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Abstract: The paper deals with development of a methodology for mechatronic system design
using state-of-the-art model-based system engineering methods. A simple flexible robotic arm is
considered as a benchmark problem for the evaluation of various techniques used in the phases
of modelling, analysis, control system design, validation, and implementation. The flexible nature
of the mechanical structure introduces inherently oscillatory dynamics in the target bandwidth
range, which complicates all the above-mentioned design steps. This paper demonstrates the process
of deriving a complex nonlinear model of the flexible arm setup. An initial idea about the plant
dynamics is acquired from analytical modelling using the Euler–Bernoulli beam theory. A more
thorough understanding is subsequently acquired from finite element analysis. Linearisation and
order reduction are the next steps necessary for the derivation of a simplified control-relevant model.
A time-dependent variable parameter of load mass position is considered and a robust controller
is subsequently designed in order to fulfil certain performance criteria for all the admissible plant
configurations. This is performed using a recent H-infinity loop shaping method for fixed structure
controller design. The results are validated by means of a physical plant, comparing the experimental
data with the model predictions.

Keywords: modelling for control; flexible mechanical systems; finite element analysis; model-based
design; digital twin; robust control; H-infinity loopshaping; PID control

1. Introduction

Mathematical modelling has become the cornerstone of many technical disciplines.
Models generally allow us to gain insight, answers, and guidance when analysing and
predicting the behaviour of complex systems. Model-based engineering methods also pro-
vide essential tools in the field of mechatronics. Derivation of relevant models enables the
optimisation of machine design before physical prototype assembly. This may help to avoid
costly build-and-test cycles, speeding up the whole development process considerably.
A high-fidelity model is a necessary prerequisite for employing modern control engineering
methods and algorithms. It can be said that the achievable performance of a motion system
is directly proportional to the predictive and explanatory power of the model used for
the controller synthesis. On the other hand, an excessively complex model, albeit well
suited for numerical simulations and predictions, may turn out to be useless for the process
of control algorithms design. High-order nonlinear models are generally incompatible
with well-established and generally applicable control design methods working mainly in
the linear domain. Therefore, a general rule of thumb is to use a control-relevant model
that is as simple as possible while capturing the significant features of the physical plant’s
dynamics essential for achieving formulated design requirements.
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Mathematical models of dynamic mechanical systems can be generally derived in
two distinct ways. First-principles (or physics-based, white-box) approaches use all the
available prior knowledge about the subject of study for the derivation of the equations of
motion. This involves information about the system structure and geometry, basic laws
of physics, mechanics, and other domains necessary to cover all the aspects of the system
behaviour. The model parameters usually have an exact physical meaning and are closely
related to the properties of the system under study. On the other hand, a data-driven
(or black-box) approach uses quite a limited amount of a priori knowledge regarding
the system and tries to deduce its dynamical properties indirectly by observing available
input and output variables [1]. The model parameters often do not have a clear physical
interpretation. They result from the specifically used data processing method and chosen
model structure. The white-box method usually requires extensive knowledge about the
physical system that may not be available in practice. Considerable effort is often required
for the model derivation. The advantage is that the model may be inferred without having
to construct and assemble a physical device. Therefore, such models may provide valuable
insight when designing new systems that do not physically exist yet. On the other hand, the
black-box approach is relatively simple to use when employing well-established methods
available in the field of system identification [1–3]. Much less prior knowledge about the
system is required, and high-fidelity models can be acquired from experimental data with
less effort. However, back-box modelling typically depends on an extensive amount of the
input-output data which have to be obtained from the experiments with the physical plant.
A combination of both approaches can be used forming a grey-box modelling concept. In
this case, the model properties and its structure are at least partially known in advance and
particular parameters are derived from experimental data.

The role of the model is being emphasised and changed at the same time significantly
with the introduction of the Digital Twin concept [4–7]. There is a fundamental shift in
the understanding of what the model represents and how it can interact with its physical
counterpart in the form of a device or machine to be designed and built. Formerly a static
abstraction of the reality used in the early stages of the development cycle is being grad-
ually transformed into a dynamic object living a parallel life with the physical plant and
continuously updating its inner states, structure, or parameters. The goal is to improve
the fidelity of the model and obtain the best achievable digital copy of the real system.
This allows enhancing the predictive quality of the model to bring new possibilities in
terms of monitoring, predictive or reactive maintenance and diagnostics, and accurate
model-based control design. The Digital Twin can be instanced, representing a particular
piece of hardware to capture specific deviations from the idealised expected behaviour,
e.g., due to production variations or increasing wear during machine operation. It can
be involved in all stages of a product or system’s life cycle, including the design, the
production, and the operation. The key difference between Digital Twin modelling and
conventional numerical models is that besides the design of the product or system, the
Digital Twin model incorporates all applicable data for each instance of the product or
system separately. Among others, the Digital Twin model can include data considering
the production, tests and measurements, operation history, and sensor data in its pre-
dictions and adapts itself continuously by synchronisation with the latest available data.
Furthermore, physics-based modelling techniques such as the finite element method (FEM)
can be incorporated in a Digital Twin, by continuously synchronising history and model
parameters with measurement, sensor, and history data of an instance of the product.

Finite element method (FEM) belongs to the class of widely applied physics-based
modelling approaches. Using the FEM models for studying and analysing underlying
phenomena is often designated as Finite element analysis (FEA). Many software packages
that implement the FEM are available, both commercial (Abaqus, OOFELIE, Ansys and
Nastran for example) and free (Elmer, Code-Aster and CalculiX for example). Books about
the theory of the FEM include [8,9]. The advantage of an FE model is that the entire
mechanism response is available, not just the few lumped parameters. This enables the
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use of the model as a Digital Twin. It may be used to optimise sensor placement, detect
damage, predict fatigue, schedule maintenance, gather data to improve redesign, and so
on. However, having a high fidelity FE model is not enough. The model is not useful as
a Digital Twin if evaluating it costs hours or even days. It must be much faster. This is
where model reduction comes in. This paper presents an example of how a FE model can
be reduced. This example is related to mechatronic design, but it could be expanded to
cover more Digital Twin functionalities.

The main motivation of our research was to review state-of-the-art techniques, meth-
ods, algorithms, and software tools available in the field of modelling, identification, and
control and connect them in a suitable workflow applicable for designing high-fidelity mo-
tion systems. While there are many research papers dealing with the individual parts of the
design process separately, we felt that a unifying view allowing us to bridge different fields
of mechatronics will be beneficial for researchers and engineers working in the respective
domains. Special attention is paid to the derivation of control-relevant models applicable
to generic robust control methods. Subsequent steps of physical modelling using both
analytical and FEM approaches, model linearization, order reduction, and model-based
controller synthesis are demonstrated on a chosen benchmark problem dealing with flexible
manipulator arm control. The predictive capability of the developed models is analysed
by comparing their outputs with the experimentally acquired data. Suggestions on how
to improve model fidelity based on the experiments are given. The ultimate goal is to
assess the applicability of the physics-based modelling in giving accurate predictions for
the design of the motion control system.

The paper is organised as follows. Section 2 introduces a flexible arm motion setup
used to validate proposed modelling and robust control design methods. Basic principles of
analytical modelling of flexible mechanisms using Euler–Bernoulli beam theory, geometri-
cal modelling using Finite element analysis, frequency domain experimental identification,
and robust fixed-structure controller design method are provided as well. Section 3 deals
with application of the proposed methods on our flexible arm manipulator problem. Ana-
lytical and geometrical models are derived and compared with experimentally acquired
data. The observations are used to improve fidelity of the models. On the other hand,
analysis of the geometric model reveals potential drawbacks in actual machine design that
are corrected. This forms a model–measurement loop leading to improvement in both
model predictions and actual machine operation. A robust controller is derived for a whole
set of plant models coming from assumed parametric uncertainty in machine geometric
configuration. Closed-loop performance and models fidelity are experimentally validated
using the flexible arm setup. Final remarks concluding our findings and open topics for
a future research are given in Sections 4 and 5, respectively.

2. Materials and Methods
2.1. Flexible Arm Benchmark Problem

A flexible arm motion setup from Figure 1 is used to demonstrate the applicability of
the presented methods in various stages of mechatronic system design. The motion system
consists of an electrical drive (590 W permanent magnets synchronous motor driven by
a servo amplifier), flexible coupling, bearing housing, inertia flywheel, and removable flexible
arm with adjustable load mass. One degree of freedom allows the arm to rotate freely around
the vertical axis. Details of the drive and arm assembly are shown in Figure 2.
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Figure 1. Flexible arm motion stage used in the experiments: (left) Considered flexible load configuration; (right) Schematics
of the motion control setup, C-velocity/position compensator to be designed using the motor-side feedback, ϕm,ϕl-motor
and load angle.

Figure 2. Flexible arm motion stage details: drive to arm transmission assembly consisting of electrical drive, flexible
coupling, bearing housing, inertial load, and adjustable compliant arm.

Albeit simple, its mechanical structure allows emulating various practical motion
control problems encountered in industrial applications. Some essential features are
given below:

• Distributed parameter system exhibiting oscillatory dynamics with a possible in-
troduction of multiple resonance modes, nonlinear friction effects and parametric
uncertainty (e.g., load mass and/or position)

• A diverse range of dynamic response achievable by adjusting/interchanging the
attached load
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• Both actuator and load-side feedback possible through the optical encoder at the
motor shaft and MEMS accelerometers attached to the load

• Industrial grade drive system with servo amplifier implementing field-oriented con-
trol loop

• EtherCAT communication with 5 kHz update rate to the B&R Automation PC master
controller

• Hard real-time Linux-based software environment with REXYGEN control system [10]

A wide range of dynamic behaviour can be achieved in order to emphasise specific
desired characteristics of a represented motion system. Typical scenarios include, for
example, a rigid body system, flexible load with one or several dominant bending modes,
friction-dominant system, unbalanced rotor system etc. The setup proved to be a valuable
benchmark problem for the evaluation of various methods from the field of mechatronics,
including modelling, identification, and feedback control design [11–14].

Table 1 summarises the important specifications of the employed actuator, sensors,
and control instrumentation. Table 2 provides mechanical parameters of the flexible arm
motion system under study. The purpose of the installed sensory system is twofold.
The high-fidelity motor side optical sensor is used for precise control of the actuator
serving for its electronic commutation using field-oriented control algorithm as well as
for supervisory velocity and position loops. Removable accelerometers can be installed at
different positions of the flexible arm in order to evaluate the load-side dynamic responses.
They were used to validate both open- and closed-loop predictions provided by developed
mathematical models in our actual application. This additional load-side feedback may also
serve for employing advanced control schemes allowing to improve overall performance
of the motion system, see, e.g., [14]. However, this topic is out of scope of this study, which
focuses on the modelling, identification, and control aspects using conventional control
topologies available in current industrial-grade automation equipment.

For the case study presented in this paper, we focused on the load configuration
producing a dynamics with three dominant bending modes. This situation is often encoun-
tered in robotic applications, where the oscillatory dynamics results from the mechanical
compliance of either gearing, the robot arm itself, or due to combination of flexibility of
both components [15,16].

Proper mechanical design followed by optimisation of the control layer is a key step
for delivering new generation of robotic products fulfilling stringent performance and
safety requirements. The safety aspect becomes crucial in the applications of robots that
interact directly with humans, such as social robots or collaborative robots in factories.
The mechanical flexibility is often introduced deliberately as a safety feature to minimise
impact forces during unwanted collisions. Special attention is required during modelling,
identification, and control design to achieve optimal performance of the motion system
in terms of fast reference tracking and suppression of unwanted transient or residual
oscillations. Well-designed bottom layers of control system enable employing advanced
supervisory algorithms for motion planning and control [17,18]. For example, recent
advances in neurobiology reveal new possibilities of connecting human brain in the loop
for direct robot commanding [19]. It is clear that high-fidelity models of such mechatronic
systems are required to provide reliable predictions of their behaviour.

In our paper, state-of-the-art methods based on analytical and geometrical approaches
are used to derive a mathematical model of flexible arm manipulator. Experiments with
the real plant follow to evaluate the validity of the physics-based models. Possibilities
of enhancing physical models’ fidelity using experimental data are discussed, proposing
a workflow which combines the best of the two worlds of white-box and black-box mod-
elling. A robust control scenario is formulated by assuming a parametric uncertainty in
the mechanical structure of the system aiming at delivery of a fixed-structure controller
achieving specified closed-loop performance for all the possible plant variations.
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Table 1. Drive, sensors and control system parameters.

Main actuator TG Drives TGN3-0480-5-320

nn: Rated speed 1200 rpm

nmax: Maximum speed 12,000 rpm

UDC: DC Bus Voltage 320 V

Mn: Rated torque 4.7 Nm

Mmax: Peak torque 14.4 Nm

Pn: Rated power 590 W

Jm: Rotor inertia 1.5 kg cm2

Motor-load coupling Direct connection to bearing house via flexible coupling

Servoamplifier TG Drives TGZ-320

Po: Operating power 1600 W for S1 operation

Icmax: Maximum continuous current 5 A

Imax: Maximum output current (5s) 10 A

Current control loop Field Oriented Control with position feedback

Fieldbus EtherCAT, 5 kHz update rate

Sensors Motor and load side feedback

Motor position/velocity Integrated optical encoder, 20 bits/rev resolution, Hiperface DSL interface

Arm acceleration Kistler piezo-ceramic MEMS accerlerometers, ±50 g range

Supervisory control system

HW platform B&R Automation PC 910

Operating system Debian Linux with RT patch

Real-time SW environment REXYGEN control system

Table 2. Mechanical parameters of the flexible arm motion stage.

L: Length of the arm 0.235 m

ρ: Density of the arm material 8030 kg m−3

E: Young’s modulus of the material 190,295,301,291.7 N m−2

I: Second moment of the link area 6.5182× 10−11 m4

S: Cross section area 8.9274× 10−5 m2

mi: Mass per one element 0.7169 kg m−1

mp: Mass of the payload 1.049 kg

Jh: Moment inertia of the hub 0.0024 kg m2

2.2. Analytical Modelling of Flexible Mechanisms Using Euler–Bernoulli Beam Theory

For various kind of mechatronic systems, we are able to derive the system of ordi-
nary/partial differential or differential-algebraic equations from the mathematical-physical
principles. However, for control design purposes, the aim is to obtain a simplified model
allowing to get a better insight into the dynamics. Therefore, some compromises have to
be made. Basically, some primary knowledge about the dominant modes distribution is
useful to also help design the controller structure and to find suitable controller parame-
ters. The Lagrange–Euler method [20] and the finite element method, together with the
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Euler–Bernoulli beam theory under specific assumptions [21,22], were followed to derive
the dynamic model of the studied flexible arm.

In general, flexible beams are handled as the systems with distributed elasticity [23,24],
which can be described by the partial differential equations:

∂2

∂x2

(
EI

∂2u(x, t)
∂x2

)
+ µ

∂2u(x, t)
∂t2 = f (x, t), (1)

u(x, t) ≈
n

∑
i=1

Ni(x)qi(t), (2)

where n is the number of considered finite elements with each of the same length l; therefore,
the beam length can be denoted as L = l ∗ n. On each element, two nodes are introduced.
This leads to four state variables dedicated to each element. The state vector of the ith
element can be written as

[
q2i−1(t) q2i(t) q2i+1(t) q2i+2(t)

]T , where q2i−1 is the
displacement of the node i− 1, q2i+1 denotes the displacement of the neighbouring node i,
q2i is the angle in the node i− 1, and q2i+2 is the angle in the node i.

The corresponding shape functions Ni(x) are chosen as the cubic Hermitian
functions [24] to meet the requirements following from Euler–Bernoulli beam
theory ([21,23,25,26]) regarding continuity between elements, continuity on borders, and
completeness [23,24]. To express the suitable coefficients Ni(x) and to establish the state
variables, let us present the auxiliary function wi(x, t),

wi(x, t) = α1 + α2x + α3x2 + α4x3, (3)

where αs are the auxiliary time-variant functions. The boundary conditions are set to

wi
1(t) , wi(0, t) = α1, wi

2 , wi(l, t) = α1 + α2l + α3l2 + α4l3, θi
1(t) , ∂wi(x,t)

∂x (0, t) = α2,

θi
2(t) ,

∂wi(x,t)
∂x (l) = α2 + 2α3l + 3α4l2. These given requirements are gathered as

wi
1

θi
1

wi
2

θi
2

 =


1 0 0 0
0 1 0 0
1 l l2 l3

0 1 2l 3l2




α1
α2
α3
α4

. (4)

By expressing α’s from (4) and substituting into (3), we obtain

wi(x, t) =
[

1 x x2 x3 ]


1 0 0 0
0 1 0 0

− 3
l2 − 2

l
3
l2 − 1

l
2
l3

1
l2 − 2

l3
1
l2




wi
1

θi
1

wi
2

θi
2

. (5)

This formula leads to the desired separated time/space interpolation,

wi(x, t) = Ni(x)qi(t), where

Ni(x) =
[

1− 3
l2 x2 + 2

l3 x3 x− 2
l x2 + 1

l2 x3 3
l2 x2 − 2

l3 x3 − 1
l x2 + 1

l2 x3
]
, qi(t) =


wi

1(t)
θi

1(t)
wi

2(t)
θi

2(t)

. (6)

Since the studied setup is a rotary system, we have to include the change of the moment
for each element. Hence, the extended vector of (6) is introduced, Ni

,
[

x Ni(x)
]
,
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Qi
,
[

θ(t)
qi(t)

]
. The angle θ(t) represents the hub angle; see Figure 3. For the ith element,

x = s + (i− 1)l, and we finally express (2) in the form

ui(s, t) = Ni
(s)Qi

(t) =
[

s + (i− 1)l Ni(s)
][ θ(t)

Qi(t)

]
. (7)

q

mp

q2i

q2i+1

q2i+2

q2i-1

element i

X

Y

x

y

Figure 3. One element of arm with state-coordinates in detail.

Considering (7), we can proceed with expressing the kinetic energy Ti and the potential
energy Vi of the ith element. Specifically,

Ti =
1
2

∫ l

0

[
∂ui(s, t)

∂t

]2

ρS ds, (8)

where ρ denotes the arm material density [kg/m3] and S is the arm cross-surface area [m2].
From substituting of ∂ui(s,t)

∂t = Ni(s)Q̇i(t), it follows that

Ti =
1
2

ρSQ̇T
i (t)Mi Q̇j(t), (9)

where Mi =
∫ l

0 NT
i (s)Ni(s) ds, and the mass matrix Mi is

Mi =



1
3 m2l3(3 i2 − 3 i + 1

) m2l2

20 (−3 + 10 i) m2

(
− 1

12 il3 + 1
30 l3

)
m2l2

20 (−7 + 10 i) m2l3(−3+5 i)
60

1
20 m2l2(−3 + 10 i) 13 m2l

35 − 11 m2l2

210
9 m2l

70
13 m2l2

420

m2

(
− 1

12 il3 + 1
30 l3

)
− 11 m2l2

210
m2l3

105 − 13 m2l2

420 −m2l3

140

1
20 m2l2(−7 + 10 i) 9 m2l

70 − 13 m2l2

420
13 m2l

35
11 m2l2

210

m2l3(−3+5 i)
60

13 m2l2

420 −m2l3

140
11 m2l2

210
m2l3

105


, (10)

where m2 = ρS.
In the general case, the mass matrix depends on the state variables. If we consider

more complex description of deflection, the nonlinear model equations of flexible arm can
be derived. The kinetic energy of each element as well as payload is changed, while the
position vector r is derived as follows:

r(s, t) =
[

(j− 1)l cos(θ(t))
(j− 1)l sin(θ(t))

]
+

[
cos(θ(t)) − sin(θ(t))
sin(θ(t)) cos(θ(t))

][
s

u(s, t)

]
. (11)

The kinetic energy is in the form

Ti =
1
2

ρS
∫ l

0
ṙT ṙds =

1
2

Q̇(t)T Mi(q)Q(t), (12)
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where Mi(q) is the state-dependent mass matrix, with elements as Mi in (9), nevertheless

with different element (1, 1), where Mi(q)1,1 = m2[l2(
q2 i+2

2

105 + q2 i
2

105 + i2 − i− q2 i+2q2 i
70 + 1

3 ) +

(− 11 q2 i
105 +

13 q2 i+2
210 )q2 i−1l − 13 q2 i+1

210 (q2 i −
22 q2 i+2

13 )l + 13 q2 i−1
2

35 +
13 q2 i+1

2

35 +
9 q2 i−1q2 i+1

35 ]l.

For the payload, the mass matrix depends on the state variables as well as M(q) in (12),
more specifically for location of mass at the tip, on q2n+1(t). The kinetic energy of the
payload can be expressed as

Tp =
1
2

mp ṙT
(s=l,i=n+1) ṙ(s=l,i=n+1), (13)

where mp is the centred mass of the payload, and r(s=l,i=n+1), representing the position
vector of the last element, is as follows:

r(s=l,i=n+1) =

[
[−l(n + 1) sin(θ(t))− cos(θ(t))q2 n+1(t)]θ̇(t)− q̇2 n+1(t) sin(θ(t))

[l(n + 1) cos(θ(t))− sin(θ(t))q2 n+1(t)]θ̇(t) + q̇2 n+1(t) cos(θ(t))

]
. (14)

Further,

ṙT ṙ =
[
l2(n + 1)2 + q2

2 n+1(t)
]
˙̀2 + 2 lq̇2 n+1(t)(n + 1)˙̀ + q̇2

2 n+1(t) , (15)

and therefore, for kinetic energy Tp of the payload, we obtain

Tp =
1
2

Q̇n(t)T Mp(q2n+1(t))Qn(t), (16)

where Mp(q2n+1(t)) = mp



l2(n + 1)2 + q2
2 n+1(t) 0 0 l(n + 1) 0

0 0 0 0 0

0 0 0 0 0

l(n + 1) 0 0 1 0

0 0 0 0 0


.

Consequently, the potential energy of the element i can be expressed as

Vi =
1
2

EI
∫ l

0

[
∂2ui(s, t)

∂s2

]T[
∂2ui(s, t)

∂s2

]
ds, (17)

where EI is the flexural rigidity of the link material, (more formally, EI = E · I, where E
is Young’s module of the material and I is the second moment of area). It follows that
∂2ui(s,t)

∂s2 = Qi(t)T N′′i (s)
T N′′i (s)Qi(t), where N′′i (s) =

[
− 12s

l3 + 6
l2

6s
l2 − 2

l
12s
l3 − 6

l2
6s
l2 − 4

l

]
denotes the second space derivative for s, therefore

Vi =
1
2

EIQi(t)T
∫ l

0
N′′i (s)

T N′′i (s)ds Qi(t), (18)

where

N′′i (s)
T N′′i (s) =



36(−2 s+l)2

l6
−12(−3 s+l)(−2 s+l)

l5
−36(−2 s+l)2

l6
−24 l2+84 ls−72 s2

l5

−12(−3 s+l)(−2 s+l)
l5

4(−3 s+l)2

l4
12(−3 s+l)(−2 s+l)

l5
4(−3 s+l)(−3 s+2 l)

l4

−36(−2 s+l)2

l6
12(−3 s+l)(−2 s+l)

l5
36(−2 s+l)2

l6
24 l2−84 ls+72 s2

l5

−24 l2+84 ls−72 s2

l5
4(−3 s+l)(−3 s+2 l)

l4
24 l2−84 ls+72 s2

l5
4(−3 s+2 l)2

l4


. (19)
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2.3. Control-Relevant Modelling Using Finite Element Method

Utilisation of the analytical modelling approach by means of the Euler–Bernoulli beam
theory outlined on the previous pages may be impractical for systems with complex geom-
etry, kinematics, and variable material properties. In such cases, geometrical modelling
using finite element method is often preferred in industry thanks to its universal applicabil-
ity and possibility of rapid model development with the aid of available computer software.
Our goal is to compare the fidelity of the models derived from both analytical and FEM
approaches with respect to the physical setup dynamics. Furthermore, their suitability for
control algorithm synthesis is evaluated by experiments. This section focuses on the FEM
approach, discussing individual steps for the derivation of control-relevant model of the
discussed benchmark motion system.

A typical workflow for control-oriented modelling involves the following stages of
development:

1. Building, linearising and reducing a model of the system that has to be controlled.
This can include a model of the uncertainty.

2. Controller design with the reduced model.
3. Simulation or co-simulation with the original non-linear model.

Each step may be executed by different engineers and may require different software
tools. A disadvantage of many commercial software tools is that the reduced model
obtained in Step 1 still needs a licence to run. Control engineers can then only use the
reduced model if a costly licence is available. Models that can be used without a licence are
clearly preferred.

The models need to be exchanged between the tools that are used in the different steps
described above. The Functional Mock-up Interface (FMI) standard aims to be a standard
for model exchange and co-simulation. Many tools support FMI import and/or export
of models.

The central idea in step 1 is to make a model of a system with finite element software
and find the best way to linearise, reduce and export this model to a FMI model. This
workflow is schematically shown in Figure 4 along with the tools that were used: Abaqus,
Python and OpenModelica. Of these tools, only Abaqus is a commercial software package.
The reduced model is in standard state space form, so no Abaqus licences are required to
run it.

Figure 4. Model reduction workflow (step 1).

The advantage of this approach is that the FEM model can be a very accurate descrip-
tion of the system, and it will be available for validation in Step 3 as well. The model
reduction step will determine quite clearly which effects to include and which to exclude
in the reduced model. Furthermore, if the system is built and measured, deviation between
the model and system response can be attributed to parts of the system that were incorrectly
produced (or incorrectly modelled).

This workflow is applied to the flexible arm benchmark in Section 3.2. The methods
that were used (for step 1) are: finite element analysis, model order reduction, and FMU
generation. These methods are discussed next.

2.3.1. Finite Element Analysis

A FEM model of the flexible arm mechanism is built with all structural details that are
considered to be relevant. This includes the disk coupling between the motor and the shaft,
for example. Once the model is made, it can be used in several analyses: transient (implicit



Appl. Sci. 2021, 11, 3689 11 of 41

or explicit), time-harmonic (called steady-state dynamics in Abaqus) or modal (calculation
of eigenfrequencies and mode shapes).

The transient simulation may seem the most relevant for mechatronic design, but this
analysis is computationally too expensive to be useful. It will only be used to validate the
designed controller (in Step 3). The modal analysis is the most important one because it
will yield the results that allow us to create a reduced order model.

2.3.2. Model Order Reduction

Several model order reduction (ROM) techniques are described in [27]. The Mode
displacement technique is very commonly used for mechanical models and is implemented
in most FEA sofware packages, including Abaqus. We want to take this a step further in
two ways: automatic mode selection and model export (discussed in the next subsection).

The model is actually reduced twice: first by truncating all modes above a cutoff
frequency, and next by using the Balaced truncation method; see also [27]. Balanced
truncation is a ROM technique of its own, but in our two-step approach, it is reduced to
a mode selection method. This method takes both input (actuator) and output (sensor)
specification into account. For single-input singe output (SISO) systems, the mode selection
can be done by looking at the mode shapes. However, for multiple-input–multiple-output
(MIMO) systems, this becomes tedious and automatic mode selection is helpful.

2.3.3. FMU Model

As mentioned above, FEA software often includes some (ROM) methods. The problem
with these methods is that running these ROMs requires a license of the FEA software. This
is inconvenient and unreasonably costly (financially). Fortunately, as long as the ROM is
linear, it is relatively straightforward to assemble the ROM outside the FEA software. Only
the eigenfrequencies and mode shapes are needed and output of these is supported by all
FEA software packages.

Assembling the ROM using the eigenfrequencies and mode shapes can be done in any
software. We used Python, but Matlab may be the software of choice for a control engineer.
Since the ROM is a linear model, it can be formulated in the standard state space form and
can be exported as such. Therefore, FMU export is not really needed. Nevertheless, it can
still be convenient to have a single FMU ROM that is used in all software environments
(that support FMU). The FMU of a state space system can be conveniently created in Open
Modelica using a predefined state space block.

2.3.4. Extension to Non-Linear ROMs

The described workflow from FE model to FMU works well for linear models. It can be
extended to non-linear models only with much more difficulty (and further investigation).

A useful ROM technique for structural dynamics is substructuring. This is applicable
if deformations remain small. Geometric non-linearity due to finite rotation is (mostly)
accounted for. This technique is available in Abaqus and many other FEA programs. This
leaves the problem that running the ROM needs a software license. Unlike in the linear
case, the structure of this non-linear ROM resembles multibody equations that are nowhere
near as simple as the linear ROM equations. Furthermore, extracting all the necessary data
from the FE model is more difficult.

Non-linear ROMs with a simpler structure can also be used. For example, the model
could be linearized around a nominal path. This linearization can be done either in time,
resulting in a linear time-varying (LTV) system [28], or in parameter space, resulting in
a linear parameter-varying (LPV) system [29]. In either case, extracting the required data
from the FE model is not trivial. Furthermore, the ROM may need to be reassembled each
time the nominal path is changed, which further complicates the workflow.
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2.4. Data-Driven System Identification

Data-driven system identification is another widely used modelling approach. The
model is constructed based on the information extracted from the experimental data. This
allows high-fidelity models to be delivered from observations without relying on a detailed
prior knowledge of geometry and physics involved in the dynamics of the controlled plant.
The derived models are often directly applicable for the subsequent step of model-based
control design. On the other hand, they often offer a limited insight into physical properties
of the system under study. This may be necessary for qualified predictions regarding
machine design changes made in the early phases of the development cycle. Moreover, a
prototype has to be built physically to allow execution of experiments for data acquisition.

In our approach, we consider two different scenarios in which the data-driven identi-
fication may be used as a complement to the physics-based modelling:

1. Experimental identification for direct derivation of a control-relevant model
The first scenario is relevant for the final phases of machine construction, assembly
and control system commissioning. The data gathered from an experiment with
the real plant may often offer more information than first-principle models. This
is due to several factors usually not taken into consideration when developing the
analytical and FEM models such as actuator/sensor dynamics and noise characteris-
tics, unknown material properties or construction tolerances, and varying assembly
conditions, e.g., clamping, tightening, and friction forces. The first-principle models
may be used to derive a proper structure of the control-relevant model, e.g., by esti-
mating a number of oscillatory modes in the target bandwidth range. The data-driven
identification provides parameters for the assumed model structure. The result is
used for the subsequent control algorithm design.

2. Experimental identification as a means for improving quality of the physics-based
models
This scenario involves early stages of development that often use various testbeds and
prototype designs for the validation of predictions made by physics-based models.
Employment of the experiments allows the geometrical or analytical models to be
further refined. The location and damping of the eigenmodes acquired from the
experiments may be used to tune material and geometrical properties in the first-
principle models, extending their predictive and extrapolation capabilities. In this
way, the amount of model uncertainty can be vastly reduced.

We focused mainly on the second scenario, which combines physics- and data-driven
modelling approaches together. Our goal was to compare the results obtained from the
analytical, FEM, and experimental models and provide some guidelines to the ways of
incorporating the experimental results in the modelling process. Section 3 summarises our
findings and recommendations in this context.

As for the data-driven identification, there is a wide variety of well-developed, tried
and tested methods and algorithms available in the linear systems theory [1–3] that can be
applied for this purpose. We opted for the frequency-domain modelling and identification
framework outlined in [2], which provides some inherent advantages when used for
flexible motion systems:

• Utilisation of deterministic periodic excitation signals for the experiments allowing to
employ powerful averaging techniques to mitigate measurement noise and transient
dynamics effects;

• Derivation of non-parametric frequency response function (FRF) as an intermediate
step that may serve for model validation, providing a description of the oscillatory
dynamics in a more natural way than time-domain models;

• Possibility of derivation of non-parametric noise models allowing model uncertainty
to be evaluated;

• Numerically robust algorithms available for synthesis of the parametric transfer
function models.
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The workflow used in the identification experiment is illustrated in Figure 5 with the
individual steps explained in the following sections.

Figure 5. Individual steps of data-driven identification algorithm.

2.4.1. Optimal Excitation Signal Generation

Utilisation of wide-band, deterministic, and periodic excitation signals is assumed
for the identification experiments due to several advantages they inherently bring in the
process of plant model derivation:

• Simultaneous excitation over the frequency band of interest resulting in shorter exper-
iment duration;

• Improved signal-to-noise ratios compared to stochastic random noise excitations;
• Periodic nature allowing to measure multiple realisations of the executed motion

trajectory to mitigate noise and transient leakage effects
• Possibility of optimisation of testing signal power spectrum, e.g., to minimise the

resulting crest factor, shaping the energy fed to the feedback loop under closed-loop
experimental conditions.

A multi-sine signal comprising the number of base harmonic functions with different
frequency, amplitude, and phase delay is considered in the form of

r(t) =
N

∑
k=1

Ak cos(2πk f0t + ϕk). (20)

The amplitudes Ak and spectrum k f0 of the excitation trajectory can be optimised based on
the requirements of the execution time of the experiment, required frequency resolution of
the non-parametric model and assumed control bandwidth.

2.4.2. Non-Paramateric FRF Model Computation

The input and output data are measured and recorded over M multiple periods and
broken into the corresponding set of sub-records. In case the measurement occurs under
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steady-state conditions, there will be no leakage due to the transients. The sample mean
can be computed from the DFT spectra of the plant input and output signals

U(ωk) =
1
M

M

∑
l=1

U[l](ωk), Y(ωk) =
1
M

M

∑
l=1

Y[l](ωk), (21)

with the corresponding (co)variances given as

σ̂2
U(ωk) =

1
M− 1

M

∑
l=1
|U[l](ωk)−U(ωk)|2, (22)

σ̂2
Y(ωk) =

1
M− 1

M

∑
l=1
|Y[l](ωk)−Y(ωk)|2, (23)

σ̂2
YU(ωk) =

1
M− 1

M

∑
l=1

(Y[l](ωk)−Y(ωk))(U[l](ωk)−U(ωk)). (24)

The FRF estimate is acquired from the division of the averaged output and input spectra

P̂ =
Y
U

=
Y0 + NY
U0 + NU

, (25)

where Y0, U0 denote the true spectra and the corresponding disturbance NY, NU introduced
by the measurement errors. Bias and variance values of the resulting model can be obtained
from the Taylor expansion of the previous equation under some assumptions about the
input and output noise signals [2]

b = E{P̂} − P0 = −P0exp(−M
|U0|2

σ2
U

)(1− ρ
U0/σU
Y0/σY

), (26)

where ρ is the correlation between the input and output noises

ρ =
σ2

YU
σYσU

, (27)

and the variance estimate is obtained as

σ2
P̂ =

1
M
|P0|2

(
σ2

Y
|Y0|2

+
σ2

U
|U0|2

− 2Re(
σ2

YU
Y0U0

)

)
. (28)

It can be deduced that the relative bias gets reduced exponentially with the number of
averaged periods and increasing SNR of the plant input. Careful preparation of the identi-
fication experiment by designing optimized wide-band signals and repeating a sufficient
number of periods can be used to mitigate the bias effect. The same holds for the variance
of the resulting FRF estimates. The variance expression can be used for the construction of
the confidence intervals, which may serve in the subsequent phase of parametric modelling
for the derivation of the model uncertainty. This information can be used for the robust
controller design.

2.4.3. Complex Curve Fitting by Nonlinear Least Squares Optimisation

A second step of the identification follows once the FRF data have been obtained
from the previous step. The problem of approximation of the complex data by a rational
continuous- or discrete-time transfer function model

P(s, θ) =
b(s)
a(s)

=
∑nb

i=0 bisi(s)

sna + ∑na−1
i=0 aisi

, P(z, θ) =
b(z)
a(z)

=
∑nb

i=0 bizi(s)

zna + ∑na−1
i=0 aizi

, (29)
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with a vector of unknown coefficients

θ = {ai; i = 0, .., na − 1, bi; i = 0, .., nb}. (30)

can be formulated as an optimisation in the least-squares sense. The goal is to minimise
the cost function

χ2(θ) = 1
2 ∑m

i=1

[
ri(θ)

wi

]2
= 1

2 r(θ)TWr(θ), θ∗ = argmin
∀θ

{χ2(θ)}, (31)

r(θ) =
[

r1(θ) r2(θ) . . . rm(θ)
]T ; rl(θ) = |P(iωl)− P̂(iωl , θ)|, l = 1..m

The nonlinear least squares problem can be approximated by a series of simple linear
subproblems

χ2
LLS(θ) =

1
2 rLLS(θ)

TWLrLLS(θ),

rLLSl(θ) = |P(iωl)Â(iωl)− B̂(iωl , θ)|, l = 1..n f , P̂(iω) = B̂(iω)

Â(iω)
.

An iterative procedure is formed by finding a linear least-squares estimate in each step as

θ∗k+1 = argmin
∀θ

{1
2

rT
LLS(θ)WkrLLS(θ)}, (32)

with the weights Wk adjusted to the uncertainty of the individual samples of the non-
parametric model to form a maximum-likelihood estimate.

The result of this step is used as an initial guess for the subsequent nonlinear optimi-
sation. In our application, the Levenberg–Marquardt method [30] is employed to solve
the nonlinear least squares problem. Orthogonal parameterisation of the transfer function
polynomials is used to improve numerical conditioning of the problem. The reader is
referred to publication [2] for a detailed treatment of the identification topic.

2.5. Robust Control Design

There is a lack of generic theoretical methods supporting simple design of low-order
fixed-structure controllers, which are dominantly used in industrial motion control systems.
Generally accepted methods of modern control theory usually lead to high-order controllers
(the controller order is typically higher or equal to the order of the controlled plant), which
are inherently difficult to tune and implement in practice. The usual approach to the
fixed-structure controller design is to perform an order reduction either for the plant model
or for the derived high-order controller (Figure 6).

This inevitably leads to some performance loss resulting from the performed approxi-
mation. Direct methods usually rely on numerical non-convex optimisation resulting in
no guarantee of convergence and global optimality of the derived results [31]. A generic
approach to design of PID controllers, that are prevalent in industrial motion control hard-
ware, is still missing. A new design method specifically tailored to PID controllers was
developed at our workplace recently in an attempt to fill this gap between the academic
research and practice [32]. It is primarily intended for PI(D) controllers and simple fixed-
structure feedback control algorithms with two or three parameters (lead-lag compensators,
low-order static feedback etc.).
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Figure 6. Model reduction workflow allowing implementation of motion systems using industrial-
grade hardware and fixed-structure low-order control schemes.

The basic features of this approach are summarised as follows:

• Formulation of the design specifications in the frequency domain by imposing arbi-
trary closed-loop weighted sensitivity inequalities;

• Possibility of automatic calculations for the auto-tuning purposes;
• Generic method for an arbitrary LTI system described by a rational transfer function +

time delay;
• Suitable for robust controller design using structured or unstructured uncertainty

models;
• Analytical method for the computation of the admissible set of controllers, no per-

formance losses due to approximations, model reduction or non-convex numerical
optimisation.

A brief review of the main results is added in the following section for the sake of
compactness. Examples of employment of this approach in motion control system design
problems are given in references [13,33].

H-Infinity Loop-Shaping Design of a Fixed-Structure Controller

The starting point is a model of a generic controlled process P(s) without the poles on
the imaginary axis (can be relaxed by adjusting the controller derivation procedure). The
feedback compensator C(s) is considered in the standard PI controller form

C(s, k) = kp +
ki
s

, (33)

where k denotes the parameters vector [kp, ki].
An arbitrary number of design constraints can be formulated in the frequency domain

as loop-shaping inequalities in the form of

||H(s, k)||∞ < γ; H(s, k) ∆
= W(s)S∗(s), (34)

where S∗(s) denotes one of the closed-loop sensitivity functions (sensitivity,
complementary-, input-, and controller-sensitivity, respectively—see Figure 7 for the physi-
cal meaning in terms of the loop input and output signals), W(s) introduces an arbitrary
user-defined frequency-dependent scaling, and γ is a scalar design parameter.



Appl. Sci. 2021, 11, 3689 17 of 41

Figure 7. Assumed control setup: P(s): model of the controlled plant, kp, ki : parameters of the fixed-structure PI
controller, S, T, Sp, Sc: closed-loop sensitivity functions, r: setpoint reference, e: tracking error, u: manipulated variable,
y: controlled output.

The goal is to find a controller C(s, k), which, together with the given H(s), fulfils the
following three conditions

1. C(s, k) internally stabilises the closed-loop;
2. H(s, k) used in the design criterion is stable;
3. The H-infinity condition ||H(s, k)||∞ < γ holds.

This controller is called the H∞ controller. Typically, there is a whole set of the admissi-
ble controllers fulfilling the above-mentioned conditions, which can be represented directly
in the parametric plane [ki, kp] (Figure 8).

Figure 8. H∞ controller-admissible set of controller gains fulfilling the formulated loopshaping
inequality constraint in the parametric plane.
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This boundary defines a set of admissible controllers. In case the set is nonempty,
which means that there exists at least one controller of the given structure for the defined
design constraint, one particular parameter combination has to be chosen. One of the
possible choices is to select the controller with the highest integral gain, which is known to
minimise the Integral error criterion

IE =
∫ +∞

0
e(t)dt =

1
ki

. (35)

The computation of the H∞ region and its corresponding set of admissible controllers
is a nontrivial task. However, as shown in [32], an explicit solution can be derived in the
form of

ki(ω) = Fi(ω, xl , γ),

kp(ω) = Fp(ω, xl , γ, A, B, A1, B1, w, w1),

ω ∈ [0, ∞), (36)

with the arguments of parametric curves Fi, Fp defined as

A ∆
= Re(P(jω)), A1

∆
=

dA
dω

,

B ∆
= Im(P(jω)), B1

∆
=

dB
dω

, (37)

w ∆
= |W(jω)|2, w1

∆
=

dw
dω

,

and xl ; l = {1, 2, 3, 4} are the real roots of the “companion” polynomial

ax4 + bx3 + cx2 + dx + e = 0, (38)

with the real coefficients a, b, c, d, e depending explicitly on {ω, xl , γ, A, B, A1, B1, w, w1}
(see the reference [32] for the full derivation). The important result is that the computation
of the H∞ region always leads to a 4th-order polynomial regardless of the order of the
plant or the user-defined weighting functions. Therefore, analytic expression for its roots
is available from the Ferrari’s method and Cardano formulas. Their careful examination
allows a separation of the real roots which lead to the solution of the H∞ region boundary.

Multiple design constraints may be formulated in the frequency domain for several
weighted H∞ norm of various closed-loop sensitivity functions. The resulting admissible
region is then computed from the intersection of the individual regions corresponding to
each design constraint. Computer software automating the derivation of the parametric
regions has been recently developed; see [34]. A publicly available version will be released
soon.

3. Results

This section presents the results of application of the previously described methods
on the formulated benchmark problem of flexible manipulator modelling and control.
The first part deals with the development of physics-based models using analytical and
FEM approaches. These first-principle models are then validated using the experimen-
tally measured data. A loop is formed in the modelling cycle, allowing the adjustment of
geometrical and mechanical properties of the FEM model based on the experimental obser-
vations. Control-relevant parametric model is subsequently derived using the proposed
techniques of order reduction and linearisation. The mentioned control design method
is used to synthesise a robust controller that is to be used for a whole set of manipulator
configurations with variable load mass geometry. Experimental results show effectiveness
of the closed-loop control and also provide means for comparison of reduced linear and
full-scale 3D nonlinear numerical simulations.
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3.1. Analytical Model Development Using Euler–Bernoulli Beam Theory

As we outlined in the previous sections, a simple mathematical model may give some
primary useful insight into the dominant system eigenmodes. The computed dynamical
behaviour can be used in simulation prior to assembling the physical setup and can
therefore help to redesign it. Let us suppose that we have just some principal idea about
the machine construction, material, and purpose of application, and we would like to
get some initial insight into its dynamical behaviour. Considering this, we include just
the fundamental parts of the complex construction to the dynamical model descriptio. In
addition, in the mathematical model. the arm length, the payload position, or the mass
can be easily modified to visualise the impact on the dynamical behaviour of such possible
changes. The whole set of models can thus be validated and investigated thoroughly.

The Lagrange–Euler method [20] with the Euler–Bernoulli theory [21,26] can be now
employed. We shall start with the following formula

d
dt

∂L
∂q̇
− ∂L

∂q
= Tm, (39)

where in the Lagrangian L = T − V, the kinetic energy T and potential energy V are
subtracted. Tm denotes the torque vector, and q is the state co-ordinates vector. In this
modelling case study, the energies of the hub and payload are taken into account as well as
the energy of the arm that is divided into four elements. Therefore, the state co-ordinates
vector can be established as q =

[
θ q1 . . . q10

]T , where θ is the hub angle and qi
denotes for the ith element the displacement (if i is odd) and the angle (if i is even).

Specifically, the kinetic energy of the hub is considered simply as Th = 1
2 Jh θ̇2, where

Jh is the hub inertia moment. The energy of the payload (Tp) and the energies of the arm
elements (Ti, Vi) depend on the deflection function u(x, t) outlined in (2). The payload is
considered as a concentrated mass located on the last element, i.e., s = l. This leads to

Tp =
1
2

mzu̇2(l, t)|j=n+1, (40)

where mz is the mass of the payload, u̇(l, t)|j=n+1 = N(l, t)Q̇(t) = nlθ̇(t) + q̇2n+1(t).
Specifically, the payload mass is located at the last element, i.e., n = 4, and is related to the
variable q9. The energies of the arm are considered as (12) for n = 4. By summing energies
of all considered components, we obtain

T =
4

∑
i=1

Ti + Th + Tp, V =
4

∑
i=1

Vi. (41)

Thus, we can complete the Lagrange–Euler method and derive the system of the
second ordinary differential equations for the Lagrangian L = T −V, where T and V are
given as (41). This system can also be expressed as the mechanical equation

M(q)q̈ + Kq = bτ, (42)

where M(q) is the mass matrix, K is the stiffness matrix, and τ ∈ R is the input torque,
b =

[
1 0 . . . 0

]T .
These formulas are moreover restricted by the condition on the arm attachment. When

the arm is modelled with one fixed end and one free end, the variables q1, q2, q̇1, q̇2 vanish.
Hence, the adjusted state co-ordinates vector becomes

q =
[

θ q3 . . . q10
]T . (43)
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We obtain nonlinear differential equations and linearise them in the equilibrium point[
0 0 . . . 0

]T . We derive the state-space model for the state vector

z =
[

θ q3 . . . q10 θ̇ q̇3 . . . q̇10
]T ∈ R18 as

ż =

[
0 I

−M−1K 0

]
z +

[
0

M−1b

]
τ. (44)

The displacement of the payload can be expressed as

y = Lz1 + z8. (45)

This elementary stage of the modelling can be useful to obtain some basic knowledge
about the eigenmodes. From the linearised model, by substituting the parameters according
to Table 2, the plant model poles can be calculated as follows:

{0, 0,±339.07j,±1281.10j,±4174.98j,±8709.23j,±16372.05j,±26653.93j,±42495.65j,±63216.13j}.

As shown in the comparison in the following sections, the first two eigenmodes are
sufficiently comparable with the more precise models developed using FEA software.

3.2. Workflow Using Commercial FEA Software

There are many FEM software packages, including free and open source ones. Com-
mercial FEA software (OOFELIE or Abaqus, for example) typically has benefits such as
support, backwards compatibility, user-friendliness, and well-developed pre- and post-
processing interfaces. Possible drawbacks of commercial software, beside costs, are limited
output/export possibilities. Nevertheless, standard output already gives many possibilities
for use in a mechatronic design workflow. An example is given in this subsection.

3.2.1. FEM Model and Linearization

A FEM model of the mechanism shown in Figure 1 is made in Abaqus. Figure 9 shows
the model with all part names.

Figure 9. FEM model of the flexible manipulator: (left) input and output, (right) couplings, (bottom) bottom view.
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The input of this model is the motor torque and the outputs are the y-displacement at
the tip of the arm and the angle and angular velocity of the motor.

The arm, base plate, spacer, and the two disk-coupling plates are modelled as flexible
components using shell elements. The shaft and hub are also flexible, but modelled using
beam and continuum elements, respectively. All flexible parts are made of steel. A linear
elastic material model is used; initially without damping.

The mass, flywheel, and clamp are rigid and modelled with discrete rigid elements.
The rotor and stator of the motor are rigid too, but modelled with point inertias. A connector
element between stator and rotor keeps these parts aligned, and allows one to specify the
motor torque and conveniently extract relative rotation (or vice versa). The model is input
torque which is directly proportional to motor current. Besides this gain, no further motor
parameters are needed.

Bearings are also modelled using connectors. Torque is zero for these of course. The
location of the bearings can be seen in the coupling plot, Figure 9 (right). The couplings are
the red lines. From top to bottom: clamp to shaft and mass to arm; upper bearing to hub;
lower bearing to hub; disc coupling plates to shaft, to each other, and to the rotor; and last,
stator to cage. The model does not use contact interactions.

The model is clearly non-linear because of the large rotations that are possible. Lin-
earization of the model is done in the position shown in Figure 9 (left). The velocity is zero
for this model state. Therefore, the linearized model will be accurate for low rotational
velocities only.

The fifty lowest eigenfrequencies and eigenmodes are calculated in Abaqus. The first
eigenmode is the rotational rigid body mode. Mode 2 and 3 are shown in Figure 10.

Figure 10. Illustration of mode shapes for eigenmode 2 (top) and 3 (bottom).

If measuring the system is not possible, then damping can be added to the FEM model.
However, modelling damping is not trivial; see for example [35]. Therefore, a practical
shortcut is taken here. Damping was not included in the FEM model (before linearization
and reduction). Instead, modal damping was added to the reduced model. Realistic
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damping values are identified later from experimental measurements acquired from the
system.

3.2.2. Model Reduction

The fifty modes that were calculated are not all equally relevant for the input/output
relations of the system. For example, mode 2 in Figure 10 is important, and mode 3 in the
same figure is not. Mode shapes that are large at both the input(s) and the output(s) are
relevant. Therefore, one way to proceed with the model reduction is to select the most
important modes by just looking at the mode shapes. This works quite well in the SISO
case, but becomes tedious if the system has multiple inputs and/or outputs.

Automation or at least guidance of the mode selection is possible by using balanced
truncation. Balanced truncation is a model order reduction technique in itself, developed in
the field of systems and control [27]. It specifically aims to reduce the model while keeping
the accuracy of the input/output relations as high as possible. This contrasts with the
mode displacement method that is not aware of inputs and outputs.

A limitation of balanced truncation is that it can only be applied to models up to 1000
degrees of freedom (DOFs); FEM models typically have many more. To overcome this
limitation, the reduction strategy consists of two steps:

1. Initial reduction using the mode displacement method and all modes up to some
frequency that is considered to be high enough.

2. Secondary reduction by balanced truncation. This turns balanced truncation into a
mode selection method.

The balanced truncation method usually selects linear combinations of the degrees
of freedom of the model that it is applied to. Figure 11 shows an example: 11 Balanced
truncation DOFs are chosen (or actually 22 first order DOFs), resulting in 11 modes selected
from the modal displacement model.

Figure 11. Mode selection by balanced truncation. Hankel singular values (top figure) show the
expected increase in accuracy for each added DOF. The bottom plot shows the selected modes: orange
for observability and blue for controllability. (The rigid body mode was removed temporarily.)
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The resulting transfer functions of the reduced model are shown in Figure 12. The
results are accurate up to 1 kHz. Peaks above 1 kHz are neglected in the reduced model,
but this is acceptable.

Figure 12. Transfer functions of the reduced model: tip displacement/motor torque (top), motor angular velocity/motor
torque (bottom).

Figure 13 compares the reduced order model, with added modal damping, to measure-
ments. The amount of damping could be tuned further, but the current match is acceptable.
Overall, the match is quite good, except for the peak near 150 Hz. The mode shape that
corresponds to this peak suggests that shaft and/or disk coupling is too flexible in reality,
or too stiff in the model. It can be seen that the resonances around 1 kHz frequency are
not captured well by the model. Further investigation of this mismatch revealed that the
real plant exhibits additional bending modes of the manipulator base frame that was not
included in the geometry of the FEM model. However, this high-frequency dynamics lies
far beyond achievable target bandwidth and thus was decided to be left unmodelled. The
derived model achieves a very good match for frequencies up to 500 Hz, which is more
than satisfactory for the purpose of control design in our case.
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Figure 13. Reduced model with modal damping compared to measurements: tip acceleration (top)
motor velocity (bottom) for a particular value of load-mass position set to 190 mm.

Figure 14 compares both derived 1st principle models with the experimental data. It
can be seen that the analytical model based on the Euler–Bernoulli beam theory is able to
capture first-smode dynamics very well. There is a mismatch of about 25% in the location
of the second resonance frequency. The higher bending modes are not modelled well for
several reasons:

• Overly simplistic point two-mass model of the actuator and arm connection that is
a source of the oscillatory dynamics around 500 Hz;

• Neglected machine frame dynamics (as in the case of the FEM model).

The achieved result shows typical weakness of the analytical modelling approach.
Although it may work for simple mechanisms, its applicability seems limited for complex
machine geometries. Therefore, we decided to use only the reduced order model acquired
from the geometric FEM and proceeded with its validation in a closed-loop setting.



Appl. Sci. 2021, 11, 3689 25 of 41

Figure 14. Comparison of physics-based models vs. experimental measurements: amplitude fre-
quency response acquired from experimental identification (black), analytical equation-based model
(red) and FEM model (blue).

3.3. Combining First-Principle Models with Experimental Observations

The process of development of a mechatronic system usually consists of several
subsequent phases. Preliminary analysis and machine design are usually followed by
a detailed elaboration of mechanical construction, today with the aid of computer software.
Control-related questions may arise in this phase by analysing basic dynamic properties
using FEA methods. Adjustment of the design choices may be needed to deliver favourable
dynamic properties to fulfil formulated control objectives. Assembly of a prototype is
often necessary for validation of the machine design. Data acquired from experiments
with a real machine may provide invaluable information relevant both for the purpose of
control and for improvement of the fidelity of virtual models. The Digital Twin concept
extends this approach by proposing to instance the virtual model according to specific
machine samples which may differ considerably due to construction tolerances, assembly,
differences in installation site, mechanical wear, and ageing of individual components. The
virtual models can live parallel lives with their physical counterparts, being continuously
updated with available observation data and providing improved predictions of machine
performance and remaining lifetime. A fundamental question is which data may be used
for improving the fidelity of physics-based models from the perspective of control-relevant
predictions. This section provides some insights regarding this topic.

Figure 15 shows the model–measurement loop. Deviations between modelled and
measured responses could indicate that either the real system does not function as designed
or the model is not accurate enough. The first scenario may be relevant for the case of long-
term operation of a machine that starts showing signs of wear or malfunction. However,
we are now interested more in the early phases of the design cycle, which deals with
validation of geometric models using data acquired from first experiments with assembled
prototypes. Both the model and the actual system can be improved by completing this loop
a few times. How we used this loop for stiffness, damping, and machine geometry in our
flexible manipulator benchmark problem is discussed below.
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Figure 15. The model–measurement loop formed to iteratively improve both model fidelity and
machine design by comparing first principle models and experimental observations.

3.4. Geometry and Stiffness

In one of the first comparisons of the FEM model with experimental data, we detected
a resonance frequency mismatch. Several peaks in the response were shifted. The respon-
sible mode shapes can be looked up in the modal FEA results. Next, a hypothesis can be
formulated for the cause of the deviation and this cause can be tested using the FE model.

In our case, we suspected the clamping of the mass to the arm of the mechanism. The
contact area that could be in contact was large and therefore not well defined. Reduction of
the contact area in the model could cause a similar shift of the eigenfrequency as observed
in the measurements. The mass of the mechanism was modified to reduce the potential
variability of the contact surface. Figure 16 shows the modification. The modification has
improved the match between model and measurements.

Figure 16. Example of physical plant geometry modification - the milled interior of the mass (one half). This milling has
reduced the contact area to two narrow strips (left and right) to reduce uncertainty of the contact surface, resulting in better
precision of higher bending modes modelling.

Still, there was some mismatch between the modelled and measured response. This
could have been caused either by the disk coupling between the motor and the shaft or
by the way we attached bearings and flywheel to the shaft. In either case, the model was
too stiff. We have reduced the mismatch by lowering the stiffness of the disk coupling,
because this was easy to do. This issue could have been investigated more accurately.
However, it turned out to be a minor issue from the control performance perspective.
Analysis of achievable closed-loop properties has shown that the first mode is a dominant
precursor of the achievable bandwidth, and careful design of robust controller may mitigate
high-frequency modelling errors far beyond the target closed-loop bandwidth.
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3.5. Damping

We chose to tune damping in the model based on the measured response. While FEA
allows different ways to specify damping, localised or material, it is difficult to specify it
accurately; see for example [35]. Damping is expected to be low, so using no damping only
results in small errors. These are important nevertheless, as we will see when the controller
is validated.

Setting the damping in the reduced order model (ROM) is very simple. Since the
ROM is based on the eigenmodes, modal damping can be set with single parameter for all
eigenmodes or, if needed, with a parameter for each mode independently.

Modal damping is similar to viscous damping, but applied to a single mode. There
is no equivalent type of damping available for transient simulation with the FE model.
Rayleigh damping is the only available kind of global damping for transient simulations
in Abaqus. This means that the damping is derived from the mass matrix (alpha damp-
ing), the stiffness matrix (beta damping), or a combination. This kind of damping is
frequency-dependent, while viscous damping causes a constant damping ratio over the
entire frequency range. Consequently, we need to be careful with damping when the
controller is applied to the full model for validation. Adjustment of the damping based
on the experimental data allowed us to achieve the model responses previously shown in
Figure 13, further improving the intermediate results achieved by stiffness and geometry
corrections demonstrated in Figure 17. The resulting model was used in the subsequent
step of controller synthesis.

Figure 17. Example of FEM model geometry/stiffness modification: adjustment of the flexible shaft structure and stiffness
allowed to improve model fidelity, left plot-amplitude FRF comparison prior to modifications (top) and after the proposed
adjustments (bottom).

3.6. Load-Mass Parametric Uncertainty Modelling

Many mechatronic systems are employed in uncertain operating conditions affecting
their overall dynamic response. A typical example is variable machine geometry within
admissible work space or changes in the mass, inertia or position of the attached load.
A fundamental issue from the control perspective is then the proper development of robust
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feedback loops capable of preserving certain closed-loop performance under all assumed
plant variations.

A parameter variation scenario was formulated in order to evaluate the extrapolation
capability of the developed full-scale geometric FEM model and test the proposed robust
control method. The position of the attached mass was chosen as a variable parameter,
which can reach any value in the interval between 180 mm and 200 mm, simulating
either a change in the attached load, multiple existing variants derived from one machine
design, or a second degree of freedom of the flexible arm manipulator; see Figure 18. This
uncertainty affects the location of the oscillatory modes, mainly in the low-frequency range
corresponding to arm bending modes, as shown in Figure 19. It is worth mentioning that
an accurate physics-based model is needed for delivering this kind of extrapolation due to
parameter variations. To acquire the same result from the experiments with a real plant,
a wholse set of prototypes or lengthy experiments with variable machine configuration
would be required. This may be relatively simple for our model benchmark scenario
but may turn out to be infeasible in other practical applications. The role of high-fidelity
full-scale nonlinear model is crucial in this case.

Figure 18. Assumed parametric uncertainty: variable-load mass position emulating varying machine dynamics due to
production and assembly tolerances, design variations, or second degree of freedom motions.
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Figure 19. Assumed parametric-uncertainty: variable load mass position and its effect on the first two resonance modes
location, showing the FRFs for motor and load side dynamics; the higher modes above 250 Hz frequencies correspond to
actuator and manipulator base dynamics and remain unaffected.

3.7. Model-Based Robust Feedback Control Design

A robust controller needs to be derived for the whole set of admissible plant models
formed in the variable mass position scenario. For this sake, the H∞ method outlined
in the previous sections was used. A method of gridding was applied to compute five
representative linearised and reduced-order control-relevant models, with the load-mass
position being sampled at points

l = {180, 185, 190, 195, 200}mm, Pk(s) =
ωm(s)
Tm(s)

= P(s)|l=lk ; k = 1..5, (46)

with the five transfer functions describing the dynamics between the torque applied by the
actuator Tm and angular velocity observed at the actuator side ωm. Linear models of order
25 were obtained containing 11 dominant flexible modes, one rigid mode of the system, and
second-order actuator dynamics appended at the plant input due to the internal current
control loop.
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A standard fixed-structure PI controller (33), which is implemented in most of indus-
trial servo-amplifiers, was assumed to close the velocity control loop. Only the first flexible
mode of the system can be stabilised actively due to the low order of the compensator. The
reader is referred to our previous work with a more thorough discussion of achievable
performance in flexible motion systems equipped with PID controllers [14,36]. There-
fore, the controller is complemented by a notch-filter and low-pass filter to improve its
high-frequency roll-off to improve achievable closed-loop bandwidth and avoid unwanted
destabilisation due to higher bending modes, resulting in controller transfer function in the
form of

C(s) =
Tm(s)
eω(s)

=

(
kp +

ki
s

)(
s2 + 2ξωn + ω2

n
s2 + 2ωn + ω2

n

) ω2
f

s2 +
√

2ω f s + ω2
f

, (47)

where Tm denotes the torque demand and eω is the velocity tracking error. The notch filter
was tuned for the resonance frequency of wn = 2640 rad/s corresponding to actuator-arm
bending mode to avoid its excitation. The bandwidth of the 2nd order Butterworth low-pass
filter was set to w f = 4750 rad/s to cover the rest of the high-frequency flexible dynamics.

The design problem for the derivation of the PI gains in the controller (47) is formulated
as a loop-shaping inequality

MS = ||Sk||∞ = sup
∀ω

|Sk(jω)| < 1.4 ∀k = 1..5; Sk(s) =
1

1 + C(s)Pk(s)
, (48)

with Sk denoting the closed-loop sensitivity function obtained from the fixed-structure
controller (47) and all the plant models in (46).

The design requirement (48) enforces a specified closed-loop stability margin sm,
because the MS value is indirectly proportional to a closest distance at which the open-loop
Nyquist plot approaches the critical point [−1, j0] in the complex plane

1
MS

= sm = in f
∀ω

|1− L(jω)|, L(jω) = C(jω)P(jω), (49)

thus directly affecting the amount of uncertainty the loop can handle before getting unstable
in the closed-loop setting. This is a special case of the generic requirement (34) that can be
handled with the aforementioned H∞ regions method. The set of admissible controllers is
computed and visualised in the parametric kp − ki plane in Figure 20 using the software
tool from [34].
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Figure 20. Computed H∞ regions corresponding to the specified maximum sensitivity and assumed plant models; the
intersection of regions defines the admissible set of controllers.

Different regions are computed for each member of the plant models set defined
by (46). The intersection of all the regions defines the admissible set of controllers fulfilling
the design requirement (48) for all the plant models simultaneously. An infinite number of
controllers exist, and one particular combination of parameters has to be chosen for practical
implementation. One possible choice is the point with the highest achievable integral
gain (the red point designated in Figure 20), which is known to minimise the integral
error criterion evaluating the evolution of tracking error under step input disturbance
excitation; see Equation (35). This leads to the PI gain values of kp = 74.9, ki = 188.2 .
Alternatively, any other suitable criterion could be chosen, leading to possible other points
in the admissible set.

The fulfilment of the design objectives (48) can easily be checked by evaluating the
closed-loop sensitivity function |S(jω)| for the model set in (46). As shown in Figure 21, the
maximum sensitivity requirement is fulfilled, delivering a robust controller for the assumed
parametric variations. The second peak around 3000 rad/s signals potential closed-loop
issues with high-frequency dynamics coming from the actuator and base support bending
modes limiting the achievable bandwidth. It should be noted at this point that optimisation
and fine-tuning of closed-loop performance for our particular benchmark system was not
our primary goal. Our intention was merely to demonstrate the overall workflow and use
the resulting controller for the evaluation of closed-loop performance predictions acquired
from the derived models.



Appl. Sci. 2021, 11, 3689 32 of 41

Figure 21. Validation of the design requirements: plots of open-loop Nyquist Lk(jω) (left) and closed-loop Bode for
sensitivity function Sk(jω) (right) under assumed plant variations.

Analysis of the results showing the open-loop plant responses in Figure 19, parametric
regions in Figure 20, and achieved closed-loop sensitivities from Figure 21 reveals that the
highest load-mass distance of l = 200 mm is the most detrimental case for the range of
applicable controller gains and at the same time achievable closed-loop performance. This
is due to the fact that longer mass radius shifts the first resonance modes towards lower
frequencies, which comes with more significant phase-delay introduced in the open-loop
dynamics. It turns out for our particular parametric variation scenario that the optimal
controller valid for the highest mass distance automatically fulfils the design requirements
for the shorter strokes. This demonstrates that the derivation of the H∞ sets of admissible
controllers can provide very useful insight into closed-loop behaviour and achievable
performance. Figure 22 evaluates achieved closed-loop performance in terms of reference-
following and disturbance-rejection experiment. It can be seen that the derived robust
controller is able to achieve consistent performance under assumed parametric variations.
Flexible modes of the arm are well-damped in both experiments. The input disturbance
test reveals initial oscillations that are due to the flexible motor-arm coupling. This mode
cannot be attenuated actively by the feedback compensator because of the notch-filter
tuned for the respective resonance frequency. However, this is not a major limitation since
load side disturbances are usually expected in practical motion systems. The reason for
using input disturbance test was due to simple injection of additive torque by the actuator
leading to repeatable experiments. Another motivation was the possibility of excitation of
high-frequency dynamics, which is beneficial for evaluation of derived models’ fidelity.
This topic is studied in the next section.
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Figure 22. Closed-loop performance achieved with the derived robust controller (47) and the set of five plant models
obtained for varying load position (46): reference command following (left) and input disturbance rejection (right).

3.8. Experimental Closed-Loop Validation

The last step of the control design process was the validation of the derived compen-
sator. The linear closed-loop simulation using linearised ROM was compared with the
result of full-scale nonlinear FEM simulation and experiment with the physical setup.

As introduced in Section 2.3, one of the benefits of having an accurate FEM model is
that it can be used to check the controller (step 3). The controller was designed on a simpli-
fied model in which several phenomena were neglected—centrifugal force, for example.

The designed controller can be included in the FEM software to check if it still functions
as intended. In Abaqus, this has been done by implementing the discrete time version
of the controller in an Abaqus user subroutine (UAMP). The transient dynamic model is
solved using fixed time stepping at the controller sampling rate. This will take a while for
large models, but in this case it is manageable. For larger models, if necessary, the efficiency
can be increased by using intermediate-fidelity models with substructures, for example.

The first test of the controller was unsuccessful. The controller became unstable. The
reason is that a small amount of damping is needed for a stable closed loop system. The full
model did not yet include any damping, and the numerical damping of the time integration
was too small, with the small time steps that are used. Adding damping solved these issues.
There is no direct equivalent in transient simulations of viscous model damping (which
was used to make the reduced model match the measurements). A solution is to apply
beta material damping (stiffness proportional) and match the damping ratio of the viscous
modal damping at the unstable frequency observed in the simulation without damping
(171 Hz). This solution is not ideal, because higher frequencies will be damped more and
lower frequencies less. Nevertheless, the damping at the problematic frequency is accurate,
and this matters most. This approach worked well for our purposes. As discussed in
Section 2.3, more accurate modelling of damping is possible but not simple.
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Figure 23. Validation of closed-loop performance: comparison of real experimental data of the plant with reduced-order
linear simulation and full-scale nonlinear FEM transient simulation. Left: whole step setpoint reference change response,
right: detail of the initial transient.

Figure 23 shows a comparison of linear and nonlinear numerical simulations with
actual experiment with the real motion stage for a particular case of load mass position of
l = 200 mm that was identified as a worst case for achievable performance in the controller
design phase. There is a very good match between the actual and predicted closed-
loop behaviour, both for the linear and nonlinear simulation. The detail of the initial
part of the transient on the right plot reveals a better fidelity of the nonlinear model.
The linear model response shows an initial peaking phenomenon during the first ten
milliseconds which is actually not observed in real plant data. The corresponding frequency
of approximately 155 Hz indicates its relevance with the second bending mode of the
flexible arm. The discrepancy in the observed behaviour might be caused by nonlinear
effects not captured in the linear model or slight mismatch in the damping of the eigenmode
in the linear model. Furthermore, further evolution of the initial oscillations during the first
seventy milliseconds are captured better by the nonlinear simulation. On the other hand,
the computational complexity aspect for both models should also be considered. While
the linear simulation takes few seconds to numerically integrate the associated ordinary
differential equations, the nonlinear simulation requires several hours and specialised
numerical solvers. The overall shape of the response shows that both reduced and full-
scale nonlinear models provide very good predictions of closed-loop performance. Very
similar results were obtained for other mass positions and for varying amplitude of the
step reference change. They are not presented here for the sake of brevity.

Additionally, a disturbance rejection case was modelled using a similar simulation
setup in Abaqus and compared with the linear simulation and experimental data. Step
torque was injected using the actuator by adding it to the controller output to excite the
system and evaluate its disturbance rejection capability. The results are shown in Figure 24.
The overall shape of the response reveals well-behaved closed-loop performance. The
feedback loop is capable of attenuating all the unwanted flexible arm vibrations and settle
the whole system. There are some transient oscillations during the initial phase as shown
in the right detailed plot of Figure 24. This part is mainly affected by the high-frequency
bending modes of the motor-arm coupling and base plate dynamics. The comparison of
linear and nonlinear simulation confirms the previous results obtained from the reference-
following test. The nonlinear simulation captures the high-frequency dynamics more
closely at the cost of much higher computational demands. From the control perspective,
the reduced-order linearised model is still capable providing high-fidelity predictions of
both open- and closed-loop plant responses.
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Figure 24. Validation of closed-loop performance: comparison of real plant experimental data with reduced order linear
simulation and full-scale nonlinear FEM transient simulation. Left: whole step input disturbance rejection, right: detail of
the initial transient.

Figure 25 shows a comparison of linear and nonlinear simulation in terms of pre-
diction error between the modelled closed-loop response and experimental results. In
both cases, the full-scale FEM transient modelling provided more accurate predictions.
Table 3 quantifies average and worst-case values of the prediction error in terms of the
root-mean-square and peak-to-peak indices

erms =

√√√√ N

∑
k=1

e2(k)/N, epk−pk = max(e(k))
∀k

−min(e(k))
∀k

. (50)
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Figure 25. Comparison of reduced order linear simulation with full scale FEM model transient simulations: evolution of
prediction error in the reference-following (left) and disturbance-rejection (right) experiments.

The difference is more pronounced in the disturbance rejection test because of more
significant excitation of high-frequency dynamics of the machine frame and actuator-arm
coupling. We conclude that from the control-relevance perspective, the reduced-order
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linear model also proved to be very capable for both numerical simulations and robust
controller design. The nonlinear dynamic effects would be pronounced more for higher
rotational velocities and driving torque amplitudes. Nevertheless, the difference is minor
for the assumed operational regimes of the physical plant due to practical actuator and
construction constraints.

Table 3. Comparison of average and worst-case prediction error of linear and nonlinear model in the
closed-loop reference-following and disturbance rejection experiments

Reference Following Disturbance Rejection

erms epk−pk erms epk−pk

Linear ROM 0.0455 0.405 5.82 40
Full scale nonlinear FEM 0.0449 0.279 3.05 31.7

In order to obtain the results for Figures 24 and 25, we needed to redistribute the
stiffness between the disk coupling and the shaft. Otherwise, the disk coupling would
buckle. The linear model in these figures has not been updated, but a linearised version of
the updated full model would be very similar. The buckling problem was not present at the
excitation levels for Figure 23. If the full model should be able to predict a loss of linearity,
then the disk-coupling part of the model needs further validation. However, this was not
necessary for our purposes of control-relevant modelling. These issues show that the full
model does not need to be perfect in order to be valuable. Incremental model updates can
be made when the situation demands them.

3.9. Additional Validation: Extended Range of Solicitations for Disturbance Rejection Test

Further experiments with numerical simulations were made to reveal potential limits
of validity of the linear reduced order model. In parallel to the full NL 3D model that
was performed in Abaqus, some full NL 3D mechatronic simulations were also performed
using OOFELIE::Multiphysics. The model was slightly simplified to reduce computational
complexity, but the model stays close to the one that was prepared in Abaqus. For example,
the model in OOFELIE::Multiphysics introduces the following simplifications:

• The spacer and the base plate were considered as clamped.
• The Cardan joint was simplified. Each of the two Cardan discs was replaced by a hinge

with an internal rotation spring. The stiffness of this spring was updated to achieve
the right eigenfrequencies of interest. The final value used in the simulations is 2340
N.m/rad.

These simplifications can be done because they do not affect the global behaviour of
the system. For the simulations, OOFELIE permits performing a monolithic resolution
of the flexible mechanism with the associated controller. The controller is defined as an
equivalent continuous one, and we can then choose a time step larger than the sampling
rate of the original discrete controller. This last fact can save time during the numerical
solution. The beta damping factor (stiffness proportionality factor) for the rotation springs
at the level of the Cardan joint was set to 28× 10−6 for the simulation.
The disturbance rejection test was performed for the following levels of disturbance:

• Case 1: 70% of maximum actuator torque (reference case from the previous section);
• Case 2: 7% of maximum actuator torque;
• Case 3: 700% of maximum actuator torque (unreachable experimentally).

Figure 26 shows the rotational velocities for the three cases of disturbance amplitudes.
Some scaling factors for Cases 2 and 3 are applied in order to permit the comparison of
solutions for the different disturbance levels:

• Case 2 was scaled by a factor 10 for comparison with reference case (case 1);
• Case 3 was scaled by a factor 1/10 for comparison with reference case (case 1).
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Figure 26. Comparison of disturbance rejection test results for various amplitudes of external excitation, done by OOFE-
LIE::Multiphysics.

For the left plot, it is observed that the solutions are very close to the results acquired
from the full NL Abaqus model and the linear reduced order model. The general shape
is the same for all three disturbance levels. On the right plot, at the beginning of the
simulation, the curves for 70% and 7% disturbances fit perfectly. This means that we can
consider the model as linear almost up to 70% disturbance. For the 700% disturbance, we
can observe some significant differences with the reference case. This is related to the fact
that the vibration of the rotating flexible blade cannot be considered as linear anymore in
a local rotating frame.

On Figure 27, the real computed large deflection of the flexible blade is shown at
simulation time t = 1 ms for 700% disturbance case. It is clear that this kind of large
displacement and rotation in a local frame attached to the flexible arm can only be accurately
taken into account using a full 3D non-linear model of the complete mechatronic system.

All these results permit us to validate that the use of linear ROM for the controller de-
sign was sufficient for the current application considering a reasonable level of solicitations.
Note that the 700% disturbance cannot be reached because we already approached practical
physical limits of the motion setup for 70% disturbance. If we consider a more flexible
device in the future, this conclusion could be different, and we could have an interest to
keep the whole NL behaviour in a monolithic simulation.

Finally, note that OOFELIE::Multiphysics is also able to build linear super elements
using the Craig–Bampton reduction technique. These super elements can then be used in
OOFELIE mechatronic simulations in order to accelerate the computation procedure. In
the case of the simple flexible manipulator, we can imagine building a super element of the
flexible blade (including the mass) and integrate it into a OOFELIE mechatronic simulation
(including the other components of the system). This will reduce the resolution time with
very good accuracy because we could consider that the flexible blade is not submitted to
NL vibrations in a local rotating frame (the co-rotational frame of the linear super element).
Then, we can expect that the model with linear super element of the flexible blade (including
the mass) will generate accurate results up to almost 70% disturbance levels.
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Figure 27. NL deflection of the blade for 700% of maximum actuator torque disturbance level.

4. Discussion and Concluding Remarks

Modelling and control of flexible mechatronic systems is a nontrivial task that is
difficult to automate, even with the aid of all the available computer software tools. Deep
insight and understanding of the problem is still fundamental for all the phases of machine
design. We tried to gather best practices currently available in the fields of analytical
modelling, finite element analysis, system identification, and robust control and applied
them to our benchmark problem.

Our observations can be boiled into a few concluding remarks:

• Even simple systems such as our flexible manipulator benchmark exhibit complex
dynamic behaviour when mechanical compliance comes into play and the resonance
frequencies of the bending modes overlap with target closed-loop bandwidth. Care
must be taken in all the steps of design, modelling, identification, and control.

• Analytical modelling methods can provide valuable insight to general properties of
flexible systems. However, explosion of complexity in the case of nontrivial geometric
and material properties may be the main limitation for their practical utilisation.

• Finite element analysis proved to be an invaluable modelling tool capable of deliv-
ering high-fidelity models based on the machine geometry. Still, there are remaining
open issues when using FEM models for a control design purpose. The linearisation
and reduction steps that are necessary to produce useful control-relevant models
require careful choices in terms of balancing the fidelity and complexity of the out-
comes. Dynamic transient simulations with full-scale nonlinear FEM models require
an excessive amount of computations. The user then has to weigh potential benefits in
comparison with simple linear simulations. Intermediate simplified nonlinear models
may be needed to deliver expected results in reasonable time. Our benchmark prob-
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lem has shown that even well-developed linear reduced-order models can provide
high-fidelity predictions of both open- and closed-loop machine behaviour.

• It was demonstrated that the use of the full 3D nonlinear simulation was not
mandatory for the current application, and the ROM proved to be sufficient for
the purpose of control design and closed-loop performance predictions. Considering
the applicable level of solicitations, the flexible arm of the manipulator is not sub-
mitted to significant NL vibrations. Nevertheless, this conclusion will not be valid
for different operating conditions far from the assumed point of linearisation and for
other mechatronic systems with very low stiffness.

• System identification methods offer powerful algorithms capable of extracting in-
formation from experimental data. Especially in the linear domain, many highly
capable and practice-proven methods are readily available. Experimental obser-
vations can support both the modelling and control design phases of the machine
development cycle. Machine geometry, stiffness, and damping can be tuned in the ana-
lytical or FEM models based on the experiments to improve their predictive capability,
as shown in our use case. On the other hand, models from data can be often directly
used for the purpose of control design. The two realms of first-principle modelling
and data-driven identification can be connected to benefit from both prior information
and experimental observations. This approach is expected to be accented more in
a near future with the arrival of the Digital Twin concepts requiring the models to
be continuously updated with experimental data and live parallel lives with their
physical counterparts.

• The FEA is very useful for extrapolating its predictions in case of machine design
changes. The expected dynamic behaviour can be estimated without the necessity of
construction and assembly of numerous prototypes to gather experimental data. This
was demonstrated on our variable load-mass position scenario. The FEM model was
highly capable of predicting both open- and closed-loop behaviour of our machine.

• Robust design of fixed-structure controllers is still an open topic for research. We
have demonstrated a successful utilisation of recent H∞ loopshaping method that is a
very promising approach in this direction. Unlike many methods of modern control
theory, it can directly provide parameters of simple controllers directly applicable in
industrial-grade hardware. Moreover, it offers a topological perspective on the control
design problem, offering deeper insight into achievable closed-loop performance, as
demonstrated in our variable load scenario.

5. Future Research

Future research will be directed towards the open issues mentioned in the Conclusions
section.

In the modelling domain, nonlinear order-reduction techniques may be explored
further as well as the ways of incorporating the experiments to fine-tune geometric and
material properties of the developed models. The difficulty with non-linear models is that
superposition does not work anymore. Therefore, nonlinear model reduction is still an
active field of research. A sub-structuring approach that isolates the non-linear effects and
keeps the rest of the model linear seems to be a viable approach to be pursued further.

The system identification field offers new perspectives in control-relevant modelling,
predictive maintenance and Digital Twinning. We plan to investigate possible ways of
merging real-time plant observations with existing models derived in the initial modelling
and commissioning phases. This will allow iteratively updating the models aiming to
keep their fidelity under changing conditions during the whole lifetime of the machine.
This may be a crucial step for development of performance assesment methods capable of
recognizing gradual performance degradation of motion systems due to mechanical wear
of the equipment.

As for the low-order fixed-structure controllers, development of assisting software
tools to aid with the complex calculations may be a promising direction, together with
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development of methodology of their employment in specific mechatronic applications.
This is a necessary step to fill the gap between the theoretical research at the academic level
dealing with complex model-based design methods and applications-driven employment
of control systems performed by practising engineers demanding simple and reliable tools
deployable to existing hardware. Promising new results were achieved in this field recently
and will be published soon in a separate study.
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