
ISBN 978-80-261-0973-0, © University of West Bohemia, 2021

Comparison of Performance of Optimized HSI
CNN models on Desktop and Embedded Platforms

Jiří Čech, Martin Rozkovec
Institute of Information Technologies and Electronics

FMMIS, Technical University of Liberec
Liberec, Czech Republic

jiri.cech@tul.cz, martin.rozkovec@tul.cz

Abstract—We compare different platforms for inference of

convolutional neural networks in this paper. We trained various

neural networks to determine the material in the source

hyperspectral cube. Then we convert them to inference format

and compare the inference results. We used tools under Xilinx

Vitis AI for FPGA implementation. We try to minimize the size

of the proposed networks by pruning them and provide further

comparisons. FPGA platforms show to be energy efficient but

still slower than a graphics card in terms of performance.

Keywords—Hyperspectral imaging, Neural networks, Xilinx

FPGA, Vitis AI, DPU

I. INTRODUCTION

Hyperspectral imaging (HSI) is a process when series of
images are taken from a scene, each containing only a part of
the electromagnetic spectra emitted by visible objects.
Obtained three-dimensional images are called hyperspectral
cubes. A pretty simple example of such a cube is an RGB
picture, where each pixel contains information about emitted
spectra in red, green, and blue bands. The size of a typical cube
is not dependent only on the resolution of the sensor but also
on the number of spectral bands taken, which varies, in real
applications, between tens to thousands.

Analysis of the cube (i.e., hyperspectral analysis) is
usually used to classify objects and materials in the scene
based on their spectral properties. This can be useful in areas
such as food or drug control, mining, and military and
surveillance applications. The analysis of the cube has one
order higher performance requirements than the analysis of
2D images.

Neural networks are a modern and effective solution for
image analysis. They were proven to be highly effective when
dealing with large amounts of samples taken from high-
resolution image sensors. Thus, it is expectable to find them
effective for the hyperspectral analysis as well.

We can distinguish three main types of hyperspectral
systems based on the resources required to obtain the cube and
to perform its analysis:

1) Stationary solution: The hyperspectral camera,
together with the lens, is connected to the control computer.
Each part of the system could be controlled separately or
together by a controller in the camera. This solution is used
to research, develop, and test a hyperspectral camera system
and is placed on an optical table for the best performance. The
measured data are sent to the host computer, where they are
stored and usually also analyzed.

2) Portable solution: The hyperspectral camera is small
and compact, with good protection from the environment.
The camera can measure hyperspectral cubes and provide
data compression or data analysis before sending results to a

connected computer. Reducing the size of data transmitted by
the results allows remote operation of the system. That led to
using this solution in the industry and the field and on drones
or robots.

3) Satellite solution: This is a highly optimized solution
for minimum power consumption with limited
communication bandwidth [1]. It is used for long-term
measurements, where the measured data are first analyzed for
the quality of information and then temporarily stored in local
storage or compressed and sent to an observer.

II. MOTIVATION

Our goal is to use the FPGA platform for the classification
of measured hyperspectral cubes and to compare achieved
results with other platforms. Modern and effective tools for
classifying hyperspectral cubes are convolutional neural
networks (CNN). Those networks are required to be trained
on a high-performance computer or a cluster composed of
lower-performance computers. After the training phase, we
can convert the trained network into an inference format and
use it to compute CNN (inference) on various platforms
[2][3][17]. The most popular platforms are:

1) Central Processing Unit (CPU): A simple computer
with a powerful processor without a graphic card. The
advantage is easy installation and good software support, but
they have average performance for CNN inference.

2) Graphic Processing Unit (GPU): An extension of the
CPU with a high-performance graphics card. Require
installation of specific versions of compute drivers for your
hardware and offer the best performance for CNN inference.
Higher prices and complex cooling of the system complicate
industrial use.

3) External accelerator: Is an ASIC or FPGA, which,
like the GPU, extends the CPU capabilities of the CNN
training or inference [3][4]. It can be easily connected via
USB or elsewhere. The disadvantages of this solution are the
limited interconnection bandwidth between the CPU,
memory, and accelerator.

4) FPGA integration: The whole system is integrated
into the FPGA [5] via the Xilinx Zynq platform. We can
combine the programmability of the processor with the
FPGA. This system on the chip solution minimizes data
transmission delays and increases usability and power per
watt. We can use a Linux-based operating system with many
custom accelerators. It is programmed using Vitis AI tools
[6], and we use the Deep learning unit (DPU) to accelerate
the inference of CNN in the FPGA.

20
21

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 A

pp
lie

d
El

ec
tr

on
ic

s (
AE

) |
 9

78
-8

0-
26

1-
09

73
-0

/2
1/

$3
1.

00
 ©

20
21

10
.2

39
19

/A
E5

15
40

.2
02

1.
95

42
90

0

III. NETWORK TRAINING

We use the Tensorflow framework under the Ubuntu
system, which provides us with the necessary support for
network training and Vitis AI tools. We need to convert
trained networks to a usable inference format and run
a benchmark on available CPU, GPU, and FPGA platforms.

A. Hyperspectral cube

We used the hyperspectral dataset “Pavia University” with
spatial dimensions 610×340, each containing 103 spectral
bands. Each spatial pixel is classified into one of 9 classes.
You can see the example of a classified image in Fig. 1.

Fig. 1. An example of classification (Pavia University)

B. Trained networks

The selected dataset was randomly divided into smaller
datasets. 30% of the dataset was used for training, 20% for
testing, and the rest (50%) for final validation. The input
vector of the CNN is a selected pixel and its surroundings with
final dimensions of 7×7×103, which represent spectral and
spatial information about the pixel and its neighborhood
[7][8][14]. We propose three basics CNN structures based on
a reference given in [8], where the first “P_CD” is a simple
CNN with one convolution layer (kernel size 3×3) and one
dense layer, Fig. 2. The second “P_CCCD” is a deeper CNN
with three convolution layers (same kernel size 3×3). The last
proposed structure, "P_CD2" is similar to “P_CD”, but it has
a larger stride size. That reduces the overlap of the convolution
and the output size of the layer. In Fig. 3 we have stride one
as "a)" and stride two as "b)". A comparison of the proposed
networks in size and achieved accuracy is summarized further
in TABLE I.

Fig. 2. Structure of simple CNN as “P_CD”, (P for Paiva dataset, C for

convolutional layer and D for Dense layer)

Fig. 3. Influence of different convolution stride size

C. Reduction of CNN structure

Pruning is a reduction process that removes minor
weights in the neural network (near-zero values) [9]. The
strategy aims to lower computation requirements. After each
weight change, we must retrain the neural network to achieve
higher accuracy. When the network is pruned, the rank of
weights matrix for each layer may be lower, reducing the size
of neurons in that layer and retrain the network. We obtain a
small network structure with high accuracy and less
demanding computation requirements by iterating this
process. Changes in the design of the network are shown in
Fig. 4, where “a)” is the original network, “b)” is with the
pruned weights as the removed connections, and “c)” is after
further pruning iterations and reduction of neurons.

The pruned results for the proposed networks are marked
with “_p” to “P_CD_p”, “P_CCCD_p” and “P_CD2_p”.

Fig. 4. Pruning process of the network

D. Reduction of CNN memory size

Network training (computational operation and stored
weights) is provided in “Float32” format for high accuracy.
That means a network with 1M parameters takes up 4MB of
memory space. By reducing the numeric format to a fixed
precision “Int8”, we reduce the necessary memory space to
1MB. Simultaneously, we use multiplication for the fixed
numbers, which is faster than for float numbers [10]

(regarding the maximum frequency of the HW solving the
task)[10]. This process is called quantization and can slightly
reduce network accuracy.

TABLE I. summarizes information about the proposed
networks, their number of weights, the required computation
workload, and accuracy during each reduction phase
(quantization and pruning).

TABLE I. NEURAL NETWORKS ACCURACY

Network

Weights

[M]

Workload

[M]

Acc

[%]

Quantized Acc

[%]

P_CD 2.2 4.4 96.3 93.6

P_CD_p 0.9 1.9 97.5 95.8

P_CCCD 3.4 6.8 98.7 98.1

P_CCCD_p 1.0 0.6 97.0 97.2

P_CD2 1.8 3.6 97.8 96.2

P_CD2_p 0.1 0.2 97.6 96.7

E. Hardware setup

We use a high-performance solution for each of the three
proposed platforms. Detailed specifications are:

1) CPU: The processor is from the X-series of Intel Core
i7-7820X processors with 8 cores and 16 threads with a
maximum frequency of up to 4.3GHz, power consumption up
to 140W. Tensorflow provides network inference for CPUs
with the Keras submodule.

2) GPU: Nvidia Geforce RTX 2070 with 8GB RAM and
maximum performance 42RTX-OPS, power consumption is
up to 185W. Tensorflow provides network inference for
GPUs with submodule Keras and CUDA 10.2.

3) FPGA: Evaluation kit ZCU106 with Zynq UltraScale+
XCZU7EV MPSoC with available sources of 504K Logic
Cells, 1728 DSP slices, power consumption up to 20W. The
Xilinx provided DPU IP core [11] is used to compute CNN.

We tested several designs with different single-core DPU
configurations at 300MHz, with the corresponding
Peta-Linux build and recompiled proposed networks. The
utilization of resources for each design is given in TABLE II.
where the title of the design is based on the theoretical
parallel performance of the DPU.

TABLE II. DPU DESIGNS UTILIZATION

Design LUT [k] FF [k] BRAM DSP Power [W]

DPU_512 38 42 93 124 5.7

DPU_1024 45 56 140 232 6.6

DPU_2304 53 77 215 436 8.7

DPU_4096 72 109 310 704 13

The smallest configuration is even usable on boards like
Zedboard with Zynq XC7Z020. For further comparison with
CPU and GPU, we select only the smallest design DPU_512,
and the largest design DPU_4096.

IV. NETWORKS INFERENCE

We provide inferences for all networks on CPU, GPU,
and FPGA (DPU_512, DPU_4096) platforms. We measured
the required time for each test for the first classification "cold
run" and the average time for the next 20 runs, "warm run".

The same dataset of selected 33k hyperspectral pixels was
used in each run. The results of the average computation time
for inference one hyperspectral pixel are shown in TABLE
III. In parentheses is the cold run time, which is slower due
to the initialization of the computation.

TABLE III. INFERENCE COMPUTATION TIME [µS]

Network CPU GPU DPU_512 DPU_4096

P_CD 119 (138) 15.5 (165) 539 (580) 350 (420)

P_CD_p 105 (118) 14.1 (154) 228 (296) 162 (232)

P_CCCD 501 (509) 25.2 (373) 883 (965) 526 (610)

P_CCCD_p 174 (181) 15.0 (189) 123 (195) 84 (156)

P_CD2 240 (253) 16.0 (166) 420 (493) 284 (354)

P_CD2_p 121 (128) 13.9 (143) 55 (123) 46 (114)

*All in [μs], time of the cold run is in the parentheses

A comparison of computational times related to CPU is
shown in Fig. 5. Where we can see the change of the ratio for
unpruned and pruned networks. A particularly significant
difference has GPU speedup, which is significantly reduced
by pruning and increased dramatically for the FPGAs.

Fig. 5. Inference speedup related to CPU

In addition to computational speed, there is another
critical parameter, energy efficiency, which is an essential
criterion in cloud computing and low-performance
applications. A comparison of energy efficiency related to
CPU is shown in Fig. 6.

Fig. 6. Energy efficiency related to CPU

However, this does not mean that the CPU is bad for CNN
inference. Of the tested platforms, the CPU has the shortest
initialization time of 11μs, and the FPGA had 85μs and GPU
171μs.

0

5

10

15

20

S
p

e
e

d
u

p
 [

×
ti

m
e

s]
CPU GPU DPU_512 DPU_4096

0

5

10

15

20

25

E
ff

ic
ie

n
cy

 [
×

ti
m

e
s]

CPU GPU DPU_512 DPU_4096

V. CONCLUSIONS

We proposed three different structures of CNN, which
were trained for the classification of the "Pavia University"
dataset and achieved an overall accuracy of 98%. We provide
network inference on three different high-performance
platforms, CPU, GPU, and FPGA, where we used a single-
core DPU accelerator. In comparison, the GPU platform was
the fastest with the highest performance of 600GOPS, and the
FPGA platform was the slowest. To change this, we provide
network pruning, which significantly reduces their size.
Unfortunately, compared to pruned CNN, the GPU was still
faster than the FPGA, but now only three times.

More interesting is the comparison in energy efficiency,
where for pruned CNN, FPGA was ten times better than
GPU. On the other hand, the CPU platform had the lowest
initialization time of the computing.

So far, we have achieved a maximum FPGA performance
of 55GOPS, which is not bad compared to a similar solution
[12][13][16]. They are implementing larger image processing
networks such as AlexNet [15][18], VGG, etc. To further
improve performance, we plan to test the triple-core DPU
accelerator configuration, which will allow us to parallelize
processes further.

ACKNOWLEDGMENT

This work was (partly) supported by the Student Grant
Scheme at the Technical University of Liberec through
project nr. SGS-2019-3017.

REFERENCES
[1] R. Sandau, “Status and trends of small satellite missions for Earth

observation,” Acta Astronautica., vol. 66, pp. 1–12, 2010.

[2] E. Torti, M. Acquistapace, G. Danese, F. Leporati and A. Plaza, "Real-
Time Identification of Hyperspectral Subspaces," in IEEE Journal of
Selected Topics in Applied Earth Observations and Remote Sensing,
vol. 7, no. 6, pp. 2680-2687, June 2014.

[3] E. Nurvitadhi, D. Sheffield, Jaewoong Sim, A. Mishra, G. Venkatesh
and D. Marr, "Accelerating Binarized Neural Networks: Comparison
of FPGA, CPU, GPU, and ASIC," 2016 International Conference on
Field-Programmable Technology (FPT), Xi'an, 2016, pp. 77-84.

[4] V. Parmar, J. Ahn and M. Suri, "Hyperspectral Image Classification for
Remote Sensing Using Low-Power Neuromorphic Hardware," 2019
International Joint Conference on Neural Networks (IJCNN),
Budapest, Hungary, 2019, pp. 1-7.

[5] S. Pei, R. Wang, J. Zhang and Y. Jin, "FPGA-based acceleration for
hyperspectral image analysis," 2017 IEEE 2nd Advanced Information

Technology, Electronic and Automation Control Conference (IAEAC),
Chongqing, 2017, pp. 324-327.

[6] Xilinx, Vitis AI, 2020. [Online]. Available:
https://www.xilinx.com/support/documentation/sw_manuals/vitis_ai/
1_0/ug1414-vitis-ai.pdf

[7] Y. Chen, H. Jiang, C. Li, X. Jia and P. Ghamisi, "Deep Feature
Extraction and Classification of Hyperspectral Images Based on
Convolutional Neural Networks," in IEEE Transactions on Geoscience
and Remote Sensing, vol. 54, no. 10, pp. 6232-6251, Oct. 2016.

[8] X. Yang, Y. Ye, X. Li, R. Y. K. Lau, X. Zhang and X. Huang,
“Hyperspectral Image Classification With Deep Learning Models,” in
IEEE Transactions on Geoscience and Remote Sensing, vol. 56, no. 9,
pp. 5408-5423, Sept. 2018.

[9] R. Reed, "Pruning algorithms-a survey," in IEEE Transactions on
Neural Networks, vol. 4, no. 5, pp. 740-747, Sept. 1993.

[10] Yang, Jiwei, Xu Shen, Jun Xing, Xinmei Tian, Houqiang Li, Bing
Deng, Jianqiang Huang and Xian-Sheng Hua. “Quantization
Networks.” 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) (2019): 7300-7308. arXiv:1911.09464

[11] Xilinx, DPUv3.1, 2020. [Online]. Available:

https://www.xilinx.com/support/documentation/ip_documentation/dp
u/v3_1/pg338-dpu.pdf

[12] K. Tajiri and T. Maruyama, “FPGA Acceleration of a Supervised
Learning Method for Hyperspectral Image Classification,” 2018
International Conference on Field-Programmable Technology (FPT),
Naha, Okinawa, Japan, 2018, pp. 270-273.

[13] R. DiCecco, G. Lacey, J. Vasiljevic, P. Chow, G. Taylor and S. Areibi,
"Caffeinated FPGAs: FPGA framework For Convolutional Neural
Networks," 2016 International Conference on Field-Programmable
Technology (FPT), Xi'an, 2016, pp. 265-268, doi:
10.1109/FPT.2016.7929549.

[14] Liu S., Chu R.S.W., Wang X., Luk W. (2019) Optimizing CNN-Based
Hyperspectral Image Classification on FPGAs. In: Hochberger C.,
Nelson B., Koch A., Woods R., Diniz P. (eds) Applied Reconfigurable
Computing. ARC 2019. Lecture Notes in Computer Science, vol 11444.
Springer, Cham.

[15] F. Al-Ali, T. D. Gamage, H. W. Nanayakkara, F. Mehdipour and S. K.
Ray, "Novel Casestudy and Benchmarking of AlexNet for Edge AI:
From CPU and GPU to FPGA," 2020 IEEE Canadian Conference on
Electrical and Computer Engineering (CCECE), 2020, pp. 1-4, doi:
10.1109/CCECE47787.2020.9255739.

[16] M. Blott, et al.,"Evaluation of Optimized CNNs on Heterogeneous
Accelerators using a Novel Benchmarking Approach" in IEEE
Transactions on Computers, vol. , no. 01, pp. 1-1, 5555.

[17] Kamel Abdelouahab, Maxime Pelcat, François Berry, Jocelyn Sérot.
Accelerating CNN inference on FPGAs: A Survey. 2018. ffhal-
01695375v2f

[18] Sparsh Mittal, A Survey on Optimized Implementation of Deep
Learning Models on the NVIDIA Jetson Platform, January 2019Journal
of Systems Architecture 97

		2021-09-27T12:30:43-0400
	Certified PDF 2 Signature

