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         Abstract 

   The presented bachelor thesis is focused on the description of carbon allotropes for 

sensor applications and subsequent verification of temperature dependencies of selected 

carbon allotrope materials. The first two chapters of the work are theoretical whereas 

section three and four are concerned with the thesis experiment. Section one is an 

overview of some carbon allotropes used in sensor technology with a particular focus 

on carbon nanotubes. Section two reviews some suitable technologies for carbon 

deposition onto substrates in the fabrication of carbon-based sensors. Section three 

describes an experiment to practically verify the temperature dependence of SWCNT, 

SWCNT-COOH, MWCNT and MWCNT-COOH deposited on BI2 interdigital substrate 

by airbrush spray deposition. An evaluation and comparison of obtain results is 

presented in the last section.  
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    Introduction 

   Carbon is a non-metallic chemical element listed sixth on the periodic table and 

represented by the letter C. The name carbon is derived from the Latin word for coal, 

“carbo” [1]. Carbon occurs naturally in three isotopes: 12C, 13C, and the radioactive 

isotope 14C. It is a tetravalent element and forms covalent bonds with itself as well as 

with other elements. It is considered to be the fourth most common element in the earth’s 

crust with relative abundance assessed to be 180 - 270 ppm [2]. 

   People have used carbon in technology and in everyday life for many centenaries. 

Carbon black, charcoal and graphite are some of the many materials known to have been 

used in prehistoric times. In those times, carbon-based materials were used as writing 

and drawing materials, among other uses. Today, carbon lends itself to contemporary 

science and technology as an invaluable elemental asset, revolutionising the 

nanotechnology industry [3]. 

   Nanotechnology is defined as the understanding and control of matter at dimensions 

between 1 and 100 nm where unique phenomenal enable novel applications [4]. The last 

100 years have seen rapid growth in the nanotechnology industry. The increased interest 

in nanotechnology research and development has consequently led to the development 

of outstanding industrial applications. Nanotechnology has attracted so much popularity 

chiefly because its domain of operation is at the very foundation of matter, at the most 

fundamental level of organization of atoms and molecules in both living and 

anthropogenic systems. Experiments with particles at the nanoscale reveal that these 

particles exhibit exceptional tuneable physical properties as well as outstanding solvent 

interactions [5], [6]. Manipulation of materials at atomic level has brought to light the 

possibility to synthesize very small structures or devices from atomic or molecular 

building blocks using the so-called “bottom-up” approach [7], making possible the 

design and assembly of nanoscale functional gadgets through the emergence of 

technologies such as micro-electromechanical system (MEMS), to name but a few [8]. 

   These concepts of nanotechnology were first formally introduced by the 1965 Nobel 

Prize Laureate in Physics  [9], Richard Feynman in 1959. However, it wasn’t until the 
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1980s that the golden era of nanotechnology launched. In 1985 Kroto, Drexler, Curl, 

and Smalley discovered fullerene using principles first laid out by Feynman and other 

pioneers in the field. Great interest in nanotechnology was further enhanced when Iijima 

discovered carbon nanotubes in 1991 [10]. The revolutionary discoveries of fullerene 

and carbon nanotubes have since placed carbon nanotechnology squarely at the helm of 

the nanotechnology industry. 

   Nanomaterials are generally classified as zero-dimensional if all three dimensions of 

the material are less than 100 nm; one-dimensional if the material has two of its 

dimensions less than 100 nm; two-dimensional if the material has one dimension less 

than 100 nm. Three-dimensional nanomaterials are usually bulky structures composed 

of nano-sized building block structures. Functionalization of nanoparticles, permits 

construction of composite nanostructures of higher dimensions. Functionalization 

technologies also serve to alter the properties of nanomaterials [8].  

   Carbon presents itself in many different natural and artificial allotrope forms [8]. The 

eight allotropes of carbon are, 1) graphite, 2) diamond, 3) C60 (buckminister fullerene 

or bucky ball), 4) C70, 5) C540, 6) lonsdaleite, 7) carbon nanotubes (buckytube), 8) 

amorphous carbons [1]. In contrast to other nanomaterials such as metal oxide 

nanowires and transitional metal nanomaterials, carbon-based nanomaterials possess 

exceptional chemical, physical, mechanical and electronic properties [11]. These 

brilliant properties of carbon include, but are not limited to; wide specific area, 

biocompatibility, high electro-chemical stability, ease of manipulation, good electrical 

and thermal conductivity, high mechanical resistance, low cost, suitable surface 

chemistry for a wide range of oxidation-reduction reactions, and environmentally 

friendly qualities [2]. Structure and size play a huge role in determining the carbon 

allotropes’ properties [12]. 

   The past 25 years have seen a rise in the use of conjugated carbon materials [3]. Many 

novel carbon allotropes have been discovered since Krato et al.’s 1985 [13] discovery 

of fullerene. Furthermore, carbon nanotubes (CNTs), a tubular shaped member of the 

fullerene family was first presented by Iijima in 1991 [14]. This discovery facilitated an 

increase in the works on CNTs [15]. Graphene, the first two-dimensional atomic crystal 

discovered, was discovered in 2004 by Novoselov et al. [16]. This discovery was 
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rewarded with the 2010 Nobel prize in physics, a testament to the importance of carbon 

in today's development of science and technology.   

   It is therefore no surprise that carbon has attracted substantial attention owing to its 

direct application in the generation of new materials with exclusive properties [3].  

Carbon is thus one of the most studied and used materials in the field of nanotechnology.   

This is mainly because of the many advantages that carbon holds over conventionally 

used materials. Its manufacturing process is simple and efficient with low densification 

defects. In addition, materials based on carbon can be considered as cheaper alternative 

materials to some of the current electronic materials in use. Carbon allotrope structures 

are also considered to be environmentally friendly [15]. 

   It is thanks to the properties mentioned above that carbon nanostructures are 

continually investigated for their deployment in sensor technology. A sensor is defined 

to be a device that responds to stimulus, generating a signal that can be analysed. It is 

required of good quality sensors to have fast response to external stimulus, low recovery 

time, and the ability to detect an analyte in proportion as low as possible. A sensor must 

also be easy to operate. These high-quality sensing properties are a direct result of 

carbons superior chemical and physical qualities [15]. 

   Part one of this thesis gives an overview highlighting the unique properties of some 

carbon allotropes suitable for use in sensor technology. An overview of a representative 

0- and 1-dimensional carbon allotropes is given. Chapter two outlines some suitable 

carbon thin-film deposition technologies used in sensorics. The third chapter is 

concerned with experimentally verifying the temperature dependence of pristine as well 

as carboxyl functionalized single- and multi-walled CNT. Data analysis and 

interpretation of the results obtained from the measurements in chapter three is given in 

the fourth and final chapter. 
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List of Symbols and abbreviations 
 
CNM ..................... carbon nanomaterials   

CNT ...................... carbon nanotube 

SWCNT ................ single walled carbon nanotube 

MWCNT .............. multi walled carbon nanotube 

C60......................... Buckminsterfullerene 

COOH .................. Carboxyl group 

CVD ..................... Chemical vapour deposition  

PVD ...................... Physical vapour deposition  

LB ......................... Langmuir-Blodgett 

EPD ...................... Electrophoretic deposition  

LB ......................... Langmuir-Blodgett 

EPD ...................... Electrophoretic deposition 

DMAc ................... N, N dimethylacetamide polar solvent  

IPA ........................ Isopropyl alcohol  

IDE ....................... Interdigital electrode 

R ........................... Resistance 

RTs ......................... Average resistance at a given step temperature value of climatic chamber  

Tn .......................... nth climatic chamber time period  
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1. Overview of some suitable organic material based on 
carbon suitable for sensorics 

Carbon, a group 14 (IV A) element, is the most versatile of all known elements, 

presenting many bonding possibilities [17], [18]. Its extent of catenation is unrivalled by any 

other element. Carbon not only bonds with nearly all other elements of the periodic table, 

but also with itself in almost limitless variations. It also has the ability to form long chains 

of atoms, thus displaying polymerization. Further still, carbon bonds with both 

electropositive and electronegative elements. Carbon  atoms are capable of forming single, 

double and triple carbon-carbon bonds where the average bond energies are reported to be 

approximately 350 kJ mol-1 ,610 kJ mol-1 ,840 kJ mol-1 between single, double and triple 

bonds, respectively [19].  

Even though chemically speaking, graphite and diamond are similar, they manifest 

completely different physical parameters [3] [20]. Graphite and diamond, are two physically 

different substances but composed entirely of the same atom, carbon. Graphite and diamond 

are thus said to be allotropes of carbon. Allotropes occur when the atoms of a substance that 

has only one kind of atom arrange differently [3]. Carbon nanomaterials (CNMs) can be 

classified with respect to the number of dimensions, which are not confined to the nanoscale 

range (<100 nm) [21]. Some allotropes of carbon can be classified yet still with respect to 

their shape, size, and the orientation of their carbon bonds [1]. More accurately, allotropes 

are classified on the basis of the hybridisation of their carbon atoms. Based on this 

classification scheme, each one of the three main carbon valence states is characterised by a 

unique and specific allotrope form. For instance, single bond sp3 hybridisation as is observed 

in the bulk 3D structure of diamond, double bonds in sp2 hybridisation of the 2D layers of 

graphene structure and the sp hybrid state of the linear chain 1D carbine structure. Buckyball 

fullerenes are considered quasi-zero-dimensional and nanotubes quasi-one-dimensional 

allotrope [15]. Both buckyball fullerenes and carbon nanotubes manifest quasi sp2 

hybridisation [18]. Valence atoms of some carbon allotrope such as amorphous carbons, 

diamond like carbon and nanocrystalline diamond aren’t always in the sp, sp2 or sp3 

hybridization states. They maybe in the so-called mixed and intermediate states, spn where 

1 < n < 3 [22].  



Organic material based on carbon allotropes for sensorics Malinga Tembo 2021 

 15 

The energy level distribution of the 2s and 2p electronic shells are responsible for the 

many structures carbon has to offer. The 4 valence electrons, with atomic configuration 

2s22p2, are able to transition energy states at minimal energy cost. These electrons can be 

involved in sp, sp2 and sp3 hybridisation due to carbon having energy bands that are so close 

in energy, consequently enabling carbon  to occur in numerous allotropic forms [23]. 

Research and development in the field of carbon nanotechnology is actively 

investigating the synthesis and applicability of novel as well as known CNMs [24]. CNM 

surfaces, however, need functionalization before deployment for use in most technologies. 

Furthermore, CNTs can be modified by conjugation with organic or metallic nanoparticles 

[25]. Modification and functionalization is not only essential to remedy their insolubility and 

tendency to aggregate, but also to ultimately enhance their properties (e.g., mechanical, 

chemical, optical properties, electrical, physical etc ) [25]. The broad structural 

dimensionality and ease of functionalization enables the adaptation of these brilliant 

electromechanical properties possessed by CNTs at nanoscale, via composite materials, for 

use at microscopic scales [26]. Carbon based organic materials have reportedly been used in 

different sensing applications for targets such as temperature, pressure, biomolecules, 

environmental pollution to mention but a few [2], [8], [27], [28]. Physicochemical properties 

of an allotrope depend strongly on the allotropes’ structure and size [12]. In this section, an 

overview of the properties of the 0D CNM C60 fullerene, 1D carbon nanotubes (CNTs), and 

2D graphene and its derivatives, is given. Their surface properties, rather than bulk 

properties, are presented as they play a significant role in sensor applications.  

1.1 Fullerene 

Fullerenes are a family of carbon allotropes that generally exist in two distinct categories 

based on their shape, displaying distinct chemical-physical properties. Closed, ellipsoidal or 

hollow spherical shaped fullerenes are called buckyballs while the tubular fullerenes are 

called carbon nanotubes (CNTs) or buckytubes. Carbon nanofibers and carbon nanobuds are 

some of the other fullerenes synthesised for scientific research and use [29]. Fullerenes can 

be thought of as rolled up graphene sheets [12]. 
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1.1.1 Fullerene C60 

Discovery and some basic properties 

The presence of the fullerene C60 had been predicted as far back as 1970 by Eiji Osawa 

[30] of Japan in his paper on superaromaticity. However, it wasn’t until 1985 when during 

an experiment to simulate the conditions under which the formation of red stars occurs, that 

Kroto et al. [13] discovered fullerene C60. The experiment involved vaporisation of the 

surface of a solid block of graphite by irradiation into a plasma of atoms and free ions. Upon 

cooling the plasma, mass spectrometry analysis of the resulting clusters showed a sharp spike 

commensurate with 60 atoms of carbon and in second place another spike consistent with 70 

atoms of carbon. The more stable molecule C60 was observed to assume the shape of a soccer 

ball whereas the C70 was more ellipsoidal. This discovery marked the start of intense research 

into CNMs [31] and was later awarded the 1996 Nobel Prize in Chemistry.  

Kroto et al. [13] named the newly discovered molecule C60, “buckminsterfullerene” in 

honour of the architect, Richard Buckminster Fuller, who had designed geodesic domes of 

similar structure. Despite being closed caged, all buckyball fullerenes are 5-fold symmetrical 

and have so far been shown to comprise an even count of carbon atoms, C2n. C60 fullerene, 

for instance, exhibits spheroidal geodesic geometry with a diameter of 7.1 Å or 

approximately 0.7 nm. Buckyball fullerenes are thus generally taken to be 0D CNMs as all 

of their three spatial dimensions are below 100 nm. Buckyball fullerenes can be considered 

to be the smallest stable CNM structures and are right at the molecule-nanomaterial 

boundary. These structures have been shown to be consistent with Euler's polyhedron 

formula and the isolated pentagon rule. It is by Euler's polyhedron formula and isolated 

pentagon rule that it can be understood why C60 fullerene is observed to be the most stable 

buckyball fullerene. 

Natural occurrences of fullerene have been reported in several scientific papers [32]–

[35]. Geological sources were identified as far back as 1992 when Buseck et al. identified 

fullerene (C60 and C70) in Precambrian rock from Russia. Meteoritic as well as geological 

sources have been the main sources of natural occurring fullerenes, although at really low 

concentrations. Localised energetic events such as lightening, soot from wildfires and 
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impacts of extra-terrestrial bodies are  thought to be the responsible for these occurrences 

[36]. Buseck offers a comprehensive review on natural occurrence of fullerenes [36].   

 Before fullerenes could be widely studied, fullerene production technologies of 

sufficient yield had to be sought. Kroto et al.’s [13] initial laser ablation (figure 1.1.2) of 

graphite experiment produced an insufficient yield to attract meaningful research as 

fullerenes could  only be detected through mass spectroscopy analysis [37]. It wasn’t until 5 

years later, in 1990, that Huffman and Krätschmer [38] produced sufficient macroscopic 

quantities of fullerene, that the era of scientific fullerene exploration launched [37]. The 

“Krätschmer–Huffman method’’ is essentially synthesis of fullerene by electric arc heating 

of graphite. It involves the vaporisation of graphite electrodes by means of resistive heating 

in inert (helium) environment. An electric arc is generated between the electrodes producing 

a soot. Benzene solvent was used to extract the fullerene contained in the resultant soot. 

Mass spectral analysis revealed the presence of C60 and C70 in the final yield in proportions 

of 10:1, respectively [37]. In the same year, 1990, Smalley and co-workers reported the 

design of another fullerene production mechanism they called “C60 generator” [39]. They 

synthesised fullerene by resistive arc heating of graphite by generating an electric arc 

between graphite electrodes completely enclosed in a reaction chamber in an inert 

environment. Organic solvents were used to extract fullerenes from the soot produced in the 

C60 generator. One of the modern methods of fullerene production is the synthesis by laser 

irradiation of polycyclic hydrocarbons (PAHs). PAHs have shown to be better at the 

synthesis of new fullerene homologues as compared to graphite vaporisation methods. 

Through the use of flash vacuum pyrolysis, PAHs of a desired carbon structure can be “rolled 

up” by laser irradiation [40]. Other production methods include sputtering, electron beam 

evaporation, soot combustion of hydrocarbons and electron beam ablatio. Arc plasma or 

radio-frequency-plasma methods are usually the most used commercial methods [1]. Sorting 

and purification methods such as column chromatography, selective chemistry and high 

performance chromatography are some of the procedures after fullerene production to isolate 

monodisperse fullerenes[41]. The demand for low-cost, high-quality fullerene production of 

sufficient yield is a challenge synthetic production methods seek to accomplish[42]. Readers 

are referred to Alonso et al.’s [42] detailed review on the synthesis of fullerenes. The 

relatively high-cost and low yield of available commercial production methods of buckyball 

fullerene is a major practical hinderance. 
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Physically, fullerene-C60 shows elasticity when compressed up to 75% its size. 

Mathematical models indicate that it has a bulk modulus of 668 GPa making it harder than 

diamond whose bulk modulus is 160 GPa [43], [44]. Generally fullerenes can withstand 

pressure of up to 3000 atmospheres [44]. Fullerene is the only soluble allotrope of carbon 

under ambient conditions and thus can be used to prepare carbon films in solution. However, 

elemental fullerene is hydrophobic and is insoluble in many solvents, such as polar solvents. 

It is soluble in non-polar solvents such as carbon disulphide o-dichlorobenzene, toluene and 

xylene. Solutions of fullerene C60 are deep-purple/violet whereas those of C70 are brick red 

in colour [40], [45], [46]. Fullerene size and morphology are responsible for its unique 

optical properties such as the large indices of refraction, broad absorption of light in the UV-

VIS region [26], [47]. When exposed to light fullerene-C60 produces singlet oxygen [46], a 

trait not least suitable in vivo biosensing application. fullerene-C60 also polymerise when 

exposed to ultra-violet light [48]. 

1.2 Carbon nanotubes 

Carbon nanotubes (CNTs) are a 1D allotrope of carbon. They are one atom thick rolled-

up graphene sheets, of cylindrical tabular shape CNTs are often capped with buckyball 

fullerene hemispheres at both ends during their formation[31].  They exist either as multiple-

walled CNTs (MWCNTs) or single-walled CNTs (SWCNTs), both of which were discovered 

by Iijima et al. in 1991 [14] and 1993 [49], respectively [50]. Iijima first discovered 

MWCNTs as a by-product during the synthesis of fullerene, by the arc discharge method 

[51]. SWCNTs are a single rolled-up layer of graphene sheet and MWCNTs consist of more 

than two concentric rolled-up layers. Two concentric rolled-up layers are known as double-

walled CNTs. The diameter range of CNTs varies from about 0.4 nm to about 70 nm and can 

have variable lengths in the order of micros [52], [53]. 

Figure 1. SWCNT, DWCNT and MWCNT  
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1.2.1 SWCNT 

SWCNTs are rolled up single graphene sheets that have a typical diameters about 1nm 

[54]. Structurally, all the carbon atoms on the cylinder surface are placed in equivalent 

positions in hexagonal rings. Buckyball fullerene hemispheres which may be present, during 

formation, on  both ends of the SWCNT contain pentagonal rings favouring chemical 

reactivity [55]. SWCNT atoms in the hexagonal rings are not planar due to the presence of 

sp3 hybridisation component. This has the overall effect of making the surface SWCNTs 

more reactive than planar graphene sheet [55]. 

To form a SWCNTs, a graphene sheet can be rolled in a number of different ways with 

respect to lengths along graphene crystal lattice unit vectors (in the honey comb structure) 

as shown in figure 1.6 [54]. Therefore, the structure of any type of SWCNT can be described 

in terms of chirality (hexagon orientation with respect to the tube axis [54]) with the aid of 

the chiral vector index, (n, m), where n and m are integers. Chirality is determined by the 

rolling angle or rather orientation of carbon atoms around the circumference [51]. Chirality, 

ch, not only indicates the angle between the hexagons and the CNT axis [26] but also the 

alignment of the π-orbitals. Figure 1.2.1.1 illustrates chirality. To roll-up a sheet of graphene 

along a vector ch=na1+ma2, the first and the last carbon atom on ch must be overlayed[53]. 

The electrical properties are a function of the CNTs chirality depending on the value of the 

chiral vector index (n, m). Chiral vector indexes (n, n) and (n, 0) result in arm-chair and 

zigzag configurations, respectively. Any other configuration is considered helical also 

known as chiral. Figure 1.2.1.1 shows these configurations. Chirality can be rolled up in 

different ways to make the CNTs either semiconducting or conducting. A SWCNT, (n, m), 

is considered metallic if m=n or (n-m) is a multiple of 3; otherwise, the CNT is a 

semiconductor. Arm-chair SWCNTs even display higher values of electrical conductivity 

than that of copper[54]. Electrical conductivity is also a function of SWCNT’s diameter and 

helicity. The emission wavelengths of CNTs vary based on the diameter and chirality. 

SWCNT diameters may vary from manometers to micrometres. 
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1.2.2 MWCNT 

MWCNTs are intrinsically more complex than SWCNTs. They may house from two to 

unlimited number of graphene sheets [55]. They have typical diameters of between 5 to 25 

nm, and variable lengths from nm to 10 µm [54], [55]. They consist of more than one 

SWCNT is arranged coaxially such that the diameter of the innermost SWCNT is the 

smallest and that of the outermost SWCNT has the greatest diameter.  

The carbon layers that make up MWCNTs have inconsistent chirality and thus don’t 

display electric properties as extraordinary as SWCNT. However, MWCNT show 

extraordinary mechanical properties far superior to those of SWCNTs as reported by Hyung 

et al. [56], rendering them more useful in strain sensor technology [51], [57].  Thermally, the 

properties of MWCNTs have been observed to be extremely similar to that of graphene, but 

quite different to those of SWCNTs  [58]. Even though MWCNT do not have qualities as 

varied and high as SWCNTs, they are easier to process owing to their larger size. MWCNTs 

contain range from 20 to 40nm and have lengths in the range of 1 to 50 [55].   

Apart from the commonly studied SWCNT and MWCNT, other CNTs of varied shapes 

such as ropes, stripes, springs, bamboo structures, hollow-tube, herringbone etc have been 

reported [31].  

1.3 CNT synthesis methods 

The three most common bulk production methods of CNTs are arc discharge, laser 

ablation, and chemical vapour deposition. 

Table 1 Some remarkable mechanical, physical and electronic properties 
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1.3.1 Carbon arc discharge 

  Carbon arc discharge method involves the growth of CNTs on graphite electrodes by 

vaporisation of the graphite using direct current (D.C). The synthesis occurs in a vacuum 

chamber filled with an inert gas such as helium or argon at low pressure (50 - 700 mbar) 

[52]. An inert environment speeds up reaction (carbon deposition [59]) because of its high 

ionisation potential [51]. Upon stabilization of chamber pressure, a D.C potential difference 

is set up between the electrodes. The anode is slowly moved towards the cathode to strike 

the electric arc [59]. When the graphite anode and cathode are about less than a millimetre 

apart,  a 100 A current flows through the electrodes conveying a large amount of heat through 

the discharge, creating a plasma arc [60]. The temperature generated in the plasma exceeds 

3000 K and vaporises the carbon atoms on the anode, depositing them on the cathode. As 

the anode depletes, during the course of the production, its position relative to the cathode 

should be adjusted so as to maintain optimal inter electrode separation for plasma arc 

uniformity. Once the required length of synthesised CNTs is collected, at the cathode, 

the D.C power supply source is disconnected and the electrodes are water cooled. 

Both SWCNTs and MWCNTs of high quality can be synthesised via carbon arc 

discharge. Diameters of MWCNTs produced by this method vary from 10 to 200 nm while 

those of SWCNTs vary from 0.7 to nm. CNT length is dependent on time of synthesis. 

MWCNTs are produced without the aid of a catalyst whereas SWCNTs are produced with 

the aid of a metal catalysts on the cathode or electrode. Yield quality of the SWCNTs is 

greatly affected by parameters such as metal concentration at the electrodes, inert gas 

pressure etc [61], [62].  

The major drawbacks of arc discharge method of CNT production are the labour-

intensive recovery and purification required to isolate pure CNTs from the residue by 

products such as amorphous carbons and non-tubular fullerenes. These processes in part 

compromise the structural integrity of the produced CNTs. Furthermore, the evaporation of 

carbon at very high temperature tends to promote the formation of bundled CNTs of limited 

use. This method requires large amounts of graphite and also consumes a lot of energy. 
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1.3.2 Laser Ablation 

Smalley and co-workers [63] first outlined the use of laser ablation for CNT production 

in 1995. They reported the production of SWCNTs of diameters between 5 and 20 nm as 

was observed by X-ray diffraction and transmission electron microscopy analysis.  

The laser ablation method setup is very similar to that of the carbon arc discharge except 

that laser ablation uses a laser beam to evaporate a graphite pellet target containing cobalt or 

nickel catalyst. The vaporisation is conducted in an inert (He or Ar) gas environment where 

a pulsed or continuous laser beam is aimed at the target in a furnace at over 1000 °C and 67 

kPa. The cloud of carbon and catalyst metal vapour produced is accumulated on a water-

cooled copper collector in another section of the reactor. The catalyst in, vapour form, 

prevent the closing of the CNTs in formation as it condenses slowly. Production ceases when 

the chamber is cooled or the catalyst structures become too large. The by products are 

amorphous carbons, fullerenes and carbon polyhedrons with enclosed metal particles. 

The SWCNT yield produced by this method show a high degree of structural perfection 

[64]. The typical SWCNT yield is roughly 70% [65]. Increasing laser force has been 

observed to increase yield diameter of the SWCNT product [60]. Other factors like 

wavelength and power of the laser, chemical constituents of target material, chamber 

pressure, distance between laser source and target material, fluid dynamics near the carbon 

target etc, have been observed to affect the amount and quality of the SWCNTs produced 

[61].  

Good quality CNTs with yields of up to 70% can be obtained via laser ablation [51]. 

However, researchers are constantly seeking ways to improve the classic version of this setup 

to so as to improve upon the pitfalls and thus increase production efficiency. One example 

is given in ref  [66]. 

Regardless of the advantages of carbon arc discharge and laser ablation, these 

procedures require vast amounts of graphene and energy and are thus costly. In addition, the 

yield needs further refinement in order sort-out  unwanted carbons and catalysts [58].  Laser 

ablation has not, so far, been reported to produce MWCNTs 
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1.3.3 Chemical vapour deposition 

To overcome the major pitfalls (high-cost, high energy consumption and yield purities) 

inherent in the classic carbon arc discharge and laser ablation methods, chemical vapour 

deposition (CVD) was developed rather modified to synthesis CNTs [51]. CVD was first 

used in the synthesis of CNTs by Yacaman [67] and co-workers in 1993.  

CVD is basically the decomposition of volatile precursor over a catalyst in a chamber 

containing an inert gas. In the case of CNTs production, the volatile precursor is a 

hydrocarbon such as CO, acetylene, ethylene, methane etc. The production involves 

imparting the precursor hydrocarbon with thermal energy at temperatures between 550 and 

750°C in order to decompose it into reactive radical species (carbons) over a heated wafer 

substrate coated with Ni, Co or Fe nanomaterial catalysts. Upon hydrocarbon decomposition, 

the carbon is dissolves into the molten nano catalyst until a certain saturation point is 

reached. The catalyst serves as a nucleation site to initiate the growth of CNTs. At this point 

a semi fullerene cap forms before carbon atoms with honeycomb structure appear to begin 

CNT precipitation. The growth of the CNT continues as long as the reaction chamber is 

supplied precursor hydrocarbons. Further purification and filtration is required to separate 

the CNTs from the catalysts and hydrocarbons. An exhaustive review of sorting and 

purification techniques is given in citation [68]. 

CVD’s ability to control diameter-size for desired CNTs is made possible by adjusting 

the size of the metal catalyst nanoparticles, effectively altering CNT properties. Diameters 

of 0.5 - 5nm for SWCNTs and 8 – 10 nm for MWCNTs are possible [69]. Methane 

hydrocarbon is used in the synthesis of SWCNTs whereas acetylene or ethylene for 

MWCNTs. Well separated large quantities of direction controlled CNTs can be produced by 

CVD.  

The nature of the chosen precursor hydrocarbon and chosen nanoparticle catalyst 

material are the main parameters that influence the production of CNTs by CVD. Length of 

produced CNTs is dependent on time taken to grow them. 
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1.4 CNT functionalization 

Covalent and non-covalent methods are the most commonly used functionalization 

methods for CNTs.  

Covalent functionalization involves modification of the CNT sidewalls defect sites or at 

the caps. It deals with the formation of a chemical bond between the carbon skeleton of CNTs 

and a functional group [70]. This effectively disrupts the pure CNT properties like 

luminescence and Raman detection shift plots which are reportedly lessened, making 

covalently bonded CNTs less favourable for use in photothermal or imaging application  

[71]. The loss in qualities is caused by alterations in the conjugated π-grid of pristine CNTs. 

Despite these losses, functionalization such as oxidation by a strong acid presents new 

possibilities for further modification of the CNTs with amines, amino acids etc. Oxidation 

has the effect of imparting physical strain upon the sp2 hybridised carbon atoms due to 

tension in the curvature, converting the sp2 hybridised carbon atoms to sp3
 making the CNT 

more susceptible to further reactions [70]. Functionalization with strong acids also has the 

effect of reducing CNT length, opening the CNT ends and creation of carboxyl groups there 

[72]. 

Addition reactions with hydrophilic groups can be used to improve solubility and 

avoid some of the side effects of acid functionalization [72]. 

Covalent functionalization can also be used to improve dispersion of CNTs in aqueous 

solutions by covalently bonding them to surfactants, peptides and proteins on their surface 

[72]. 

Unlike covalent functionalization, non-covalent functionalization is non-evasive, in that 

it can be done without altering the sp2 hybridised carbon network of the CNT wall [71].  

From this it follows that non-covalently functionalised CNTs preserve their electronic 

structure, inevitably leaving the physical electronic and optical  properties unaltered [53], 

[55].  This surface functionalization procedure is based on adsorption and weak interaction 

forces such as π-π stacking, Van der Waals force, hydrophobic interaction, electrostatic, 

charge transfer or hydrogen bonds. It is therefore not surprising that the load that non-

covalently functionalised CNTs can take on might be low. This functionalization happens by 
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the adsorption of surfactant molecules on the outer walls of CNTs or the wrapping of 

polymer chains around the nanotubes [71]. 
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2. Overview of some deposition technologies for carbon-
based allotrope materials 

The large surface area presented by CNTs is one of the qualities that is essential in their 

application as sensor platform active layers. This quality enhances the sensor active-layer 

with analyte interaction. However, to achieve the desired sensor performance, a suitable 

CNT deposition technique must be sought. A suitable deposition technique is important 

because overall sensor quality is heavily dependent on the quality of the deposited active 

layer. Methods that are able to yield homogeneous and thin layers are more desirable [73]. 

Deposition techniques are generally divided into wet and dry techniques. Some selected 

wet techniques are presented in section 2.1 whereas section 2.2 highlights a few dry 

deposition techniques. Wet techniques involve the creation of thin-film deposition from the 

liquid phase of CNMs whereas dry techniques seek to create films directly from CNM 

assemblies [51]. 

2.1 Wet deposition techniques 

2.1.1 Langmuir-Blodgett depositing technique  

The Langmuir-Blodgett (LB) depositing technique was first introduced by Irving 

Langmuir and Katharine Blodgett after whom it is named. This method involves the 

deposition of amphiphilic monolayers of particles trapped at the air/water interface onto a 

solid substrate by means of a vertically dipping the substrate immersed at the sub-phase [74], 

[75]. The amphiphilic materials used often are those with hydrophobic tails and hydrophilic 

heads[50].  

The deposition procedure is conducted in two main steps. The first involves dissolving 

the amphiphilic material in a volatile solvent, ideally one with positive spreading coefficient 

and insoluble in the subphase. The solution is then spread onto the air/water surface followed 

by solvent evaporation which enables the formation of the amphiphilic material monolayer. 

Upon the attainment of thermodynamic equilibrium, the monolayer-thick film is 

isothermally compressed in order to form a stable monolayer film. The compression has the 

effect of altering its shape all the while altering its phase states. The second stage involves 
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transfer of the film onto the solid substrate. To attain this, the solid substrate is dipped into 

the sub-phase and is then raised out subsequently depositing the monolayer film onto the 

substrate. During this stage, surface pressure is monitored via isobars and is kept constant 

by adjusting the moveable barrier to achieve the target pressure. Surface pressure is an 

important parameter in determining the quality of the coating. More monolayers may be 

coated onto the substrate by repeating the transfer process. 

A similar mono-layer deposition technique called Langmuir‐Schaefer method involves 

horizontal deposition of a thin film onto a substrate as opposed to the vertical deposition of 

LB technique.  

2.1.2 Drop Casting 

This is a cheap, easy and tuneable deposition procedure most suitable for small areas of 

about 1cm2. This method involves dispersing a specific quantity of suitable CNM into a 

volatile solvent and then literary dropping it on a prepared substrate, using a pipette for 

instance. The drop is then left to evaporate off the substrate, under controlled conditions of 

temperature and pressure, leaving a CNM deposition onto the substrate. Varying the CNM 

concentration or volume of dispersion or indeed repeating the procedure could be done to 

vary the thickness of the coating. Complete wetting and hydrophobic properties of the 

substrate must be taken into account to determine solvent properties for the chosen CNM 

[50], [76], [77].  

It is very difficult to obtain a uniformly thick coating across the substrate using this 

procedure. This is due to differences in the rates of evaporation on different substrate points 

under a given drop. Fluctuations in CNT concentration within a droplet also negatively 

impacts uniform CNT deposition onto a substrate. There is also always a chance for void 

formation on the substrate upon solvent evaporation. These reasons make drop casting 

unsuitable for use across large areas [78].    

2.1.3 Electrophoretic depositions 

Electrophoretic deposition (EPD) is a two-step wet approach method. The two main 

steps are, electrophoresis followed by deposition. In the first stage, electrophoresis, colloidal 
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charged particles or molecules are dispersed in a suitable solvent (or aqueous solution). They 

then migrate towards an electrode under the influence of an electric field. Deposition occurs 

at the target electrode surface by particle accumulation and coagulation, forming a coherent 

homogeneous deposit [79], [80]. Deposition can either be set up to occur at the cathode 

(cathodic electrophoretic deposition) or at the anode (anodic electrophoretic deposition) 

depending on the polarity of the particles in the suspension [81].  

Deposition uniformity and the ability to control deposition thickness on the surfaces of 

irregular and regularly shaped substrates alike, achieving microstructural homogeneity, are 

some of the main advantages of EPD. In addition, EDP has the potential to infiltrate porous 

substrates. It is also a simple and inexpensive deposition procedure [79]. 

2.1.4 Dip coating 

Dip coating is a well-known thin film coating procedure. It is conducted in three main 

steps. The first step involves immersion of the substrate, at constant speed, into a solution 

containing the coating material where it is left for a predetermined time. Deposition occurs 

as the substrate is retrieved from the solution at constant speed to ensure homogeneous 

coating. The coat thickness is directly proportional to the speed at which the substrate is 

being retrieved from the solution. This is followed by drainage of excess solution off the 

surface of the substrate by baking or forced air drying. Excess solvent is left to evaporate off 

the surface and a thin film is deposited onto the substrate [82]–[84]. Number of dipping 

cycles, rate of solvent evaporation, solution contents, viscosity, concentrations, temperature, 

etc. also affect film properties and thickness [82], [85]. 

Though similar to most wet deposition techniques, dip coating is remarkably faster. It is 

also simple and cheap and thus may not be suitable for use in situations requiring high quality 

substrate deposits. Nonuniformity in coating thickness is the main disadvantage of dip 

coating. It is however suitable for use in laboratory set up and for large scale requirements 

for which low quality depositions are sufficient [82], [83]. 
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 2.1.5 Spin Coating 

Spin coating utilises centrifugal force for its operation. It is well known for depositing 

thin films of even thickness on flat substrates. The procedure involves placing a small puddle 

of CNT based solution, of know concentration, on a substrate. The substrate is then spun at 

high, predetermined speeds, in order to spread the solvent evenly over the entire substrate 

by centrifugal force. Film properties, such as thickness, are  mainly determined by the nature 

of the solvent and spin parameters [85]. 

Spin coating is ideal for preparation of CNT polymer composite films. However, it is an 

impractical procedure for large area film depositions. It also very cumbersome to use for 

multi-layer deposition purposes. Worse still the material efficiency of spin coating is low as 

a substantial amount of raw material is lost by not landing on the substrate. Spray Coating 

2.1.6 Air brush spray deposition 

This wet film deposition makes use of a nebuliser to spray a CNM suspension onto a 

preheated substrate. The CNM dispersion is first introduced into the input chamber of the 

spray gun. Nebuliser air pressure, distance of substrate from nozzle and the spray quantity 

adjustment settings on the gun are some of the variables that help set spray quantity per 

spray. The substrate is paced onto a heater set to the boiling point temperature of the 

dispersion solvent. This temperature is important to ensure the dispersion solvent evaporates 

off the substrate evenly upon deposition, leaving behind an evenly thick CNT layer. 

Deposited layer thickness can be varied by continually making more short sprays onto the 

substrate. Short spray pulses often lead to higher quality depositions.   

2.2 Dry deposition techniques 

2.2.1 Chemical vapour deposition 

Chemical vapour deposition (CVD) is a popular dry approach materials processing 

technology. In materials science, CVD denotes various techniques that deposit solid 

material, in gaseous phase, onto a solid substrate. In addition to thin film deposition onto 
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substrates, CVD is also used to produce powders, composite and high-purity bulk materials. 

[86].  

CVD involves the deposition of a solid thin film produced from the chemical rection of 

a gas phase precursor, over a heated substrate. CVD differs from physical vapour deposition 

(PVD) in that PVD uses a solid precursor material which is vapourised right before 

deposition. Tunability of the CVD processes renders it more superior to PVD processes like 

spattering and evaporation procedures [87].  

The first stage in CVD involves feeding the reactor chamber, at roughly ambient 

temperature, with a reactant precursor gas which may be diluted in a volatile carrier gas. 

Upon entering the reaction chamber, the reactant may undergo gas-phase reactions or diffuse 

into the substrate right away through the substrate boundary layer. Gas-phase reaction 

requires, a high temperature and this may be supplied by various sources such as resistive, 

radiation or radio frequency induction heaters etc. Plasma energy and laser sources may also 

be used. The gas-phase reaction leads to the formation of intermediate reactants as well as 

volatile gaseous by-products which are removed via the reaction chamber exhaust system. 

Alternatively, the reactant precursor gas could diffuse into the substrate via the boundary 

layer. At this stage, in both gas-phase reaction and direct diffusion, the intermediate reactants 

or reactant gas adsorb onto the heated substrate. Following reactions at the gas-solid 

interface, the deposition of a film on the substrate surface through nucleation, coalescence 

and growth is initiated. Unreacted reactants and reaction by-products are discarded via the 

exhaust  [87]. 

At industrial scale, CVD is the most widely used deposition technology for CNMs 

considering the controllable deposition sizes and structure [88]. The general CVD method 

was tailored to CNMs in order to overcome most of the shortcomings of other methods like 

laser ablation, arc discharge that lack high efficiencies, suffer low yield purity, and have high 

energy consumption costs [51]. 

CNT deposition by CVD enables the production of highly tenable CNTs. CNT 

properties can be tuned by varying the CVD parameters such as choice of catalyst, substrate, 

precursor concentration and flow rate, deposition time etc. A metallic substrate and gaseous 

carbon precursor are used in the presence of a catalyst. When the precursor decomposes onto 



Organic material based on carbon allotropes for sensorics Malinga Tembo 2021 

 31 

the substate, CNTs growth may occur by two mechanisms, tip-growth or base-growth. 

Heterogenous reactions and diffusion of the carbon atoms through the metal particles leads 

to the formation of the CNT structure [89].  

The main advantages of CVD over other deposition technologies are the high purity 

deposits, conformal coating and high efficiency. However, it requires expensive raw 

materials and it produces toxic by-products [86]. 
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3. Experiment 

    This part of the thesis is concerned with practically verifying the temperature 

dependence of carbon-based organic materials, carbon nanotubes. The experiment was 

done in three main steps. In the first step, CNT materials were prepared for deposition 

by means of dispersion. Thereafter, CNT thin film deposition onto a sensor substrate 

was done. The third and final procedure was measurement of the sensor parameters. The 

aforementioned steps are described in detail in the appropriate sub-sections below.   

3.1 List of materials and apparatus used in the experiment 

CNT materials used. 

• SWCNT  

• MWCNT  

• SWCNT-COOH  

• MWCNT-COOH  

Sensor substrate.  

• BI2 interdigital sensor platform 

Auxiliary materials used. 

• N, N dimethylacetamide polar solvent (DMAc) 

• Isopropyl alcohol (IPA). 

Main apparatus used. 

• Climatic chamber 

• Interdigital electrode (IDE) contact box 

• RLC meter 

• Computer (data logger) 

• Airbrush deposition apparatus  

• Digital ultrasonic cleaner  

• Bench-top centrifuge machine  

• Multimeter  
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• Analytical balance  

• Vials (Headspace and Eppendorf) 

3.2 Procedure 

3.2.1 Preparation of CNT materials (dispersion) 

     The CNT materials, initially in powder form, were first mixed with a polar solvent 

N, N-dimethylacetamide (DMAc). Each material was mixed in the ratio, 1mg CNT: 

15ml DMAc solvent. CNTs, however, tend to bundle-up and form complex structural 

morphologies mainly due to the van der Waals interactions among individual tubes [90]. 

These van der Waals interactions are in part responsible for the poor solubility and 

dispersion of CNTs in aqueous as well as organic solvents [91]. In order to ensure stable 

and homogeneous CNT dispersion, two mechanical treatment procedures were 

conducted on the mixtures. Sonication of the mixtures in a water-cooled ultrasonic 

cleaner at an output power of 700W for 24 hours was first administered. This was done 

in order to break up CNT agglomerations and thus reduce tube entanglements [92]. 

Centrifugation at 10000 rpm for 45 minutes then followed. Centrifugation was 

necessary in order to separate the residual solid particles and aggregates, left over from 

sonication, from the rest of the homogeneous dispersions [90]. Mechanical dispersion 

was chosen over chemical dispersion as it ensures, with greater probability, that the 

resultant CNTs contain the least contaminants which may otherwise interfere with 

physical properties of the CNTs [93].  

3.2.2 Sensor assembly 

3.2.2.1 Interdigital sensor platform 

    An interdigital, also called interdigitated, sensor platform consists of parallel in-plane 

periodic microstrip electrode structures that form a “comb-like” or “grating” pattern. 

The electrode structure serves as mediator between the sensitive layer (thin or thick film) 

and relevant electronics circuitry. Gold and platinum electrodes are usually employed 

for use as sensor electrodes thanks to their inert and flexible nature. Silver (Ag) and 

nickel-chromium (NiCr) are also used as electrodes. By a suitably chosen technique, the 
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periodic microstrip electrodes are deposited onto a substrate. Flexible or rigid substrates 

can be used depending on sensor application and requirements [94].  

     In this experiment, the Interdigital electrode BI2 sensor substrate was used. This 

substrate is a two-electrode ceramic-base sensor platform. The properties of the BI2 IDE 

sensor platform used are shown in table 2 below. BI2 IDEs of line/gap 100μm/100μm 

were used for the deposition of SWCNT, SWCNT-COOH and MWCNT. MWCNT-

COOH was deposited on IDEs of line/gap 50μm/50μm.  

              

             Table 2 Sensor Platform BI2 (data sheet) Characteristics. 

BI2 sensor substrate. 

Interdigitated electrodes (IDE): line / gap  100μm / 100μm 

50μm / 50μm  

Structure of IDE multilayer  NiCr/Ni/Au 

Connection Ag wire ø 0.25 mm 

Temperature range -30 °C to +200 °C 

Dimensions 5.5 x 8.8 x 0.6 mm 

     Before the BI2 IDE sensor substrates could be used for thin film deposition, they 

were cleaned with isopropyl alcohol (IPA) to ensure that the substrate surfaces were 

clean and free of contaminants that could potentially interfere with the test results.  

 

 

 

Figure 2. Schematic of BI2 IDE sensor platform. 
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3.2.2.2 CNT thin-layer deposition by airbrush spray 

     When the BI2 IDE sensor substrates were cleaned, thin-layer deposition of the 

sample CNT materials was done by airbrush spray coating. For each of the dispersed 

CNT materials, five BI2 IDE substrates were thin-film coated by airbrush spray method.  

    To deposit a CNT thin-film onto a BI2 IDE sensor substrate, the substrate had to be 

first placed on a preheated plate at a temperature of 165°C. At this plate temperature all 

the IPA that may have remained on the BI2 substrate, from the cleaning process, would 

have evaporated off before the start of CNT thin-film deposition. Secondly, 165°C plate 

temperature was necessary because it is the boiling point of the dispersion solvent, 

DMAc. This temperature ensured sufficiently quick evaporation of the dispersion 

solvent, DMAc, leaving behind a CNT thin-film deposition with the least chance of 

coffee ring formation, thus avoiding CNT agglomeration. 

 

     The airbrush deposition apparatus is shown in 3 above. To establish uniform and 

homogeneous thin-film spray depositions, the spray pressure as well as spray volume 

for each spray had to be adjusted accordingly.  

Figure 3. (a) Schematic of Airbrush apparatus. (b) Picture of Airbrush apparatus 
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    During the airbrush deposition for every BI2 IDE sensor substrate, a multimeter was 

used to monitor the thin-film deposition thickness. An output resistance in the range of 

1kΩ - 5kΩ across the main output leads of the BI2 IDE sensor substrate indicated that 

the desired deposition layer thickness had been achieved. Exceeding the required 

deposition thickness resulted in resistance readings below 1kΩ.  

    It was, however, difficult to achieve the aforementioned resistance range for deposited 

MWCNT-COOH thin film on the BI2 IDE sensor platform of line/gap 100μm/100μm. 

This is probably because the electrical conductivity of MWCNT-COOH was too low (at 

the used dispersion ratio) for use with an IDE of line/gap 100μm/100μm. It is for this 

reason that a BI2 IDE sensor platform of line/gap 50μm/50μm was used for successful 

deposition of the MWCNT-COOH thin film. 

3.2.3 Measurement of sensor parameters 

3.2.3.1 Measurement set-up 

    During measurement, all samples under test were placed in the climatic chamber, 

Vötsch VCV3 7060-5, with controlled temperature and constant relative humidity (RH) 

value of 40%. The measurements’ part was done in two identical cycles. The first 

measurement cycle involved five BI2 IDE sensor substrate samples deposited with 

unfunctionalized SWCNT and another five deposited with MWCNT-COOH. 

Measurement of the SWCNT-COOH and unfunctionalized MWCNT BI2 IDE sensor 

substrate samples was done thereafter as the second measurement cycle. Each of the two 

measurement cycles ran for 24 hours.  

    In order to conduct the tests, the prepared samples were placed in a 10-position 

contact box, inside the climatic chamber. The 10-position contact box can be connected 

to cables that provide a connection between the prepared IDE samples under test and 

circuitry external to the climatic chamber. Through these cables, the prepared IDE 

samples were connected to a ten-channel multiplexer. A RLC meter, Keysight 4980, set 

at 0.25V frequency of 1kHz was connected to the multiplexer output to ensure precise 

impedance measurement values for each of the prepared IDE samples under test. 0.25V 

was chosen as RLC operating voltage to measure the organic thin layer deposition 
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impedance because it was voltage high enough to ensure an accurate reading and not 

too high to damage the properties of the organic thin layer material under test. The 

measurands from every sample under test were then logged onto a computer. 

 

 

 

Channel number First measurement cycle Second measurement cycle 

1 to 5 SWCNT SWCNT-COOH 

6 to 10 MWCNT-COOH  MWCNT 

3.2.3.2 Climatic chamber temperature profile 

   A climatic chamber temperature profile with a step-size of 10°C operating in the range 

10°C - 80°C was chosen. The step-size temperature change was carried out every 20 

minutes meaning that a given temperature was held constant in the chamber for ideally 

20 minutes. To rise from the minimum temperature value, 10°C, to the maximum value, 

80°C, took 140 minutes. Seven more steps of 10°C were taken to cool down to the 

minimum temperature value of 10°C_over an additional 140 minutes. This means that 

the time period of the climatic chamber temperature profile was 280 mins. Five such 

time periods (T1 – T5) were set to ran over a period of 24 hours in each of the two 

measurement cycles. The figure 5 below, shows the set temperature profile for one time 

period and five time periods (entire length for each one of the two measurement cycles). 

 

Figure 4. Measurement, experiment set-up. 

Table 3. Multiplexor channel numbers during measurement. 
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     The sampling frequency for the climatic chamber temperature profile was set at 1 

temperature data point per second. This data, for the entire length of each one of the two 

measurement cycles, was recorded and logged onto the computer. Two separate climatic 

chamber temperature profile files were obtained, one from each of the two measurement 

cycles. 

3.2.3.3 Measurement channels 

    Impedance, of the CNT materials under test, was measured and recorded for each of 

the ten channels in both measurement cycles.  Data from each channel was written to an 

individual file and stored on the data-logging computer. 

 

 

 

 

 

Figure 5. Graphs of the pre-set climatic chamber temperature profile shown, (a) for one 

time-period (T1), (b) for five time-periods (T1 – T5). 
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Data analysis 

    To analyse the data from these measurements first required the synchronisation of the 

data recorded from the climate chamber with the data points recorded from the 

measurement channels. This was necessary because climatic chamber sampling 

frequency was different to measurement channels sampling frequency. To achieve data 

synchronisation a small macro was written in Vi-Improved, Vim, programmed to 

synchronise the data points to one data point every second in both climatic chamber files 

and measurement channel data output files. 

    With climatic chamber and measurement channels’ data points were synchronised, 

graphs of the resistance versus climatic chamber temperature were plotted, for all 

measurement channels. These graphs are shown in figures i. to xx. in the appendix. By 

visually inspecting the graphs, it was observed that all the four materials tested displayed 

a negative coefficient of resistance. Furthermore, the graphs helped with determining 

which measurement channels contained distorted data readings and which ones did not. 

Table 4, below indicates which channels had good data, partially good data and which 

ones had completely distorted data.  

     

  1st measurement  2nd measurement 

  (material)  (material)  

channel 1 (SWCNT) (SWCNT-COOH) 

channel 2 (SWCNT) (SWCNT-COOH) 

channel 3 (SWCNT) (SWCNT-COOH) 

channel 4 (SWCNT) (SWCNT-COOH) 

channel 5 (SWCNT) (SWCNT-COOH) 

channel 6 (MWCNT-COOH) (MWCNT) 

channel 7 (MWCNT-COOH) (MWCNT) 

channel 8 (MWCNT-COOH) (MWCNT) 

channel 9 (MWCNT-COOH) (MWCNT) 

channel 10 (MWCNT-COOH) (MWCNT) 

   

good measurement    

partially good measurement    

bad measurement (total distortion)    

Table 4. Overview of the results from the measurement channels. 
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   The channels with totally distorted data measurement were discarded from any further 

data processing. From the channels with partially good measurements, undistorted 

portions were considered for further data processing in addition to all the data from the 

channels with good measurement. Measured data points from each channel were divided 

into 5 portions based on the climatic chamber time periods, (T1 – T5) as shown in figure 

5b. All data measurement points obtained in the portion T1 (the first 300 minutes of 

measurement) were discarded. This was done to ensure that all measurements 

considered were conducted strictly under the RH and temperature conditions as set in 

the climatic chamber without the potential influence of ambient room RH and 

temperature conditions that maybe present at the beginning of measurement. To this 

effect only the climatic chamber time portions T2 to T5 were considered in all of the 

measurements. 

    The next step involved calculation of the average resistance of the materials under 

test, at every corresponding step temperature of the climatic chamber temperature 

profile for each measurement channel. These average resistance values were then used 

as representative resistance values at corresponding step temperatures of the climatic 

chamber temperature profile. Results of these calculations are shown in the (a) part of 

the tables i. to xx. in the appendix, for all 20 channels.   

   Each of the calculated average resistance values was then calculated as a percentage 

(%RTs) of the average resistance value at 10°C in each local temperature profile time-

period (Tn). Results of these calculations are shown in the (b) part of the tables i. to xx. 

in the appendix, for all 20 channels.  

                         %RTs=
(𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅 𝑣𝑎𝑙𝑢𝑒 𝑎𝑡 𝑒𝑎𝑐ℎ 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑠𝑡𝑒𝑝 𝑖𝑛 𝑇𝑛)

(𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅 𝑣𝑎𝑙𝑢𝑒 𝑎𝑡 10°𝐶  𝑖𝑛 𝑇𝑛)
 *100 

   Next, the difference, %RTs - %RTs-1, between adjacent temperature steps was 

calculated, in each of the local temperature profile time-periods (Tn). Results of these 

calculations are shown in the (c) part of the tables i. to xx. in the appendix, for all 20 

channels. 
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   Finally, an average value of the differences in percent values for each one of the four 

CNT materials used was calculated. The results of these calculations are shown in tables 

4 to 7 and graphs 6 to 9. 
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   Table 4. Average relative percent change values for the material SWCNT. 

Figure 6. Graph depicting the average relative percent change of the resistance for the material SWCNT, with 

temperature change. 

Climatic Chamber temperature profile period, T 

Relative time of measurement (min) 21 - 160 161 - 300 301 - 440 441 - 580 581 - 720 721 - 860 861 - 1000 1001 - 1140 1141 - 1280 1281 - 1420

Chamber temperature profile trend Rise Fall Rise Fall Rise Fall Rise Fall Rise Fall

%Δ in R between 20°C and 30°C -3.16 -3.17 -3.43 -3.89

%Δ in R between 30°C and 40°C -2.63 -3.11 -3.32 -3.38

%Δ in R between 40°C and 50°C -2.16 -2.84 -3.14 -2.71

%Δ in R between 50°C and 60°C -1.21 -2.63 -2.91 -2.10

%Δ in R between 60°C and 70°C -0.30 -1.95 -2.47 -1.35

%Δ in R between 70°C and 80°C 1.33 -0.70 -1.67 -0.84

%Δ in R between 80°C and 70°C 5.18 3.74 3.20 2.77

%Δ in R between 70°C and 60°C 3.83 3.25 3.10 2.78

%Δ in R between 60°C and 50°C 3.29 3.14 3.10 2.63

%Δ in R between 50°C and 40°C 3.20 3.15 3.14 2.39

%Δ in R between 40°C and 30°C 3.28 3.06 1.94 2.25

%Δ in R between 30°C and 20°C 3.42 3.42 1.70 2.09

%Δ in R between 20°C and 10°C 3.43 3.61 1.91

Average %Δ Values for SWCNT Material. 
T1 T2 T3 T4 T5
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  Table 5. Average relative percent change values for the material MWCNT-COOH. 

Figure 7. Graph depicting the average relative percent change of the resistance for the material MWCNT-COOH, 

with temperature change. 

Climatic Chamber temperature profile period, T 

Relative time of measurement (min) 21 - 160 161 - 300 301 - 440 441 - 580 581 - 720 721 - 860 861 - 1000 1001 - 1140 1141 - 1280 1281 - 1420

Chamber temperature profile trend Rise Fall Rise Fall Rise Fall Rise Fall Rise Fall

%Δ in R between 20°C and 30°C -3.04 -2.60 -2.58 -2.09

%Δ in R between 30°C and 40°C -3.28 -2.89 -2.78 -2.32

%Δ in R between 40°C and 50°C -3.95 -3.21 -2.96 -2.54

%Δ in R between 50°C and 60°C -3.92 -2.75 -1.70 -2.69

%Δ in R between 60°C and 70°C -5.25 -4.54 -3.59 -2.92

%Δ in R between 70°C and 80°C -9.49 -6.47 -4.04 -4.26

%Δ in R between 80°C and 70°C -3.21 -2.42 -3.48 -1.27

%Δ in R between 70°C and 60°C 3.16 3.11 2.29 1.94

%Δ in R between 60°C and 50°C 2.27 1.49 1.91 2.17

%Δ in R between 50°C and 40°C 3.30 2.61 2.43 2.39

%Δ in R between 40°C and 30°C 3.47 2.51 2.70 2.39

%Δ in R between 30°C and 20°C 3.04 2.86 2.70 2.24

%Δ in R between 20°C and 10°C 2.33 2.85 2.50

Average %Δ Values for MWCNT-COOH Material. 
T1 T2 T3 T4 T5
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Table 6. Average relative percent change values for the material SWCNT-COOH. 

Figure 8. Graph depicting the average relative percent change of the resistance for the material SWCNT-COOH, with 

temperature change. 

Climatic Chamber temperature profile period, T 

Relative time of measurement (min) 21 - 160 161 - 300 301 - 440 441 - 580 581 - 720 721 - 860 861 - 1000 1001 - 1140 1141 - 1280 1281 - 1420

Chamber temperature profile trend Rise Fall Rise Fall Rise Fall Rise Fall Rise Fall

%Δ in R between 20°C and 30°C -2.67 -2.54 -2.59 -2.97

%Δ in R between 30°C and 40°C -2.29 -2.47 -2.74 -2.79

%Δ in R between 40°C and 50°C -1.68 -2.33 -2.56 -2.55

%Δ in R between 50°C and 60°C -1.03 -2.32 -2.59 -2.35

%Δ in R between 60°C and 70°C -0.34 -2.10 -2.40 -1.74

%Δ in R between 70°C and 80°C -0.01 -1.58 -2.24 -1.19

%Δ in R between 80°C and 70°C 2.66 1.67 1.48 1.86

%Δ in R between 70°C and 60°C 2.76 2.54 2.48 2.39

%Δ in R between 60°C and 50°C 2.73 2.70 2.33 2.26

%Δ in R between 50°C and 40°C 2.68 2.62 2.12 2.08

%Δ in R between 40°C and 30°C 2.55 2.75 2.01 1.82

%Δ in R between 30°C and 20°C 2.74 2.80 1.93 1.62

%Δ in R between 20°C and 10°C 2.89 2.83 1.96

Average %Δ Values for SWCNT-COOH Material. 
T1 T2 T3 T4 T5
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   Table 7. Average relative percent change values for the material MWCNT. 

Figure 9. Graph depicting the average relative percent change of the resistance for the material MWCNT. 

Climatic Chamber temperature profile period, T 

Relative time of measurement (min) 21 - 160 161 - 300 301 - 440 441 - 580 581 - 720 721 - 860 861 - 1000 1001 - 1140 1141 - 1280 1281 - 1420

Chamber temperature profile trend Rise Fall Rise Fall Rise Fall Rise Fall Rise Fall

%Δ in R between 20°C and 30°C -1.22 -0.92 -0.98 -1.03

%Δ in R between 30°C and 40°C -1.25 -1.09 -1.12 -1.15

%Δ in R between 40°C and 50°C -1.09 -1.17 -1.18 -1.25

%Δ in R between 50°C and 60°C -0.98 -1.21 -1.15 -1.26

%Δ in R between 60°C and 70°C -0.92 -1.17 -1.17 -1.08

%Δ in R between 70°C and 80°C -1.45 -1.53 -1.49 -1.25

%Δ in R between 80°C and 70°C -0.54 -0.53 -0.50 -0.16

%Δ in R between 70°C and 60°C 0.76 0.82 0.83 0.85

%Δ in R between 60°C and 50°C 1.08 1.07 1.01 1.00

%Δ in R between 50°C and 40°C 1.13 1.15 1.08 1.04

%Δ in R between 40°C and 30°C 1.09 1.21 1.09 1.09

%Δ in R between 30°C and 20°C 1.22 1.26 1.01 1.03

%Δ in R between 20°C and 10°C 1.30 1.26 1.12

Average %Δ Values for MWCNT Material. 
T1 T2 T3 T4 T5
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Discussion 

   From the graphs in the index, figure i. to xx., it can be seen that the resistance of all 

the CNT carbon materials used show increasing trends with reduction in temperature 

and show decreasing trends with rising temperature. It was also observed that sensor 

substrates deposited with the same material all registered different resistance values 

when measured at the same temperature points. This was mainly due to the fact that it 

was impractical to deposit, onto any two substrates a thin film of equal thickness. It is 

mainly because of this reason that the method of relative percent change in the resistance 

values for the materials under test was selected. This method also serves well as a metric 

upon which temperature dependence comparisons can be made among different 

materials.  

    By comparing the graphs in figures 6-9 it can be observed that MWCNT-COOH 

showed the greatest temperature sensitivity to temperature change among the materials 

measured. It displayed a maximum relative sensitivity of almost as high as 9.48% for 

the rising temperature between 70°C and 80°C. For rising temperature trends, it 

displayed relative sensitivity in the range roughly of 2.5% to 4%. For falling temperature 

trends sensitivity was between 2% to 3%. The second most sensitive material is SWCNT 

recording maximum sensitivity of a about 5%. For rising temperature trends sensitivities 

were mostly between 1% and 4%, whereas for rising trends sensitivity was between 

1.5% and 5.1%. SWCNT displayed roughly between 1% and 3% for rising and falling 

temperature trends. The lowest relative sensitivity was displayed by MWCNT. The 

maximum sensitivity recorded was 1.5% during a temperature rise from 70°C and 80°C.  

   Materials like MWCOOH with high sensitivity are suitable for use in applications like 

temperature sensors whereas those with low sensitivity are more suitable for use in 

applications such as chemical sensing where more stable temperature dependency is 

required.  

  It was observed, however, from the graphs of MWCNT-COOH and MWCNT that 

between the falling temperatures trend from 80°C to 70°C, negative relative percentage 
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change in resistance was recorded. This behaviour may most likely be attributed to slow 

reaction of CNTs as a transition is made from increasing to decreasing temperature. 

Conclusion 

   The presented work is focused on carbon nanotubes and verification of their 

temperature dependence. In the first part of this work, an overview of some of the 

properties of some CNMs are mentioned with a particular emphasis on CNTs. Some of 

the production methods of CNTs are outlined. Possibilities of functionalisation are also 

mentioned. The remarkable properties of carbon together with the ability to 

functionalize CNMs hold great promise for their continued use in electronics e.g., in the 

development of cheaper and greener energy conversion and storage technologies, such 

as solar technology. Sensors likes gas sensors, temperature and humidity sensors, 

biosensors etc greatly benefiting from advancements in carbon technology. Carbon 

technology will most likely play a major role in the emergence of smart cities. 

   An overview of some deposition technologies suitable for CNMs was carried out in 

part two of the thesis. The methods presented all have advantages and disadvantages. 

The main areas of research and development in this field include the quest to improve 

or develop deposition techniques that are able to deposit thin layers to a high precision 

accuracy, are scalable and produce layers that are durable. The cost is also another factor 

of great concern.  

   Airbrush spray deposition technology was used for all depositions in the experiment 

part of this thesis. Using this method, it was impractical to conduct repeatable 

depositions of equal thickness. Nevertheless, this method is cheap and served the 

purpose the experiment well.  

   The aim of the practice part of this thesis was to verify the temperature dependence of 

selected carbon nanomaterials. The comparison was achieved by means of calculating 

the relative percent changes in the temperature dependent resistance values of the 

materials under test. It was established that of the given materials, MWCNT-COOH 
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displayed the most sensitivity to changes in temperature and that MWCNT displayed 

the least sensitivity.   
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Appendix. 

 

 

Climatic Chamber temperature profile period, T 

Relative time of measurement (min) 21 - 160 161 - 300 301 - 440 441 - 580 581 - 720 721 - 860 861 - 1000 1001 - 1140 1141 - 1280 1281 - 1420

Chamber temperature profile trend Rise Fall Rise Fall Rise Fall Rise Fall Rise Fall

Average R at 80°C (Ω) 2.69E+03 2.96E+03 3.09E+03 3.12E+03

Average R at 70°C (Ω) 2.63E+03 2.87E+03 2.98E+03 3.08E+03 3.15E+03 3.19E+03 3.14E+03 3.21E+03

Average R at 60°C (Ω) 2.62E+03 2.99E+03 3.05E+03 3.19E+03 3.24E+03 3.29E+03 3.19E+03 3.29E+03

Average R at 50°C (Ω) 2.66E+03 3.10E+03 3.14E+03 3.30E+03 3.34E+03 3.40E+03 3.26E+03 3.38E+03

Average R at 40°C (Ω) 2.73E+03 3.21E+03 3.24E+03 3.41E+03 3.45E+03 3.51E+03 3.35E+03 3.46E+03

Average R at 30°C (Ω) 2.82E+03 3.32E+03 3.36E+03 3.52E+03 3.57E+03 3.57E+03 3.46E+03 3.53E+03

Average R at 20°C (Ω) 2.93E+03 3.43E+03 3.47E+03 3.64E+03 3.70E+03 3.63E+03 3.60E+03 3.61E+03

Average R at 10°C (Ω) 3.55E+03 3.78E+03 3.70E+03

T5

First measurement cycle. CH: 1. Material: SW.
T1 T2 T3 T4

Climatic Chamber temperature profile period, T 

Relative time of measurement (min) 21 - 160 161 - 300 301 - 440 441 - 580 581 - 720 721 - 860 861 - 1000 1001 - 1140 1141 - 1280 1281 - 1420

Chamber temperature profile trend Rise Fall Rise Fall Rise Fall Rise Fall Rise Fall

% of average R at 80°C WRT R at 10°C in each T 75.85 78.29 83.62 86.49

% of average R at 70°C WRT R at 10°C in each T 74.03 80.82 78.87 81.64 85.22 86.40 87.14 88.91

% of average R at 60°C WRT R at 10°C in each T 73.88 84.25 80.65 84.48 87.53 89.11 88.38 91.30

% of average R at 50°C WRT R at 10°C in each T 74.80 87.27 83.13 87.32 90.36 91.98 90.29 93.67

% of average R at 40°C WRT R at 10°C in each T 76.80 90.29 85.87 90.30 93.39 94.89 92.89 95.86

% of average R at 30°C WRT R at 10°C in each T 79.33 93.42 88.90 93.24 96.61 96.63 96.09 97.98

% of average R at 20°C WRT R at 10°C in each T 82.43 96.65 91.99 96.49 100.02 98.18 99.82 100.00

% of average R at 10°C WRT R at 10°C in each T 100.00 100.00 100.00

1st measurement cycle. CH: 1. Material: SW.
T1 T2 T3 T4 T5

Climatic Chamber temperature profile period, T 

Relative time of measurement (min) 21 - 160 161 - 300 301 - 440 441 - 580 581 - 720 721 - 860 861 - 1000 1001 - 1140 1141 - 1280 1281 - 1420

Chamber temperature profile trend Rise Fall Rise Fall Rise Fall Rise Fall Rise Fall

%Δ in R between 20°C - 30°C -3.10 -3.08 -3.42 -3.73

%Δ in R between 30°C - 40°C -2.54 -3.03 -3.22 -3.20

%Δ in R between 40°C - 50°C -2.00 -2.74 -3.02 -2.60

%Δ in R between 50°C - 60°C -0.92 -2.48 -2.83 -1.92

%Δ in R between 60°C - 70°C 0.15 -1.78 -2.31 -1.24

%Δ in R between 70°C - 80°C 1.82 -0.58 -1.60 -0.66

%Δ in R between 70°C - 60°C 3.43 2.84 2.70 2.40

%Δ in R between 60°C - 50°C 3.02 2.84 2.88 2.37

%Δ in R between 50°C - 40°C 3.02 2.98 2.90 2.19

%Δ in R between 40°C - 30°C 3.12 2.94 1.75 2.12

%Δ in R between 30°C - 20°C 3.23 3.25 1.55 2.02

%Δ in R between 20°C - 10°C 3.35 3.51 1.82

1st measurement cycle. CH: 1. Material: SW.
T1 T2 T3 T4 T5

 Figure i. Resistance of deposited thin film material as a function of temperature. 

Table i (a). Average R value at each temperature step. 

Table i (b). Percent of average R value at each temperature step WRT average R value at 10°C in each T. 

Table i (c). Change in R percentage value from a given temperature step to the next temperature step. 

Measurement error

Outside measurement range
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Climatic Chamber temperature profile period, T 

Relative time of measurement (min) 21 - 160 161 - 300 301 - 440 441 - 580 581 - 720 721 - 860 861 - 1000 1001 - 1140 1141 - 1280 1281 - 1420

Chamber temperature profile trend Rise Fall Rise Fall Rise Fall Rise Fall Rise Fall

Average R at 80°C (Ω) 3.00E+03 3.24E+03 3.40E+03 3.46E+03

Average R at 70°C (Ω) 3.01E+03 3.16E+03 3.31E+03 3.38E+03 3.50E+03 3.52E+03 3.54E+03 3.57E+03

Average R at 60°C (Ω) 3.07E+03 3.31E+03 3.41E+03 3.52E+03 3.62E+03 3.66E+03 3.63E+03 3.70E+03

Average R at 50°C (Ω) 3.15E+03 3.45E+03 3.53E+03 3.66E+03 3.75E+03 3.80E+03 3.73E+03 3.82E+03

Average R at 40°C (Ω) 3.26E+03 3.58E+03 3.66E+03 3.80E+03 3.88E+03 3.94E+03 3.86E+03 3.94E+03

Average R at 30°C (Ω) 3.38E+03 3.72E+03 3.79E+03 3.94E+03 4.02E+03 4.04E+03 4.01E+03 4.05E+03

Average R at 20°C (Ω) 3.51E+03 3.86E+03 3.93E+03 4.09E+03 4.16E+03 4.15E+03 4.17E+03 4.17E+03

Average R at 10°C (Ω) 4.01E+03 4.25E+03 4.27E+03

1st measurement cycle. CH: 2. Material: SW.
T1 T2 T3 T4 T5

Climatic Chamber temperature profile period, T 

Relative time of measurement (min) 21 - 160 161 - 300 301 - 440 441 - 580 581 - 720 721 - 860 861 - 1000 1001 - 1140 1141 - 1280 1281 - 1420

Chamber temperature profile trend Rise Fall Rise Fall Rise Fall Rise Fall Rise Fall

% of average R at 80°C WRT R at 10°C in each T 74.80 76.25 79.67 83.16

% of average R at 70°C WRT R at 10°C in each T 75.16 78.95 77.81 79.50 82.01 82.52 85.01 85.64

% of average R at 60°C WRT R at 10°C in each T 76.64 82.67 80.27 82.86 84.83 85.81 87.04 88.70

% of average R at 50°C WRT R at 10°C in each T 78.63 86.07 83.12 86.18 87.81 89.05 89.61 91.69

% of average R at 40°C WRT R at 10°C in each T 81.27 89.41 86.07 89.47 90.98 92.26 92.58 94.52

% of average R at 30°C WRT R at 10°C in each T 84.24 92.79 89.28 92.75 94.20 94.78 96.14 97.29

% of average R at 20°C WRT R at 10°C in each T 87.62 96.39 92.42 96.28 97.53 97.29 99.98 100.00

% of average R at 10°C WRT R at 10°C in each T 100.00 100.00 100.00

1st measurement cycle. CH: 2. Material: SW.
T1 T2 T3 T4 T5

Climatic Chamber temperature profile period, T 

Relative time of measurement (min) 21 - 160 161 - 300 301 - 440 441 - 580 581 - 720 721 - 860 861 - 1000 1001 - 1140 1141 - 1280 1281 - 1420

Chamber temperature profile trend Rise Fall Rise Fall Rise Fall Rise Fall Rise Fall

%Δ in R between 20°C - 30°C -3.38 -3.15 -3.32 -3.84

%Δ in R between 30°C - 40°C -2.97 -3.21 -3.22 -3.56

%Δ in R between 40°C - 50°C -2.63 -2.95 -3.18 -2.97

%Δ in R between 50°C - 60°C -2.00 -2.85 -2.98 -2.57

%Δ in R between 60°C - 70°C -1.47 -2.46 -2.81 -2.03

%Δ in R between 70°C - 80°C -0.36 -1.56 -2.34 -1.85

%Δ in R between 70°C - 60°C 3.72 3.36 3.28 3.05

%Δ in R between 60°C - 50°C 3.40 3.32 3.24 2.99

%Δ in R between 50°C - 40°C 3.33 3.30 3.22 2.84

%Δ in R between 40°C - 30°C 3.38 3.27 2.51 2.77

%Δ in R between 30°C - 20°C 3.61 3.53 2.51 2.71

%Δ in R between 20°C - 10°C 3.61 3.72 2.71

1st measurement cycle. CH: 2. Material: SW.
T1 T2 T3 T4 T5

 Figure ii. Resistance of deposited thin film material as a function of temperature. 

Table ii (a). Average R value at each temperature step. 

Table ii (b). Percent of average R value at each temperature step WRT average R value at 10°C in each T. 

Table ii (c). Change in R percentage value from a given temperature step to the next temperature step. 

Measurement error

Outside measurement range
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Climatic Chamber temperature profile period, T T1 T2 T3 T4 T5

Relative time of measurement (min) 21 - 160 161 - 300 301 - 440 441 - 580 581 - 720 721 - 860 861 - 1000 1001 - 1140 1141 - 1280 1281 - 1420

Chamber temperature profile trend Rise Fall Rise Fall Rise Fall Rise Fall Rise Fall

Average R at 80°C (Ω) 3.44E+03 3.84E+03 4.03E+03 4.08E+03

Average R at 70°C (Ω) 3.33E+03 3.73E+03 3.83E+03 4.06E+03 4.09E+03 4.22E+03 4.09E+03 4.25E+03

Average R at 60°C (Ω) 3.33E+03 3.91E+03 3.91E+03 4.22E+03 4.20E+03 4.37E+03 4.14E+03 4.37E+03

Average R at 50°C (Ω) 3.39E+03 4.06E+03 4.05E+03 4.37E+03 4.34E+03 4.52E+03 4.25E+03 4.49E+03

Average R at 40°C (Ω) 3.51E+03 4.21E+03 4.20E+03 4.53E+03 4.51E+03 4.67E+03 4.39E+03 4.61E+03

Average R at 30°C (Ω) 3.65E+03 4.37E+03 4.37E+03 4.69E+03 4.69E+03 4.76E+03 4.58E+03 4.72E+03

Average R at 20°C (Ω) 3.81E+03 4.53E+03 4.86E+03 4.89E+03 4.87E+03 4.80E+03

Average R at 10°C (Ω) 4.99E+03

1st measurement cycle. CH: 3. Material: SW.

Climatic Chamber temperature profile period, T 

Relative time of measurement (min) 21 - 160 161 - 300 301 - 440 441 - 580 581 - 720 721 - 860 861 - 1000 1001 - 1140 1141 - 1280 1281 - 1420

Chamber temperature profile trend Rise Fall Rise Fall Rise Fall Rise Fall Rise Fall

% of average R at 80°C WRT R at 10°C in each T 80.86

% of average R at 70°C WRT R at 10°C in each T 81.92 84.69

% of average R at 60°C WRT R at 10°C in each T 84.14 87.68

% of average R at 50°C WRT R at 10°C in each T 87.08 90.52

% of average R at 40°C WRT R at 10°C in each T 90.40 93.62

% of average R at 30°C WRT R at 10°C in each T 94.00 95.50

% of average R at 20°C WRT R at 10°C in each T 97.98 97.54

% of average R at 10°C WRT R at 10°C in each T 100.00

1st measurement cycle. CH: 3. Material: SW.
T1 T2 T3 T4 T5

Climatic Chamber temperature profile period, T 

Relative time of measurement (min) 21 - 160 161 - 300 301 - 440 441 - 580 581 - 720 721 - 860 861 - 1000 1001 - 1140 1141 - 1280 1281 - 1420

Chamber temperature profile trend Rise Fall Rise Fall Rise Fall Rise Fall Rise Fall

%Δ in R between 20°C - 30°C -3.97

%Δ in R between 30°C - 40°C -3.61

%Δ in R between 40°C - 50°C -3.32

%Δ in R between 50°C - 60°C -2.93

%Δ in R between 60°C - 70°C -2.22

%Δ in R between 70°C - 80°C -1.06

%Δ in R between 70°C - 60°C 2.99

%Δ in R between 60°C - 50°C 2.84

%Δ in R between 50°C - 40°C 3.10

%Δ in R between 40°C - 30°C 1.88

%Δ in R between 30°C - 20°C 2.04

%Δ in R between 20°C - 10°C 2.46

T1 T2 T3 T4 T5

1st measurement cycle. CH: 3. Material: SW.

 Figure iii. Resistance of deposited thin film material as a function of temperature. 

Table iii (a). Average R value at each temperature step. 

Table iii (b). Percent of average R value at each temperature step WRT average R value at 10°C in each T. 
 

Table iii (c). Change in R percentage value from a given temperature step to the next 

temperature step. 

Measurement error

Outside measurement range
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Climatic Chamber temperature profile period, T 

Relative time of measurement (min) 21 - 160 161 - 300 301 - 440 441 - 580 581 - 720 721 - 860 861 - 1000 1001 - 1140 1141 - 1280 1281 - 1420

Chamber temperature profile trend Rise Fall Rise Fall Rise Fall Rise Fall Rise Fall

Average R at 80°C (Ω) 2.96E+03 3.35E+03 3.56E+03 3.61E+03

Average R at 70°C (Ω) 2.84E+03 3.20E+03 3.36E+03 3.52E+03 3.62E+03 3.70E+03 3.62E+03 3.73E+03

Average R at 60°C (Ω) 2.80E+03 3.35E+03 3.42E+03 3.66E+03 3.71E+03 3.83E+03 3.64E+03 3.84E+03

Average R at 50°C (Ω) 2.81E+03 3.48E+03 3.53E+03 3.79E+03 3.84E+03 3.96E+03 3.71E+03 3.95E+03

Average R at 40°C (Ω) 2.87E+03 3.61E+03 3.65E+03 3.92E+03 3.97E+03 4.10E+03 3.81E+03 4.03E+03

Average R at 30°C (Ω) 2.95E+03 3.73E+03 3.77E+03 4.05E+03 4.11E+03 4.15E+03 3.94E+03 4.10E+03

Average R at 20°C (Ω) 3.07E+03 3.87E+03 3.91E+03 4.20E+03 4.26E+03 4.19E+03 4.11E+03 4.16E+03

Average R at 10°C (Ω) 4.00E+03 4.35E+03 4.24E+03

First measurement cycle. CH: 4. Material: SW.
T1 T2 T3 T4 T5

Climatic Chamber temperature profile period, T 

Relative time of measurement (min) 21 - 160 161 - 300 301 - 440 441 - 580 581 - 720 721 - 860 861 - 1000 1001 - 1140 1141 - 1280 1281 - 1420

Chamber temperature profile trend Rise Fall Rise Fall Rise Fall Rise Fall Rise Fall

Average R at 80°C (Ω) 2.96E+03 3.35E+03 3.56E+03 3.61E+03

Average R at 70°C (Ω) 2.84E+03 3.20E+03 3.36E+03 3.52E+03 3.62E+03 3.70E+03 3.62E+03 3.73E+03

Average R at 60°C (Ω) 2.80E+03 3.35E+03 3.42E+03 3.66E+03 3.71E+03 3.83E+03 3.64E+03 3.84E+03

Average R at 50°C (Ω) 2.81E+03 3.48E+03 3.53E+03 3.79E+03 3.84E+03 3.96E+03 3.71E+03 3.95E+03

Average R at 40°C (Ω) 2.87E+03 3.61E+03 3.65E+03 3.92E+03 3.97E+03 4.10E+03 3.81E+03 4.03E+03

Average R at 30°C (Ω) 2.95E+03 3.73E+03 3.77E+03 4.05E+03 4.11E+03 4.15E+03 3.94E+03 4.10E+03

Average R at 20°C (Ω) 3.07E+03 3.87E+03 3.91E+03 4.20E+03 4.26E+03 4.19E+03 4.11E+03 4.16E+03

Average R at 10°C (Ω) 4.00E+03 4.35E+03 4.24E+03

First measurement cycle. CH: 4. Material: SW.
T1 T2 T3 T4 T5

Climatic Chamber temperature profile period, T 

Relative time of measurement (min) 21 - 160 161 - 300 301 - 440 441 - 580 581 - 720 721 - 860 861 - 1000 1001 - 1140 1141 - 1280 1281 - 1420

Chamber temperature profile trend Rise Fall Rise Fall Rise Fall Rise Fall Rise Fall

%Δ in R between 20°C - 30°C -2.93 -3.24 -3.50 -4.02

%Δ in R between 30°C - 40°C -2.16 -2.94 -3.43 -3.17

%Δ in R between 40°C - 50°C -1.48 -2.69 -3.13 -2.42

%Δ in R between 50°C - 60°C -0.30 -2.38 -2.85 -1.64

%Δ in R between 60°C - 70°C 1.14 -1.55 -2.28 -0.65

%Δ in R between 70°C - 80°C 3.05 -0.21 -1.46 -0.09

%Δ in R between 70°C - 60°C 3.93 3.17 3.11 2.66

%Δ in R between 60°C - 50°C 3.25 3.09 3.07 2.42

%Δ in R between 50°C - 40°C 3.09 3.09 3.20 2.05

%Δ in R between 40°C - 30°C 3.18 2.97 1.37 1.75

%Δ in R between 30°C - 20°C 3.32 3.36 0.82 1.46

%Δ in R between 20°C - 10°C 3.30 3.53 1.12

1st measurement cycle. CH: 4. Material: SW.
T1 T2 T3 T4 T5

 Figure iv. Resistance of deposited thin film material as a function of temperature. 

Table iv (a). Average R value at each temperature step. 

Table iv (b). Percent of average R value at each temperature step WRT average R value at 10°C in each T. 
 

Table iv (c). Change in R percentage value from a given temperature step to the next 

temperature step. 

Measurement error

Outside measurement range
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Climatic Chamber temperature profile period, T 

Relative time of measurement (min) 21 - 160 161 - 300 301 - 440 441 - 580 581 - 720 721 - 860 861 - 1000 1001 - 1140 1141 - 1280 1281 - 1420

Chamber temperature profile trend Rise Fall Rise Fall Rise Fall Rise Fall Rise Fall

Average R at 80°C (Ω) 2.97E+03 3.34E+03 3.60E+03 3.71E+03

Average R at 70°C (Ω) 2.94E+03 3.21E+03 3.36E+03 3.54E+03 3.66E+03 3.78E+03 3.74E+03 3.85E+03

Average R at 60°C (Ω) 2.98E+03 3.38E+03 3.45E+03 3.70E+03 3.77E+03 3.92E+03 3.81E+03 3.98E+03

Average R at 50°C (Ω) 3.05E+03 3.52E+03 3.58E+03 3.85E+03 3.91E+03 4.07E+03 3.91E+03 4.10E+03

Average R at 40°C (Ω) 3.15E+03 3.66E+03 3.71E+03 3.99E+03 4.05E+03 4.21E+03 4.03E+03 4.21E+03

Average R at 30°C (Ω) 3.27E+03 3.80E+03 3.85E+03 4.13E+03 4.20E+03 4.31E+03 4.19E+03 4.32E+03

Average R at 20°C (Ω) 3.40E+03 3.94E+03 4.00E+03 4.29E+03 4.36E+03 4.39E+03 4.37E+03 4.41E+03

Average R at 10°C (Ω) 4.08E+03 4.45E+03 4.48E+03

First measurement cycle. CH: 5. Material: SW.
T1 T2 T3 T4 T5

Climatic Chamber temperature profile period, T 

Relative time of measurement (min) 21 - 160 161 - 300 301 - 440 441 - 580 581 - 720 721 - 860 861 - 1000 1001 - 1140 1141 - 1280 1281 - 1420

Chamber temperature profile trend Rise Fall Rise Fall Rise Fall Rise Fall Rise Fall

% of average R at 80°C WRT R at 10°C in each T 72.79 75.07 80.39 84.01

% of average R at 70°C WRT R at 10°C in each T 71.99 78.53 75.52 79.56 81.67 84.22 84.78 87.29

% of average R at 60°C WRT R at 10°C in each T 72.99 82.77 77.54 83.17 84.16 87.53 86.26 90.28

% of average R at 50°C WRT R at 10°C in each T 74.62 86.24 80.33 86.48 87.12 90.73 88.55 93.00

% of average R at 40°C WRT R at 10°C in each T 77.13 89.58 83.30 89.73 90.37 93.98 91.41 95.49

% of average R at 30°C WRT R at 10°C in each T 80.00 93.01 86.56 92.79 93.75 96.09 94.99 97.84

% of average R at 20°C WRT R at 10°C in each T 83.23 96.55 89.77 96.32 97.22 97.99 98.97 100.00

% of average R at 10°C WRT R at 10°C in each T 100.00 100.00 100.00

1st measurement cycle. CH: 5. Material: SW.
T1 T2 T3 T4 T5

Climatic Chamber temperature profile period, T 

Relative time of measurement (min) 21 - 160 161 - 300 301 - 440 441 - 580 581 - 720 721 - 860 861 - 1000 1001 - 1140 1141 - 1280 1281 - 1420

Chamber temperature profile trend Rise Fall Rise Fall Rise Fall Rise Fall Rise Fall

%Δ in R between 20°C - 30°C -3.23 -3.21 -3.47 -3.98

%Δ in R between 30°C - 40°C -2.87 -3.27 -3.39 -3.58

%Δ in R between 40°C - 50°C -2.52 -2.96 -3.24 -2.86

%Δ in R between 50°C - 60°C -1.63 -2.80 -2.96 -2.29

%Δ in R between 60°C - 70°C -1.00 -2.02 -2.49 -1.48

%Δ in R between 70°C - 80°C 0.80 -0.45 -1.28 -0.76

%Δ in R between 70°C - 60°C 4.23 3.61 3.31 2.99

%Δ in R between 60°C - 50°C 3.47 3.31 3.20 2.72

%Δ in R between 50°C - 40°C 3.34 3.25 3.24 2.49

%Δ in R between 40°C - 30°C 3.43 3.06 2.11 2.35

%Δ in R between 30°C - 20°C 3.54 3.53 1.91 2.16

%Δ in R between 20°C - 10°C 3.45 3.68 2.01

1st measurement cycle. CH: 5. Material: SW.
T1 T2 T3 T4 T5

 Figure v. Resistance of deposited thin film material as a function of temperature. 

Table v (a). Average R value at each temperature step. 

Table v (b). Percent of average R value at each temperature step WRT average R value at 10°C in each T. 
 

Table v (c). Change in R percentage value from a given temperature step to the next 

temperature step. 

Measurement error

Outside measurement range
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Climatic Chamber temperature profile period, T 

Relative time of measurement (min) 21 - 160 161 - 300 301 - 440 441 - 580 581 - 720 721 - 860 861 - 1000 1001 - 1140 1141 - 1280 1281 - 1420

Chamber temperature profile trend Rise Fall Rise Fall Rise Fall Rise Fall Rise Fall

Average R at 80°C (Ω) 5.23E+02 4.23E+02 3.83E+02 3.74E+02

Average R at 70°C (Ω) 5.96E+02 4.88E+02 4.51E+02 4.15E+02 4.07E+02 3.78E+02 3.95E+02 3.66E+02

Average R at 60°C (Ω) 6.36E+02 4.79E+02 4.69E+02 4.05E+02 4.28E+02 3.73E+02 4.09E+02 3.69E+02

Average R at 50°C (Ω) 6.48E+02 4.68E+02 4.81E+02 3.98E+02 4.35E+02 3.73E+02 4.20E+02 3.76E+02

Average R at 40°C (Ω) 6.47E+02 4.98E+02 4.77E+02 4.03E+02 4.36E+02 3.97E+02 4.28E+02 3.82E+02

Average R at 30°C (Ω) 6.19E+02 5.07E+02 4.87E+02 4.05E+02 4.15E+02 4.16E+02 4.30E+02 3.91E+02

Average R at 20°C (Ω) 6.78E+02 5.07E+02 5.11E+02 4.15E+02 4.27E+02 4.22E+02 4.38E+02 3.94E+02

Average R at 10°C (Ω) 5.01E+02 4.37E+02 4.29E+02

First measurement cycle. CH: 6. Material: SW.
T1 T2 T3 T4 T5

Climatic Chamber temperature profile period, T 

Relative time of measurement (min) 21 - 160 161 - 300 301 - 440 441 - 580 581 - 720 721 - 860 861 - 1000 1001 - 1140 1141 - 1280 1281 - 1420

Chamber temperature profile trend Rise Fall Rise Fall Rise Fall Rise Fall Rise Fall

% of average R  at 80°C WRT R  at 10°C in each T 104.44 96.84 89.12 95.06

% of average R  at 70°C WRT R  at 10°C in each T 118.97 97.30 103.37 94.96 94.77 88.06 100.21 92.84

% of average R  at 60°C WRT R  at 10°C in each T 126.85 95.57 107.33 92.63 99.64 86.87 103.81 93.61

% of average R  at 50°C WRT R  at 10°C in each T 129.26 93.43 110.24 91.24 101.38 86.98 106.56 95.36

% of average R  at 40°C WRT R  at 10°C in each T 129.04 99.38 109.33 92.36 101.63 92.44 108.70 97.07

% of average R  at 30°C WRT R  at 10°C in each T 123.58 101.07 111.45 92.78 96.76 96.97 109.07 99.24

% of average R  at 20°C WRT R  at 10°C in each T 135.21 101.11 117.01 94.92 99.47 98.31 111.33 100.00

% of average R  at 10°C WRT R  at 10°C in each T 100.00 100.00 100.00

1st measurement cycle. CH: 6. Material: SW.
T1 T2 T3 T4 T5

Climatic Chamber temperature profile period, T 

Relative time of measurement (min) 21 - 160 161 - 300 301 - 440 441 - 580 581 - 720 721 - 860 861 - 1000 1001 - 1140 1141 - 1280 1281 - 1420

Chamber temperature profile trend Rise Fall Rise Fall Rise Fall Rise Fall Rise Fall

%Δ in R between 20°C - 30°C -11.63 -5.56 -2.71 -2.26

%Δ in R between 30°C - 40°C 5.46 -2.12 4.87 -0.37

%Δ in R between 40°C - 50°C 0.22 0.92 -0.25 -2.15

%Δ in R between 50°C - 60°C -2.41 -2.91 -1.74 -2.75

%Δ in R between 60°C - 70°C -7.87 -3.96 -4.87 -3.60

%Δ in R between 70°C - 80°C -14.53 -6.54 -5.65 -5.15

%Δ in R between 70°C - 60°C -1.72 -2.33 -1.19 0.76

%Δ in R between 60°C - 50°C -2.14 -1.39 0.11 1.75

%Δ in R between 50°C - 40°C 5.95 1.12 5.46 1.71

%Δ in R between 40°C - 30°C 1.69 0.42 4.53 2.17

%Δ in R between 30°C - 20°C 0.04 2.14 1.33 0.76

%Δ in R between 20°C - 10°C -1.11 5.08 1.69

1st measurement cycle. CH: 6. Material: SW.
T1 T2 T3 T4 T5

 Figure vi. Resistance of deposited thin film material as a function of temperature. 

Table vi (a). Average R value at each temperature step. 

Table vi (b). Percent of average R value at each temperature step WRT average R value at 10°C in each T. 
 

Table vi (c). Change in R percentage value from a given temperature step to the next 

temperature step. 

Measurement error

Outside measurement range
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Climatic Chamber temperature profile period, T 

Relative time of measurement (min) 21 - 160 161 - 300 301 - 440 441 - 580 581 - 720 721 - 860 861 - 1000 1001 - 1140 1141 - 1280 1281 - 1420

Chamber temperature profile trend Rise Fall Rise Fall Rise Fall Rise Fall Rise Fall

Average R at 80°C (Ω) 1.15E+03 1.10E+03

Average R at 70°C (Ω) 1.52E+03 1.31E+03 1.21E+03 1.13E+03 1.15E+03 1.08E+03

Average R at 60°C (Ω) 1.57E+03 1.36E+03 1.25E+03 1.15E+03 1.18E+03 1.10E+03

Average R at 50°C (Ω) 1.63E+03 1.41E+03 1.25E+03 1.29E+03 1.18E+03 1.22E+03 1.13E+03

Average R at 40°C (Ω) 1.68E+03 1.40E+03 1.45E+03 1.29E+03 1.32E+03 1.21E+03 1.25E+03 1.16E+03

Average R at 30°C (Ω) 1.72E+03 1.44E+03 1.48E+03 1.32E+03 1.36E+03 1.25E+03 1.27E+03 1.19E+03

Average R at 20°C (Ω) 1.75E+03 1.48E+03 1.51E+03 1.35E+03 1.38E+03 1.28E+03 1.30E+03 1.22E+03

Average R at 10°C (Ω) 1.52E+03 1.39E+03 1.30E+03

First measurement cycle. CH: 7 . Material: .
T1 T2 T3 T4 T5

Climatic Chamber temperature profile period, T 

Relative time of measurement (min) 21 - 160 161 - 300 301 - 440 441 - 580 581 - 720 721 - 860 861 - 1000 1001 - 1140 1141 - 1280 1281 - 1420

Chamber temperature profile trend Rise Fall Rise Fall Rise Fall Rise Fall Rise Fall

% of average R  at 80°C WRT R  at 10°C in each T 88.01 90.13

% of average R  at 70°C WRT R  at 10°C in each T 100.30 94.56 0.00 92.89 86.61 94.39 88.86

% of average R  at 60°C WRT R  at 10°C in each T 103.78 98.23 0.00 96.16 88.35 97.31 90.80

% of average R  at 50°C WRT R  at 10°C in each T 107.32 101.44 90.43 98.95 90.66 100.00 92.97

% of average R  at 40°C WRT R  at 10°C in each T 110.68 92.44 104.33 92.85 101.60 93.10 102.54 95.36

% of average R  at 30°C WRT R  at 10°C in each T 113.32 94.96 106.82 95.02 104.04 95.54 104.86 97.76

% of average R  at 20°C WRT R  at 10°C in each T 115.60 97.48 108.98 97.57 106.21 97.84 106.96 100.00

% of average R  at 10°C WRT R  at 10°C in each T 100.00 100.00 100.00

1st measurement cycle. CH: 7. Material: SW.
T1 T2 T3 T4 T5

Climatic Chamber temperature profile period, T 

Relative time of measurement (min) 21 - 160 161 - 300 301 - 440 441 - 580 581 - 720 721 - 860 861 - 1000 1001 - 1140 1141 - 1280 1281 - 1420

Chamber temperature profile trend Rise Fall Rise Fall Rise Fall Rise Fall Rise Fall

%Δ in R between 20°C - 30°C -2.28 -2.16 -2.16 -2.09

%Δ in R between 30°C - 40°C -2.64 -2.49 -2.44 -2.32

%Δ in R between 40°C - 50°C -3.36 -2.89 -2.65 -2.54

%Δ in R between 50°C - 60°C -3.54 -3.21 -2.79 -2.69

%Δ in R between 60°C - 70°C -3.48 -3.67 -3.28 -2.92

%Δ in R between 70°C - 80°C -100.30 -94.56 -4.88 -4.26

%Δ in R between 70°C - 60°C 0.00 0.00 1.74 1.94

%Δ in R between 60°C - 50°C 0.00 90.43 2.30 2.17

%Δ in R between 50°C - 40°C 92.44 2.43 2.44 2.39

%Δ in R between 40°C - 30°C 2.52 2.16 2.44 2.39

%Δ in R between 30°C - 20°C 2.52 2.56 2.30 2.24

%Δ in R between 20°C - 10°C 2.52 2.43 2.16

1st measurement cycle. CH: 7. Material: SW.
T1 T2 T3 T4 T5

 Figure vii. Resistance of deposited thin film material as a function of temperature. 

Table vii (a). Average R value at each temperature step. 

Table vii (b). Percent of average R value at each temperature step WRT average R value at 10°C in each T. 

 

Table vii (c). Change in R percentage value from a given temperature step to the next 

temperature step. 

Measurement error

Outside measurement range
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Climatic Chamber temperature profile period, T 

Relative time of measurement (min) 21 - 160 161 - 300 301 - 440 441 - 580 581 - 720 721 - 860 861 - 1000 1001 - 1140 1141 - 1280 1281 - 1420

Chamber temperature profile trend Rise Fall Rise Fall Rise Fall Rise Fall Rise Fall

Average R at 80°C (Ω) 2.60E+03 2.37E+03 2.22E+03 2.12E+03

Average R at 70°C (Ω) 2.88E+03 2.51E+03 2.55E+03 2.32E+03 2.37E+03 2.19E+03 2.25E+03 2.09E+03

Average R at 60°C (Ω) 3.06E+03 2.59E+03 2.67E+03 2.40E+03 2.48E+03 2.26E+03 2.34E+03 2.16E+03

Average R at 50°C (Ω) 3.19E+03 2.69E+03 2.79E+03 2.49E+03 2.59E+03 2.34E+03 2.43E+03 2.23E+03

Average R at 40°C (Ω) 3.31E+03 2.79E+03 2.95E+03 2.59E+03 2.44E+03 2.51E+03 2.32E+03

Average R at 30°C (Ω) 3.43E+03 2.93E+03 2.59E+03

Average R at 20°C (Ω) 3.54E+03 3.03E+03 3.15E+03 2.66E+03

Average R at 10°C (Ω) 3.07E+03

First measurement cycle. CH: 8. Material: .
T1 T2 T3 T4 T5

Climatic Chamber temperature profile period, T 

Relative time of measurement (min) 21 - 160 161 - 300 301 - 440 441 - 580 581 - 720 721 - 860 861 - 1000 1001 - 1140 1141 - 1280 1281 - 1420

Chamber temperature profile trend Rise Fall Rise Fall Rise Fall Rise Fall Rise Fall

% of average R  at 80°C WRT R  at 10°C in each T 84.51

% of average R  at 70°C WRT R  at 10°C in each T 93.55 81.61

% of average R  at 60°C WRT R  at 10°C in each T 99.53 84.18

% of average R  at 50°C WRT R  at 10°C in each T 103.61 87.34

% of average R  at 40°C WRT R  at 10°C in each T 107.78 90.72

% of average R  at 30°C WRT R  at 10°C in each T 111.44 95.33

% of average R  at 20°C WRT R  at 10°C in each T 115.08 98.61

% of average R  at 10°C WRT R  at 10°C in each T 100.00

1st measurement cycle. CH: 8. Material: SW.
T1 T2 T3 T4 T5

Climatic Chamber temperature profile period, T 

Relative time of measurement (min) 21 - 160 161 - 300 301 - 440 441 - 580 581 - 720 721 - 860 861 - 1000 1001 - 1140 1141 - 1280 1281 - 1420

Chamber temperature profile trend Rise Fall Rise Fall Rise Fall Rise Fall Rise Fall

%Δ in R between 20°C - 30°C -3.64

%Δ in R between 30°C - 40°C -3.67

%Δ in R between 40°C - 50°C -4.17

%Δ in R between 50°C - 60°C -4.08

%Δ in R between 60°C - 70°C -5.97

%Δ in R between 70°C - 80°C -9.05

%Δ in R between 70°C - 60°C 2.57

%Δ in R between 60°C - 50°C 3.16

%Δ in R between 50°C - 40°C 3.37

%Δ in R between 40°C - 30°C 4.61

%Δ in R between 30°C - 20°C 3.28

%Δ in R between 20°C - 10°C 1.39

1st measurement cycle. CH: 8. Material: SW.
T1 T2 T3 T4 T5

 Figure viii. Resistance of deposited thin film material as a function of temperature. 

Table viii (a). Average R value at each temperature step. 

Table viii (b).  Percent of average R value at each temperature step WRT average R value at 10°C in each T. 

 

Table viii (c). Change in R percentage value from a given temperature step to the next 

temperature step. 

Measurement error

Outside measurement range
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Climatic Chamber temperature profile period, T 

Relative time of measurement (min) 21 - 160 161 - 300 301 - 440 441 - 580 581 - 720 721 - 860 861 - 1000 1001 - 1140 1141 - 1280 1281 - 1420

Chamber temperature profile trend Rise Fall Rise Fall Rise Fall Rise Fall Rise Fall

Average R at 80°C (Ω) 7.33E+02 6.66E+02 6.50E+02 5.92E+02

Average R at 70°C (Ω) 8.18E+02 7.03E+02 7.17E+02 6.47E+02 6.73E+02 6.10E+02 6.31E+02

Average R at 60°C (Ω) 8.72E+02 7.35E+02 7.59E+02 6.72E+02 7.01E+02 6.30E+02 6.49E+02

Average R at 50°C (Ω) 9.08E+02 7.47E+02 7.76E+02 6.83E+02 7.06E+02 6.41E+02 6.59E+02

Average R at 40°C (Ω) 9.45E+02 7.75E+02 8.04E+02 7.05E+02 7.29E+02 6.59E+02 6.80E+02

Average R at 30°C (Ω) 9.75E+02 8.03E+02 8.29E+02 7.27E+02 7.52E+02 6.80E+02 7.01E+02

Average R at 20°C (Ω) 1.00E+03 8.31E+02 8.53E+02 7.52E+02 7.74E+02 7.03E+02 7.21E+02

Average R at 10°C (Ω) 8.58E+02 7.77E+02 7.23E+02

First measurement cycle. CH: 9. Material: .
T1 T2 T3 T4 T5

Climatic Chamber temperature profile period, T 

Relative time of measurement (min) 21 - 160 161 - 300 301 - 440 441 - 580 581 - 720 721 - 860 861 - 1000 1001 - 1140 1141 - 1280 1281 - 1420

Chamber temperature profile trend Rise Fall Rise Fall Rise Fall Rise Fall Rise Fall

% of average R  at 80°C WRT R  at 10°C in each T 85.48 85.73 89.89

% of average R  at 70°C WRT R  at 10°C in each T 95.41 81.96 92.20 83.31 93.09 84.34

% of average R  at 60°C WRT R  at 10°C in each T 101.70 85.71 97.61 86.42 96.98 87.17

% of average R  at 50°C WRT R  at 10°C in each T 105.85 87.08 99.91 87.91 97.59 88.69

% of average R  at 40°C WRT R  at 10°C in each T 110.19 90.31 103.44 90.70 100.85 91.10

% of average R  at 30°C WRT R  at 10°C in each T 113.73 93.60 106.73 93.55 103.97 94.05

% of average R  at 20°C WRT R  at 10°C in each T 116.92 96.93 109.76 96.72 106.96 97.16

% of average R  at 10°C WRT R  at 10°C in each T 100.00 100.00 100.00

1st measurement cycle. CH: 9. Material: SW.
T1 T2 T3 T4 T5

Climatic Chamber temperature profile period, T 

Relative time of measurement (min) 21 - 160 161 - 300 301 - 440 441 - 580 581 - 720 721 - 860 861 - 1000 1001 - 1140 1141 - 1280 1281 - 1420

Chamber temperature profile trend Rise Fall Rise Fall Rise Fall Rise Fall Rise Fall

%Δ in R between 20°C - 30°C -3.19 -3.03 -2.99

%Δ in R between 30°C - 40°C -3.54 -3.29 -3.12

%Δ in R between 40°C - 50°C -4.33 -3.53 -3.27

%Δ in R between 50°C - 60°C -4.15 -2.29 -0.60

%Δ in R between 60°C - 70°C -6.29 -5.42 -3.90

%Δ in R between 70°C - 80°C -9.93 -6.47 -3.19

%Δ in R between 70°C - 60°C 3.75 3.11 2.83

%Δ in R between 60°C - 50°C 1.37 1.49 1.52

%Δ in R between 50°C - 40°C 3.23 2.80 2.41

%Δ in R between 40°C - 30°C 3.29 2.85 2.95

%Δ in R between 30°C - 20°C 3.33 3.17 3.10

%Δ in R between 20°C - 10°C 3.07 3.28 2.84

1st measurement cycle. CH: 9. Material: SW.
T1 T2 T3 T4 T5

 Figure ix. Resistance of deposited thin film material as a function of temperature. 

Table ix (a). Average R value at each temperature step. 

Table ix (c). Change in R percentage value from a given temperature step to the next 

temperature step. 

Table ix (b). Percent of average R value at each temperature step WRT average R value at 10°C in each T. 

 

Measurement error

Outside measurement range
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Climatic Chamber temperature profile period, T 

Relative time of measurement (min) 21 - 160 161 - 300 301 - 440 441 - 580 581 - 720 721 - 860 861 - 1000 1001 - 1140 1141 - 1280 1281 - 1420

Chamber temperature profile trend Rise Fall Rise Fall Rise Fall Rise Fall Rise Fall

Average R at 80°C (Ω) 8.02E+02 7.08E+02 6.24E+02 5.39E+02

Average R at 70°C (Ω) 2.91E+02 7.79E+02 7.76E+02 6.99E+02 6.53E+02 6.25E+02 5.89E+02 5.38E+02

Average R at 60°C (Ω) 5.85E+02 8.20E+02 7.61E+02 6.95E+02 7.23E+02 5.74E+02 6.23E+02 5.79E+02

Average R at 50°C (Ω) 7.79E+02 7.73E+02 7.77E+02 6.64E+02 7.50E+02 5.91E+02 6.83E+02 5.93E+02

Average R at 40°C (Ω) 9.18E+02 6.71E+02 7.07E+02 6.79E+02 7.07E+02 6.79E+02 7.53E+02 6.21E+02

Average R at 30°C (Ω) 1.05E+03 8.43E+02 7.72E+02 6.74E+02 7.47E+02 6.75E+02 7.77E+02 6.37E+02

Average R at 20°C (Ω) 5.99E+02 4.74E+02 8.72E+02 7.49E+02 7.60E+02 6.62E+02 7.85E+02 6.51E+02

Average R at 10°C (Ω) 8.12E+02 7.27E+02 6.82E+02

First measurement cycle. CH: 10. Material: .
T1 T2 T3 T4 T5

Climatic Chamber temperature profile period, T 

Relative time of measurement (min) 21 - 160 161 - 300 301 - 440 441 - 580 581 - 720 721 - 860 861 - 1000 1001 - 1140 1141 - 1280 1281 - 1420

Chamber temperature profile trend Rise Fall Rise Fall Rise Fall Rise Fall Rise Fall

% of average R  at 80°C WRT R  at 10°C in each T 98.78 97.41 91.54 82.85

% of average R  at 70°C WRT R  at 10°C in each T 35.79 95.99 106.79 96.16 95.79 91.62 90.45 82.67

% of average R  at 60°C WRT R  at 10°C in each T 72.07 100.96 104.67 95.61 106.02 84.14 95.66 88.90

% of average R  at 50°C WRT R  at 10°C in each T 95.96 95.26 106.85 91.40 109.97 86.70 104.90 91.15

% of average R  at 40°C WRT R  at 10°C in each T 113.06 82.60 97.30 93.47 103.74 99.62 115.64 95.42

% of average R  at 30°C WRT R  at 10°C in each T 129.11 103.88 106.26 92.71 109.62 99.02 119.43 97.92

% of average R  at 20°C WRT R  at 10°C in each T 73.83 58.32 119.98 102.99 111.45 97.17 120.56 100.00

% of average R  at 10°C WRT R  at 10°C in each T 100.00 100.00 100.00

1st measurement cycle. CH: 10. Material: SW.
T1 T2 T3 T4 T5

Climatic Chamber temperature profile period, T 

Relative time of measurement (min) 21 - 160 161 - 300 301 - 440 441 - 580 581 - 720 721 - 860 861 - 1000 1001 - 1140 1141 - 1280 1281 - 1420

Chamber temperature profile trend Rise Fall Rise Fall Rise Fall Rise Fall Rise Fall

%Δ in R between 20°C - 30°C 55.28 -13.72 -1.83 -1.13

%Δ in R between 30°C - 40°C -16.06 -8.95 -5.88 -3.79

%Δ in R between 40°C - 50°C -17.10 9.54 6.22 -10.74

%Δ in R between 50°C - 60°C -23.88 -2.18 -3.95 -9.25

%Δ in R between 60°C - 70°C -36.29 2.12 -10.23 -5.21

%Δ in R between 70°C - 80°C 62.99 -9.38 -4.25 -7.60

%Δ in R between 70°C - 60°C 4.97 -0.55 -7.48 6.23

%Δ in R between 60°C - 50°C -5.70 -4.22 2.56 2.25

%Δ in R between 50°C - 40°C -12.66 2.08 12.92 4.27

%Δ in R between 40°C - 30°C 21.28 -0.76 -0.60 2.50

%Δ in R between 30°C - 20°C -45.56 10.28 -1.85 2.08

%Δ in R between 20°C - 10°C 41.68 -2.99 2.83

1st measurement cycle. CH: 10. Material: SW.
T1 T2 T3 T4 T5

 Figure x. Resistance of deposited thin film material as a function of temperature. 

Table x (a). Average R value at each temperature step. 

Table x (b). Percent of average R value at each temperature step WRT average R value at 10°C in each T. 
 

Table x (c). Change in R percentage value from a given temperature step to the next 

temperature step. 

Measurement error

Outside measurement range
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Climatic Chamber temperature profile period, T 

Relative time of measurement (min) 21 - 160 161 - 300 301 - 440 441 - 580 581 - 720 721 - 860 861 - 1000 1001 - 1140 1141 - 1280 1281 - 1420

Chamber temperature profile trend Rise Fall Rise Fall Rise Fall Rise Fall Rise Fall

%Δ in R between 20°C - 30°C -2.72 -2.55 -2.67 -2.94

%Δ in R between 30°C - 40°C -2.60 -2.72 -2.84 -3.07

%Δ in R between 40°C - 50°C -2.25 -2.66 -2.87 -2.94

%Δ in R between 50°C - 60°C -1.62 -2.67 -2.94 -2.87

%Δ in R between 60°C - 70°C -1.04 -2.39 -2.75 -2.63

%Δ in R between 70°C - 80°C -0.58 -0.84

%Δ in R between 70°C - 60°C 3.40 3.24 3.29 3.06

%Δ in R between 60°C - 50°C 3.31 3.25 3.12 2.96

%Δ in R between 50°C - 40°C 3.08 3.11 2.94 2.86

%Δ in R between 40°C - 30°C 2.99 3.06 2.88 2.72

%Δ in R between 30°C - 20°C 3.04 3.13 2.74 2.58

%Δ in R between 20°C - 10°C 3.21 3.18 2.84

2nd measurement cycle. CH: 1. Material: SWCOOH.
T1 T2 T3 T4 T5

Climatic Chamber temperature profile period, T 

Relative time of measurement (min) 21 - 160 161 - 300 301 - 440 441 - 580 581 - 720 721 - 860 861 - 1000 1001 - 1140 1141 - 1280 1281 - 1420

Chamber temperature profile trend Rise Fall Rise Fall Rise Fall Rise Fall Rise Fall

% of average R at 80°C WRT R at 10°C in each T 78.24 79.97 0.00 0.00

% of average R at 70°C WRT R at 10°C in each T 78.82 80.96 80.81 81.02 82.43 82.18 85.83 85.83

% of average R at 60°C WRT R at 10°C in each T 79.85 84.36 83.20 84.26 85.17 85.48 88.46 88.89

% of average R at 50°C WRT R at 10°C in each T 81.48 87.68 85.88 87.51 88.11 88.60 91.33 91.84

% of average R at 40°C WRT R at 10°C in each T 83.73 90.76 88.54 90.62 90.98 91.54 94.28 94.70

% of average R at 30°C WRT R at 10°C in each T 86.32 93.75 91.26 93.69 93.83 94.42 97.34 97.42

% of average R at 20°C WRT R at 10°C in each T 89.04 96.79 93.81 96.82 96.50 97.16 100.29 100.00

% of average R at 10°C WRT R at 10°C in each T 100.00 100.00 100.00

2nd measurement cycle. CH: 1. Material: SWCOOH.
T1 T2 T3 T4 T5

Climatic Chamber temperature profile period, T 

Relative time of measurement (min) 21 - 160 161 - 300 301 - 440 441 - 580 581 - 720 721 - 860 861 - 1000 1001 - 1140 1141 - 1280 1281 - 1420

Chamber temperature profile trend Rise Fall Rise Fall Rise Fall Rise Fall Rise Fall

Average R at 80°C (Ω) 6.12E+03 6.52E+03

Average R at 70°C (Ω) 6.17E+03 6.33E+03 6.59E+03 6.61E+03 6.81E+03 6.79E+03 6.91E+03 6.91E+03

Average R at 60°C (Ω) 6.25E+03 6.60E+03 6.79E+03 6.87E+03 7.04E+03 7.06E+03 7.12E+03 7.16E+03

Average R at 50°C (Ω) 6.37E+03 6.86E+03 7.01E+03 7.14E+03 7.28E+03 7.32E+03 7.35E+03 7.40E+03

Average R at 40°C (Ω) 6.55E+03 7.10E+03 7.22E+03 7.39E+03 7.52E+03 7.56E+03 7.59E+03 7.63E+03

Average R at 30°C (Ω) 6.75E+03 7.33E+03 7.44E+03 7.64E+03 7.75E+03 7.80E+03 7.84E+03 7.84E+03

Average R at 20°C (Ω) 6.97E+03 7.57E+03 7.65E+03 7.90E+03 7.97E+03 8.03E+03 8.08E+03 8.05E+03

Average R at 10°C (Ω) 7.82E+03 8.16E+03 8.26E+03

2nd measurement cycle. CH: 1. Material: SWCOOH.
T1 T2 T3 T4 T5

 Figure xi. Resistance of deposited thin film material as a function of temperature. 

Table xi (c). Change in R percentage value from a given temperature step to the next 

temperature step. 

Table xi (b). Percent of average R value at each temperature step WRT average R value at 10°C in each T. 
 

Table xi (a). Average R value at each temperature step. 

Measurement error

Outside measurement range
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Climatic Chamber temperature profile period, T 

Relative time of measurement (min) 21 - 160 161 - 300 301 - 440 441 - 580 581 - 720 721 - 860 861 - 1000 1001 - 1140 1141 - 1280 1281 - 1420

Chamber temperature profile trend Rise Fall Rise Fall Rise Fall Rise Fall Rise Fall

Average R at 80°C (Ω) 2.52E+03 2.69E+03 2.77E+03 2.77E+03

Average R at 70°C (Ω) 2.45E+03 2.63E+03 2.69E+03 2.77E+03 2.80E+03 2.84E+03 2.77E+03 2.83E+03

Average R at 60°C (Ω) 2.41E+03 2.71E+03 2.72E+03 2.84E+03 2.85E+03 2.90E+03 2.79E+03 2.89E+03

Average R at 50°C (Ω) 2.42E+03 2.77E+03 2.78E+03 2.91E+03 2.91E+03 2.95E+03 2.84E+03 2.93E+03

Average R at 40°C (Ω) 2.46E+03 2.84E+03 2.85E+03 2.98E+03 2.99E+03 3.00E+03 2.91E+03 2.98E+03

Average R at 30°C (Ω) 2.52E+03 2.91E+03 2.92E+03 3.05E+03 3.06E+03 3.05E+03 2.99E+03 3.01E+03

Average R at 20°C (Ω) 2.59E+03 2.98E+03 3.00E+03 3.13E+03 3.14E+03 3.10E+03 3.08E+03 3.04E+03

Average R at 10°C (Ω) 3.05E+03 3.21E+03 3.14E+03

2nd measurement cycle. CH: 2. Material: SWCOOH.
T1 T2 T3 T4 T5

Climatic Chamber temperature profile period, T 

Relative time of measurement (min) 21 - 160 161 - 300 301 - 440 441 - 580 581 - 720 721 - 860 861 - 1000 1001 - 1140 1141 - 1280 1281 - 1420

Chamber temperature profile trend Rise Fall Rise Fall Rise Fall Rise Fall Rise Fall

% of average R at 80°C WRT R at 10°C in each T 82.56 83.90 88.36 91.18

% of average R at 70°C WRT R at 10°C in each T 80.20 86.20 83.99 86.40 89.14 90.44 91.15 93.22

% of average R at 60°C WRT R at 10°C in each T 78.99 88.66 84.99 88.55 90.67 92.35 91.71 94.93

% of average R at 50°C WRT R at 10°C in each T 79.15 90.92 86.74 90.73 92.80 94.07 93.42 96.51

% of average R at 40°C WRT R at 10°C in each T 80.47 93.15 88.83 92.89 95.09 95.64 95.65 97.92

% of average R at 30°C WRT R at 10°C in each T 82.50 95.25 91.11 95.16 97.58 97.10 98.29 98.98

% of average R at 20°C WRT R at 10°C in each T 84.96 97.54 93.48 97.55 100.06 98.60 101.18 100.00

% of average R at 10°C WRT R at 10°C in each T 100.00 100.00 100.00

2nd measurement cycle. CH: 2. Material: SWCOOH.
T1 T2 T3 T4 T5

Climatic Chamber temperature profile period, T 

Relative time of measurement (min) 21 - 160 161 - 300 301 - 440 441 - 580 581 - 720 721 - 860 861 - 1000 1001 - 1140 1141 - 1280 1281 - 1420

Chamber temperature profile trend Rise Fall Rise Fall Rise Fall Rise Fall Rise Fall

%Δ in R between 20°C - 30°C -2.46 -2.37 -2.48 -2.90

%Δ in R between 30°C - 40°C -2.03 -2.28 -2.48 -2.63

%Δ in R between 40°C - 50°C -1.31 -2.09 -2.29 -2.24

%Δ in R between 50°C - 60°C -0.16 -1.75 -2.13 -1.71

%Δ in R between 60°C - 70°C 1.21 -1.00 -1.53 -0.56

%Δ in R between 70°C - 80°C 2.36 -0.09 -0.78 0.03

%Δ in R between 70°C - 60°C 2.46 2.15 1.91 1.71

%Δ in R between 60°C - 50°C 2.26 2.18 1.72 1.58

%Δ in R between 50°C - 40°C 2.23 2.15 1.56 1.41

%Δ in R between 40°C - 30°C 2.10 2.28 1.47 1.05

%Δ in R between 30°C - 20°C 2.29 2.38 1.50 1.02

%Δ in R between 20°C - 10°C 2.46 2.45 1.40

T1 T2 T3 T4 T5

2nd measurement cycle. CH: 2. Material: SWCOOH.

 Figure xii. Resistance of deposited thin film material as a function of temperature. 

Table xii (c). Change in R percentage value from a given temperature step to the next 

temperature step. 

Table xii (b). Percent of average R value at each temperature step WRT average R value at 10°C in each T. 
 

Table xii (a). Average R value at each temperature step. 

Measurement error

Outside measurement range
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Climatic Chamber temperature profile period, T 

Relative time of measurement (min) 21 - 160 161 - 300 301 - 440 441 - 580 581 - 720 721 - 860 861 - 1000 1001 - 1140 1141 - 1280 1281 - 1420

Chamber temperature profile trend Rise Fall Rise Fall Rise Fall Rise Fall Rise Fall

Average R at 80°C (Ω) 2.45E+03 2.54E+03 2.56E+03

Average R at 70°C (Ω) 2.45E+03 2.53E+03 2.60E+03 2.59E+03 2.63E+03 2.59E+03

Average R at 60°C (Ω) 2.47E+03 2.60E+03 2.67E+03 2.66E+03 2.70E+03 2.66E+03 2.61E+03

Average R at 50°C (Ω) 2.50E+03 2.68E+03 2.73E+03 2.74E+03 2.78E+03 2.72E+03 2.67E+03

Average R at 40°C (Ω) 2.54E+03 2.75E+03 2.79E+03 2.81E+03 2.85E+03 2.78E+03 2.74E+03

Average R at 30°C (Ω) 2.61E+03 2.83E+03 2.86E+03 2.90E+03 2.93E+03 2.84E+03 2.81E+03

Average R at 20°C (Ω) 2.68E+03 2.91E+03 2.94E+03 2.98E+03 3.00E+03 2.89E+03 2.89E+03

Average R at 10°C (Ω) 3.00E+03 3.06E+03 2.95E+03

2nd measurement cycle. CH: 3. Material: SWCOOH.
T1 T2 T3 T4 T5

Climatic Chamber temperature profile period, T 

Relative time of measurement (min) 21 - 160 161 - 300 301 - 440 441 - 580 581 - 720 721 - 860 861 - 1000 1001 - 1140 1141 - 1280 1281 - 1420

Chamber temperature profile trend Rise Fall Rise Fall Rise Fall Rise Fall Rise Fall

% of average R at 80°C WRT R at 10°C in each T 81.72 83.07 86.81

% of average R at 70°C WRT R at 10°C in each T 81.79 84.22 85.09 84.67 89.28 87.99

% of average R at 60°C WRT R at 10°C in each T 82.22 86.76 87.12 86.89 91.72 90.23

% of average R at 50°C WRT R at 10°C in each T 83.29 89.29 89.24 89.44 94.13 92.40

% of average R at 40°C WRT R at 10°C in each T 84.82 91.86 91.30 91.83 96.51 94.40

% of average R at 30°C WRT R at 10°C in each T 86.92 94.36 93.59 94.64 99.32 96.27

% of average R at 20°C WRT R at 10°C in each T 89.49 97.07 96.14 97.39 101.63 98.17

% of average R at 10°C WRT R at 10°C in each T 100.00 100.00 100.00

2nd measurement cycle. CH: 3. Material: SWCOOH.
T1 T2 T3 T4 T5

Climatic Chamber temperature profile period, T 

Relative time of measurement (min) 21 - 160 161 - 300 301 - 440 441 - 580 581 - 720 721 - 860 861 - 1000 1001 - 1140 1141 - 1280 1281 - 1420

Chamber temperature profile trend Rise Fall Rise Fall Rise Fall Rise Fall Rise Fall

%Δ in R between 20°C - 30°C -2.57 -2.55 -2.31

%Δ in R between 30°C - 40°C -2.10 -2.29 -2.82

%Δ in R between 40°C - 50°C -1.53 -2.06 -2.37

%Δ in R between 50°C - 60°C -1.07 -2.12 -2.41

%Δ in R between 60°C - 70°C -0.43 -2.03 -2.44

%Δ in R between 70°C - 80°C -0.07 -2.03 -2.47

%Δ in R between 70°C - 60°C 2.54 2.22 2.24

%Δ in R between 60°C - 50°C 2.54 2.55 2.17

%Δ in R between 50°C - 40°C 2.57 2.39 2.00

%Δ in R between 40°C - 30°C 2.50 2.81 1.87

%Δ in R between 30°C - 20°C 2.71 2.75 1.90

%Δ in R between 20°C - 10°C 2.93 2.61 1.83

2nd measurement cycle. CH: 3. Material: SWCOOH.
T1 T2 T3 T4 T5

 Figure xiii. Resistance of deposited thin film material as a function of temperature. 

Table xiii (a). Average R value at each temperature step. 

Table xiii (b). Percent of average R value at each temperature step WRT average R value at 10°C in each T. 

 

Table xiii (c). Change in R percentage value from a given temperature step to the next 

temperature step. 

Measurement error

Outside measurement range
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Climatic Chamber temperature profile period, T 

Relative time of measurement (min) 21 - 160 161 - 300 301 - 440 441 - 580 581 - 720 721 - 860 861 - 1000 1001 - 1140 1141 - 1280 1281 - 1420

Chamber temperature profile trend Rise Fall Rise Fall Rise Fall Rise Fall Rise Fall

Average R at 80°C (Ω) 5.87E+03 5.97E+03 6.00E+03 5.85E+03

Average R at 70°C (Ω) 5.93E+03 6.02E+03 6.14E+03 6.08E+03 6.18E+03 6.09E+03 5.96E+03 5.96E+03

Average R at 60°C (Ω) 5.97E+03 6.20E+03 6.32E+03 6.25E+03 6.36E+03 6.25E+03 6.08E+03 6.11E+03

Average R at 50°C (Ω) 6.05E+03 6.39E+03 6.50E+03 6.45E+03 6.55E+03 6.41E+03 6.23E+03 6.25E+03

Average R at 40°C (Ω) 6.17E+03 6.58E+03 6.67E+03 6.64E+03 6.73E+03 6.54E+03 6.40E+03 6.38E+03

Average R at 30°C (Ω) 6.34E+03 6.76E+03 6.85E+03 6.84E+03 6.92E+03 6.67E+03 6.58E+03 6.49E+03

Average R at 20°C (Ω) 6.53E+03 6.96E+03 7.04E+03 7.04E+03 7.11E+03 6.79E+03 6.77E+03 6.59E+03

Average R at 10°C (Ω) 7.17E+03 7.26E+03 6.92E+03

2nd measurement cycle. CH: 4. Material: SWCOOH.
T1 T2 T3 T4 T5

Climatic Chamber temperature profile period, T 

Relative time of measurement (min) 21 - 160 161 - 300 301 - 440 441 - 580 581 - 720 721 - 860 861 - 1000 1001 - 1140 1141 - 1280 1281 - 1420

Chamber temperature profile trend Rise Fall Rise Fall Rise Fall Rise Fall Rise Fall

% of average R at 80°C WRT R at 10°C in each T 81.89 82.21 86.64 88.76

% of average R at 70°C WRT R at 10°C in each T 82.73 83.91 84.59 83.77 89.35 87.95 90.46 90.46

% of average R at 60°C WRT R at 10°C in each T 83.31 86.48 87.05 86.19 91.92 90.30 92.31 92.80

% of average R at 50°C WRT R at 10°C in each T 84.42 89.16 89.53 88.86 94.64 92.56 94.66 94.95

% of average R at 40°C WRT R at 10°C in each T 86.06 91.81 91.95 91.52 97.24 94.54 97.17 96.90

% of average R at 30°C WRT R at 10°C in each T 88.41 94.36 94.45 94.27 99.97 96.39 99.89 98.60

% of average R at 20°C WRT R at 10°C in each T 91.16 97.13 97.02 97.09 102.69 98.14 102.83 100.00

% of average R at 10°C WRT R at 10°C in each T 100.00 100.00 100.00

2nd measurement cycle. CH: 4. Material: SWCOOH.
T1 T2 T3 T4 T5

Climatic Chamber temperature profile period, T 

Relative time of measurement (min) 21 - 160 161 - 300 301 - 440 441 - 580 581 - 720 721 - 860 861 - 1000 1001 - 1140 1141 - 1280 1281 - 1420

Chamber temperature profile trend Rise Fall Rise Fall Rise Fall Rise Fall Rise Fall

%Δ in R between 20°C - 30°C -2.75 -2.58 -2.72 -2.95

%Δ in R between 30°C - 40°C -2.34 -2.49 -2.73 -2.72

%Δ in R between 40°C - 50°C -1.65 -2.43 -2.60 -2.51

%Δ in R between 50°C - 60°C -1.10 -2.48 -2.72 -2.35

%Δ in R between 60°C - 70°C -0.59 -2.45 -2.57 -1.85

%Δ in R between 70°C - 80°C -0.84 -2.38 -2.71 -1.70

%Δ in R between 70°C - 60°C 2.57 2.43 2.36 2.34

%Δ in R between 60°C - 50°C 2.68 2.67 2.25 2.16

%Δ in R between 50°C - 40°C 2.65 2.66 1.98 1.94

%Δ in R between 40°C - 30°C 2.55 2.74 1.85 1.70

%Δ in R between 30°C - 20°C 2.76 2.82 1.75 1.40

%Δ in R between 20°C - 10°C 2.87 2.91 1.86

2nd measurement cycle. CH: 4. Material: SWCOOH.
T1 T2 T3 T4 T5

 Figure xiv. Resistance of deposited thin film material as a function of temperature. 

Table xiv (a). Average R value at each temperature step. 

Table xiv (c). Change in R percentage value from a given temperature step to the next 

temperature step. 

Table xiv (b). Percent of average R value at each temperature step WRT average R value at 10°C in each T. 
 

Measurement error

Outside measurement range
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Climatic Chamber temperature profile period, T 

Relative time of measurement (min) 21 - 160 161 - 300 301 - 440 441 - 580 581 - 720 721 - 860 861 - 1000 1001 - 1140 1141 - 1280 1281 - 1420

Chamber temperature profile trend Rise Fall Rise Fall Rise Fall Rise Fall Rise Fall

Average R at 80°C (Ω) 6.43E+03 6.59E+03 6.66E+03 6.51E+03

Average R at 70°C (Ω) 6.50E+03 6.62E+03 6.80E+03 6.72E+03 6.89E+03 6.76E+03 6.65E+03 6.65E+03

Average R at 60°C (Ω) 6.57E+03 6.84E+03 7.01E+03 6.94E+03 7.10E+03 6.96E+03 6.79E+03 6.83E+03

Average R at 50°C (Ω) 6.66E+03 7.07E+03 7.22E+03 7.17E+03 7.31E+03 7.15E+03 6.98E+03 7.00E+03

Average R at 40°C (Ω) 6.80E+03 7.30E+03 7.41E+03 7.40E+03 7.52E+03 7.31E+03 7.16E+03 7.16E+03

Average R at 30°C (Ω) 6.99E+03 7.51E+03 7.62E+03 7.63E+03 7.73E+03 7.47E+03 7.37E+03 7.29E+03

Average R at 20°C (Ω) 7.22E+03 7.74E+03 7.83E+03 7.87E+03 7.95E+03 7.61E+03 7.60E+03 7.40E+03

Average R at 10°C (Ω) 7.98E+03 8.11E+03 7.75E+03

2nd measurement cycle. CH: 5. Material: SWCOOH.
T1 T2 T3 T4 T5

Climatic Chamber temperature profile period, T 

Relative time of measurement (min) 21 - 160 161 - 300 301 - 440 441 - 580 581 - 720 721 - 860 861 - 1000 1001 - 1140 1141 - 1280 1281 - 1420

Chamber temperature profile trend Rise Fall Rise Fall Rise Fall Rise Fall Rise Fall

% of average R at 80°C WRT R at 10°C in each T 80.55 81.24 85.90 87.96

% of average R at 70°C WRT R at 10°C in each T 81.51 82.96 83.78 82.89 88.89 87.24 89.86 89.80

% of average R at 60°C WRT R at 10°C in each T 82.35 85.79 86.43 85.56 91.57 89.86 91.80 92.27

% of average R at 50°C WRT R at 10°C in each T 83.54 88.68 88.99 88.41 94.34 92.23 94.26 94.61

% of average R at 40°C WRT R at 10°C in each T 85.22 91.54 91.38 91.22 96.98 94.36 96.78 96.70

% of average R at 30°C WRT R at 10°C in each T 87.59 94.12 93.93 94.06 99.78 96.35 99.54 98.53

% of average R at 20°C WRT R at 10°C in each T 90.46 97.00 96.57 96.99 102.53 98.14 102.64 100.00

% of average R at 10°C WRT R at 10°C in each T 100.00 100.00 100.00

2nd measurement cycle. CH: 5. Material: SWCOOH.
T1 T2 T3 T4 T5

Climatic Chamber temperature profile period, T 

Relative time of measurement (min) 21 - 160 161 - 300 301 - 440 441 - 580 581 - 720 721 - 860 861 - 1000 1001 - 1140 1141 - 1280 1281 - 1420

Chamber temperature profile trend Rise Fall Rise Fall Rise Fall Rise Fall Rise Fall

%Δ in R between 20°C - 30°C -2.87 -2.64 -2.75 -3.09

%Δ in R between 30°C - 40°C -2.37 -2.55 -2.80 -2.76

%Δ in R between 40°C - 50°C -1.68 -2.39 -2.65 -2.53

%Δ in R between 50°C - 60°C -1.19 -2.56 -2.76 -2.46

%Δ in R between 60°C - 70°C -0.84 -2.65 -2.68 -1.93

%Δ in R between 70°C - 80°C -0.95 -2.54 -2.99 -1.91

%Δ in R between 70°C - 60°C 2.83 2.68 2.62 2.47

%Δ in R between 60°C - 50°C 2.88 2.85 2.37 2.34

%Δ in R between 50°C - 40°C 2.86 2.81 2.13 2.09

%Δ in R between 40°C - 30°C 2.58 2.84 1.99 1.82

%Δ in R between 30°C - 20°C 2.88 2.94 1.79 1.47

%Δ in R between 20°C - 10°C 3.00 3.01 1.86

2nd measurement cycle. CH: 5. Material: SWCOOH.
T1 T2 T3 T4 T5

 Figure xv. Resistance of deposited thin film material as a function of temperature. 

Table xv (c). Change in R percentage value from a given temperature step to the next 

temperature step. 

Table xv (a). Average R value at each temperature step. 

Table xv (b). Percent of average R value at each temperature step WRT average R value at 10°C in each T. 

 

Measurement error

Outside measurement range
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Climatic Chamber temperature profile period, T 

Relative time of measurement (min) 21 - 160 161 - 300 301 - 440 441 - 580 581 - 720 721 - 860 861 - 1000 1001 - 1140 1141 - 1280 1281 - 1420

Chamber temperature profile trend Rise Fall Rise Fall Rise Fall Rise Fall Rise Fall

Average R at 80°C (Ω) 5.65E+03 5.55E+03 5.46E+03 5.36E+03

Average R at 70°C (Ω) 5.75E+03 5.59E+03 5.65E+03 5.50E+03 5.56E+03 5.42E+03 5.44E+03 5.34E+03

Average R at 60°C (Ω) 5.82E+03 5.63E+03 5.73E+03 5.54E+03 5.63E+03 5.46E+03 5.50E+03 5.38E+03

Average R at 50°C (Ω) 5.88E+03 5.70E+03 5.81E+03 5.61E+03 5.71E+03 5.52E+03 5.59E+03 5.44E+03

Average R at 40°C (Ω) 5.96E+03 5.77E+03 5.89E+03 5.68E+03 5.78E+03 5.59E+03 5.67E+03 5.51E+03

Average R at 30°C (Ω) 6.04E+03 5.84E+03 5.95E+03 5.75E+03 5.85E+03 5.65E+03 5.73E+03 5.57E+03

Average R at 20°C (Ω) 6.11E+03 5.92E+03 5.99E+03 5.83E+03 5.90E+03 5.71E+03 5.78E+03 5.63E+03

Average R at 10°C (Ω) 6.00E+03 5.91E+03 5.78E+03

2nd measurement cycle. CH: 6. Material: MW
T1 T2 T3 T4 T5

Climatic Chamber temperature profile period, T 

Relative time of measurement (min) 21 - 160 161 - 300 301 - 440 441 - 580 581 - 720 721 - 860 861 - 1000 1001 - 1140 1141 - 1280 1281 - 1420

Chamber temperature profile trend Rise Fall Rise Fall Rise Fall Rise Fall Rise Fall

% of average R at 80°C WRT R at 10°C in each T 94.16 93.89 94.43 95.05

% of average R at 70°C WRT R at 10°C in each T 95.90 93.18 95.60 93.03 96.09 93.65 96.47 94.73

% of average R at 60°C WRT R at 10°C in each T 97.02 93.95 96.94 93.76 97.35 94.43 97.66 95.57

% of average R at 50°C WRT R at 10°C in each T 98.07 95.05 98.33 94.84 98.69 95.49 99.17 96.63

% of average R at 40°C WRT R at 10°C in each T 99.32 96.23 99.59 96.06 99.93 96.61 100.61 97.79

% of average R at 30°C WRT R at 10°C in each T 100.75 97.33 100.71 97.31 101.11 97.75 101.76 98.89

% of average R at 20°C WRT R at 10°C in each T 101.85 98.63 101.39 98.64 101.95 98.81 102.60 100.00

% of average R at 10°C WRT R at 10°C in each T 100.00 100.00 100.00

1st measurement cycle. CH:  6. Material: SW.
T1 T2 T3 T4 T5

Climatic Chamber temperature profile period, T 

Relative time of measurement (min) 21 - 160 161 - 300 301 - 440 441 - 580 581 - 720 721 - 860 861 - 1000 1001 - 1140 1141 - 1280 1281 - 1420

Chamber temperature profile trend Rise Fall Rise Fall Rise Fall Rise Fall Rise Fall

%Δ in R between 20°C - 30°C -1.10 -0.68 -0.85 -0.83

%Δ in R between 30°C - 40°C -1.43 -1.12 -1.18 -1.15

%Δ in R between 40°C - 50°C -1.25 -1.27 -1.25 -1.44

%Δ in R between 50°C - 60°C -1.05 -1.39 -1.33 -1.51

%Δ in R between 60°C - 70°C -1.12 -1.34 -1.26 -1.19

%Δ in R between 70°C - 80°C -1.73 -1.71 -1.66 -1.42

%Δ in R between 70°C - 60°C 0.77 0.73 0.78 0.83

%Δ in R between 60°C - 50°C 1.10 1.08 1.05 1.07

%Δ in R between 50°C - 40°C 1.18 1.22 1.12 1.15

%Δ in R between 40°C - 30°C 1.10 1.25 1.14 1.10

%Δ in R between 30°C - 20°C 1.30 1.33 1.05 1.11

%Δ in R between 20°C - 10°C 1.37 1.36 1.19

1st measurement cycle. CH:  6. Material: SW.
T1 T2 T3 T4 T5

 Figure xvi. Resistance of deposited thin film material as a function of temperature. 

Table xvi (b). Percent of average R value at each temperature step WRT average R value at 10°C in each T. 

 

Table xvi (c). Change in R percentage value from a given temperature step to the next 

temperature step. 

Table xvi (a). Average R value at each temperature step. 

Measurement error

Outside measurement range
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Climatic Chamber temperature profile period, T 

Relative time of measurement (min) 21 - 160 161 - 300 301 - 440 441 - 580 581 - 720 721 - 860 861 - 1000 1001 - 1140 1141 - 1280 1281 - 1420

Chamber temperature profile trend Rise Fall Rise Fall Rise Fall Rise Fall Rise Fall

Average R at 80°C (Ω) 2.65E+03 2.62E+03 2.59E+03 2.55E+03

Average R at 70°C (Ω) 2.69E+03 2.64E+03 2.66E+03 2.61E+03 2.63E+03 2.58E+03 2.58E+03 2.55E+03

Average R at 60°C (Ω) 2.71E+03 2.67E+03 2.69E+03 2.64E+03 2.66E+03 2.61E+03 2.61E+03 2.57E+03

Average R at 50°C (Ω) 2.74E+03 2.70E+03 2.72E+03 2.67E+03 2.69E+03 2.63E+03 2.64E+03 2.60E+03

Average R at 40°C (Ω) 2.76E+03 2.73E+03 2.76E+03 2.70E+03 2.72E+03 2.66E+03 2.67E+03 2.63E+03

Average R at 30°C (Ω) 2.80E+03 2.76E+03 2.79E+03 2.73E+03 2.75E+03 2.69E+03 2.70E+03 2.66E+03

Average R at 20°C (Ω) 2.83E+03 2.79E+03 2.81E+03 2.76E+03 2.78E+03 2.72E+03 2.73E+03 2.68E+03

Average R at 10°C (Ω) 2.83E+03 2.80E+03 2.75E+03

2nd measurement cycle. CH: 7. Material: MW
T1 T2 T3 T4 T5

Climatic Chamber temperature profile period, T 

Relative time of measurement (min) 21 - 160 161 - 300 301 - 440 441 - 580 581 - 720 721 - 860 861 - 1000 1001 - 1140 1141 - 1280 1281 - 1420

Chamber temperature profile trend Rise Fall Rise Fall Rise Fall Rise Fall Rise Fall

% of average R at 80°C WRT R at 10°C in each T 93.74 93.53 94.35 95.22

% of average R at 70°C WRT R at 10°C in each T 94.98 93.49 94.93 93.25 95.74 94.06 96.38 95.19

% of average R at 60°C WRT R at 10°C in each T 95.79 94.30 96.07 94.18 96.87 94.90 97.35 96.04

% of average R at 50°C WRT R at 10°C in each T 96.75 95.37 97.25 95.21 98.00 95.88 98.51 97.01

% of average R at 40°C WRT R at 10°C in each T 97.77 96.50 98.43 96.36 99.16 96.87 99.66 98.06

% of average R at 30°C WRT R at 10°C in each T 98.97 97.56 99.54 97.50 100.29 97.92 100.86 99.07

% of average R at 20°C WRT R at 10°C in each T 100.25 98.76 100.54 98.74 101.35 98.94 101.98 100.00

% of average R at 10°C WRT R at 10°C in each T 100.00 100.00 100.00

2nd measurement cycle. CH: 7. Material: MW
T1 T2 T3 T4 T5

Climatic Chamber temperature profile period, T 

Relative time of measurement (min) 21 - 160 161 - 300 301 - 440 441 - 580 581 - 720 721 - 860 861 - 1000 1001 - 1140 1141 - 1280 1281 - 1420

Chamber temperature profile trend Rise Fall Rise Fall Rise Fall Rise Fall Rise Fall

%Δ in R between 20°C - 30°C -1.27 -1.00 -1.06 -1.12

%Δ in R between 30°C - 40°C -1.20 -1.11 -1.13 -1.19

%Δ in R between 40°C - 50°C -1.03 -1.18 -1.17 -1.16

%Δ in R between 50°C - 60°C -0.96 -1.18 -1.13 -1.16

%Δ in R between 60°C - 70°C -0.81 -1.14 -1.13 -0.97

%Δ in R between 70°C - 80°C -1.24 -1.39 -1.39 -1.16

%Δ in R between 70°C - 60°C 0.81 0.93 0.84 0.86

%Δ in R between 60°C - 50°C 1.06 1.04 0.98 0.97

%Δ in R between 50°C - 40°C 1.13 1.14 0.98 1.04

%Δ in R between 40°C - 30°C 1.06 1.14 1.06 1.01

%Δ in R between 30°C - 20°C 1.20 1.24 1.02 0.93

%Δ in R between 20°C - 10°C 1.24 1.26 1.06

2nd measurement cycle. CH: 7. Material: MW
T1 T2 T3 T4 T5

 Figure xvii. Resistance of deposited thin film material as a function of temperature. 

Table xvii (b). Percent of average R value at each temperature step WRT average R value at 10°C in each T. 

 

Table xvii (c). Change in R percentage value from a given temperature step to the next 

temperature step. 

Table xvii (a). Average R value at each temperature step. 

Measurement error

Outside measurement range
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Climatic Chamber temperature profile period, T 

Relative time of measurement (min) 21 - 160 161 - 300 301 - 440 441 - 580 581 - 720 721 - 860 861 - 1000 1001 - 1140 1141 - 1280 1281 - 1420

Chamber temperature profile trend Rise Fall Rise Fall Rise Fall Rise Fall Rise Fall

Average R at 80°C (Ω) 2.03E+03 2.01E+03 1.99E+03 1.96E+03

Average R at 70°C (Ω) 2.06E+03 2.03E+03 2.04E+03 2.00E+03 2.02E+03 1.98E+03 1.98E+03 1.96E+03

Average R at 60°C (Ω) 2.08E+03 2.05E+03 2.07E+03 2.02E+03 2.04E+03 2.00E+03 2.01E+03 1.98E+03

Average R at 50°C (Ω) 2.10E+03 2.07E+03 2.09E+03 2.05E+03 2.07E+03 2.02E+03 2.03E+03 2.00E+03

Average R at 40°C (Ω) 2.12E+03 2.09E+03 2.12E+03 2.07E+03 2.09E+03 2.05E+03 2.06E+03 2.02E+03

Average R at 30°C (Ω) 2.15E+03 2.12E+03 2.14E+03 2.10E+03 2.12E+03 2.07E+03 2.08E+03 2.04E+03

Average R at 20°C (Ω) 2.18E+03 2.15E+03 2.16E+03 2.12E+03 2.14E+03 2.09E+03 2.10E+03 2.06E+03

Average R at 10°C (Ω) 2.17E+03 2.15E+03 2.11E+03

2nd measurement cycle. CH: 8. Material: MW
T1 T2 T3 T4 T5

Climatic Chamber temperature profile period, T 

Relative time of measurement (min) 21 - 160 161 - 300 301 - 440 441 - 580 581 - 720 721 - 860 861 - 1000 1001 - 1140 1141 - 1280 1281 - 1420

Chamber temperature profile trend Rise Fall Rise Fall Rise Fall Rise Fall Rise Fall

% of average R at 80°C WRT R at 10°C in each T 93.51 93.44 94.14 95.07

% of average R at 70°C WRT R at 10°C in each T 94.89 93.33 94.98 93.02 95.60 93.75 96.18 95.02

% of average R at 60°C WRT R at 10°C in each T 95.77 94.07 96.14 93.95 96.78 94.70 97.20 95.99

% of average R at 50°C WRT R at 10°C in each T 96.69 95.17 97.35 95.16 97.92 95.74 98.41 96.96

% of average R at 40°C WRT R at 10°C in each T 97.70 96.32 98.51 96.28 99.15 96.88 99.63 97.93

% of average R at 30°C WRT R at 10°C in each T 98.94 97.47 99.63 97.58 100.24 97.96 100.79 99.04

% of average R at 20°C WRT R at 10°C in each T 100.23 98.71 100.65 98.82 101.33 98.91 101.95 100.00

% of average R at 10°C WRT R at 10°C in each T 100.00 100.00 100.00

2nd measurement cycle. CH: 8. Material: MW
T1 T2 T3 T4 T5

Climatic Chamber temperature profile period, T 

Relative time of measurement (min) 21 - 160 161 - 300 301 - 440 441 - 580 581 - 720 721 - 860 861 - 1000 1001 - 1140 1141 - 1280 1281 - 1420

Chamber temperature profile trend Rise Fall Rise Fall Rise Fall Rise Fall Rise Fall

%Δ in R between 20°C - 30°C -1.29 -1.02 -1.09 -1.16

%Δ in R between 30°C - 40°C -1.24 -1.12 -1.09 -1.16

%Δ in R between 40°C - 50°C -1.01 -1.16 -1.23 -1.21

%Δ in R between 50°C - 60°C -0.92 -1.21 -1.14 -1.21

%Δ in R between 60°C - 70°C -0.87 -1.16 -1.18 -1.02

%Δ in R between 70°C - 80°C -1.38 -1.53 -1.46 -1.12

%Δ in R between 70°C - 60°C 0.74 0.93 0.95 0.97

%Δ in R between 60°C - 50°C 1.10 1.21 1.04 0.97

%Δ in R between 50°C - 40°C 1.15 1.12 1.14 0.97

%Δ in R between 40°C - 30°C 1.15 1.30 1.09 1.12

%Δ in R between 30°C - 20°C 1.24 1.23 0.95 0.96

%Δ in R between 20°C - 10°C 1.29 1.18 1.09

2nd measurement cycle. CH: 8. Material: MW
T1 T2 T3 T4 T5

 Figure xviii. Resistance of deposited thin film material as a function of temperature.

 
temperature. 

Table xviii (c). Change in R percentage value from a given temperature step to the next 

temperature step. 

Table xviii (a). Average R value at each temperature step. 

Table xviii (b). Percent of average R value at each temperature step WRT average R value at 10°C in each T. 

 

Measurement error

Outside measurement range
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Climatic Chamber temperature profile period, T 

Relative time of measurement (min) 21 - 160 161 - 300 301 - 440 441 - 580 581 - 720 721 - 860 861 - 1000 1001 - 1140 1141 - 1280 1281 - 1420

Chamber temperature profile trend Rise Fall Rise Fall Rise Fall Rise Fall Rise Fall

%Δ in R between 20°C - 30°C -1.20 -0.99 -0.93 -1.01

%Δ in R between 30°C - 40°C -1.12 -1.02 -1.07 -1.10

%Δ in R between 40°C - 50°C -1.09 -1.05 -1.07 -1.19

%Δ in R between 50°C - 60°C -0.98 -1.08 -1.01 -1.16

%Δ in R between 60°C - 70°C -0.87 -1.05 -1.10 -1.13

%Δ in R between 70°C - 80°C -1.45 -1.48 -1.47 -1.31

%Δ in R between 70°C - 60°C 0.73 0.71 0.75 0.74

%Δ in R between 60°C - 50°C 1.04 0.96 0.95 0.98

%Δ in R between 50°C - 40°C 1.04 1.13 1.07 1.01

%Δ in R between 40°C - 30°C 1.06 1.13 1.07 1.13

%Δ in R between 30°C - 20°C 1.12 1.21 1.01 1.11

%Δ in R between 20°C - 10°C 1.29 1.23 1.16

2nd measurement cycle. CH: 9. Material: MW
T1 T2 T3 T4 T5

Climatic Chamber temperature profile period, T 

Relative time of measurement (min) 21 - 160 161 - 300 301 - 440 441 - 580 581 - 720 721 - 860 861 - 1000 1001 - 1140 1141 - 1280 1281 - 1420

Chamber temperature profile trend Rise Fall Rise Fall Rise Fall Rise Fall Rise Fall

Average R at 80°C (Ω) 3.38E+03 3.32E+03 3.27E+03 3.21E+03

Average R at 70°C (Ω) 3.43E+03 3.35E+03 3.37E+03 3.30E+03 3.32E+03 3.25E+03 3.25E+03 3.20E+03

Average R at 60°C (Ω) 3.46E+03 3.38E+03 3.41E+03 3.33E+03 3.36E+03 3.28E+03 3.29E+03 3.22E+03

Average R at 50°C (Ω) 3.49E+03 3.41E+03 3.45E+03 3.36E+03 3.39E+03 3.31E+03 3.33E+03 3.26E+03

Average R at 40°C (Ω) 3.53E+03 3.45E+03 3.48E+03 3.40E+03 3.43E+03 3.35E+03 3.37E+03 3.29E+03

Average R at 30°C (Ω) 3.57E+03 3.49E+03 3.52E+03 3.44E+03 3.47E+03 3.38E+03 3.40E+03 3.33E+03

Average R at 20°C (Ω) 3.62E+03 3.53E+03 3.55E+03 3.48E+03 3.50E+03 3.42E+03 3.44E+03 3.37E+03

Average R at 10°C (Ω) 3.57E+03 3.53E+03 3.46E+03

2nd measurement cycle. CH: 9. Material: MW
T1 T2 T3 T4 T5

Climatic Chamber temperature profile period, T 

Relative time of measurement (min) 21 - 160 161 - 300 301 - 440 441 - 580 581 - 720 721 - 860 861 - 1000 1001 - 1140 1141 - 1280 1281 - 1420

Chamber temperature profile trend Rise Fall Rise Fall Rise Fall Rise Fall Rise Fall

% of average R at 80°C WRT R at 10°C in each T 94.46 94.16 94.54 95.26

% of average R at 70°C WRT R at 10°C in each T 95.91 93.73 95.63 93.62 96.01 93.98 96.57 95.02

% of average R at 60°C WRT R at 10°C in each T 96.78 94.46 96.68 94.33 97.11 94.74 97.70 95.77

% of average R at 50°C WRT R at 10°C in each T 97.76 95.50 97.76 95.29 98.12 95.69 98.86 96.75

% of average R at 40°C WRT R at 10°C in each T 98.85 96.53 98.81 96.43 99.19 96.76 100.05 97.76

% of average R at 30°C WRT R at 10°C in each T 99.97 97.59 99.83 97.56 100.26 97.83 101.15 98.89

% of average R at 20°C WRT R at 10°C in each T 101.18 98.71 100.82 98.77 101.19 98.84 102.16 100.00

% of average R at 10°C WRT R at 10°C in each T 100.00 100.00 100.00

2nd measurement cycle. CH: 9. Material: MW
T1 T2 T3 T4 T5

 Figure xix. Resistance of deposited thin film material as a function of temperature. 

Table xix (c). Change in R percentage value from a given temperature step to the next 

temperature step. 

Table xix (a). Average R value at each temperature step. 

Table xix (b). Percent of average R value at each temperature step WRT average R value at 10°C in each T. 
 

Measurement error

Outside measurement range
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Climatic Chamber temperature profile period, T 

Relative time of measurement (min) 21 - 160 161 - 300 301 - 440 441 - 580 581 - 720 721 - 860 861 - 1000 1001 - 1140 1141 - 1280 1281 - 1420

Chamber temperature profile trend Rise Fall Rise Fall Rise Fall Rise Fall Rise Fall

Average resistance at 80°C (Ω) 1.15E+03 1.06E+03 1.04E+03 1.03E+03

Average resistance at 70°C (Ω) 1.14E+03 1.09E+03 1.13E+03 1.03E+03 1.07E+03 1.03E+03 1.02E+03 1.00E+03

Average resistance at 60°C (Ω) 1.20E+03 1.13E+03 1.12E+03 1.07E+03 1.09E+03 1.04E+03 1.08E+03 1.00E+03

Average resistance at 50°C (Ω) 1.18E+03 1.13E+03 1.09E+03 1.09E+03 1.12E+03 1.05E+03 1.08E+03 9.66E+02

Average resistance at 40°C (Ω) 1.21E+03 1.12E+03 1.15E+03 1.04E+03 1.11E+03 1.03E+03 1.06E+03 1.03E+03

Average resistance at 30°C (Ω) 1.22E+03 1.17E+03 1.18E+03 1.07E+03 1.09E+03 1.03E+03 1.10E+03 9.98E+02

Average resistance at 20°C (Ω) 1.17E+03 1.14E+03 1.11E+03 1.11E+03 1.08E+03 1.05E+03 1.12E+03 1.09E+03

Average resistance at 10°C (Ω) 1.18E+03 1.09E+03 1.09E+03

2nd measurement cycle. CH: 10. Material: MW.
T1 T2 T3 T4 T5

Climatic Chamber temperature profile period, T 

Relative time of measurement (min) 21 - 160 161 - 300 301 - 440 441 - 580 581 - 720 721 - 860 861 - 1000 1001 - 1140 1141 - 1280 1281 - 1420

Chamber temperature profile trend Rise Fall Rise Fall Rise Fall Rise Fall Rise Fall

% of average Res @ 80°C wrt Res @ 10°C in each T 97.46 97.24 95.49 94.73

% of average Res @ 70°C wrt Res @ 10°C in each T 96.44 92.71 103.40 94.30 98.35 94.51 94.22 91.97

% of average Res @ 60°C wrt Res @ 10°C in each T 102.03 95.34 103.03 98.25 99.91 95.24 98.96 92.19

% of average Res @ 50°C wrt Res @ 10°C in each T 99.92 96.10 100.18 99.72 102.66 96.06 99.24 88.86

% of average Res @ 40°C wrt Res @ 10°C in each T 102.29 94.66 105.33 95.59 101.92 94.74 97.12 95.10

% of average Res @ 30°C wrt Res @ 10°C in each T 103.31 99.41 108.09 97.98 100.09 94.29 101.17 91.76

% of average Res @ 20°C wrt Res @ 10°C in each T 99.32 96.78 102.39 101.85 99.27 95.97 102.83 100.00

% of average Res @ 10°C wrt Res @ 10°C in each T 100.00 100.00 100.00

2nd measurement cycle. CH: 10. Material: MW.
T1 T2 T3 T4 T5

Climatic Chamber temperature profile period, T 

Relative time of measurement (min) 21 - 160 161 - 300 301 - 440 441 - 580 581 - 720 721 - 860 861 - 1000 1001 - 1140 1141 - 1280 1281 - 1420

Chamber temperature profile trend Rise Fall Rise Fall Rise Fall Rise Fall Rise Fall

%Δ in resistance between 20°C - 30°C 3.98 5.70 0.82 -1.66

%Δ in resistance between 30°C - 40°C -1.02 -2.76 1.83 -4.05

%Δ in resistance between 40°C - 50°C -2.37 -5.15 0.73 2.12

%Δ in resistance between 50°C - 60°C 2.12 2.85 -2.75 -0.28

%Δ in resistance between 60°C - 70°C -5.59 0.37 -1.56 -4.75

%Δ in resistance between 70°C - 80°C 1.02 -6.16 -2.86 0.52

%Δ in resistance between 70°C - 60°C 2.63 3.95 0.73 0.22

%Δ in resistance between 60°C - 50°C 0.76 1.47 0.82 -3.34

%Δ in resistance between 50°C - 40°C -1.44 -4.14 -1.32 6.24

%Δ in resistance between 40°C - 30°C 4.75 2.39 -0.45 -3.34

%Δ in resistance between 30°C - 20°C -2.63 3.88 1.68 8.24

%Δ in resistance between 20°C - 10°C 3.22 -1.85 4.03

2nd measurement cycle. CH: 10. Material: MW.
T1 T2 T3 T4 T5

 Figure xx. Resistance of deposited thin film material as a function of temperature. 

Table xx (c). Change in R percentage value from a given temperature step to the next 

temperature step. 

Table xx (b). Percent of average R value at each temperature step WRT average R value at 10°C in each T. 

 

Table xx (a). Average R value at each temperature step. 

Measurement error

Outside measurement range
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