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Abstract— Advancements in machine-learning algorithms 

made it necessary to explore fast algorithms for Floating Point 

operations, addition being most commonly used complex 

operation involving significant delay and power-consumption. 

Applications include high-performance computer vision, 

imaging and deep-learning functions accelerated using 

dedicated hardware accelerators. This paper proposes a 32-bit 

Floating Point Adder based on the ‘Far-and-Close-Data-Path-

Algorithm’ with added optimizations to give a better 

implementation in terms of overall minimum latency and 

improved accuracy for certain input cases. The designs have 

been coded in Verilog, synthesized in Cadence Genus and 

physically verified with Cadence Innovus in GDSII under ASIC 

platform. 

Keywords—ASIC, Floating Point Adder, Far and Close Data 

Path Algorithm, Cadence Genus and Innovus, Kogge-Stone 

Adder, Barrel Shifter, Leading One Predictor (LOP), Compound 

Adder, Normalized, Denormalized and Mixed numbers 

I. INTRODUCTION 

Floating Point Adders form the basic block of many 
application-specific as well as general-purpose processors. 
Hence, performance of such systems largely depends on 
processing speed, area and power dissipation of the Floating 
Point adders. State-of-the-art Floating Point adders use the 
‘Far and Close Data Path Addition’ as the basic algorithm and 
improvements have been made to its various components like 
rounding, normalization etc. over the years. This paper 
discusses the improvements over the ‘Standard Floating Point 
Addition’ (SA) [1,2], the baseline algorithm for floating-point 
addition to more advanced ‘Far and Close Data Path Addition’ 
(FCA) [3,4] and proposes an architecture that aims at 
improving the existing FCA with further parallelism and new 
functionalities. 

To this end, a high-speed Floating Point Adder is 
implemented which makes two major improvements to the 
FCA. The first improvement exploits the concept of 
parallelism within the Floating Point adder to increase the 
overall speed of the design. The second improvement 
increases the accuracy of computation of ‘mixed’ type of 
inputs which is discussed in detail in subsequent Sections. 
Other optimizations such as improvement in shifter design, 
mantissa addition, rounding logic have also been 
implemented. It makes use of the FCA architecture to achieve 
high performance in case of ‘normalized’ type of operation. 
Since, the ASIC results of SA and FCA are not available they 
have been implemented on the ASIC platform according to the 
theory. The proposed design is validated and benchmarked 
against the mentioned SA and FCA designs giving the best 
results in terms of delay. 

Section II gives the Floating Point representation 
technique. Section III gives the standard addition algorithm 
while Section IV presents the proposed addition-algorithm for 

Floating Point numbers. Section V discusses the results and 
gives a comparison with candidate designs. Lastly Section VI 
concludes the paper. 

II. FLOATING POINT REPRESENTATION 

The Institute of Electrical and Electronics Engineering 
(IEEE) issued standards for binary Floating Point arithmetic 
in 1985 [5]. Among these standards, Single-precision format 
uses 1-bit for sign bit (S), 8-bits for exponent (E) and 23-bits 
to represent the fraction/mantissa (F) as shown in Figure 1. 

 

Fig.1.  IEEE 754 Single Precision Format 

 The encoding of a single-precision Floating Point number 
to its decimal value is summarized in Table I. 

TABLE I.  IEEE 754 SINGLE PRECISION ENCODING 

Sign 
(S) 

Exponent 
(E) 

Fraction 
(F) Value 

Description 

 

S 0xFF 
0x00000

000 (−1)S×∞ 
Infinity 

 

S 0xFF F≠0 NaN Not a Number 
 

S 0x00 
0x00000

000 0 
Zero 

 

S 0x00 F≠0 (−1)S×0.�×2-126  
Denormalized 

 

S 
0x00<E 

<0xFF 
F (−1)S×1.�×2E-127 

Normalized 
 

   

 For normalized and denormalized numbers, the first bit 
just left to decimal is the implicit bit and is not encoded in the 
Floating Point representation. It is set to ‘1’ or ‘0’ respectively 
during operations. 

 The rounding mode used in all the implementations 
mentioned in this paper is ‘Round to nearest Even’. [5] In this 
mode, if the two nearest representable values are equally near, 
the one with its least significant bit equal to zero is chosen. 

III. STANDARD FLOATING POINT ADDITION ALGORITHM 

Following steps (reference, Figure 2) gives the basic steps 
followed in standard Floating Point addition algorithm. [1] 

• Initially, both the numbers are decomposed to get 

their respective sign, exponent, and mantissa. The 

extra implicit bit is also appended. 
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• The exponents are then compared and the difference 

between the two is obtained. This difference is used 

to adjust the mantissa of the lesser number to obtain 

the same exponent value for both the numbers. The 

adjusted mantissa is added or subtracted based on 

the sign bit. 

• The result obtained is normalized if necessary and 

rounding is performed accordingly. 

• This result is combined with the larger exponent to 

get the final output. 

 

Fig. 2. Standard Floating Point Algorithm 

IV. PROPOSED FLOATING POINT ADDITION 

Proposed design can be visualized from an algorithm point 
of view as shown below in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

Fig.3. Basic Layout and Flow Diagram 

 This layout mainly takes advantage of the concept of 
parallelism and improves the accuracy of computation of 
certain input cases. The algorithm, implementation of each 
block, optimizations performed, analysis, comparison and 
final results are discussed in the following sections. The main 
flow of the system is as follows [6]. 

• ‘Enabler’ block takes the two inputs and identifies 

the type of operation i.e. input case. 

• The output is calculated assuming the inputs to be 

‘Normalized’, ‘Denormalized’, ‘Mixed’ and 

‘Exception’ and the necessary computations are 

carried out in the individual blocks. 

• Based on the type of operation identified, the 

selector block outputs the correct case calculated in 

the previous step. 

For this design, we have categorized all input cases into 

the following types of operation: 

• Normalized: Both inputs are normalized numbers 

• Denormalized: Both inputs are denormalized 

numbers 

• Mixed: One input is normalized and the other is 

denormalized 

• Exception: Handling exceptional cases as defined by 

IEEE 32-bit single precision Floating Point format. 

A. Enabler 

This block identifies the input case as described earlier 

and based on this, generates the select line ‘sel’ and the 

control signals ‘outa’ and ‘outb’ to indicate the type of 

Floating Point input.  

B. Exception 

This block outputs the results directly for exceptional 

cases (Table II). This path avoids the extra delays incurred 

due to utilization of entire hardware for simple computations 

(for example, addition of a number with zero) 

 
TABLE II. IMPLEMENTED EXCEPTIONAL CASES 

Input 1 Input 2 Result 
zero number number 

infinity number infinity 

infinity infinity Infinity (if same sign) 

infinity infinity NaN (if different sign) 

NaN NaN NaN 

C. Denormalized 

This block computes the sum assuming denormalized 

case. Here, mantissas of the two numbers are added directly 

without any shifting since the exponents are zero. A 24-bit 

Kogge-Stone adder is implemented to carry out this addition. 

The LSB of the exponent is also appended as MSB of the 

input, to account for overflow of output into normalized 

number. [7] 

D. Normalized /Mixed 

This block computes the sum of the Floating Point inputs 

assuming Normalized/Mixed operation. This is the most 

complex block that has been divided two major stages which 

are discussed below: 

 

1) Preparation: Following figure shows the 

‘Preparation’ stage which is connected to the ‘Computation’ 

stage. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4. Preparation Stage 



• ‘norm_pre’ adds the implicit bit ‘1’ at the end of 

exponent and beginning of mantissa resulting in the 

output of two 33-bit numbers. 

• ‘mixed_pre’ prepares the inputs for the ‘mixed’ 

case. Initially, normalized and denormalized 

numbers are identified based on the control signals 

generated in ‘Enabler’ and the implicit bit is added 

i.e. ‘1’ for normal and ‘0’ for denormal number. The 

denormal number is partially normalized by left 

shifting (done using Barrel Shifter) the mantissa 

such that the MSB is ‘1’. The amount left shifted 

(counted using an LOD i.e. Leading One Detector 

[8]) is set as the exponent, but mathematically it will 

be considered as a negative bias. However, it 

violates the IEEE format as negative biased 

exponents don’t exist as seen in Table I. This step is 

essential for addition in mixed case to achieve 

higher accuracy [6]. Its significance at a hardware 

level is illustrated in the ‘Results’ section. The 

outputs of this block are the normalized and the 

partially normalized number (originally denormal). 

• norm_mix_sel selects the required ‘prepared 

inputs’ and the ‘mixed’ flag is set to ‘1’ in case of 

mixed inputs, else it is ‘0’ for normal inputs. This 

mixed flag is used to indicate a negative biased 

exponent in further calculations. 

• norm_mix_pre performs final preparation of 

inputs. Determines effective operation, identify far 

or close path for computation stage, resulting 

exponent difference, larger exponent and larger 

number to determine the output sign bit. 

 

2) Computation: This stage is based on the ‘Far-and-

Close-Datapath-Algorithm’ for Floating Point Addition. It 

calculates the addition output based on the ‘prepared inputs’ 

generated in ‘Preparation’ stage and the path identified. It has 

been briefly discussed as follows. 

 
Fig.5.  Computation Stage 

• Close Path: Close Path output is taken if exponent 

difference is ‘0’ or ‘1’ and effective operation is 

subtraction. Following optimizations/ modifications 

to existing ‘Close Path’ architecture have been 

carried out: Determination of ‘leading one’ using an 

LOP (Leading One Predictor [9]) to reduce delay, 

implementation of the Compound Adder, Shifters 

designed using Barrel Shifter [10] design, rounding 

logic incorporated into Compound Adder to remove 

redundant calculations. 

• Far Path: Far Path output is taken if exponent 

difference is more than one. Optimizations to the 

Compound Adder and shifters are same as that of 

Close Path 

Addition in Far path and Close Path is carried out by 24 

-bit Kogge-Stone adder which has 5 stages. Only black cells 

are used in this adder so that ‘Group Propagate’ and ‘Group 

Generate’ are obtained in parallel [11]. These results are used 

to compute ‘Sum’ and ‘Sum+1’ as follows: 

Si = Pi ⊕ Gi−1:0 

S1i = Si ⊕ P i−1:0 

E. Selector 

Based on the select line generated from ‘Enabler’ block, it 
chooses the desired output based on the type of input case. 

V. RESULTS 

The adder modules are implemented using Verilog HDL, 
synthesized using Cadence Genus and physically verified 
using Cadence Innovus in GDSII under ASIC platform. The 
proposed design is compared with ‘Standard Floating Point 
Adder (SA)’ and ‘Far and Close Path Floating Point Adder 
(FCA)’. Table III shows the synthesis results obtained in  
Genus. Table IV provides the Physical Verification (Post 
Layout-Routing Optimization) Innovus result of the proposed 
design. 

TABLE III. CADENCE GENUS SYNTHESIS RESULTS 

Design 

 

Timing 

(ps) 

Power 

Leakage 

(nW) 

Dynamic 

Power (nW) 

Total 

Power 

(nW) 

Proposed 6347 110.539 145097.841 145208.380 

FCA 7596 64.630 113154.262 113218.892 

SA 8892 38.984 90261.969 90300.953 

Design 

Area 

Cells 

Count 

Total 

Area 

Sq. nm. 

Logic (%) 
Inverter 

(%) 

Proposed 2190 3639.156 93.9 6.1 

FCA 1248 2306.584 95.2 4.8 

SA 818 1446.796 95.6 4.4 

 

 

Fig.6.  Schematic of Proposed Design (Courtesy Genus) 

 

 
 

 

 



TABLE IV. POST IMPLEMENTATION RESULTS  

Internal Power (mW) 0.1746 

Switching Power (mW) 0.2623 

Total Power (mW) 0.4371 

Leakage Power (mW) 0.0001345 

Capacitance (F) 6.01E-012 

 
Fig.7. Physical Verification of Proposed Layout (Courtesy Innovus) 

 

 The simulation results are calculated for each input case 
using ‘ISim’ Simulator and displayed below where ‘a’ and ‘b’ 
are the inputs and ‘s’ is the output. It should be noted in Fig. 8 
that for the 3rd case (Mixed), the result ‘s’ would have been 
input ‘b’ itself, i.e., 02081cea without the ‘Mixed’ logic. 
Normally, these special cases are taken care of by software, 
but the proposed design can take care of such special cases at 
the hardware level itself, improving accuracy by introducing 
new functionality. 

 

VI. CONCLUSION 

The proposed Floating Point adder modifies upon existing 

designs to further reduce the delay and increases the accuracy 

of computation by introducing the ‘mixed’ block. The delay 

reduction is largely implemented by using parallel paths for 

operation of different input cases which demand different 

hardware requirement. This leads to an increase in the area 

and power. However, we gain additional functionality to 

handle ‘mixed’ numbers directly at a hardware level thereby 

increasing accuracy. In addition to this, a further reduction in 

delay is achieved by other optimizations such as the usage of 

a parallel prefix adder for faster summing and rounding 

operations, and using a state-of-the-art Barrel Shifter. The 

operations on mixed numbers seem to violate the IEEE 

format by having a negative exponent bias as described 

earlier but this assists in the calculations and results in a more 

accurate computation as shown in the simulation waveforms 

(Case 3). Coming to timing performance, after synthesis 

using Cadence Genus, it is found that the proposed design is 

28.62% is faster than the SA adder and 16.44% faster than 

the FCA adder making it a high-speed 32-bit Floating Point 

Adder. 
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