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1. Introduction

In 1976, two papers [10] by Fučík and [5] by Dancer were published concerning the 
solvability of the following Dirichlet problem

{
v′′(x) + g(v(x)) = f(x), x ∈ (0, 1),

v(0) = v(1) = 0,
(1)

where g is a jumping nonlinearity, i.e., lim
s→−∞

g(s)
s =: a �= b := lim

s→+∞
g(s)
s . Both authors 

independently recognized that the solvability of the problem (1) depends strongly on the 
fact if there exists a non-trivial solution v of the following problem

{
v′′(x) + av+(x) − bv−(x) = 0, x ∈ (0, 1),

v(0) = v(1) = 0,
(2)

where v+ and v− are the positive and negative parts of v, respectively, i.e. v±(x) :=
max{±v(x), 0}. The following set

Σc :=
{
(a, b) ∈ R2 : the problem (2) has a non-trivial solution v

}
is usually called as the Fučík spectrum for (2) and can be expressed analytically in the 
following way (see [10,11]). The Fučík spectrum Σc consists of two lines C±

0 :
(
a− π2) ·(

b− π2) = 0 and countably many curves C±
l (see Fig. 1, left) given by (j ∈ N)

C±
2j−1 : jπ√

a
+ jπ√

b
= 1, C+

2j : (j+1)π√
a

+ jπ√
b

= 1, C-
2j : jπ√

a
+ (j+1)π√

b
= 1. (3)

Let us note that for a pair (a, b) ∈ C±
l , the corresponding non-trivial solution v of (2)

has exactly l zeros in (0, 1) and consists of positive and negative semi-waves of lengths 
π√
a

and π√
b
, respectively (see Fig. 1, right).

In 1987, Lazer and McKenna introduced a new nonlinear model of a suspension bridge 
using the asymmetric nonlinearity g(v) = kv+ to describe supporting cable stays as one-
sided springs which do not exert restoring force if they are compressed. They studied 
periodic solutions of such asymmetric systems and showed in [17] that a sufficiently large 
asymmetry in the system leads to large oscillations which cannot be predicted by the 
linear theory. In [8], authors consider the following normalized symmetric model of the 
vertical motion of a suspension bridge

⎧⎪⎪⎨⎪⎪⎩
vtt(x, t) + vxxxx(x, t) + kv+(x, t) = f(x, t) in

(
−π

2 ,
π
2
)
×R,

v
(
±π

2 , t
)

= vxx
(
±π

2 , t
)

= 0, t ∈ R,

v(x, t) = v(−x, t) = v(x,−t) = v(x, t + T ),

(4)
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Fig. 1. The Fučík spectrum Σc (left) for the continuous problem (2) given by countable many Fučík curves 
C±

l , l ∈ N ∪ {0}, and corresponding non-trivial solutions v (right) for three different pairs (a, b) as points 
A1 ∈ C+

1, A2 ∈ C+
2 and A3 ∈ C+

3, where A1 =
(
9π2, 9

4π
2), A2 =

(
16π2, 4π2) and A3 =

(
36π2, 9π2).

and investigate its set of solutions v that are T -periodic in the second variable. For special 
right hand sides f and T > π, they show that it has very rich set of non-stationary 
solutions with blow up points in the sense that for bounded values of the parameter k
there are non-stationary solutions of (4) with the amplitude approaching infinity. Let 
us point out that the blow up points are determined by the Fučík spectrum of the 
beam operator v �→ −(vtt + vxxxx) with the boundary conditions given in (4). However, 
the knowledge of the Fučík spectrum of this operator seems to be a hard problem. 
For other one dimensional models of suspension bridges, we recommend the reader the 
book [12] by Gazzola with a focus on Subchapter 2.8 concerning models with asymmetric 
nonlinearities. Finally, let us note that asymmetric nonlinearities also surprisingly appear 
in the study of competing systems of species with large interactions in biology (see 
[4,6,22]) and the Fučík spectrum of the Dirichlet Laplacian (the Laplace operator u �→
−Δu with zero Dirichlet boundary conditions) is needed (see [6] for details).

Nowadays, there are a number of papers in which authors study the structure of the 
Fučík spectrum for particular linear differential operators, let us mention here only some 
of them: [1,2,7,9,14,23,24] for the Dirichlet Laplacian on bounded domains, [3,13,15,16,
26,27] for the ordinary differential operators with various boundary conditions (Dirichlet, 
Neumann, Robin, Navier, periodic, multipoint, integral type).

In [22] and [25], authors consider a finite dimensional nonlinear matrix-vector equation

Au = g(u), (5)
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where A is an n ×n matrix and g : Rn → Rn is mildly nonlinear, i.e. g(u) = au+−bu−+
h(u), where h : Rn → Rn is such that lim

‖u‖→+∞
h(u)
‖u‖ = 0. Equations of this type (5) can 

represent numerical approximations of continuous boundary value problems describing 
nonlinear oscillations in asymmetric systems such as suspension bridges (see [25] and 
[18]). The Fučík spectrum of the matrix A is defined as the set of all pairs (a, b) ∈ R2

such that the problem Au = au+ − bu− has a non-trivial solution u and plays an 
important role in questions of the solvability of the discrete equation (5). More precisely, 
in [22], the solvability of (5) is provided in the so-called nonresonance case when the point 
(a, b) is not in the Fučík spectrum of A and can be connected by a continuous curve 
to a point (λ, λ) on the diagonal a = b such that this curve belongs to the complement 
of the Fučík spectrum. In [25], authors investigate the Fučík spectrum of the following 
tridiagonal persymmetric matrix (δ ≥ 0)

Aδ :=

⎡⎢⎢⎢⎢⎢⎢⎣
2 + δ −(1 + δ)
−1 2 + δ −(1 + δ)

. . . . . . . . .
−1 2 + δ −(1 + δ)

−1 2 + δ

⎤⎥⎥⎥⎥⎥⎥⎦ (6)

which represents a discrete approximation of the differential operator u �→ −(u′′ + δu′)
with zero Dirichlet boundary conditions. Moreover, the solvability of (5) is investigated 
in both the resonance and nonresonance case, i.e. when the point (a, b) is, or is not in 
the Fučík spectrum of Aδ. Finally, at the end of the paper [25], authors leave the reader 
with two interesting problems and one of them is to determine a complete description of 
the Fučík spectrum of the n × n matrix Aδ for n ≥ 3. In the special case of δ = 0, the 
Fučík spectrum of A0 has been also studied in [20–22,28] and let us note that its known 
description for n ≥ 3 is rather more complicated in comparison to the simple description 
of Fučík curves C±

l given in (3) for the continuous problem (2).
In this paper, we continue in studying the Fučík spectrum of the matrix A0 given 

in (6) for δ = 0 and thus, we deal with the following discrete Dirichlet problem

{
Δ2u(k − 1) + αu+(k) − βu−(k) = 0, k ∈ T ,

u(0) = u(n + 1) = 0,
(7)

where T := {1, . . . , n}, n ∈ N, and u : T̂ → R, T̂ := T ∪ {0, n + 1}. Moreover, α, β ∈ R, 
Δ2 denotes the second order forward difference operator, i.e.

Δ2u(k − 1) := u(k − 1) − 2u(k) + u(k + 1),

u± : T̂ → R are positive and negative parts of u, i.e. u±(k) := max{±u(k), 0}. The aim 
of this paper is to investigate the Fučík spectrum for the problem (7) as the set
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Fig. 2. The Fučík spectrum Σ (left) for the discrete problem (7) given by twelve Fučík curves C±
0, C±

1, C±
2, 

C±
3, C±

4, C±
5 in the case of n = 6 (note that C+

1 = C-
1, C+

3 = C-
3 and C+

5 = C-
5) and corresponding non-

trivial solutions u (right) for three different pairs (α, β) as points B1 ∈ C+
1, B2 ∈ C+

2 and B3 ∈ C+
3, where 

B1
.= (3.342, 0.309), B2

.= (3.421, 0.538) and B3
.= (3.732, 1.657).

Σ :=
{
(α, β) ∈ R2 : the problem (7) has a non-trivial solution u

}
.

Let us note that the set Σ is exactly the Fučík spectrum of the matrix A0.
Let us briefly recall some known results concerning the set Σ (for a more detailed 

overview see the first section in [20]). The Fučík spectrum consists of a finite number of 
algebraic curves (see Fig. 2)

Σ =
n−1⋃
l=0

(C+l ∪ C-l ) ,

where

C±l :=
{
(α, β) ∈ R2 : the problem (7) has a non-trivial solution u

with exactly l generalized zeros on T and u(1) ≷ 0} .

Let us note that j ∈ T is a generalized zero of the solution u of (7) if u(j) = 0 or 
u(j)u(j − 1) < 0. Fučík curves C±0 are trivial ones (lines α = λ0 and β = λ0, where 
λ0 := 4 sin2 π

2(n+1) ), each non-trivial Fučík curve C±l , l ∈ {1, . . . , n − 1} is located in the 
domain D := ((0, 4) × (0, +∞)) ∪ ((0, +∞) × (0, 4)). For α = β = λ, the problem (7)
is a linear one and thus, it is straightforward to verify that it has a non-trivial solution 
u if and only if λ = λj := 4 sin2 (j+1)π , j = 0, . . . , n − 1. Moreover, the corresponding 
2(n+1)
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Fig. 3. The geometry of the discrete solution u of (7) for (α, β) = B1 ∈ C±
1, where B1

.= (3.342, 0.309). 
The solution u has one generalized zero at j = 2 and two continuous extensions uc

0,1 and uc
2,7.

non-trivial solution is uj(k) = sin(ωλj
k)/ sinωλj

, where ωλj
:= arccos 2−λj

2 , and thus, 
the point (λj , λj) on the diagonal α = β belongs to both Fučík curves C+j and C-j .

The qualitative properties of the first non-trivial Fučík curve C±1 were studied in [20,28]. 
In [28], a conjecture is stated that C±1 has no elementary parametrization and possible 
ways to prove it are also discussed. On the other hand, in [20], it is shown that the 
first non-trivial Fučík curve C±1 has an elementary parametrization for n ≤ 7. The reason 
is that it is possible to provide the implicit description of C±1 in terms of Chebyshev 
polynomials of the second kind. More precisely, due to Corollary 30 in [20], the first 
non-trivial Fučík curve C±1 consists of the following (n − 1) algebraic curves in prescribed 
rectangles

V α
n−1 · (2 − β) − V α

n−2 = 0 for (α, β) ∈ (ξn, ξn−1) × (ξ2,+∞) ,

V α
n−i · V β

i − V α
n−i−1 · V β

i−1 = 0 for (α, β) ∈ (ξn−i+1, ξn−i) × (ξi+1, ξi) ,

i = 2, . . . , n− 2,

(2 − α) · V β
n−1 − V β

n−2 = 0 for (α, β) ∈ (ξ2,+∞) × (ξn, ξn−1) ,

where V α
k and V β

k are defined by the Chebyshev polynomial Uk = Uk(x) of the second 
kind of degree k

V λ
k := Uk

( 2−λ
2
)
, k ∈ Z, λ ∈ R, (8)

and the values ξk for k = 2, . . . , n are given by the formula

ξk := 4 sin2 π

2k , k ∈ N. (9)

Moreover, the first non-trivial Fučík curve C±1 contains also (n − 2) points (ξn−i, ξi+1), 
i = 1, . . . , n − 2 (see Fig. 2 for the Fučík curve C±1 in the case of n = 6, which consists of 
four points and five algebraic curves).
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Fig. 4. The geometry of the discrete solution u of (7) for (α, β) = B2 ∈ C+
2, where B2

.= (3.421, 0.538). 
The solution u has two generalized zeros (2 and 6) and three continuous extensions uc

0,1, uc
2,5 and uc

6,7.

Now, let us recall the discrete anchoring procedure introduced in [28] which is also 
called the matching-extension method in [21] and can be used to obtain an implicit 
description of all Fučík curves C±l . This technique consists of successive anchoring positive 
and negative continuous semi-waves which are defined as continuous extensions of the 
discrete solution u of (7) on intervals determined by generalized zeros of u. See Figs. 2 and 
3 for a non-trivial discrete solution u of (7) for (α, β) = B1 ∈ C+1. This discrete solution 
u has one generalized zero on T at j = 2 and thus, we have one positive continuous 
semi-wave uc0,1 on the interval [0, 2] and one negative continuous semi-wave uc2,7 on the 
interval [1, 7]. These two continuous semi-waves are anchored on the interval [1, 2] such 
that uc0,1(1) = uc2,7(1) and uc0,1(2) = uc2,7(2). Now, for simplicity, let us consider that 
0 < α, β < 4. By Theorem 26 in [20], the problem (7) has a non-trivial solution u with 
u(1) > 0 and exactly one generalized zero on T if and only if

p1(α) + p1(β) + τα,α + τα,β = n + 1, (10)

where we have denoted

p1(α) :=
⌊

π
ωα

⌋
, p1(β) =

⌊
π
ωβ

⌋
, τα,β := Tα

(
V β
p1(β)

V β
p1(β)−1

)
, τα,α = Tα

(
V α
p1(α)

V α
p1(α)−1

)
,

(11)

and 
·� is the floor function, ωα := arccos 2−α
2 and the function Tα : R∗ → R with the 

domain R∗ := R ∪ {∞} (the one-point compactification of R) is defined as

Tα(∞) := 0, Tα(q) := 1
ωα

arccot cosωα − q

sinωα
for q ∈ R. (12)

Let us point out that the function arccotangent in (12) is strictly decreasing on R with 
the range (0, π). Thus, a pair (α, β) belongs to C+1 if and only if (10) holds. Moreover, 
the equation (10) can be equivalently replaced by
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Fig. 5. The geometry of the discrete solution u of (7) for (α, β) = B3 ∈ C±
3, where B3

.= (3.732, 1.657). 
The solution has three generalized zeros (2, 4 and 5) and four continuous extensions uc

0,1, uc
2,3, uc

4,4 and 
uc

5,7.

p1(α) + p1(β) + τβ,β + τβ,α = n + 1. (13)

Let us point out that if (α, β) ∈ C+1 such that α �= β and β �= ξk for all k ∈ {2, . . . , n − 1}
then zeros of the positive and the negative continuous semi-waves do not coincide (see 
Fig. 3). Indeed, (p1(α) + τα,α) and (p1(α) + τβ,α) are zeros of the positive and the 
negative semi-waves, respectively, and we have that τα,α = τβ,α if and only if α = β or 
β ∈ {ξ2, . . . , ξn−1}.

Now, using Theorem 26 in [20], the second non-trivial Fučík curve C+2 can be implicitly 
described as (see Figs. 2 and 4)

2p1(α) + p2(α, β) + τα,α + τ2,+
α,β = n + 1, (14)

where we have denoted

p2(α, β) :=
⌊
τβ,α + π

ωβ

⌋
,

τ2,+
α,β := Tα

(
V α
p1(α)V

β
p2(α,β) − V α

p1(α)−1V
β
p2(α,β)−1

V α
p1(α)V

β
p2(α,β)−1 − V α

p1(α)−1V
β
p2(α,β)−2

)
. (15)

As in the previous case, the equation (14) can be equivalently replaced by

2p1(α) + p2(α, β) + τ2,-
α,β + τβ,α = n + 1, (16)

where we have denoted

τ2,-
α,β := Tα

(
V β
p1(β)V

α
p2(β,α) − V β

p1(β)−1V
α
p2(β,α)−1

V β
p1(β)V

α
p2(β,α)−1 − V β

p1(β)−1V
α
p2(β,α)−2

)
.

Finally, the third non-trivial Fučík curve C+3 can be implicitly described as (see Figs. 2
and 5)
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p1(α) + p1(β) + p2(α, β) + p2(β, α) + τ2,+
α,β + τ2,-

α,β = n + 1, (17)

or as

p1(α) + p1(β) + p2(α, β) + p2(β, α) + τ2,-
β,α + τ2,+

β,α = n + 1. (18)

Now, if we would like to describe higher Fučík curves then we have to use functions 
with higher level of nesting depth and also a higher number of different Chebyshev 
polynomials. Let us only note that to obtain an implicit description of the Fučík curve 
C+l for l ≥ 4, we need to use nested functions p3(α, β) :=

⌊
τ2,+
α,β + π

ωα

⌋
and

τ3,+
α,β := Tα

(
V α
p1
V β
p2
V α
p3

− V α
p1−1V

β
p2−1V

α
p3

− V α
p1
V β
p2−1V

α
p3−1 + V α

p1−1V
β
p2−2V

α
p3−1

V α
p1
V β
p2V

α
p3−1 − V α

p1−1V
β
p2−1V

α
p3−1 − V α

p1
V β
p2−1V

α
p3−2 + V α

p1−1V
β
p2−2V

α
p3−2

)
,

(19)

where p1 = p1(α), p2 = p2(α, β) and p3 = p3(α, β). If we compare the definitions of 
τα,β , τ2,+

α,β and τ3,+
α,β in (11), (15) and (19), respectively, we have to conclude that the 

complexity of the known implicit description of Fučík curves C±l substantially increases 
with increasing numbers of generalized zeros l of the solution u. As far as we know, it 
is not possible to lower the level of used nested functions. Thus, in this paper, for each 
non-trivial Fučík curve C±l , we provide new bounds with the same description complexity 
as the implicit description (10) for the first non-trivial Fučík curve C±1. In the following 
section, we introduce these new bounds and present the main results of this paper.

2. Main results

In this section, we introduce two main results of this paper concerning the discrete 
problem (7), namely Theorems 3 and 5. Proofs of both these theorems are provided in 
the following sections.

One of the main goals of this paper is to provide new suitable bounds for each 
non-trivial Fučík curve C±l such that all these bounds will have the same simplicity 
of description as used in (10) for the first non-trivial Fučík curve C±1. Let us recall that 
the Fučík spectrum Σ is symmetric to the diagonal α = β and each of its non-trivial 
Fučík curve C±l is in the domain D = ((0, 4) × (0, +∞)) ∪ ((0, +∞) × (0, 4)) (see Fig. 6). 
Thus, it is enough to construct bounds for Fučík curves only in the following half-strip

D := (0, 4) × (0,+∞).

Now, let us define the basic map κβ : (0, +∞) → N0, where N0 := N ∪ {0}, as

κβ :=

⎧⎨⎩
⌊

π
ωβ

⌋
− 1 for 0 < β < 4,

0 for β ≥ 4,
(20)
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Fig. 6. All non-trivial Fučík curves C±
l (black curves) for l = 1, . . . , n − 1 are contained in the domain 

D = ((0, 4) × (0, +∞)) ∪ ((0, +∞) × (0, 4)) (grey region). Let us note that for n = 11, we have C+
l = C-

l for 
l = 1, 3, 5, 7, 8, 9, 10.

where ωβ := arccos 2−β
2 for 0 < β < 4. Using κβ, we decompose the half-strip D into 

rectangles by κβ = k, k ∈ N0, i.e. we have (see Fig. 8)

D =
(
(0, 4) × (ξ2,+∞]

)
∪
(
(0, 4) × (ξ3, ξ2]

)
∪ · · · ∪

(
(0, 4) × (ξk+2, ξk+1]

)
∪ . . . ,

where ξk is defined in (9). On each rectangle given by κβ = k, we use Chebyshev 
polynomials of two degrees V β

κβ
and V β

κβ+1 to introduce three basic elements ηα,β, τα,β
and μα,β in the following definition. Let us note that for fixed β ∈ (0, 4), the value π

ωβ
used 

in (20) represents the distance between zeros of the continuous extension of a negative 
semi-wave (see Figs. 4 and 5 for continuous extensions uc2,5 and uc2,3, respectively).

Definition 1. For 0 < α < 4 and β > 0, let us define

ηα,β := Tα

(
V β
κβ+1 − 1
V β
κβ

)
, τα,β := Tα

(
V β
κβ+1

V β
κβ

)
, μα,β := Tα

(
V β
κβ+1

V β
κβ + 1

)
,

where the function Tα is given by (12) and V β
k is given in (8) by Chebyshev polynomials 

of the second type of degree k.
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Fig. 7. Graphs of functions β 
→ ρmin
α,β and β 
→ ρmax

α,β for fixed α = 3.9 and the graph of the function β 
→ π
ωβ

.

Let us recall that using τα,β , we can formulate an implicit description of the first 
non-trivial Fučík curve C±1 as in (10) or (13). Now, using ηα,β and μα,β in the following 
definition, let us introduce ρminα,β and ρmaxα,β that are given on the half-strip D. See also 
Fig. 7 and note that ρminα,β ≤ π

ωβ
≤ ρmaxα,β for 0 < β < 4.

Definition 2. For 0 < α < 4 and β > 0, let us define

ρminα,β :=
{

2μα,β + κβ for α ≤ β,

2ηα,β + κβ + 1 for α > β,

ρmaxα,β :=
{

2ηα,β + κβ + 1 for α ≤ β,

2μα,β + κβ for α > β.

In the following theorem, we use ρminα,β and ρmaxα,β to construct sets Υ±
l as bounds for 

Fučík curves C±l such that (see Figs. 9 and 8)

(C±l ∩ D) ⊂ Υ±
l .

Theorem 3. In the domain D = (0, 4)× (0, +∞), we have the following bounds for Fučík 
curves C±l , l = 1, . . . , n − 1, (

C±2j−1 ∩ D
)
⊂ Υj,j =: Υ±

2j−1,(
C+2j ∩ D

)
⊂ Υj+1,j =: Υ+

2j ,(
C-2j ∩ D

)
⊂ Υj,j+1 =: Υ-

2j ,

j ∈ N, where for k, s ∈ N, sets Υk,s are given by
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Fig. 8. The decomposition of the half-strip D into rectangles by κβ = k, k ∈ N0, and the set Υ±
3 ⊂ D as 

a bound for the third non-trivial Fučík curve C±
3 for n = 8 (left) and the set Υ±

41 ⊂ D as a bound for the 
forty-first non-trivial Fučík curve C±

41 for n = 131 (right).

Υk,s :=
{

(α, β) ∈ D : ρminα,β ≤ 1
s

(
n + 1 − k π

ωα

)
≤ ρmaxα,β

}
.

Remark 4. Due to Theorem 3, the part of the Fučík curve C±2j−1 that belongs to the 
half-strip D is in the set Υ±

2j−1 with the boundary determined by two curves

s (κβ + 2μα,β) + k π
ωα

= n + 1, s (κβ + 2ηα,β + 1) + k π
ωα

= n + 1, (21)

where k = s = j. And similarly, parts of Fučík curves C+2j ∩D and C-2j ∩D are in sets Υ+
2j

and Υ-
2j with boundaries given by curves in (21) for k = j+1, s = j and k = j, s = j+1, 

respectively.
For 0 < α, β < 4, the equation (10), which describes the first non-trivial Fučík 

curve C±1, can be written in the following form

κβ + τα,β + 1 + π
ωα

= n + 1, (22)

since 
⌊

π
ωβ

⌋
= κβ+1 and 

⌊
π
ωα

⌋
+τα,α = π

ωα
(see Lemma 16). Let us note that the equation 

(22) has the same structure as equations in (21) which describe the boundary of the set 
Υ±

l containing the particular Fučík curve C±l (τα,β is used in (22) instead of μα,β or ηα,β
in (21)). On the other hand, the structure of equations in (21) is much simpler than the 
known precise description of higher non-trivial Fučík curves C±l for l ≥ 2. For example, 
compare (21) for k = 3 and s = 2 to the description of the fourth non-trivial Fučík curve 
C+4 which has the following form

2
⌊

π
⌋

+ 2
⌊
τβ,α + π

⌋
+
⌊
τ2,+
α,β + π

⌋
+ τ2,+

α,β + τ3,+
α,β = n + 1, (23)
ωα ωβ ωα
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Fig. 9. Sets Υ±
l in D (grey regions) as bounds for Fučík curves C±

l (black curves, right) for n = 5.

Fig. 10. A non-trivial solution of the problem (7) with 7 generalized zeros on T for (α, β) ∈ C+
7 (n = 48, 

α .= 0.205, β .= 0.332).

where τ2,+
α,β and τ3,+

α,β are defined in (15) and (19), respectively.

The implicit description of all non-trivial Fučík curves C±l is provided in the next The-
orem 5. Let us note that t+j and t-j determine zeros of positive semi-waves (as continuous 
extensions) and ρα,β (introduced in Definition 19 in Section 5) measures the distance 
between every two consecutive zeros of two different positive semi-waves. See Fig. 10 and 
observe that t+1 = π

ωα
and (�·� denotes the ceil function)

t+2 = t+1 + ρα,β (�t+1� − t+1) , t+3 = t+2 + π
ωα

, t+4 = t+3 + ρα,β (�t+3� − t+3) .

See also Figs. 29, 30 and 31 at the end of Section 5 for other examples of non-trivial 
solutions of the problem (7).
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Theorem 5. In the domain D = (0, 4) × (0, +∞), we have the following description of 
Fučík curves C±l , l = 1, . . . , n − 1,

C±2j−1 ∩ D =
{
(α, β) ∈ D : t+j(α, β) + t-j(α, β) = n + 1

}
,

C+2j ∩ D =
{
(α, β) ∈ D : t+j+1(α, β) + t+j(α, β) = n + 1

}
,

C-2j ∩ D =
{
(α, β) ∈ D : t-j+1(α, β) + t-j(α, β) = n + 1

}
,

where

t+1 := π

ωα
, t+j :=

{
t+j−1 + ρα,β

(
�t+j−1� − t+j−1

)
for j even,

t+j−1 + π
ωα

for j odd,
(24)

t-1 := ρα,β(0), t-j :=
{

t-j−1 + π
ωα

for j even,

t-j−1 + ρα,β
(
�t-j−1� − t-j−1

)
for j odd.

(25)

Finally, let us point out that the value ρα,β(s) of the distance function ρα,β is bounded 
by ρminα,β and ρmaxα,β used in Theorem 3 to construct sets Υ±

l as bounds for Fučík curves C±l .

3. Connections between the Fučík spectra for discrete and continuous problems

In this section, we show some consequences of obtained results in Theorems 3 and 5 in 
order to reveal the link between the Fučík spectrum Σ for the discrete problem (7) and 
the Fučík spectrum Σc for the continuous problem (2). For this purpose, let us consider 
the following discrete Dirichlet problem

{
Δ2

hv(k − h) + av+(k) − bv−(k) = 0, k ∈ Th,

u(0) = u(1) = 0,
(26)

where a, b ∈ R, h := 1
n+1 , n ∈ N, Th := {ih : i = 1, . . . , n} and

Δ2
hv(k − h) = v(k + h) − 2v(k) + v(k − h)

h2 .

Thus, the problem (26) is the rescaled version of the original problem (7) and it can 
be also viewed as the result of a discretization of the continuous Dirichlet problem (2). 
The Fučík spectrum for the rescaled discrete problem (26) consists of finite number of 
Fučík curves C±h,l, l = 0, . . . , n − 1, such that

C±h,l =
{
(a, b) ∈ R2 :

(
ah2, bh2) ∈ C±l

}
,



Fig. 11. Non-trivial Fučík curves C±
l (grey dashed curves) for the continuous problem (2) and non-trivial 

Fučík curves C±
h,l (black curves) for the rescaled discrete problem (26): five curves C±

h,1, C+
h,2, C-

h,2, C±
h,3 and 

C±
h,4 for n = 5 in the domain Dh = ((0, 144) × (0, +∞)) ∪ ((0, +∞) × (0, 144)) (grey region, left) and eleven 

curves C±
h,1, C+

h,2, C-
h,2, . . . , C±

h,8 for n = 9 in the domain Dh = ((0, 400) × (0, +∞)) ∪ ((0, +∞) × (0, 400))
(grey region, right).

where non-trivial Fučík curves C±l are described implicitly in Theorem 5. Since each non-
trivial Fučík curve C±l is located in the domain D = ((0, 4) ×(0, +∞)) ∪((0, +∞) ×(0, 4))
then each non-trivial Fučík curve C±h,l is contained in the domain

Dh :=
((

0, 4h−2)× (0,+∞)
)
∪
(
(0,+∞) ×

(
0, 4h−2)) .

See Fig. 11 for the domain Dh containing all non-trivial Fučík curves C±h,l for the rescaled 
problem (26) and notice their correspondence to Fučík curves C±

l for the continuous 
problem (2). Moreover, according to Theorem 3, we have for l = 1, . . . , n − 1 that

(
C±h,l ∩ Dh

)
⊂ Υ±

h,l :=
{
(a, b) ∈ R2 :

(
ah2, bh2) ∈ Υ±

l

}
,

where Dh :=
(
0, 4h−2) × (0,+∞). See Figs. 12 and 13 for sets Υ±

h,l and check their 
correspondence to Fučík curves C±

l for the continuous problem (2).
This paper is organized in the following way. Firstly, we recall some basic facts and 

results concerning mainly the semi-linear initial value problem in Section 4. At the end of 
this section, in Theorem 13, we obtain some basic bounds for each non-trivial Fučík curve 
C±l using κβ . The next Section 5 is devoted to the investigation of the distance ρα,β of 
two consecutive zeros of two different positive semi-waves as continuous extensions. We 
explore the properties of ηα,β, τα,β , μα,β and ρα,β in detail. This careful analysis leads to 
the proof of Theorem 5, which is available at the end of this section. The next Section 6
is devoted to the construction of improved bounds Υ±

l for non-trivial Fučík curves C±l . 
In Theorem 31, we prove that ρα,β is a differentiable function which attains its global 
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Fig. 12. Sets Υ±
h,l (black regions), l = 1, . . . , 9, as bounds for Fučík curves C±

h,l for the discrete rescaled 
problem (26) (n = 18) and Fučík curves C±

l (grey dashed curves) for the continuous problem (2).

Fig. 13. Sets Υ±
h,l (black thin regions), l = 1, . . . , 8, as bounds for Fučík curves C±

h,l for the discrete rescaled 
problem (26) (n = 50) and Fučík curves C±

l (grey dashed curves) for the continuous problem (2).
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extrema at points ηα,β and μα,β. Finally, the proof of the main Theorem 3 is available 
at the end of Section 6 and let us note that it is based on both Theorems 5 and 31.

4. Preliminaries and basic bounds for Fučík curves

In the first part of this section, we recall some preliminaries used in [20], and we 
also prove some basic properties of V β

κβ
and V β

κβ+1 defined by Chebyshev polynomials 
of the second kind. Let us note that we follow the notation used in [20]. In the second 
part of this section, we deal with the sequence of functions pi introduced in [20] that 
are used to describe implicitly a non-trivial Fučík curve C±l (recall (10), (14) and (17), 
where p1 and p2 are used). Using κβ , we provide a new description of functions pi in 
Lemma 14. Moreover, due to this description, we obtain some basic bounds for each 
non-trivial Fučík curve C±l in Theorem 13.

For 0 < α < 4, the function Tα defined in (12) is strictly increasing on R (see Fig. 14), 
maps R∗ onto 

[
0, π

ωα

)
and

Tα(0) = 1, Tα(−1) = 1
2 , Tα(1) = 1

2 + π
2ωα

, Tα
( 2−α

2
)

= π
2ωα

.

Moreover, we have the following useful formula (see Lemma 3 in [20])

Tα(q) + Tα
(

1
q

)
= 1 for q ≤ 0 or q = ∞. (27)

Let us denote the inverse function of Tα by Qα :
[
0, π

ωα

)
→ R∗

Qα(0) = ∞, Qα(t) = − sin(ωα(1 − t))
sin(ωαt)

for 0 < t < π
ωα

, (28)

where ωα = arccos 2−α
2 . Let us point out that 1 < π

ωα
and that Qα is a strictly increasing 

function on 
(
0, π

ωα

)
. Moreover, using (28), we obtain that

Qα(t) = 1
Qα(1 − t) for 0 ≤ t ≤ 1. (29)

Let us consider the following semi-linear initial value problem{
Δ2u(k − 1) + αu+(k) − βu−(k) = 0, k ∈ Z,

u(0) = 0, u(1) = C1,
(30)

where C1 ∈ R, C1 �= 0 and (α, β) ∈ D := ((0, 4) × (0, +∞)) ∪ ((0, +∞) × (0, 4)). For 
0 < α = β < 4, the problem (30) is a linear one and it has a unique solution u of the 
form
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Fig. 14. The graph of the function Tα = Tα(q) for fixed α = 3.4.

u(k) = C1
sin(ωβk)
sinωβ

= C1V
β
k−1, (31)

where V β
k−1 is given in (8) by the Chebyshev polynomial of the second kind. For (α, β) ∈

D, the problem (30) has a unique solution u which consists of infinitely many positive 
and negative semi-waves (as continuous extensions). Moreover, for 0 < α < 4, β > 0
and C1 > 0, we have due to Lemma 19 and Remark 20 in [20] that all non-negative zero 
points of all positive semi-waves form a sequence (tj)+∞

j=0 such that

t0 = 0, tj =

⎧⎨⎩
∑j

i=1 pi(α, β) + Tα(ϑj(α, β)) for C1 > 0,∑j
i=1 pi(β, α) + Tα(ϑj(β, α)) for C1 < 0,

j ∈ N,

where functions pi and ϑi are given recurrently for i ∈ N in the following way (see 
Definition 17 in [20])

ϑ0(α, β) := ∞,

p2i−1(α, β) :=

⎧⎨⎩
⌊
Tα(ϑ2i−2(α, β)) + π

ωα

⌋
for α < 4,⌊

T β(ϑ2i−2(α, β)) + T β (2 − α) + 1
⌋

for α ≥ 4,
(32)

p2i(α, β) :=

⎧⎨⎩
⌊
T β(ϑ2i−1(α, β)) + π

ωβ

⌋
for β < 4,


Tα(ϑ2i−1(α, β)) + Tα (2 − β) + 1� for β ≥ 4,
(33)

ϑ2i−1(α, β) := Wα
p2i−1(α,β)(ϑ2i−2(α, β)), (34)

ϑ2i(α, β) := W β
p2i(α,β)(ϑ2i−1(α, β)). (35)

Finally, to complete the definition of ϑi in (34) and (35), let us recall the function 
Wλ

k : R∗ → R∗ for λ ∈ R and k ∈ Z as (see Definition 5 in [20])
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Fig. 15. Graphs of functions Wβ
1 = Wβ

1 (q) (left) and Wβ
2 = Wβ

2 (q) (right) for fixed β = 2.7.

Wλ
k (q) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
q · V λ

k − V λ
k−1

q · V λ
k−1 − V λ

k−2
for q ∈ R,

V λ
k

V λ
k−1

for q = ∞.

(36)

Let us note that the function Wλ
k is the restriction of a complex Möbius transformation 

on R∗ (see Fig. 15). Now, let us recall some useful properties of Wλ
k due to Lemma 9 in 

[20]

Wλ
l (Wλ

k (q)) = Wλ
k+l(q), Wλ

−k(Wλ
k (q)) = q, Wλ

−k(q) = 1
Wλ

k

(
1
q

) , (37)

where k, l ∈ Z and q ∈ R∗. Moreover, due to Remark 10 in [20], we have for λ ∈ R and 
k, l ∈ Z that

qk+l = Wλ
l (qk), qk := u(k)

u(k − 1) , (38)

where u is a non-trivial solution of the linear equation Δ2u(k − 1) + λu(k) = 0.
In (36), the coefficients V λ

k are defined in (8) using Chebyshev polynomial of the 
second kind and thus, V λ

k satisfies the three terms recurrence formula

V λ
k−1 − (2 − λ)V λ

k + V λ
k+1 = 0. (39)

Moreover, by Lemma 4 in [20], we also have(
V λ
k

)2 − V λ
k+1V

λ
k−1 = 1. (40)

Let us introduce the next identity for Chebyshev polynomials of the second kind.
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Fig. 16. The graph of the piecewise constant function β 
→ κβ .

Lemma 6. For λ ∈ R and k ∈ Z, the following equality holds(
V λ
k+1 − V λ

k

)2 = 1 − λ · V λ
k+1V

λ
k . (41)

Proof. Using (39) and (40), we obtain(
V λ
k+1 − V λ

k

)2 =
(
V λ
k+1

)2 − 2V λ
k+1V

λ
k +

(
V λ
k

)2 + λV λ
k+1V

λ
k − λV λ

k+1V
λ
k

=
(
V λ
k+1

)2 − V λ
k+1(2 − λ)V λ

k +
(
V λ
k

)2 − λV λ
k+1V

λ
k

=
(
V λ
k+1

)2 − V λ
k+1

(
V λ
k−1 + V λ

k+1
)

+ 1 + V λ
k+1V

λ
k−1 − λV λ

k+1V
λ
k

= 1 − λ · V λ
k+1V

λ
k . �

Now, let us take into account κβ defined in (20) for β > 0 (see Fig. 16). The function 
β �→ κβ is a piecewise constant and decreasing function, which has a jump discontinuity 
at ξk for k ∈ N, k ≥ 2, defined in (9). Let us note that for β = ξk, k ∈ N, k ≥ 2, we 
have ωβ = π

k , κβ = k − 1 and W β
k is the identity function on R∗ (see Lemma 11 in [20]

for λ = β and j = 1). Thus, we have

W β
κβ+1(q) = q, q ∈ R∗, for β = ξk, k ∈ N, k ≥ 2. (42)

Let us investigate some basic properties of V β
κβ

and V β
κβ+1 (see Figs. 18 and 19).

Lemma 7. For β > 0, we have 0 ≤ V β
κβ

≤ 1 and V β
κβ+1 < 0. Moreover, V β

κβ
and V β

κβ+1
have the following properties:

1. V β
κβ

= 1 if and only if β > ξ2 = 2.
2. V β

κβ
= 0 if and only if β = ξk for some k ∈ N, k ≥ 2.

3. V β
κβ+1 = −1 for β = ξk, k ∈ N, k ≥ 2.

4. If V β
κβ

+ V β
κβ+1 = −1 for 0 < β �= 4 then β = ξk for some k ∈ N, k ≥ 2.

Proof. At first, let us assume that β > ξ2 = 2. In this case, we have κβ = 0 and thus 
V β
κβ

= V β
0 ≡ 1 and V β

κβ+1 = V β
1 = 2 − β < 0.

At second, let us assume that ξk+2 < β ≤ ξk+1 ≤ ξ2 for fixed k ∈ N. Then κβ = k

and it suffices to show that (see Fig. 17)
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Fig. 17. Graphs of functions β 
→ V β
k (black curve) and β 
→ V β

k+1 (grey curve).

Fig. 18. The graph of the function β 
→ V β
κβ

.

Fig. 19. The graph of the function β 
→ V β
κβ+1.

1. V β
k = 0 and V β

k+1 = −1 for β = ξk+1,
2. 0 < V β

k < 1 and V β
k+1 < 0 for ξk+2 < β < ξk+1.

Now, we have that V β
k = 0 if and only if β = 4 sin2 mπ

2(k+1) , m ∈ {1, . . . , k}. Thus, the first 
zero of V β

k is β = ξk+1. Similarly, β = ξk+2 < ξk+1 is the first zero of V β
k+1. Moreover, 

we have that V β
k > 0 for 0 < β < ξk+1 since for β = 0, we have V β

k = k + 1 > 0. Using 
(41) for λ = β = ξk+2, we obtain

(
V β
k+1 − V β

k

)2
+ ξk+2 · V β

k+1V
β
k = 1,
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which simplifies to 
(
V β
k

)2
= 1 since V β

k+1 = 0 for β = ξk+2. Thus, we conclude that 
V β
k = 1 for β = ξk+2 < ξk+1 since V β

k is positive for 0 < β < ξk+1. The Chebyshev 
polynomial of the second kind monotonically oscillates between its extrema and the first 
extreme of β �→ V β

k does not belong to the interval (0, ξk+1). Thus, for ξk+2 < β < ξk+1, 
we have that 0 < V β

k < 1. Since Chebyshev polynomials of the second kind are orthogonal 
with weight function ω(x) =

√
1 − x2, using Corollary 3.3.3 on page 93 in [19], we have 

that two consecutive polynomials strictly interlace, i.e. between two consecutive zeros of 
V β
k+1 is exactly one zero of V β

k . Since V β
k+1 = 0 for β = ξk+2 and V β

k = 0 for β = ξk+1, 
we have that V β

k+1 < 0 for ξk+2 < β < ξk+1. Finally, using (41) for λ = β = ξk+1, we 

obtain 
(
V β
k+1

)2
= 1 and thus, we conclude that V β

k+1 = −1.
Now, it remains to justify the last statement. Thus, let us assume that V β

κβ
+V β

κβ+1 =
−1 for 0 < β �= 4. Using (41) for λ = β and k = κβ , we obtain

(
V β
κβ+1 − V β

κβ

)2
+ β · V β

κβ+1V
β
κβ

= 1,(
2V β

κβ
+ 1

)2
− β ·

(
V β
κβ

+ 1
)
V β
κβ

= 1,

4
(
V β
κβ

)2
+ 4V β

κβ
− β ·

(
V β
κβ

)2
− β · V β

κβ
= 0,

(4 − β)(V β
κβ

+ 1)V β
κβ

= 0,

(β − 4)V β
κβ+1V

β
κβ

= 0,

which implies that V β
κβ

= 0 and thus, β = ξk for some k ∈ N, k ≥ 2. �
In the second part of this section, we simplify the definition of functions pi = pi(α, β)

given by (32) and (33) within the following four lemmas. As a consequence of this sim-
plification, we also obtain the basic bounds for each non-trivial Fučík curve C±l .

Lemma 8. For 0 < β < 4, we have

π
ωβ

−
⌊

π
ωβ

⌋
= T β

(
W β

κβ+1(∞)
)
. (43)

Proof. We have that π
ωβ

−
⌊

π
ωβ

⌋
= π

ωβ
− 1 − κβ and thus, using (31), we get

Qβ
(

π
ωβ

− 1 − κβ

)
= −

sin
(
ωβ

(
1 − π

ωβ
+ 1 + κβ

))
sin
(
ωβ

(
π
ωβ

− 1 − κβ

)) = sin (ωβ(κβ + 2))
sin (ωβ(κβ + 1))

=
V β
κβ+1

V β
κβ

= W β
κβ+1(∞). �
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Fig. 20. Graphs of functions Wβ
κβ+1 = Wβ

κβ+1(q) (left) and Wβ
κβ+2 = Wβ

κβ+2(q) (right) for fixed β = 0.8 (i.e. 
κβ = 2).

Lemma 9. Let β > 0.

1. If β = ξk, k ∈ N, k ≥ 2, then W β
κβ+1(q) = ∞ if and only if q = ∞.

2. If β > 2 then W β
κβ+1(q) = ∞ if and only if q = 0.

3. If β < 2 and β �= ξk, k ∈ N, k ≥ 2, then W β
κβ+1(q) is finite for q ≤ 0 and for q = ∞.

Proof. Firstly, in the case of β = ξk, k ∈ N, k ≥ 2, we have k = κβ + 1 and W β
κβ+1 is 

the identity function (recall (42)). Secondly, for β > 2, we have κβ = 0 and W β
κβ+1(q) =

W β
1 (q) = 2 − β − 1/q (see Fig. 15). Thirdly, let us assume that β �= ξk, k ∈ N, k ≥ 2, 

and that 0 < β < 2. Then we have (see Fig. 20)

W β
κβ+1(q) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
q · V β

κβ+1 − V β
κβ

q · V β
κβ − V β

κβ−1
for q ∈ R,

V β
κβ+1

V β
κβ

for q = ∞.

(44)

Using Lemma 7, we obtain that W β
κβ+1(∞) is negative and that W β

κβ+1(q) is finite for 
q ≤ 0. Indeed, using (40) for λ = β and k = κβ , we have

q · V β
κβ

− V β
κβ−1 =

q · V β
κβ
V β
κβ+1 + 1 −

(
V β
κβ

)2
V β
κβ+1

< 0. �

The following lemma is based on Lemmas 14 and 16 in [20] and it allows us to 
determine the length of the interval [i − 1, j + 1] for a positive or negative semi-wave 
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Fig. 21. The length of the interval [i − 1, j + 1] for a negative semi-wave uc
i,j of the solution u of (30) for 

fixed (α, β) ∈ D according to the sign of Wβ
κβ+1(qi): j = i + κβ + 1 and u(j) < 0 (bottom), j = i + κβ + 1

and u(j) = 0 (middle) and j = i + κβ and u(j) < 0 (top).

of the solution u according to the ratio qi of the values u(i) and u(i − 1) (see Fig. 21). 
Let us note that conditions in (45) or (46) mean that the solution u has a positive or 
negative semi-wave on the interval [i − 1, j + 1].

Lemma 10. Let (α, β) ∈ D and u be the solution of the initial value problem (30). More-
over, let i, j ∈ Z be such that i ≤ j and

u(i− 1) < 0, u(k) ≥ 0 for k = i, . . . , j, u(j + 1) < 0, (45)

or

u(i− 1) > 0, u(k) ≤ 0 for k = i, . . . , j, u(j + 1) > 0. (46)

Then we have

j =
{

i + κλ for Wλ
κλ+1 (qi) < 0,

i + κλ + 1 for Wλ
κλ+1 (qi) ≥ 0,

(47)

where we denoted qi := u(i)
u(i−1) ≤ 0 and λ = α if (45) holds or λ = β if (46) holds. 

Moreover, we have u(k) �= 0 for k ∈ Z such that i < k < j, and u(j) = 0 if and only if 
Wλ

κλ+1 (qi) = 0.

Proof. Let us assume that conditions in (46) hold, which means that we have a negative 
semi-wave uci,j of u defined on the interval [i − 1, j + 1] (see Fig. 21). Moreover, let us 
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assume that the value W β
κβ+1 (qi) is finite and we split the proof according to the value 

of β.
At first, let us consider 0 < β < 4. Using Lemma 14 in [20], we have that

j = i +
⌊
T β(qi) + π

ωβ

⌋
− 1, (48)

where qi = u(i)
u(i−1) ≤ 0. If we denote s = 1 − T β(qi) then (48) reads

j = i +
⌊

π
ωβ

− s
⌋

(49)

and s ∈ [0, 1) since 0 < T β(qi) ≤ 1. Now, let us consider that

s > π
ωβ

−
⌊

π
ωβ

⌋
≥ 0, (50)

which implies that 
⌊

π
ωβ

⌋
−1 ≤ π

ωβ
−1 < π

ωβ
−s <

⌊
π
ωβ

⌋
and that 

⌊
π
ωβ

− s
⌋

=
⌊

π
ωβ

⌋
−1 =

κβ . Thus, we obtain using (49) that

j = i + κβ . (51)

Moreover, using (43), (27) and (37), the strict inequality in (50) reads

1 − T β(qi) > T β
(
W β

κβ+1(∞)
)
,

T β (qi) < T β
(
W β

−(κβ+1)(0)
)
,

W β
κβ+1 (qi) < 0,

which justifies (47) if we take into account (51). Now, let us consider that

0 ≤ s ≤ π
ωβ

−
⌊

π
ωβ

⌋
, (52)

which implies 
⌊

π
ωβ

⌋
≤ π

ωβ
− s ≤ π

ωβ
<
⌊

π
ωβ

⌋
+ 1 and that 

⌊
π
ωβ

− s
⌋

=
⌊

π
ωβ

⌋
= κβ + 1. 

Thus, we obtain using (49) that

j = i + κβ + 1. (53)

And similarly as in the previous case, using (43), (27) and (37), the second inequality in 
(52) reads W β

κβ+1 (qi) ≥ 0, which justifies (47) if we take into account (53).
At second, let us consider β ≥ 4. Then we have 0 < α < 4 and using Lemma 16 in 

[20], we obtain that

j = i + 
Tα(qi) + Tα(2 − β)�, (54)
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where qi = u(i)
u(i−1) ≤ 0. Since 0 < Tα(qi) ≤ 1 and 0 < Tα(2 − β) < 1

2 , we have 

0 < Tα(qi) + Tα(2 − β) < 3
2 and thus, (54) reads

j = i for Tα(qi) + Tα(2 − β) < 1, (55)

j = i + 1 for Tα(qi) + Tα(2 − β) ≥ 1. (56)

The inequality in (55) reads Tα(qi) < Tα
(

1
2−β

)
or qi < W β

−1(0), which justifies (47)
since κβ = 0 for β ≥ 4. And similarly, (56) can be identified with the second case in (47).

Finally, for β > 0 and k ∈ Z such that i < k < j, we have that u(k) < 0. In contrary, 
if we assume that u(k) = 0 for some k strictly between i and j then u(k−1)u(k+1) < 0, 
which contradicts (46). Moreover, we have u(j) = 0 if and only if W β

κβ+1 (qi) = 0. Indeed, 
using (38), we have

W β
κβ+1 (qi) = qi+κβ+1 =

⎧⎨⎩ qj+1 = u(j+1)
u(j) for W β

κβ+1 (qi) < 0,

qj = u(j)
u(j−1) for W β

κβ+1 (qi) ≥ 0.

Thus, the proof is complete in the case of a negative semi-wave such that the value 
W β

κβ+1 (qi) is finite. Now, let us clarify that the case W β
κβ+1 (qi) = ∞ cannot occur. If we 

assume that W β
κβ+1 (qi) = ∞ then we have qi+κβ+1 = ∞, u(i + κβ) = 0 and j = i + κβ . 

Taking into account that qi is finite, we obtain using Lemma 9 that qi = 0 and β > 2. 
Thus, we have that κβ = 0, i = j and that u(i − 1) > u(i) = 0 = u(j) < u(j + 1), which 
is a contradiction.

In the case of a positive semi-wave on [i − 1, j + 1], i.e. if conditions in (45) hold, we 
prove statements in an analogous way. �
Remark 11. Let u be the solution of (30) for (α, β) ∈ D such that u(i − 1) = 0 and on 
the interval [i − 2, j + 1], we have a negative semi-wave (cf. (46) in Lemma 10)

u(i− 2) > 0, u(i− 1) = 0, u(k) ≤ 0 for k = i, . . . , j, u(j + 1) > 0.

Then we have qi = u(i)
u(i−1) = ∞, j = i + κβ and W β

κβ+1(qi) is negative or infinity. 
Moreover, using Lemma 9, we conclude that W β

κβ+1(qi) = ∞ if and only if β = ξk, 
k ∈ N, k ≥ 2.

We provide a new expression for the values of pi(α, β) (defined in (32) and (33)) using 
the Heaviside unit step function H defined as

H(q) :=
{

1 for q ≥ 0,
0 for q < 0 or q = ∞.
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Lemma 12. For (α, β) ∈ D and k ∈ N, we have

p1(α, β) = κα + 1,

p2k(α, β) = κβ + 1 + H
(
W β

κβ+1 (ϑ2k−1(α, β))
)
, (57)

p2k+1(α, β) = κα + 1 + H
(
Wα

κα+1 (ϑ2k(α, β))
)
. (58)

Proof. Firstly, the statement (47) in Lemma 10 can be equivalently written in the fol-
lowing form

j = i + κλ + H
(
Wλ

κλ+1 (qi)
)
. (59)

Now, let u be the solution of the initial value problem (30) with C1 > 0. Then u has a 
positive semi-wave on the interval [−1, p1 + 1], where p1 is defined in (32) as

p1(α, β) =

⎧⎨⎩
⌊
Tα(∞) + π

ωα

⌋
for α < 4,⌊

T β(∞) + T β (2 − α) + 1
⌋

for α ≥ 4.

Since Tα(∞) = T β(∞) = 0, we have that p1(α, β) = κα + 1. Indeed, for α ≥ 4, we have 
κα = 0 and 0 < T β (2 − α) < 1

2 . Moreover, using (34), we have ϑ1(α, β) = Wα
p1(α,β)(∞)

which is exactly the value of u(p1+1)
u(p1) . The solution u has a negative semi-wave on the 

interval [p1, p1 + p2 + 1], where p2 is given by (33) in the following way

p2(α, β) =

⎧⎨⎩
⌊
T β(ϑ1(α, β)) + π

ωβ

⌋
for β < 4,


Tα(ϑ1(α, β)) + Tα (2 − β) + 1� for β ≥ 4.

Thus, using (48), (54) and (59) for λ = β, we get

p2(α, β) = j − i + 1 = κβ + H
(
W β

κβ+1 (ϑ1(α, β))
)

+ 1,

which corresponds to (57). Moreover, using (35), we have that ϑ2(α, β) =
W β

p2(α,β)(ϑ1(α, β)) which is equal to u(p1+p2+1)
u(p1+p2) . And similarly, the solution u has a 

positive semi-wave on [p1 + p2, p1 + p2 + p3 + 1], where p3 is defined in (32) as

p3(α, β) =

⎧⎨⎩
⌊
Tα(ϑ2(α, β)) + π

ωα

⌋
for α < 4,⌊

T β(ϑ2(α, β)) + T β (2 − α) + 1
⌋

for α ≥ 4.

Thus, using (59) for λ = α, we obtain

p3(α, β) = j − i + 1 = κα + H
(
Wα

κ +1 (ϑ2(α, β))
)

+ 1,

α
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Fig. 22. The set Θ+
2 (grey region) as the basic bound for the second non-trivial Fučík curve C+

2 ⊂ Θ+
2 (black 

curve) for n = 8 (left) and for n = 9 (right).

Fig. 23. The set Θ+
3 (grey region) as the basic bound for the third non-trivial Fučík curve C+

3 ⊂ Θ+
3 (black 

curve) for n = 10 (left) and for n = 11 (right).

which corresponds to (58). To conclude, we have justified (57) and (58) for k = 1 (i.e. 
for p2 and p3, respectively). In the case of k ≥ 2, the proof of (57) and (58) concerning 
p2k and p2k+1 can be done in an analogous way. �

At the end of this section, using Lemma 12, we obtain some basic bounds for each 
Fučík curve C±l ⊂ Θ±

l (see Figs. 22 and 23).

Theorem 13. In the domain D, we have the following bounds for Fučík curves C±l ⊂ Θ±
l , 

l = 1, . . . , n − 1, where

Θ±
2j−1 := {(α, β) ∈ D : 0 ≤ n + 1 − j(κα + 1) − j(κβ + 1) ≤ 2j − 1} ,

Θ+
2j := {(α, β) ∈ D : 0 ≤ n + 1 − (j + 1)(κα + 1) − j(κβ + 1) ≤ 2j} ,

Θ-
2j := {(α, β) ∈ D : 0 ≤ n + 1 − j(κα + 1) − (j + 1)(κβ + 1) ≤ 2j} .
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Proof. First of all, it is enough to focus only on Fučík curves C+l since we have

C-l = {(α, β) ∈ D : (β, α) ∈ C+l } .

By Theorem 22 in [20], we have that C+l ⊂ Ω+
l , where Ω+

l is the set of all pairs (α, β) ∈ D

such that

l+1∑
i=1

pi(α, β) = n + 1.

Thus, using Lemma 12, we obtain for l = 2j − 1 that

j(κα + 1) + j(κβ + 1) ≤ n + 1 ≤ j(κα + 1) + j(κβ + 1) + 2j − 1

and for l = 2j that

(j + 1)(κα + 1) + j(κβ + 1) ≤ n + 1 ≤ (j + 1)(κα + 1) + j(κβ + 1) + 2j. �
5. Implicit description of Fučík curves

In this section, we investigate the distance between zeros of two consecutive continuous 
positive semi-waves of the solution u of the initial value problem (30) for 0 < α < 4 and 
β > 0. Thus, let i, j ∈ Z be such that i < j and that (46) holds, i.e. i is the generalized 
zero of u and the next generalized zero of u is j or (j + 1) if u(j) = 0 or u(j) < 0, 
respectively. Moreover, we have two consecutive continuous positive semi-waves uc1 and 

Fig. 24. The graph of the function β 
→ τα,β for fixed α = 2.9.

uc2 of u with zeros t1 ∈ (i − 1, i] and t2 ∈ [j, j + 1), respectively. In the following 
Lemma 14, we show how to reconstruct the zero t2 according to values of t1, α and β. 
For this reconstruction, we use τα,β = Tα

(
V β
κβ+1/V

β
κβ

)
introduced in Definition 1 (see 

Fig. 24) to distinguish between two disjoint cases (see Fig. 25)

j = i + κβ and j = i + κβ + 1.
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Fig. 25. Two details of the solution u of the initial value problem (30) for fixed α = 0.432 and β = 0.671
(i.e. κβ = 2). On top, we have two continuous positive semi-waves uc

1 and uc
2 with zeros t1 and t2 such that 

j = i + κβ + 1. Bottom, we have two continuous positive semi-waves uc
2 and uc

3 with zeros t3 and t4 such 
that j = i + κβ .

Let us note that 0 ≤ τα,β < 1 since V β
κβ+1/V

β
κβ

is negative or equal to ∞ according to 
Lemma 7.

Lemma 14. Let u be the solution of the initial value problem (30) for 0 < α < 4 and β > 0
and let uc1 and uc2 be two consecutive continuous positive semi-waves of u. Moreover, let 
t1 be the second zero of uc1 and let t2 be the first zero of uc2. If we denote s = �t1� − t1
then we have

t2 =

⎧⎨⎩ t1 + s + κβ + Tα
(
W β

κβ+1 (Qα(1 − s))
)

for s > τα,β ,

t1 + s + κβ + 1 + Tα
(
W β

κβ+2 (Qα(1 − s))
)

for s ≤ τα,β .
(60)

Proof. We have t1 ∈ (i − 1, i] and t2 ∈ [j, j + 1), where i, j ∈ Z are such that i < j and 
that (46) holds. Moreover, we have

qi = Qα (1 − s) , qj+1 = W β
j−i+1(qi), (61)

where we denoted qk := u(k)
u(k−1) for k = i, . . . , j + 1. Now, using Lemma 10 and (47) for 

λ = β, we obtain

j =

⎧⎨⎩ i + κβ for W β
κβ+1(qi) < 0,

i + κβ + 1 for W β
κβ+1(qi) ≥ 0.

(62)

Since t2 − j = t2 − 
t2� = Tα (qj+1), we get using the second equality in (61) that 
t2 = j + Tα

(
W β

j−i+1(qi)
)
, which implies using (62) that
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t2 =

⎧⎨⎩ i + κβ + Tα
(
W β

κβ+1(qi)
)

for W β
κβ+1(qi) < 0,

i + κβ + 1 + Tα
(
W β

κβ+2(qi)
)

for W β
κβ+1(qi) ≥ 0.

(63)

Using the first equality in (61), the inequality W β
κβ+1(qi) < 0 in (63) reads Qα (1 − s) <

V β
κβ
/V β

κβ+1 which can be equivalently written as Qα(s) > V β
κβ+1/V

β
κβ

or as s > τα,β due 

to (29). Similarly, we obtain that the second inequality W β
κβ+1(qi) ≥ 0 in (63) reads 

s ≤ τα,β . To conclude, (63) can be also written in the following way

t2 =

⎧⎨⎩ i + κβ + Tα
(
W β

κβ+1(qi)
)

for s > τα,β ,

i + κβ + 1 + Tα
(
W β

κβ+2(qi)
)

for s ≤ τα,β ,

which is exactly (60) if we take into account the first equality in (61) and that i = �t1� =
t1 + s. �
Remark 15. Let us note that for s = τα,β , we have using (60) that t2 = t1 + s + κβ + 1, 
since Qα(1 − τα,β) = 1/Qα(τα,β) = V β

κβ
/V β

κβ+1 and thus

Tα
(
W β

κβ+2 (Qα(1 − τα,β))
)

= Tα (∞) = 0.

See also Fig. 20 and note that for q = V β
κβ
/V β

κβ+1, we have W β
κβ+1(q) = 0 and W β

κβ+2(q) =
W β

1

(
W β

κβ+1(q)
)

= ∞.

In the following lemma, we provide some basic properties of τα,β (see Fig. 24).

Lemma 16. For 0 < α < 4 and β > 0, we have that 0 ≤ τα,β < 1. Moreover, if we denote

ξk := 4 sin2 π

2k , ζk := 4 sin2 π

2k − 1 for k ∈ N, k ≥ 2,

then we have

1. τα,β = 0 if and only if β = ξk for some k ∈ N, k ≥ 2,
2. τα,β = 1

2 if and only if β = ζk for some k ∈ N, k ≥ 2,
3. τβ,β = π

ωβ
−
⌊

π
ωβ

⌋
for 0 < β < 4.

Proof. First of all, for 0 < α < 4 and β ≥ 4, we have that τα,β = Tα
(

V β
1

V β
0

)
= Tα (2 − β)

and thus, 0 < τα,β < 1
2 since (2 − β) < −1. For the rest of the proof, let us restrict to 

the case 0 < β < 4. We claim that

τα,β = Tα
(
Qβ

(
π −

⌊
π
⌋))

for 0 < α, β < 4. (64)
ωβ ωβ
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Indeed, using Lemma 8, we get

Qβ
(

π
ωβ

−
⌊

π
ωβ

⌋)
= W β

κβ+1(∞) =
V β
κβ+1

V β
κβ

,

which justifies (64) according to the definition of τα,β. Now, since 0 < π
ωβ

−
⌊

π
ωβ

⌋
< 1 or 

π
ωβ

−
⌊

π
ωβ

⌋
= 0, we have that

Qβ
(

π
ωβ

−
⌊

π
ωβ

⌋)
< 0 or Qβ

(
π
ωβ

−
⌊

π
ωβ

⌋)
= ∞,

respectively. Thus, using (64), we get that 0 < τα,β < 1 for 
⌊

π
ωβ

⌋
< π

ωβ
and that τα,β = 0

for 
⌊

π
ωβ

⌋
= π

ωβ
. Moreover, 

⌊
π
ωβ

⌋
= π

ωβ
if and only if π

ωβ
= k, k ∈ N, k ≥ 2 (recall that 

1 < π
ωβ

), and let us note that π
ωβ

= k reads β = 2 − 2 cos π
k or β = ξk. Finally, using 

(64), we conclude that τα,β = 1
2 can be equivalently written as Qβ

(
π
ωβ

−
⌊

π
ωβ

⌋)
= −1

or π
ωβ

=
⌊

π
ωβ

⌋
+ 1

2 or π
ωβ

= k + 1
2 , k ∈ N, k ≥ 2, and let us note that π

ωβ
= k + 1

2 reads 
β = 2 − 2 cos 2π

2k+1 or β = ζk. �
Let us introduce the function Nα,β : [0, 1 + τα,β ] → R, which we use to measure the 

distance t2−t1 between zeros t1 and t2 of two consecutive continuous positive semi-waves 
of u (see Figs. 25 and 26).

Definition 17. For 0 < α < 4 and β > 0, let us define

Dom(Nα,β) := [0, 1 + τα,β ], Nα,β(s) :=

⎧⎪⎪⎨⎪⎪⎩
¯̄Mα,β(s) + 1 for s ∈ [0, τα,β ],
M̄α,β(s) for s ∈ (τα,β , 1),
¯̄Mα,β(s− 1) for s ∈ [1, 1 + τα,β ],

where

M̄α,β(s) := Tα
(
W β

κβ+1 (Qα(1 − s))
)
, s ∈ [τα,β , 1],

¯̄Mα,β(s) := Tα
(
W β

κβ+2 (Qα(1 − s))
)
, s ∈ [0, τα,β ].

Remark 18. Let u be the solution of the initial value problem (30) for 0 < α < 4 and 
β > 0 and let t1 and t2 be two zeros of positive semi-waves of u as in Lemma 14 (see 
Fig. 25). Then we have

t2 = t1 + s + κβ + Nα,β(s), 0 ≤ s ≤ 1 + τα,β . (65)

Indeed, for 0 ≤ s < 1, we have that s = �t1� − t1 and we obtain using (60) that
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Fig. 26. The graph of the function Nα,β = Nα,β(s) for fixed α = 1.2 and β = 3.2.

t2 =

⎧⎨⎩ t1 + s + κβ + 1 + ¯̄Mα,β(s) for 0 ≤ s ≤ τα,β ,

t1 + s + κβ + M̄α,β(s) for τα,β < s < 1.

Moreover, for 1 ≤ s ≤ 1 + τα,β , we have 0 ≤ s − 1 ≤ τα,β and thus,

t2 = t1 + s− 1 + κβ + 1 + ¯̄Mα,β(s− 1) = t1 + s + κβ + Nα,β(s).

Let us introduce the function ρα,β according to (65), which measures the distance 
between zeros of two consecutive continuous positive semi-waves.

Definition 19. Let 0 < α < 4 and β > 0. Let us define

ρα,β(s) := s + κβ + Nα,β(s), 0 ≤ s ≤ 1 + τα,β .

Now, using (65), we have for zeros t1 and t2 in Lemma 14 that

t2 = t1 + ρα,β(�t1� − t1). (66)

In the following three lemmas, let us investigate some basic properties of Nα,β.
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Fig. 27. The graph of the function β 
→ μα,β for fixed α = 2.9.

Lemma 20. The function Nα,β is a continuous involution, i.e.

∀s ∈ [0, 1 + τα,β ] : Nα,β(Nα,β(s)) = s.

Moreover, we have Nα,β(0) = 1 + τα,β and Nα,β(τα,β) = 1.

Proof. At first, M̄α,β is the continuous strictly decreasing function on [τα,β, 1], which 
maps this interval onto itself. Moreover, M̄α,β is an involution. Indeed, for τα,β ≤ s ≤ 1, 
we have

M̄α,β(s) = Tα
(
W β

κβ+1 (1/Qα(s))
)

= Tα
(
1/W β

−κβ−1 (Qα(s))
)

and thus, we obtain

M̄α,β(M̄α,β(s)) = Tα
(
1/W β

−κβ−1

(
Qα

(
Tα
(
W β

κβ+1 (1/Qα(s))
))))

= s.

At second, ¯̄Mα,β is the continuous strictly decreasing function on [0, τα,β], which maps 
this interval onto itself. Moreover, ¯̄Mα,β is an involution, which can be justified similarly 
as in the case of M̄α,β .

Finally, Nα,β is the continuous strictly decreasing function on [0, 1 +τα,β], which maps 
this interval onto itself, and it is an involution. Indeed, for 0 ≤ s ≤ τα,β , we have

Nα,β(Nα,β(s)) = ¯̄Mα,β

( ¯̄Mα,β(s) + 1 − 1
)

= s,

and for 1 ≤ s ≤ 1 + τα,β , we have

Nα,β(Nα,β(s)) = ¯̄Mα,β

( ¯̄Mα,β(s− 1)
)

+ 1 = s− 1 + 1 = s. �
Now, let us focus on ηα,β and μα,β introduced in Definition 1 (see Figs. 27 and 28). 

Using Lemma 7, we get that 0 ≤ ηα,β < 1 and 0 < μα,β < 1 since (V β
κβ+1 − 1)/V β

κβ
is 

negative or equal to ∞ and V β
κ +1/(V β

κ + 1) is negative.

β β



P. Nečesal, I. Sobotková / Bull. Sci. math. 171 (2021) 103014 35
Fig. 28. The graph of the function β 
→ ηα,β for fixed α = 2.9.

Lemma 21. The points ηα,β and μα,β are fixed points of ¯̄Mα,β and M̄α,β, respectively. 
Moreover, we have

Nα,β(ηα,β) = ηα,β + 1, Nα,β(μα,β) = μα,β .

Proof. Using (29), we obtain

¯̄Mα,β(ηα,β) = Tα

(
W β

κβ+2

(
V β
κβ

V β
κβ+1 − 1

))
= Tα

(
V β
κβ+1 − 1
V β
κβ

)
= ηα,β ,

where we used (40) to simplify

W β
κβ+2

(
V β
κβ

V β
κβ+1 − 1

)
=

V β
κβ+1 −

(
V β
κβ+1V

β
κβ+1 − V β

κβ
V β
κβ+2

)
V β
κβ

=
V β
κβ+1 − 1
V β
κβ

.

In a similar way, we show that M̄α,β(μα,β) = μα,β . Finally, we have Nα,β(ηα,β) =
¯̄Mα,β(ηα,β) + 1 = ηα,β + 1 and Nα,β(μα,β) = M̄α,β(μα,β) = μα,β , which finishes the 

proof. �
Lemma 22. Let 0 < α < 4.

1. If β = ξk, k ∈ N, k ≥ 2, then Nα,β(s) = 1 − s.
2. If β = α then Nα,β(s) = 1 − s + τβ,β = 1 − s + π

ωβ
−
⌊

π
ωβ

⌋
.

Proof. At first, let us assume that β = ξk, k ∈ N, k ≥ 2. Using Lemma 16, we obtain 
that τα,β = 0 and thus, we have that Nα,β(0) = 1 and Nα,β(1) = 0. Moreover, since 
W β

κβ+1 is the identity function (recall (42)), we have for 0 < s < 1 that

Nα,β(s) = M̄α,β(s) = Tα
(
W β

κβ+1 (Qα(1 − s))
)

= 1 − s.
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At second, let us assume that 0 < β = α < 4. Then using (64), we obtain

π
ωβ

= t2 − t1 = s + κβ + Nα,β(s), 0 ≤ s ≤ 1 + τβ,β , (67)

where τβ,β = π
ωβ

−
⌊

π
ωβ

⌋
due to Lemma 16. Finally, using (67), we get

Nα,β(s) = π
ωβ

− s− κβ = π
ωβ

− s−
⌊

π
ωβ

⌋
+ 1 = 1 − s + τβ,β . �

In the following lemma, we show that values ηα,β, τα,β and μα,β are always ordered 
in one way (see Figs. 27 and 28).

Lemma 23. For 0 < α < 4 and β > 0, we have that

0 < ηα,β < τα,β < μα,β < 1 if β �= ξk, k ∈ N, k ≥ 2. (68)

Moreover, we have

1. ηα,β = 0 if and only if β = ξk for some k ∈ N, k ≥ 2,
2. μα,β = 1

2 if and only if β = ξk for some k ∈ N.

Proof. At first, for β �= ξk, k ∈ N, k ≥ 2, we have that

V β
κβ+1 − 1
V β
κβ

<
V β
κβ+1

V β
κβ

<
V β
κβ+1

V β
κβ + 1

< 0,

which implies 0 < ηα,β < τα,β < μα,β < 1. At second, for β = ξk, k ∈ N, k ≥ 2, we 
have V β

κβ
= 0, V β

κβ+1 = −1, and thus, ηα,β = τα,β = Tα(∞) = 0 and μα,β = Tα(−1) =
1
2 . At third, for β = 4, we have κβ = 0, V β

κβ
= 1, V β

κβ+1 = 2 − β = −2 and thus, 
μα,β = Tα(−1) = 1

2 . Finally, let us assume that β �= 4 and μα,β = 1
2 . This means that 

V β
κβ+1

V β
κβ

+1
= −1 and thus, we have

V β
κβ

+ V β
κβ+1 = −1.

Thus, using Lemma 7, we obtain that β = ξk for some k ∈ N, k ≥ 2. �
Let us reveal a close connection among values ηα,β, τα,β and μα,β using the function 

Gβ : R → R∗ defined in the following way

Gβ(q) := 2q − (2 − β)q2

2 for q �= ±1, Gβ(±1) := ∞.
1 − q
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Lemma 24. For 0 < α, β < 4, we have

τα,β = 1 − Tα
(
Gβ (Qα(1 − ηα,β))

)
, (69)

τα,β = Tα
(
Gβ (Qα(μα,β))

)
, (70)

Gβ(Qα(1 − ηα,β)) = 1
Gβ(Qα(μα,β)) . (71)

Proof. Firstly, let us assume that β = ξk for some k ∈ N, k ≥ 2. According to Lemmas 16
and 23, we have ηα,β = τα,β = 0 and μα,β = 1

2 . Moreover, we have

1 − Tα
(
Gβ (Qα(1 − ηα,β))

)
= 1 − Tα

(
Gβ (Qα(1))

)
= 1 − Tα

(
Gβ(0)

)
= 1 − Tα(0)

= 0 = τα,β

and

Tα
(
Gβ (Qα(μα,β))

)
= Tα

(
Gβ

(
Qα

( 1
2
)))

= Tα
(
Gβ(−1)

)
= Tα(∞) = 0 = τα,β .

Secondly, let us assume that β �= ξk, k ∈ N, k ≥ 2. We claim that ηα,β �= 1
2 . Indeed, 

if we assume that ηα,β = 1
2 then we get (V β

κβ+1 − 1)/V β
κβ

= −1 and

V β
κβ

+ V β
κβ+1 = 1,

which is a contradiction since V β
κβ

+V β
κβ+1 < 1 according to Lemma 7. Thus, 0 < ηα,β < 1, 

0 < 1 − ηα,β < 1, Qα(1 − ηα,β) < 0 and

Qα(1 − ηα,β) �= −1, Qα(ηα,β) �= −1.

Now, using (29), we have

Gβ (Qα(1 − ηα,β)) = Gβ

(
1

Qα(ηα,β)

)
= 2Qα(ηα,β) − (2 − β)

(Qα(ηα,β))2 − 1

and thus, using (39), we obtain

Gβ (Qα(1 − ηα,β)) = V β
κβ

2(V β
κβ+1 − 1) − (2 − β)V β

κβ

(V β
κβ+1 − 1)2 − (V β

κβ )2

= V β
κβ

2(V β
κβ+1 − 1) − (V β

κβ+1 + V β
κβ−1)

(V β
κβ+1 − 1)2 − (1 + V β

κβ+1V
β
κβ−1)

= V β
κβ

V β
κβ+1 − 2 − V β

κβ−1

(V β
κβ+1)2 − 2V β

κβ+1 − V β
κβ+1V

β
κβ−1

=
V β
κβ

V β
κβ+1

. (72)
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Using (27) and (72), we get

1 − Tα
(
Gβ (Qα(1 − ηα,β))

)
= Tα

(
1

Gβ (Qα(1 − ηα,β))

)
= Tα

(
V β
κβ+1

V β
κβ

)
= τα,β ,

which justifies (69). According to Lemma 23, we have that 0 < μα,β < 1 and μα,β �= 1
2 , 

which means that Qα(μα,β) < 0 and Qα(μα,β) �= −1. As in the previous case, using (39), 
we simplify Gβ (Qα(μα,β)) as V β

κβ+1/V
β
κβ

, which justifies (70). Finally, if we combine (69)
and (70) and use (27) then we obtain (71). �

Let us note that for 0 < α < 4, we have

0 < ηα,β < τα,β < μα,β < 1
2 for β > 4,

0 < ηα,β < τα,β < μα,β = 1
2 for β = 4,

0 < ηα,β < 1
2 < μα,β < 1 for 2 < β < 4, (73)

since Qα(ηα,β) = 1 − β, Qα(τα,β) = 2 − β and Qα(μα,β) = 2−β
2 for β > 2. The following 

lemma indicates that the values of ηα,β and μα,β are separated by 1
2 for 0 < α, β < 4.

Lemma 25. For 0 < α, β < 4, we have that

0 ≤ ηα,β < 1
2 ≤ μα,β < 1.

Proof. Firstly, for 2 < β < 4, we have the inequalities in (73). Secondly, for 0 < β < 2
such that β �= ξk, k ∈ N, k > 2, we have 0 < τα,β < 1, which implies Gβ(Qα(μα,β)) < 0
according to (70). Thus, we obtain that −1 < Qα(μα,β) < 0, which leads to 12 < μα,β < 1. 
Similarly, using (71), we get Gβ(Qα(1 − ηα,β)) < 0, which implies 0 < ηα,β < 1

2 . Finally, 
for β = ξk, k ∈ N, k ≥ 2, we have ηα,β = 0 and μα,β = 1

2 due to Lemma 23. �
Proof of Theorem 5. The proof is based on Theorem 26 in [20]. Let us find the descrip-
tion of the Fučík curve C+2j−1, j ∈ N, in terms of functions t+j = t+j(α, β) and t-j = t-j(α, β)
defined in (24) and (25), respectively. Using Theorem 26 in [20], we obtain that the 
Fučík curve C+2j−1 has in D the following implicit description

j∑
i=1

pi(α, β) +
j∑

i=1
pi(β, α) + Tα(ϑj(α, β)) + Tα(ϑj(β, α)) = n + 1 (74)

and moreover, the corresponding non-trivial solution u has exactly (2j − 1) generalized 
zeros on T and has exactly j positive semi-waves as continuous extensions. These positive 
continuous semi-waves have the zeros ti and t̃−i, which can be reconstructed from left 
and right endpoints of T̂ , respectively, in the following way
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Fig. 29. A non-trivial solution of the problem (7) with 7 generalized zeros on T for (α, β) ∈ C+
7 (n = 30, 

α .= 0.240, β .= 3.534).

ti =
i∑

k=1

pk(α, β) + Tα(ϑi(α, β)), t̃−i = n + 1 −
i∑

k=1

pk(β, α) − Tα(ϑi(β, α)),

for i = 1, . . . , j. The condition (74) means that tj = t̃−j . Now, according to Lemma 14, 
Remark 18 and (66), we have that

ti = t+i (α, β),

t̃−i = n + 1 − t-i (α, β), (75)

and thus, the condition (74) reads as

t+j(α, β) + t-j(α, β) = n + 1.

To justify (75), it remains to show that �α,β(0) = p1(β, α) +Tα(ϑ1(β, α)). Indeed, using 
Lemma 20, we obtain

�α,β(0) = κβ + Nα,β(0) = κβ + 1 + τα,β ,

and using Lemma 12, we get

p1(β, α) = κβ + 1,

Tα(ϑ1(β, α)) = Tα
(
W β

p1(β,α)(∞)
)

= Tα

(
V β
κβ+1

V β
κβ

)
= τα,β .

Now, the description of Fučík curves C-2j−1, C+2j and C-2j in terms of functions t+j =
t+j(α, β) and t-j = t-j(α, β) can be obtained analogously (see Figs. 30 and 31). Let us only 
mention here the implicit description of curves C±2j similar to (74)

C+2j :
j+1∑

pi(α, β) +
j∑

pi(α, β) + Tα(ϑj+1(α, β)) + Tα(ϑj(α, β)) = n + 1,

i=1 i=1
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Fig. 30. A non-trivial solution of the problem (7) with 6 generalized zeros on T for (α, β) ∈ C+
6 (n = 48, 

α .= 0.145, β .= 0.329).

Fig. 31. A non-trivial solution of the problem (7) with 6 generalized zeros on T for (α, β) ∈ C-
6 (n = 48, 

α .= 0.150, β .= 0.251).

C-2j :
j+1∑
i=1

pi(β, α) +
j∑

i=1
pi(β, α) + Tα(ϑj+1(β, α)) + Tα(ϑj(β, α)) = n + 1. �

6. Improved bounds for Fučík curves

In this last section, we focus on the function ρα,β introduced in Definition 19 which 
measures the distance between every two consecutive zeros of two different continuous 
positive semi-waves. In Theorem 31, we prove that ρα,β attains its global extrema at 
ηα,β and μα,β (see Fig. 32). Since ρα,β is defined by Nα,β, we express the first derivative 
(Nα,β)′ in Lemma 28 and then in Lemma 30, we determine where this derivative is less 
or greater than −1. Let us note that at the end of this section, the proof of the main 
Theorem 3 is available.
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Fig. 32. The graph of the function ρα,β = ρα,β(s) for fixed α = 2.6 and β = 3.8.

Let us introduce the function Sα,β
k , which we use to express the first derivative (Nα,β)′

of the function Nα,β given in Definition 17.

Definition 26. Let 0 < α < 4 and β > 0, k ∈ Z. Let us define the function Sα,β
k : R∗ → R

as

Sα,β
k (q) := V β

k ·
q2V β

k+1 − 2qV β
k + V β

k−1
q2 − (2 − α)q + 1 for q ∈ R, (76)

Sα,β
k (∞) := V β

k · V β
k+1. (77)

Let us note that the denominator q2 − (2 −α)q + 1 in (76) is always positive since its 
discriminant is α(α− 4) < 0.

Lemma 27. Let 0 < α < 4, β > 0 and k = κβ or k = κβ + 1. Then for 0 < t ≤ 1, we 
have (

Tα ◦W β
k+1 ◦Qα

)′
(t) = 1

1 − (β − α)Sα,β
k (Qα(t))

. (78)

Moreover, we have

(
Tα ◦W β

k+1 ◦Qα
)′

+
(0) = 1

1 − (β − α)Sα,β
k (∞)

. (79)

Proof. For 0 ≤ t ≤ 1, let us denote q = Qα(t). Thus, we have that q is finite and 
non-positive for 0 < t ≤ 1 and q = ∞ for t = 0.

At first, in the special case of V β
k = 0, we have that Sα,β

k (q) = 0 and W β
k+1(q) = q

and thus, we obtain

Tα
(
W β

k+1 (Qα(t))
)

= Tα (Qα(t)) = t,
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which justifies (78) and (79).
Now, for the rest of the proof, let us assume that V β

k �= 0. Using (12), we obtain

(Tα)′(q) = sinωα

ωα
· 1
q2 − (2 − α)q + 1 , (80)

(Qα)′ (t) = 1
(Tα)′ (q)

.

Moreover, we have

(
Tα
(
W β

k+1 (Qα(t))
))′

=
(Tα)′

(
W β

k+1 (q)
)

(Tα)′ (q)
·
(
W β

k+1

)′
(q) . (81)

Let us point out that W β
k+1 (q) is a finite number due to q = Qα(t) for 0 ≤ t ≤ 1 and 

k = κβ or k = κβ + 1. Now, let us expand the factor (Tα)′
(
W β

k+1 (q)
)

in (81). Thus, let 
us write the denominator in (80) for q equal to W β

k+1 (q) as

(
W β

k+1(q)
)2

− (2 − α)W β
k+1(q) + 1 = Aq2 + Bq + C(

qV β
k − V β

k−1

)2 , (82)

where the polynomial Aq2 + Bq + C has the form of

(
qV β

k+1 − V β
k

)2
− (2 − α)

(
qV β

k+1 − V β
k

)(
qV β

k − V β
k−1

)
+
(
qV β

k − V β
k−1

)2
.

Moreover, the coefficients A, B and C of this polynomial can be identified as

A = V β
k+1V

β
k+1 − (2 − α)V β

k V β
k+1 + V β

k V β
k = 1 + (2 − β)V β

k V β
k+1 − (2 − α)V β

k V β
k+1

= 1 − (β − α)V β
k V β

k+1, (83)

C = V β
k V β

k − (2 − α)V β
k V β

k−1 + V β
k−1V

β
k−1 = 1 + (2 − β)V β

k V β
k−1 − (2 − α)V β

k V β
k−1

= 1 − (β − α)V β
k V β

k−1, (84)

B = −2V β
k

(
V β
k+1 + V β

k−1

)
+ (2 − α)

(
V β
k V β

k − V β
k+1V

β
k−1

)
= −2(2 − β)V β

k V β
k + (2 − α)

(
2V β

k V β
k − 1

)
= −(2 − α) + 2(β − α)V β

k V β
k . (85)

If we combine (83), (84), (85) and (82), we obtain
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(Tα)′
(
W β

k+1(q)
)

(Tα)′(q) =

(
q2 − (2 − α)q + 1

) (
qV β

k − V β
k−1

)2

q2 − (2 − α)q + 1 − (β − α)V β
k

(
q2V β

k+1 − 2qV β
k + V β

k−1

)

=

(
qV β

k − V β
k−1

)2

1 − (β − α)Sα,β
k (q)

,

which means that (81) has the form of (78) since we have that

(
W β

k+1

)′
(q) =

V β
k+1

(
qV β

k − V β
k−1

)
−
(
qV β

k+1 − V β
k

)
V β
k(

qV β
k − V β

k−1

)2 = 1(
qV β

k − V β
k−1

)2 . �

Using the function Sα,β
k , we express the first derivative (Nα,β)′ (see Fig. 33).

Lemma 28. For 0 < α < 4 and β > 0, we have

(Nα,β)′ (s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1
1 − (β − α)Sα,β

κβ+1 (Qα(1 − s))
for s ∈ (0, τα,β ],

−1
1 − (β − α)Sα,β

κβ (Qα(1 − s))
for s ∈ (τα,β , 1),

−1
1 − (β − α)Sα,β

κβ (∞)
for s = 1,

where the functions Sα,β
κβ

and Sα,β
κβ+1 are defined in (76), (77) as Sα,β

k for k = κβ and 
k = κβ + 1, respectively.

Proof. Let us split the proof according to the value of the variable s.
At first, let us assume that 0 < s < τα,β . Then we have

Nα,β(s) = ¯̄Mα,β(s) + 1 = Tα
(
W β

κβ+2 (Qα(1 − s))
)

+ 1

and thus, the expression of the first derivative (Nα,β)′(s) follows directly from (78) for 
t = 1 − s and k = κβ + 1.

At second, let us assume that τα,β < s < 1. Then we have

Nα,β(s) = M̄α,β(s) = Tα
(
W β

κβ+1 (Qα(1 − s))
)

and thus, the expression of (Nα,β)′(s) follows from (78) for t = 1 − s and k = κβ .
At third, let us assume that s = τα,β . If we take into account that

V β
κ +2V

β
κ −

(
V β
κ +1

)2
= 1 = V β

κ +1V
β
κ −1 −

(
V β
κ

)2
β β β β β β
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then we obtain

Sα,β
κβ+1 (Qα(1 − τα,β)) = Sα,β

κβ+1

(
V β
κβ

V β
κβ+1

)

= V β
κβ+1V

β
κβ

V β
κβ+2V

β
κβ

−
(
V β
κβ+1

)2

(
V β
κβ

)2
− (2 − α)V β

κβV
β
κβ+2 +

(
V β
κβ+1

)2

= V β
κβ+1V

β
κβ

V β
κβ+1V

β
κβ−1 −

(
V β
κβ

)2

(
V β
κβ

)2
− (2 − α)V β

κβV
β
κβ+2 +

(
V β
κβ+1

)2

= Sα,β
κβ

(
V β
κβ

V β
κβ+1

)

= Sα,β
κβ

(Qα(1 − τα,β)) .

And thus, we obtain that the one-sided derivatives of Nα,β at τα,β coincide. Indeed, we 
have

(Nα,β)′− (τα,β) = −1
1 − (β − α)Sα,β

κβ+1 (Qα(1 − τα,β))
= −1

1 − (β − α)Sα,β
κβ (Qα(1 − τα,β))

= (Nα,β)′+ (τα,β). �
Remark 29. If we take into account that Sα,β

κβ
(∞) = Sα,β

κβ+1(0), we obtain using Lemma 28
that

(Nα,β)′ (1) = −1
1 − (β − α)Sα,β

κβ+1(0)
= (Nα,β)′+ (0).

Moreover, due to Lemma 20, the function Nα,β is an involution and thus, for all s ∈
(0, 1 + τα,β), we have that (Nα,β)′ (Nα,β(s)) · (Nα,β)′ (s) = 1. And thus, we have

1
(Nα,β)′ (τα,β)

= (Nα,β)′ (1) = (Nα,β)′+ (0) = 1
(Nα,β)′− (1 + τα,β)

.

Let us examine where the value of the first derivative (Nα,β)′ (s) is equal, less or 
greater than −1 (see Fig. 33).

Lemma 30. Let 0 < α < 4 and β > 0. For β = ξk, k ∈ N, k ≥ 2, we have that

(Nα,β)′ (s) = −1 for s ∈ (0, 1). (86)
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Fig. 33. The graph of the first derivative s 
→ (Nα,β)′ (s) for fixed α = 1.5 and β = 2.7.

In the case of β �= ξk for all k ∈ N, k ≥ 2, we have for α ≶ β that

(Nα,β)′ (s)

⎧⎪⎨⎪⎩
≷ −1 for s ∈ (0, ηα,β) ∪ (μα,β , 1),
= −1 for s = ηα,β and for s = μα,β ,

≶ −1 for s ∈ (ηα,β , μα,β),

and the statement (86) holds for α = β.

Proof. In the case of β = ξk, k ∈ N, k ≥ 2, we have Nα,β(s) = 1 − s according to 
Lemma 22 and thus, (86) holds. For the rest of the proof, let us assume that β �= ξk for 
all k ∈ N, k ≥ 2. According to Lemma 23, we have that 0 < ηα,β < τα,β < μα,β < 1. 
Now, let us denote q = Qα(1 − s) and split the proof according to the value of s.

At first, let us assume that τα,β < s < 1. Thus, we have q < V β
κβ
/V β

κβ+1 < 0. Using 
Lemma 28, we obtain

(Nα,β)′(s) � −1 if and only if (α− β) · Sα,β
κβ

(q) � 0. (87)

If we take into account that V β
κβ−1V

β
κβ+1 =

(
V β
κβ

)2
− 1, it is possible to write Sα,β

κβ
(q) in 

the following form

Sα,β
κβ

(q) = V β
κβ
V β
κβ+1

(
q −

V β
κβ

−1

V β
κβ+1

)(
q −

V β
κβ

+1

V β
κβ+1

)
q2 − (2 − α)q + 1 .

Thus, the sign of Sα,β
κβ

(q) is equal to the sign of the factor 
(
q − (V β

κβ
+ 1)/V β

κβ+1

)
due to

V β
κβ
V β
κβ+1 < 0, q −

V β
κβ

−1

V β
κβ+1

< 0, q2 − (2 − α)q + 1 > 0.
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Now, since q = Qα(1 − s) and (V β
κβ

+ 1)/V β
κβ+1 = 1/Qα(μα,β) = Qα(1 − μα,β), we 

conclude that

Sα,β
κβ

(q) � 0 if and only if Qα(1 − s) � Qα(1 − μα,β). (88)

If we combine (87) and (88) and take into account that Qα is a strictly increasing 
function, we obtain

(Nα,β)′(s) � −1 if and only if (α− β) · (μα,β − s) � 0. (89)

At second, let us assume that 0 < s ≤ τα,β and 0 < β < 2. Thus, we have V β
κβ
/V β

κβ+1 ≤
q < 0. Using Lemma 28, we obtain

(Nα,β)′(s) � −1 if and only if (α− β) · Sα,β
κβ+1(q) � 0. (90)

It is possible to write Sα,β
κβ+1(q) in the following form

Sα,β
κβ+1(q) = V β

κβ+1

(
qV β

κβ+2 − V β
κβ+1 + 1

)(
q −

V β
κβ

V β
κβ+1−1

)
q2 − (2 − α)q + 1 . (91)

Now, the factor 
(
qV β

κβ+2 − V β
κβ+1 + 1

)
is positive since for 0 < β < 2, we have

V β
κβ

> 0, V β
κβ+1 < 0, V β

κβ+2 = (2 − β)V β
κβ+1 − V β

κβ
< 0.

Thus, Sα,β
κβ+1(q) has the opposite sign than the factor 

(
q − V β

κβ
/(V β

κβ+1 − 1)
)
. Moreover, 

since q = Qα(1 − s) and V β
κβ
/(V β

κβ+1 − 1) = 1/Qα(ηα,β) = Qα(1 − ηα,β), we conclude 
that

Sα,β
κβ+1(q) � 0 if and only if Qα(1 − s) � Qα(1 − ηα,β). (92)

If we combine (90) and (92) and take into account that Qα is a strictly increasing 
function, we obtain

(Nα,β)′(s) � −1 if and only if (α− β) · (ηα,β − s) � 0. (93)

At third, let us assume that 0 < s ≤ τα,β and β > 2. In this case, we have κβ = 0, 
1

2−β ≤ q < 0 and (90) holds. Moreover, the factor 
(
qV β

κβ+2 − V β
κβ+1 + 1

)
in (91) reads 

as (β−1)(q(β−3) +1) and thus, it is positive due to 0 ≤ q(β−2) +1. As in the previous 
case, we obtain that (93) holds.

Finally, the statement now follows from (89) and (93). �
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The following theorem provides the values of the global extrema of the function ρα,β
as well as points where these extrema are attained: μα,β and ηα,β.

Theorem 31. Let 0 < α < 4 and β > 0. Then the function ρα,β attains its global extrema 
at ηα,β and μα,β. More precisely, we have that

min
s∈[0,1+τα,β ]

ρα,β(s) =
{

ρα,β(μα,β) = 2μα,β + κβ for α ≤ β,

ρα,β(ηα,β) = 2ηα,β + κβ + 1 for α > β,

max
s∈[0,1+τα,β ]

ρα,β(s) =
{

ρα,β(ηα,β) = 2ηα,β + κβ + 1 for α ≤ β,

ρα,β(μα,β) = 2μα,β + κβ for α > β.

Proof. Using Lemma 28 and Remark 29, we get that the function ρα,β is continuously 
differentiable on [0, 1 +τα,β]. Let us point out that ρα,β(s) = ρ(s −1) for 1 ≤ s ≤ 1 +τα,β . 
Indeed, for 1 ≤ s ≤ 1 + τα,β , we have

ρα,β(s) = s + κβ + ¯̄Mα,β(s− 1) = s− 1 + κβ + ¯̄Mα,β(s− 1) + 1

= (s− 1) + κβ + Nα,β(s− 1) = ρα,β(s− 1).

Thus, we obtain for 0 < s < 1 + τα,β that

(ρα,β)′(s) = 1 + (Nα,β)′(s).

Moreover, using Lemma 21 we have that

ρα,β(ηα,β) = ηα,β + κβ + Nα,β(ηα,β) = 2ηα,β + κβ + 1,

ρα,β(μα,β) = μα,β + κβ + Nα,β(μα,β) = 2μα,β + κβ .

For β = ξk, k ∈ N, k ≥ 2, we have that Nα,β(s) = 1 − s according to Lemma 22 and 
thus ρα,β(s) ≡ 1 + κβ , which means that ρα,β is a constant function. Let us note that in 
this case, we have ηα,β = 0 and μα,β = 1

2 due to Lemma 23.
Now, let us assume that β �= ξk for all k ∈ N, k ≥ 2. Using Lemma 30, we determine 

the monotonic intervals of ρα,β. The points μα,β and ηα,β are stationary points of ρα,β. 
Firstly, let us assume that α < β. Then ρα,β is strictly increasing on intervals (0, ηα,β), 
(μα,β , 1) and strictly decreasing on the interval (ηα,β , μα,β). Thus, ηα,β and μα,β are 
points of the global extrema of ρα,β on the interval [0, 1 + τα,β ] (the global maximum 
and the global minimum, respectively). Secondly, let us assume that α > β. In this 
case, we similarly obtain that ηα,β and μα,β are points of the global minimum and the 
global maximum, respectively. Finally, in the case of α = β, we get using Lemma 22 that 
Nα,β(s) = 1 − s + τβ,β = 1 − s + π

ωβ
−
⌊

π
ωβ

⌋
. Thus, we obtain that ρα,β is a constant 

function such that ρα,β(s) ≡ 1 +κβ+τβ,β = π
ωβ

. Let us note that τβ,β = 2ηβ,β = 2μβ,β−1
in this case. �
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Remark 32. Due to Theorem 31, we have for all (α, β) ∈ D and s ∈ [0, 1 + τα,β ] that 
ρminα,β ≤ ρα,β(s) ≤ ρmaxα,β , where ρminα,β and ρmaxα,β are given in Definition 2. Moreover, using 
Lemma 25, we get the following bounds⌊

π
ωβ

⌋
= 1 + κβ ≤ ρminα,β ≤ ρα,β(s) ≤ ρmaxα,β < 2 + κβ =

⌊
π
ωβ

⌋
+ 1

for 0 < α, β < 4.

Proof of Theorem 3. At first, let us prove that 
(
C±2j−1 ∩ D

)
⊂ Υ±

2j−1, j ∈ N, where

Υ±
2j−1 =

{
(α, β) ∈ D : ρminα,β ≤ n+1

j − π
ωα

≤ ρmaxα,β

}
.

Thus, let us assume that (α, β) ∈ C±2j−1 ∩ D. Then using Theorem 5, we get

t+j(α, β) + t-j(α, β) = n + 1, (94)

where t+j and t-j are defined in (24) and (25), respectively. The corresponding non-trivial 
solution u consists of j positive and j negative semi-waves (as continuous extensions) 
and the equation (94) reads as

j · π
ωα

+
j∑

i=1
ρα,β (�t2i−1� − t2i−1) = n + 1, (95)

where ti, i = 1, . . . , 2j − 1, are zeros of positive semi-waves

0 < t1 = t+1 < · · · < tj = t+j = n + 1 − t-j < · · · < t2j−1 = n + 1 − t-1 < n + 1.

Now, using Theorem 31, we obtain for i = 1, . . . , j that

2μα,β + κβ ≤ ρα,β (�t2i−1� − t2i−1) ≤ 2ηα,β + κβ + 1 for α ≤ β,

1 + 2ηα,β + κβ ≤ ρα,β (�t2i−1� − t2i−1) ≤ 2μα,β + κβ for α > β.

And thus, we have

j · ρminα,β ≤
j∑

i=1
ρα,β (�t2i−1� − t2i−1) ≤ j · ρmaxα,β , (96)

where ρminα,β and ρmaxα,β are given in Definition 2. Finally, if we combine (95) and (96), we 
obtain ρminα,β ≤ n+1

j − π
ωα

≤ ρmaxα,β .
At second, let us show that 

(
C+2j ∩ D

)
⊂ Υ+

2j , j ∈ N, where

Υ+
2j =

{
(α, β) ∈ D : ρminα,β ≤ n+1 − j+1 · π ≤ ρmaxα,β

}
.
j j ωα
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Using Theorem 5, we obtain for (α, β) ∈ C+2j ∩ D that

t+j+1(α, β) + t+j(α, β) = n + 1, (97)

and the corresponding non-trivial solution u consists of (j + 1) positive and j negative 
semi-waves. The equation (97) can be also written as

(j + 1) · π
ωα

+
j∑

i=1
ρα,β (�t2i−1� − t2i−1) = n + 1, (98)

where ti, i = 1, . . . , 2j − 1, are zeros of positive semi-waves. Using Theorem 31, we 
obtain the same inequalities as in (96). Now, if we combine (96) and (98), we get ρminα,β ≤
n+1
j − j+1

j · π
ωα

≤ ρmaxα,β .
At third, the last type of the inclusion 

(
C-2j ∩ D

)
⊂ Υ-

2j , j ∈ N, can be proved similarly 
as in the previous two cases. Let us only note that for (α, β) ∈ C-2j∩D, we obtain (t0 = 0)

j · π
ωα

+
j∑

i=0
ρα,β (�t2i� − t2i) = n + 1,

which leads to ρminα,β ≤ n+1
j+1 − j

j+1 · π
ωα

≤ ρmaxα,β . �
7. Conclusion

In the paper, we improve and extend known results for the Fučík spectrum of the 
discrete Dirichlet operator. In Theorem 5, we present a new simple implicit description 
of all non-trivial Fučík curves C±l . Moreover, for each non-trivial Fučík curve C±l , we 
provide the suitable bound Υ±

l by two simple curves in Theorem 3. These results are 
based on Lemma 10 concerning the detailed analysis of nodal properties of the solution 
u of the discrete initial value problem (30). Generalized zeros of the solution u can be 
described by the sequence of functions pi which are given recurrently and were introduced 
in [20]. In Lemma 12, we provide a new simpler expression of these functions pi, which 
can be used to obtain the basic bound Θ±

l for each non-trivial Fučík curve C±l ⊂ Θ±
l (see 

Theorem 13).
In this paper, we mainly focus on positive semi-waves of u as continuous extensions 

and investigate the distribution of zeros of these extensions with respect to the integer 
lattice. More precisely, if t1 and t2 are two consecutive zeros of two different positive 
semi-waves (as continuous extensions) then we have

t2 = t1 + ρα,β(�t1� − t1),

where the function ρα,β is given explicitly in Definition 19 using Chebyshev polynomials 
of the second kind. We use this function ρα,β in Theorem 5 to describe implicitly all 
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non-trivial Fučík curves C±l . Let us emphasize that this new description using ρα,β does 
not require complicated construction of sequences of functions pi and ϑi as it was done 
in [20].

Let us note that in the case of α = β, the discrete initial value problem (30) is 
linear and ρα,β is the constant function ρα,β(s) ≡ π

ωβ
. Now, for 0 < α < 4 and β > 0, 

the function ρα,β is a differentiable bounded function and its global extrema are given 
in Theorem 31. Since the global extrema of ρα,β are available in an explicit form, we 
provide the improved bound Υ±

l for C±l in Theorem 3 with the boundary given by two 
simple curves, which are described similarly to the first non-trivial Fučík curve C±1.
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[27] N. Sergejeva, S. Pečiulytė, On Fučík type spectrum for problem with integral nonlocal boundary 
condition, Nonlinear Anal., Model. Control 24 (2) (2019) 261–278.

[28] P. Stehlík, Discrete Fučík spectrum – anchoring rather than pasting, Bound. Value Probl. 2013 
(2013) 11.

http://refhub.elsevier.com/S0007-4497(21)00070-1/bibB6DA384B8DAACCDFCBCB3D6F8A75F684s1
http://refhub.elsevier.com/S0007-4497(21)00070-1/bibB6DA384B8DAACCDFCBCB3D6F8A75F684s1
http://refhub.elsevier.com/S0007-4497(21)00070-1/bibB6DA384B8DAACCDFCBCB3D6F8A75F684s1
http://refhub.elsevier.com/S0007-4497(21)00070-1/bibB6DA384B8DAACCDFCBCB3D6F8A75F684s1
http://refhub.elsevier.com/S0007-4497(21)00070-1/bib41012BEFF2DA6BC86259FBE9152C6847s1
http://refhub.elsevier.com/S0007-4497(21)00070-1/bib41012BEFF2DA6BC86259FBE9152C6847s1
http://refhub.elsevier.com/S0007-4497(21)00070-1/bibB91FB7BADB72B846610524CF75548B66s1
http://refhub.elsevier.com/S0007-4497(21)00070-1/bibB91FB7BADB72B846610524CF75548B66s1
http://refhub.elsevier.com/S0007-4497(21)00070-1/bib8BC6310FCB587917AAC603B83715E2C4s1
http://refhub.elsevier.com/S0007-4497(21)00070-1/bib8BC6310FCB587917AAC603B83715E2C4s1
http://refhub.elsevier.com/S0007-4497(21)00070-1/bibF1000D8C3A4FD56304CBB206342C393Fs1
http://refhub.elsevier.com/S0007-4497(21)00070-1/bibF1000D8C3A4FD56304CBB206342C393Fs1
http://refhub.elsevier.com/S0007-4497(21)00070-1/bib9E2BCE9E12FFF51761BA376AA6530C6Bs1
http://refhub.elsevier.com/S0007-4497(21)00070-1/bib9E2BCE9E12FFF51761BA376AA6530C6Bs1
http://refhub.elsevier.com/S0007-4497(21)00070-1/bib2A1C7CF0E407691578985450179801FEs1
http://refhub.elsevier.com/S0007-4497(21)00070-1/bib2A1C7CF0E407691578985450179801FEs1
http://refhub.elsevier.com/S0007-4497(21)00070-1/bib929157BD4D886E223EA9FCCE6870D151s1
http://refhub.elsevier.com/S0007-4497(21)00070-1/bib929157BD4D886E223EA9FCCE6870D151s1
http://refhub.elsevier.com/S0007-4497(21)00070-1/bibA8ADE1354E7C4BBF969DDC0EDDFBF797s1
http://refhub.elsevier.com/S0007-4497(21)00070-1/bibA8ADE1354E7C4BBF969DDC0EDDFBF797s1
http://refhub.elsevier.com/S0007-4497(21)00070-1/bibAA4A4325681DA15FB6E52754A491BDC1s1
http://refhub.elsevier.com/S0007-4497(21)00070-1/bibAA4A4325681DA15FB6E52754A491BDC1s1
http://refhub.elsevier.com/S0007-4497(21)00070-1/bib668162D573B358F079BE450220C015DEs1
http://refhub.elsevier.com/S0007-4497(21)00070-1/bib668162D573B358F079BE450220C015DEs1
http://refhub.elsevier.com/S0007-4497(21)00070-1/bibDEFB58D7DB9836D010C1463C7691BA44s1
http://refhub.elsevier.com/S0007-4497(21)00070-1/bibDEFB58D7DB9836D010C1463C7691BA44s1
http://refhub.elsevier.com/S0007-4497(21)00070-1/bib15C4F4DC0248451AE34C322EA268D7EFs1
http://refhub.elsevier.com/S0007-4497(21)00070-1/bib15C4F4DC0248451AE34C322EA268D7EFs1
http://refhub.elsevier.com/S0007-4497(21)00070-1/bib96DAAEB0EED903AFDFB6ACF3EEE61849s1
http://refhub.elsevier.com/S0007-4497(21)00070-1/bib96DAAEB0EED903AFDFB6ACF3EEE61849s1

	Localization of Fučík curves for the second order discrete Dirichlet operator
	1 Introduction
	2 Main results
	3 Connections between the Fučík spectra for discrete and continuous problems
	4 Preliminaries and basic bounds for Fučík curves
	5 Implicit description of Fučík curves
	6 Improved bounds for Fučík curves
	7 Conclusion
	Declaration of competing interest
	Acknowledgement
	References


