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Abstract—We compare different platforms for inference of 

convolutional neural networks in this paper. We trained various 

neural networks to determine the material in the source 

hyperspectral cube. Then we convert them to inference format 

and compare the inference results. We used tools under Xilinx 

Vitis AI for FPGA implementation. We try to minimize the size 

of the proposed networks by pruning them and provide further 

comparisons. FPGA platforms show to be energy efficient but 

still slower than a graphics card in terms of performance. 
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I. INTRODUCTION  

Hyperspectral imaging (HSI) is a process when series of 
images are taken from a scene, each containing only a part of 
the electromagnetic spectra emitted by visible objects. 
Obtained three-dimensional images are called hyperspectral 
cubes. A pretty simple example of such a cube is an RGB 
picture, where each pixel contains information about emitted 
spectra in red, green, and blue bands. The size of a typical cube 
is not dependent only on the resolution of the sensor but also 
on the number of spectral bands taken, which varies, in real 
applications, between tens to thousands. 

Analysis of the cube (i.e., hyperspectral analysis) is 
usually used to classify objects and materials in the scene 
based on their spectral properties. This can be useful in areas 
such as food or drug control, mining, and military and 
surveillance applications. The analysis of the cube has one 
order higher performance requirements than the analysis of 
2D images. 

Neural networks are a modern and effective solution for 
image analysis. They were proven to be highly effective when 
dealing with large amounts of samples taken from high-
resolution image sensors. Thus, it is expectable to find them 
effective for the hyperspectral analysis as well. 

We can distinguish three main types of hyperspectral 
systems based on the resources required to obtain the cube and 
to perform its analysis: 

1) Stationary solution: The hyperspectral camera, 
together with the lens, is connected to the control computer. 
Each part of the system could be controlled separately or 
together by a controller in the camera. This solution is used 
to research, develop, and test a hyperspectral camera system 
and is placed on an optical table for the best performance. The 
measured data are sent to the host computer, where they are 
stored and usually also analyzed. 

2) Portable solution: The hyperspectral camera is small 
and compact, with good protection from the environment. 
The camera can measure hyperspectral cubes and provide 
data compression or data analysis before sending results to a 

connected computer. Reducing the size of data transmitted by 
the results allows remote operation of the system. That led to 
using this solution in the industry and the field and on drones 
or robots. 

3) Satellite solution: This is a highly optimized solution 
for minimum power consumption with limited 
communication bandwidth [1]. It is used for long-term 
measurements, where the measured data are first analyzed for 
the quality of information and then temporarily stored in local 
storage or compressed and sent to an observer. 

II. MOTIVATION 

Our goal is to use the FPGA platform for the classification 
of measured hyperspectral cubes and to compare achieved 
results with other platforms. Modern and effective tools for 
classifying hyperspectral cubes are convolutional neural 
networks (CNN). Those networks are required to be trained 
on a high-performance computer or a cluster composed of 
lower-performance computers. After the training phase, we 
can convert the trained network into an inference format and 
use it to compute CNN (inference) on various platforms 
[2][3][17]. The most popular platforms are: 

1) Central Processing Unit (CPU): A simple computer 
with a powerful processor without a graphic card. The 
advantage is easy installation and good software support, but 
they have average performance for CNN inference. 

2) Graphic Processing Unit (GPU): An extension of the 
CPU with a high-performance graphics card. Require 
installation of specific versions of compute drivers for your 
hardware and offer the best performance for CNN inference. 
Higher prices and complex cooling of the system complicate 
industrial use. 

3) External accelerator: Is an ASIC or FPGA, which, 
like the GPU, extends the CPU capabilities of the CNN 
training or inference [3][4]. It can be easily connected via 
USB or elsewhere. The disadvantages of this solution are the 
limited interconnection bandwidth between the CPU, 
memory, and accelerator. 

4) FPGA integration: The whole system is integrated 
into the FPGA [5] via the Xilinx Zynq platform. We can 
combine the programmability of the processor with the 
FPGA. This system on the chip solution minimizes data 
transmission delays and increases usability and power per 
watt. We can use a Linux-based operating system with many 
custom accelerators. It is programmed using Vitis AI tools 
[6], and we use the Deep learning unit (DPU) to accelerate 
the inference of CNN in the FPGA. 
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III. NETWORK TRAINING 

We use the Tensorflow framework under the Ubuntu 
system, which provides us with the necessary support for 
network training and Vitis AI tools. We need to convert 
trained networks to a usable inference format and run 
a benchmark on available CPU, GPU, and FPGA platforms. 

A. Hyperspectral cube 

We used the hyperspectral dataset “Pavia University” with 
spatial dimensions 610×340, each containing 103 spectral 
bands. Each spatial pixel is classified into one of 9 classes. 
You can see the example of a classified image in Fig. 1. 

 
Fig. 1. An example of classification (Pavia University) 

B. Trained networks 

The selected dataset was randomly divided into smaller 
datasets. 30% of the dataset was used for training, 20% for 
testing, and the rest (50%) for final validation. The input 
vector of the CNN is a selected pixel and its surroundings with 
final dimensions of 7×7×103, which represent spectral and 
spatial information about the pixel and its neighborhood 
[7][8][14]. We propose three basics CNN structures based on 
a reference given in [8], where the first “P_CD” is a simple 
CNN with one convolution layer (kernel size 3×3) and one 
dense layer, Fig. 2. The second “P_CCCD” is a deeper CNN 
with three convolution layers (same kernel size 3×3). The last 
proposed structure, "P_CD2" is similar to “P_CD”, but it has 
a larger stride size. That reduces the overlap of the convolution 
and the output size of the layer. In Fig. 3 we have stride one 
as "a)" and stride two as "b)". A comparison of the proposed 
networks in size and achieved accuracy is summarized further 
in TABLE I.  

 
Fig. 2. Structure of simple CNN as “P_CD”, (P for Paiva dataset, C for 

convolutional layer and D for Dense layer) 

 
Fig. 3. Influence of different convolution stride size 

C. Reduction of CNN structure 

Pruning is a reduction process that removes minor 
weights in the neural network (near-zero values) [9]. The 
strategy aims to lower computation requirements. After each 
weight change, we must retrain the neural network to achieve 
higher accuracy. When the network is pruned, the rank of 
weights matrix for each layer may be lower, reducing the size 
of neurons in that layer and retrain the network. We obtain a 
small network structure with high accuracy and less 
demanding computation requirements by iterating this 
process. Changes in the design of the network are shown in 
Fig. 4, where “a)” is the original network, “b)” is with the 
pruned weights as the removed connections, and “c)” is after 
further pruning iterations and reduction of neurons. 

The pruned results for the proposed networks are marked 
with “_p” to “P_CD_p”, “P_CCCD_p” and “P_CD2_p”. 

 
Fig. 4. Pruning process of the network 

D. Reduction of CNN memory size 

Network training (computational operation and stored 
weights) is provided in “Float32” format for high accuracy. 
That means a network with 1M parameters takes up 4MB of 
memory space. By reducing the numeric format to a fixed 
precision “Int8”, we reduce the necessary memory space to 
1MB. Simultaneously, we use multiplication for the fixed 
numbers, which is faster than for float numbers [10] 



(regarding the maximum frequency of the HW solving the 
task)[10]. This process is called quantization and can slightly 
reduce network accuracy. 

TABLE I. summarizes information about the proposed 
networks, their number of weights, the required computation 
workload, and accuracy during each reduction phase 
(quantization and pruning). 

TABLE I.  NEURAL NETWORKS ACCURACY 

Network 

Weights 

[M] 

Workload 

[M] 

Acc 

[%] 

Quantized Acc 

[%] 

P_CD 2.2 4.4 96.3 93.6 

P_CD_p 0.9 1.9 97.5 95.8 

P_CCCD 3.4 6.8 98.7 98.1 

P_CCCD_p 1.0 0.6 97.0 97.2 

P_CD2 1.8 3.6 97.8 96.2 

P_CD2_p 0.1 0.2 97.6 96.7 

E. Hardware setup 

We use a high-performance solution for each of the three 
proposed platforms. Detailed specifications are: 

1) CPU: The processor is from the X-series of Intel Core 
i7-7820X processors with 8 cores and 16 threads with a 
maximum frequency of up to 4.3GHz, power consumption up 
to 140W. Tensorflow provides network inference for CPUs 
with the Keras submodule. 

2) GPU: Nvidia Geforce RTX 2070 with 8GB RAM and 
maximum performance 42RTX-OPS, power consumption is 
up to 185W. Tensorflow provides network inference for 
GPUs with submodule Keras and CUDA 10.2. 

3) FPGA: Evaluation kit ZCU106 with Zynq UltraScale+ 
XCZU7EV MPSoC with available sources of 504K Logic 
Cells, 1728 DSP slices, power consumption up to 20W. The 
Xilinx provided DPU IP core [11] is used to compute CNN. 

We tested several designs with different single-core DPU 
configurations at 300MHz, with the corresponding 
Peta-Linux build and recompiled proposed networks. The 
utilization of resources for each design is given in TABLE II.  
where the title of the design is based on the theoretical 
parallel performance of the DPU. 

TABLE II.  DPU DESIGNS UTILIZATION 

Design LUT [k] FF [k] BRAM DSP Power [W] 

DPU_512 38 42 93 124 5.7 

DPU_1024 45 56 140 232 6.6 

DPU_2304 53 77 215 436 8.7 

DPU_4096 72 109 310 704 13 

The smallest configuration is even usable on boards like 
Zedboard with Zynq XC7Z020. For further comparison with 
CPU and GPU, we select only the smallest design DPU_512, 
and the largest design DPU_4096. 

IV. NETWORKS INFERENCE 

We provide inferences for all networks on CPU, GPU, 
and FPGA (DPU_512, DPU_4096) platforms. We measured 
the required time for each test for the first classification "cold 
run" and the average time for the next 20 runs, "warm run". 

The same dataset of selected 33k hyperspectral pixels was 
used in each run. The results of the average computation time 
for inference one hyperspectral pixel are shown in TABLE 
III.  In parentheses is the cold run time, which is slower due 
to the initialization of the computation. 

TABLE III.  INFERENCE COMPUTATION TIME [µS] 

Network CPU GPU DPU_512 DPU_4096 

P_CD 119 (138) 15.5 (165) 539 (580) 350 (420) 

P_CD_p 105 (118) 14.1 (154) 228 (296) 162 (232) 

P_CCCD 501 (509) 25.2 (373) 883 (965) 526 (610) 

P_CCCD_p 174 (181) 15.0 (189) 123 (195) 84 (156) 

P_CD2 240 (253) 16.0 (166) 420 (493) 284 (354) 

P_CD2_p 121 (128) 13.9 (143) 55 (123) 46 (114) 

*All in [μs], time of the cold run is in the parentheses 

A comparison of computational times related to CPU is 
shown in Fig. 5. Where we can see the change of the ratio for 
unpruned and pruned networks. A particularly significant 
difference has GPU speedup, which is significantly reduced 
by pruning and increased dramatically for the FPGAs. 

 
Fig. 5. Inference speedup related to CPU 

In addition to computational speed, there is another 
critical parameter, energy efficiency, which is an essential 
criterion in cloud computing and low-performance 
applications. A comparison of energy efficiency related to 
CPU is shown in Fig. 6.  

 
Fig. 6. Energy efficiency related  to CPU 

However, this does not mean that the CPU is bad for CNN 
inference. Of the tested platforms, the CPU has the shortest 
initialization time of 11μs, and the FPGA had 85μs and GPU 
171μs. 
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V. CONCLUSIONS 

We proposed three different structures of CNN, which 
were trained for the classification of the "Pavia University" 
dataset and achieved an overall accuracy of 98%. We provide 
network inference on three different high-performance 
platforms, CPU, GPU, and FPGA, where we used a single-
core DPU accelerator. In comparison, the GPU platform was 
the fastest with the highest performance of 600GOPS, and the 
FPGA platform was the slowest. To change this, we provide 
network pruning, which significantly reduces their size. 
Unfortunately, compared to pruned CNN, the GPU was still 
faster than the FPGA, but now only three times.  

More interesting is the comparison in energy efficiency, 
where for pruned CNN, FPGA was ten times better than 
GPU. On the other hand, the CPU platform had the lowest 
initialization time of the computing. 

So far, we have achieved a maximum FPGA performance 
of 55GOPS, which is not bad compared to a similar solution 
[12][13][16]. They are implementing larger image processing 
networks such as AlexNet [15][18], VGG, etc. To further 
improve performance, we plan to test the triple-core DPU 
accelerator configuration, which will allow us to parallelize 
processes further. 
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