of the vector
of coefficients Θ usually depends mainly on the controlled system and is very similar for
the whole class of reference signals. Examples of basis functions commonly used in BF
ILC include ṙ, r̈ and sign(r).

Θ is recalculated after each iteration according to the formula [5]

θj+1 = Qθj + αLej

where Q and L are the learning matrices that must be computed before learning begins
using one of the methods described later.

Based on the recalculated Θ, the feed forward signal is then calculated as:

uj+1 = Ψθj+1

This calculation can be done for constant basis functions Ψ before the task starts - Figure
1.5 , then we know the feed forward signal for the whole task, or it can be done continu-
ously during the task from continuously calculated values of the basis functions - figure 1.6.

Figure 1.5: Mixed time/task-domain block diagram of BF ILC with constant Ψ
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Figure 1.6: Mixed time/task-domain block diagram of BF ILC with continuously calcu-
lated Ψ

The dimensions of the matrices are as follows:

• Q, dimension m×m

• L, dimension m×N

• Θ, dimension m× 1

• Ψ dimension N ×m

1.4.1 Calculating Q and L

The following applies to both methods: We, Wf and Wdf are user-defined weighting ma-
trices with dimensions N ×N with the following meaning [14]

• We performance

• Wf robustness to model uncertainty

• Wdf convergence speed and sensitivity to trial varying disturbances

The choice of weighting matrices affects performance, robustness and convergence of learn-
ing.
The values of weighting matrices are usually chosen as a numerical multiple of the Identity
matrix.

Example values are: [8]

We = 106 · I , Wf = 0 , Wdf = 10−3 · I

A common method

The matrix J with dimensions N ×N is calculated as the impulse response matrix of the
process sensitivity SG. This matrix is a lower triangular matrix for causal systems. [14]
The matrices L and G are calculated as :

L = (ΨT (JTWeJ +Wf +Wdf )Ψ)−1ΨTJTWe

Q = (ΨT (JTWeJ +Wf +Wdf )Ψ)−1ΨT (JTWeJ +Wdf )Ψ

12



Alternative method

In some cases, the common method can lead to very long convergence due to system
dynamics. [8] In these cases, an alternative form can be implemented, which should lead
to a shorter convergence time. J is a matrix with dimensions N ×m . The k th column
of the matrix J corresponds to the response of the GS transfer to the k th basis function.

L = (JTWeJ + ΨT (Wf +Wdf )Ψ)−1JTWe

Q = (JTWeJ + ΨT (Wf +Wdf )Ψ)−1(JTWeJ + ΨTWdfΨ)

13



2. Simulations in Matlab

2.1 Model used in simulations

2.1.1 Creating model of controlled system

My goal was to create a model of an electric motor. To create the model, I used the
principle of cascade control by considering an inner loop that represents the model of an
actuator - a transfer from the desired to the real current.

The controlled system is represented by transfer function 1/(T s+1). Input of the
system is voltage generated by the amplifier and the output is current. The time constant
representing medium sized modern servo drives is 0.3 ms.
The PI regulator was designed to represent the electronic part of the system- transfer from
desired to real voltage. The design requirements were:

• Robust Stability: Gain margin > 2, sm > 0.5, Phase margin > 45 deg

• Bandwidth of closed loop 1kHz ( 6200 rad/s)

• Both the system and the regulator were considered to be continuous.

The pole placement method was used to design the PI regulator. The transfer function
of the system is:

Fs =
1

0.0003s+ 1

The regulator was implemented as

Fr =
b1p+ b0

p

The poles of the closed loop were chosen as p1 = −4650, p2 = −4650 in order to meet the
requirements. Constants b0, b1 of the regulator were calculated by comparing chosen poles
with poles of the regulated system as b0 = 6486.75, b1 = 1.79. I plotted multiple graphs
to prove that the requirements were met.
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Figure 2.1: System regulated by PI regulator

The required robust stability and bandwidth was proven in Figure 2.1. This controlled
system represents a transfer from the required current/momentum to the real output of
current/momentum.

Transfer from the required momentum to the speed of the connected weight is repre-
sented by the first order dynamical system (ideal rigid system without resonance) with
the transfer function

Pm =
1

Tms+ 1

The constant Tm has a typical value of 0.05. This transfer function represents the dynamic
of the actuator. The quantity we want to control is position. The transfer from speed to
position is done by the integrator. The complete transfer function of mechanical part is

P =
Pm

s

The last part of the system is the filter, which limits gain on higher frequencies. The
transfer function of the filter is

Pf =
1

Tfs+ 1

The constant Tf has a typical value of 0.001.
The overall dynamic of the system consist of the dynamic of filter, the dynamic of

actuator and the dynamic of mechanical part.
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Figure 2.2: Model of system

The dynamic can be represented as 5th order transfer function:

Pc = PfTi
Pm

s
=

1.2 · 108(s+ 3624)

s(s+ 1000)(s+ 4650)2(s+ 20)

2.1.2 Designing PID regulator

ILC is usually combined with a PID regulator. A discrete parallel PID controller with
formula

P + I · Ts
1

z − 1
+D

N

1 +N · Ts 1
z−1

was designed. Ts - period of regulation is 0.001 s. My goal was a PID controller without
overshoot in step response and the widest possible bandwidth. The designed controller
also meets the standard requirements for robustness (Gain margin > 2, sm > 0.5, Phase
margin > 45 deg)

My final design has 0.5% overshoot and a bandwidth of 280 rad/s. 0.5% overshoot should
not cause any problems. The parameters of my design are

P = 100 I = 60 D = 8 N = 600
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Figure 2.3: System regulated by PID regulator

2.2 Generating reference signal

The next step is generating the trajectory of the system. I created a function, which calcu-
lates the trajectory based on the required rest position, maximum speed and acceleration.
The system will follow the trajectory from a zero position to a defined final position and
back. There is an unlimited number of trajectories between these two positions. My tra-
jectory should be easy to generate and must meet the following requirements: The system
starts with zero speed and should end with zero speed, both in defined position and at
the end. The speed must be continuous.
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My function calculates the parameters of the simulation and then runs a Simulink
simulation. I used 2 integrators to generate this trajectory. The first integrator integrates
acceleration to get speed and the second integrates speed to get position. The input of the
first integrator switches between positive and negative maximum acceleration and zero.
The trajectory starts with constant acceleration motion. Then it either continues with
constant deceleration motion after reaching half of the designated position (Fig 2.5.a),
if the maximum speed is high enough, or switch to constant motion and then constant
deceleration motion (Fig 2.5.b) if the maximum speed is reached.

Figure 2.4: Simulation scheme
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Figure 2.5: Calculated trajectories

2.3 Feedforward control

Because we have not only the position, the system should follow, as well as speed and
acceleration of the system. Therefore feedforward control based on speed and acceleration
can be implemented. Feedforward control was implemented as linear combination of the
speed and acceleration. The signals from the speed and acceleration will go through the
gain, which allows us to manually tune gain constants ka, kv to optimise system error.
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Figure 2.6: Simulation scheme

2.3.1 Finding optimal values of constants

The lowest RMSE was achieved with kv = 0.9971ka = 0.0512. The feedforward control
with these constants acts as inverse to the slowest mechanical part of the system. The
ideal inverse would be

Pinv =
Tms

2 + s

1

With this we get rid of the dynamic of the mechanical part of the system, which is much
slower than other parts.
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2.3.2 Comparing combined and feedback - only control

With feedforward control the RMSE of the system regulated with a combination of feed-
forward regulation and feedback PID regulation was more than 100 times lower than the
RMSE of the system regulated only by the PID regulator.

Trajectory 1 Trajectory 2
RMS RMS

without feedforward control 0.0171 0.1786

with feedforward control 0.000047495 0.00037356
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2.4 Simulating ILC in Matlab

The ILC simulation consists of a Matlab script, which calculates the ILC vector and
computes and records the simulation parameters, as well as a model in Simulink. The
script first initializes the variables and calculates the desired trajectory, then repeatedly
calls the simulation in Simulink, evaluates its result and recalculates the ILC vector. A
Simulink model with the following scheme was used to simulate the ILC algorithms in
Matlab.

The model uses a PID controller computed in 2.1.2 and a controlled system computed
in 2.1.1 .

Figure 2.9: Simulation scheme ILC

In the model, noise is added to the system output in order to simulate the noise of the
real system. Uj tosim represents the ILC vector calculated in the script.

2.4.1 Simulating PD-ILC

When implementing PD-ILC I proceeded as follows: Different combinations of the value
of learning constants kp and kd were tested using manual tuning. From these combi-
nations, some combinations were selected to represent different types of behaviour. For
these selected combinations, a second-order low- pass Butterworth filter was designed with
a maximum bandwidth that guaranteed theoretical convergence if convergence could be
achieved. Zero-phase digital filtering in the form of Matlab’s filtfilt function was used for
the Q filtering.

Comparison of the results of simulations with different values of constants shows the fol-
lowing: Higher values of kp and kd lead to faster convergence, but may also cause higher
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asymptotic error, probably due to more noise amplification, which may lead to undesired
behavior. Due to the unknown value of noise in a real system, it would probably be better
to choose, at least in the first implementation, lower values of constants.
In the following plots and table, fc means the cutoff frequency of the Q filter.
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Figure 2.10: Comparing different values of kp, kd and bandwidth

Theoretical convergence of the PD-ILC algorithm

kp kd fc convergence with Q convergence with Q2

2 50 100 Yes Yes

10 100 140 Yes Yes

50 200 90 Yes No

30 600 140 Yes Yes

95 2000 100 Yes Yes

95 8000 65 Yes Yes

For some combinations of parameters kp and kd I could not find a value of the cutoff
frequency fc that would imply theoretical convergence.
Of the simulated parameter combinations, kp = 30 kd = 600 fc = 140 looks the best.
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It has a low asymptotic error and a relatively high convergence rate. It also satisfies the
theoretical convergence conditions.

2.4.2 Simulating FD-ILC

For FD ILC implementation, the L filter was first calculated using the ZPTEC method.
Then, a second-order low-pass Butterworth filter with a suitable cutoff frequency was
designed to ensure convergence. The resulting filter L was converted to the form time
shift multiplied by Lc and the L filtering was implemented as a filtering of the shifted
vector by the Lc filter - see 1.2.1 . The Matlab filter function was used for L filtering.
Zero-phase digital filtering in the form of Matlab’s filtfilt function was used for the Q
filtering. The first and last few samples of the resulting control vector were changed to
zero to avoid undesired behavior.
To demonstrate the correct implementation of the ZPTEC algorithm in the calculation of
the L filter, the Bode plot of GSL transfer function was plotted.
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Figure 2.11: Bode plot of GSL

The RMS values during the iterations were compared for different values of the learning
constant α. It can be seen in the plot that higher values of α lead to faster convergence,
but also to a higher asymptotic error , due to higher noise amplification. α = 1 leads
to convergence after one step, but also to a relatively high asymptotic error. α = 0.1 is
probably the best choice of the tested options due to similar asymptotic error as α = 0.05.
but significantly faster convergence.
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2.4.3 Simulating BF-ILC

I chose ṙ and r̈ as basis functions - velocity and acceleration. I first tried to implement BF-
ILC using the common method of computing the matrices Q and L. This implementation
had a disproportionately long convergence time. I then implemented BF-ILC using the
alternative method of computing the matrices Q and L. This implementation had a good
convergence rate and therefore I used it for all the simulations in Chapters 2 and 3.
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Figure 2.13: BF ILC with matrices calculated by the common method
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Comparing the BF ILC with different values of the learning constant α, we see that
a higher value of alpha leads to faster convergence but may lead to a larger response to
noise. The asymptotic errors correspond to the error when using feedforward control with
ideal values of constants.
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Figure 2.14: Comparing RMS with different α

Since feedforward control was implemented from velocity and acceleration - my chosen
basis functions, the value of the constants ka, kv calculated in Section 2.3 can be compared
with the values of the coefficients Θ. It can be seen that the values of the corresponding
constants Θ converge to the values of the ’ideal’ constants calculated in 2.3 .
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Figure 2.15: Results of simulation with α = 0.1

2.4.4 Comparison of different ILC

I compared the performance of PD, FD and BF ILC with the following parameters:

• PD ILC: kp = 30 kd = 600 fc = 140

• FD ILC: α = 0.1

• BF ILC: α = 0.1 , Alternative form

It can be seen in the plots that for the same α = 0.1, BF and FD ILC converge in a
similar way. PD ILC has a slightly higher convergence rate than FD and BF ILC, mainly
due to the choice of learning constant α = 0.1. The asymptotic error of all variants is
approximately the same.
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Figure 2.16: Comparison of different ILC variants, stable reference trajectories

If we change the reference trajectory, the FD and PD ILC have to start from the
beginning - the error values increase significantly. The BF ILC retains the learned Θ
values, so there is no significant change in error values. However, the L and Q matrices
must be recalculated.
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3. Implementation in Rexygen

3.1 Introduction of Rexygen

REXYGEN is an advanced tool for process control, robotics and diagnostics. The RexCore
runtime core runs on top of the operating system, coordinating the execution of algorithms
and providing access to input and output signals. REXYGEN supports many different
platforms and is platform independent. Rexygen’s main development tool is REXYGEN
Studio, which acts as a unified development environment for all platforms. Programming
in Rexygen is done visually using function blocks that can be selected from an extensive
library of function blocks. [3] Rexygen is developed by REX Controls, which has a long-
term cooperation with the NTIS research centre of the Faculty of Applied Sciences of the
University of West Bohemia in Pilsen.

3.2 Implementation of ILC in Rexygen

3.2.1 Scheme of implementation

The implementation in REXYGEN consists of three files - an exec file, a fast-task and
a slow-task. The fast-task runs every 1ms and contains all the functionality that needs
to be executed in real time, while the slow-task is run after 100ms and contains the ILC
calculation.

The exec file contains the EXEC block and acts as the main project file. The EXEC
block is the cornerstone of the REXYGEN system. When compiled, the EXEC block and
the blocks attached to it determine what and how will be part of the compiled program.
In our case, there are two TASK blocks attached to the EXEC block. These TASK blocks
represent our tasks using the filename parameter, which acts as a reference to the corre-
sponding source file. The EXEC block also defines the tick length (how often each task
will be executed) for each level.

(a) Exec file (b) slow-task PD ILC (c) slow-task BF ILC

Figure 3.1: Implementation in REXYGEN

The slow-task contains a REXYGEN block in which the ILC calculation takes place
and blocks containing the matrices that are required to calculate the corresponding ILC.
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These matrices are computed in Matlab and then stored in the CNA block. A Boolean
indicating that the ILC is enabled is fed from the fast-task to the HOLD pin of the
PYTHON block. As a result, the calculation in the slow-task does not proceed if the
ILC is not enabled. Furthermore, the error vector is fed into the slow-task from the fast-
task. In the case of BF ILC in addition to the error vector, the velocity and acceleration
vectors are fed in. The slow-task also contains a TRND block which is used to store the
data computed in the PYTHON block- RMSE, the number of iterations, and highest and
lowest measured error.

Figure 3.2: Implementation in REXYGEN fast-task PD and FD ILC

The fast-task contains two subsystems. The first is responsible for calculating the
desired trajectory using REXYGEN blocks:

• RM Axis, which serves as a cornerstone for generating motion in REXYGEN. It
stores and provides motion information along a single axis.

• MC Power, which must be implemented and acts as an on/off switch.

• Two MC MoveAbsolute blocks. One implements movement to the desired position
and the other back to zero. During these movements the maximum speed and
acceleration are limited to the desired values.

The second subsystem is responsible for storing the current error in a matrix, which it
then passes by reference to the slow-task. The first output of the subsystem is a reference
to the error vector. The second output of that subsystem is the number of ticks since
the motion started in the current iteration. Tick counting is performed by the integrator,
which resets at the start of the motion and stops at the end of the motion. The current
error value is stored in the MX MAT block using MX DSASET. The position at which the
error is to be stored is determined by the integrator output. MX DSASET also provides
a reference to the stored data, which is passed to the first subsystem output. For the BF
ILC, the velocity and acceleration information is stored in the same way.

In the fast-task there is also a CSSM block, which represents and simulates the real
system; a PIDU block, which contains the PID controller calculated in 2.1.2; the TRND
blocks which are used to write trends; the ATMT block, which is responsible for the
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runtime control program, as will be explained later and the MX AT block. MX AT allows
us to extract individual elements from the ILC vector that was computed in the fast-task.
The current tick information from the second subsystem is used to determine the correct
element that needs to be fed into the system. In BF ILC, instead of the ILC vector,
the calculated values of the constants Θ are fed into the fast-task. The ILC control is
then calculated by multiplying the current velocity and acceleration by the corresponding
constant.

Figure 3.3: Implementation in REXYGEN fast-task BF

3.2.2 Program runtime control using ATMT

The finite state machine implemented in the ATMT block [1] is used to control the exe-
cution of the program. The automaton is defined by a table of transitions in which each
line represents a transition rule. Line

Si Cj FSk

means if the current state is Si and at the same time the transition condition Cj is satisfied
it goes to the state Sk. The values of the transit conditions are determined by the binary
input of the ATMT block. Output Qn of the block is set to True if the current state
of the block is n. The states and the transitions between them used to control program
execution are represented in Figure 3.1. [12]
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Figure 3.4: States and transition of ATMT

3.2.3 Python block

A PYTHON block [2] allows the user to implement a user-defined function. The PYTHON
block performs functionality written in a Python script, which name is specified as a block
parameter. Compared to the other way of writing user-defined functions in REXYGEN
— the REXLANG block — the PYTHON block allows the user to develop more easily by
programming in a high-level programming language. The PYTHON block also supports
third-party libraries available in Python. The disadvantage of the PYTHON block can be
instability in some corner cases. There must be four functions in a Python script:

• main() is executed whenever the block is executed

• init() is executed at startup and after resetting the block

• parchange() is executed whenever a parameter of the block is changed

• exit() is executed when the control algorithm is stopped

Data exchange between the script and the REXYGEN system is done through a PyRexExt
module . This module includes a REX object, which is used for data exchange operations.
The reading value of input or parameter and the writing value of output is done by .v
property. When using the .v property, there is an automatic conversion between REXY-
GEN and Python data types. The REX object can be used to create a handle to an
external REXYGEN item and to write messages to the system log.
The data types of output signals, input signals and parameters must be specified in the
configuration file. If the configuration file is not found when the block is started, a new one
is created with the default data type double for all inputs, outputs and parameters. The
configuration file can be edited using the tool available in the PYTHON block. In addition
to the common data types(int, float, double, string, array), the inputs and outputs also
support NumPy array. The NumPy array on the output is automatically converted to a
regular array. Regular array on input is automatically converted to NumPy array.

3.3 Implementing ILC with PYTHON block

As mentioned earlier, due to the limited computational capabilities of Python, I calculated
some of the things needed to calculate the ILC in Matlab. The Q filter coefficients for the
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PD and FD ILC and the L filter coefficients for the FD ILC were calculated. For the BF
ILC, the matrices representing the GS transfer as a state space model were calculated in
order to compute the Q and L matrices. PD ILC and FD ILC were implemented according
to the functions described in the first chapter in a similar way as in Matlab. The BF ILC
has been implemented with an alternative method of computing the matrices Q and L.
Unlike the Matlab implementation, the feedforward control is not computed in a Rexygen
block, but is instead generated in a fast-task based on the computed parameters Θ .

3.3.1 IIR filter

The IIR filter used in the FD ILC was implemented in transposed direct form 2. The
implementation was verified by comparing the filtering results using the filter function in
Matlab against my implementation. [15]

Figure 3.5: Transposed direct form 2 implementation of a second order filter [15]

3.3.2 FIR filter

Due to the lack of a filtfilt algorithm in Python, I used a zero-phase finite impulse response
filter for the Q filtering.

3.4 Comparing implementation in Rexygen with Maltab

I compared the simulation results in Rexygen with the simulation results in Matlab and
Simulink to verify the correctness of the Rexygen implementation. The simulations were
performed with the same constants and FIR filters. The calculated errors are very similar.
so the implementation can be considered correct.
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Figure 3.6: Comparison of results in Matlab and Rexygen PD ILC
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Figure 3.7: Comparison of results in Matlab and Rexygen BF ILC
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Figure 3.8: Comparison of results in Matlab and Rexygen FD ILC
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4. Controlling real mechatronic
system

4.1 Description of the controlled system

The motion system consists of an electrical drive (590 W permanent magnets synchronous
motor driven by a servo amplifier), flexible coupling, bearing housing, inertia flywheel. [11]
The system has one degree of freedom - it rotates around a vertical axis. The system is
controlled by an industrial PC running hard real-time Linux-based software environment
with a REXYGEN control system. The system is connected to the computer via EtherCAT
communication with a 5 - kHz update rate.

Figure 4.1: Controlled system

4.2 System identification using measured data

Data representing the dynamics of the transfer from the moment of motor to speed were
measured for different frequencies. I also have information that the computer that controls
the system can work with a sampling period of 0.2ms - a sampling rate of 5kHz. There is
also a known delay due to the data transfer between the computer and the drive amplifier.
This delay is three samples, so I designed the transfer function with a constant input output
delay of 3 samples during the identification. I made the identification using the System
Identification Toolbox Matlab. I designed discrete transfer functions with a sampling
period of 0.2ms and a constant input/output delay of 3 samples and varying number of
zeros and poles. From these experiments I found that the appropriate number of poles is
5. 5 is the smallest number of poles that gives an accurate representation of the measured
data. I got a very similar identification error for 3,4 and 5 zeros. When comparing the
resulting transfer functions with the measured data, the 3 zeros option looks best. At
the same time, the lower complexity of the model should facilitate the control design.
I multiplied the identified system by an integrator Ts

z−1 to get the transfer from motor
moment to position. The resulting transfer function is:

z−3 0.0001308z4 − 0.0002554z3 + 0.0001272z2

z6 − 5.107z5 + 11.24z4 − 13.67z3 + 9.691z2 − 3.807z + 0.6503

The PID controller and ILC was designed for this resulting transmission.
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Figure 4.2: Comparison of similarities of identified transfer functions with 3, 4, 5 zeros
against measured data.

4.3 Design of a PID controller to control the identified sys-
tem.

The discrete PID controller designed for the identified system has 5.5% overshoot in re-
sponse to a step change in the reference trajectory. I converted the PID controller using
the pidstd command into the form

Kp(1 +
1

Ti

Ts
z − 1

+ Td
1

Td
N + Ts

z−1

)

with parameters

Kp = 2.25, Ti = 0.161, Td = 0.0356, N = 5.33, Ts = 0.0002

.
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Figure 4.3: Identified system regulated by PID regulator

4.4 ILC implementation for real - system control

I linked the implementation of the ILC algorithms in Rexygen described in Chapter 3 to a
sample application. The sample application contained the functionality needed to control
the real system.

I used the identified system and the designed PID controller to determine the constants,
filters, and matrices needed to implement ILC. I determined the constants kp and kd using
manual tuning in Matlab. I obtained the L filter for FD ILC by inverting the GS transfer.
The GS transfer has no unstable zeros, so there was no need to use ZPTEC.

The PD ILC provided a significant improvement in control compared to pure feedback
control and no change in the control algorithm was necessary.

For FD ILC, it was necessary to set the first and last few samples of the feedforward
vector to zero because, due to the shift of the filtered vector, the L filter was causing
undesired behavior.

The BF ILC with two basis functions - velocity and acceleration - did not lead to
sufficient improvement due to limited ability to react to the start of motion. So I added
a third base function - the signum of velocity. I also chose a non-zero weighting matrix
Wf to improve robustness to model uncertainty. With these changes, BF ILC had results
comparable to PD and FD ILC.

35



4.5 Data measured on a real - system

The trajectory used for comparison had the following parameters: pend = 0.5, vmax =
4 and amax = 10. When comparing the responses to the trajectory change, the first
trajectory had parameters : pend = 0.5, vmax = 4 and amax = 10. and the second
trajectory had parameters pend = 1, vmax = 4 and amax = 10. I compared PD ILC with
kp = 0.25 and kd = 5 with FD and BF ILC, which had α = 0.1.
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Figure 4.4: Comparison of real-system control results using different variants of ILC

The convergence rate is similar for BF and FD ILC with the same α . This behavior is
similar to the simulated behavior. The asymptotic error is slightly larger for the BF ILC.
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Figure 4.5: Response to trajectory change using different variants of ILC

It can be seen that changing the trajectory causes a step in error for PD and FD ILC
because the learned control vector is not appropriate for the new trajectory. The BF ILC
has no problem with trajectory change.
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The control generated by all forms of ILC is relatively similar.

All variants of the ILC lead to large improvements in performance. I got the smallest
asymptotic error for FD ILC, probably due to a good L filter that inverts the dynamic of
GS transfer well. If the system were to often change trajectory, then a BF ILC would be
a good choice, as the BF ILC can adapt instantly to trajectory changes, unlike the FD
and PD ILC.
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5. Conclusion

In this thesis, the use of Iterative Learning Control methods to improve the performance of
motion control systems was investigated. First, in the theoretical part, individual methods
of Iterative Learning Control were introduced. Convergence was also analysed for some of
the methods.

Simulations were then run in Matlab to test the behaviour of each method and the
effect of constants on it. The effect of the constants was as follows:

• PD ILC: Higher values of kp and kd cause faster convergence, but may also cause
unwanted noise amplification.

• FD and BF ILC Higher values of α lead to faster convergence, but can lead to higher
asymptotic error.

This behavior is consistent with that described in the literature I reviewed.
Subsequently, the methods were implemented in a real-time system. This implemen-

tation was then used to control the real system. All three tested methods - PD, FD and
BF ILC - improved the performance of the real system.

The main advantage of PD ILC is that it is not necessary to know the exact model of
the controlled system. Manual tuning of constants, on the other hand, can be lengthy.

The main advantage of FD ILC is very good performance if the exact model of the
controlled system is known. In my experiments, FD ILC achieved the lowest asymptotic
error. At the same time, it is possible to get convergence in one step when choosing α = 1.
The main disadvantage is the necessity to know the accurate model of the controlled
system.

A shared disadvantage of PD and FD ILC is the inability to respond to a change in
trajectory - learning must start over.

The main advantage of the BF ILC is the ability to react to a change in trajectory.
One disadvantage of BF ILC is its inability to generate arbitrary control - the generated
control must be a linear combination of basis functions. Because of this, I had to add
an additional basis function when implementing BF ILC on a real system. BF ILC also
requires accurate knowledge of the model of the controlled system.
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