
ISBN 978-80-261-0973-0, © University of West Bohemia, 2021

Design of an ASIC-Based High Speed 32-bit

Floating Point Adder

Debarshi Deka

Dept. of EEE

BITS Pilani Goa

Goa, India

f20170494@goa.bits-pilani.ac.in

Navaneeth Kumar

 Dept. of EEE

BITS Pilani Goa

Goa, India

f20170977@goa.bits-pilani.ac.in

Dipankar Pal, SM-IEEE

Dept. of EEE

BITS Pilani Goa

Goa, India
dipankarp@goa.bits-pilani.ac.in

Abstract— Advancements in machine-learning algorithms

made it necessary to explore fast algorithms for Floating Point

operations, addition being most commonly used complex

operation involving significant delay and power-consumption.

Applications include high-performance computer vision,

imaging and deep-learning functions accelerated using

dedicated hardware accelerators. This paper proposes a 32-bit

Floating Point Adder based on the ‘Far-and-Close-Data-Path-

Algorithm’ with added optimizations to give a better

implementation in terms of overall minimum latency and

improved accuracy for certain input cases. The designs have

been coded in Verilog, synthesized in Cadence Genus and

physically verified with Cadence Innovus in GDSII under ASIC

platform.

Keywords—ASIC, Floating Point Adder, Far and Close Data

Path Algorithm, Cadence Genus and Innovus, Kogge-Stone

Adder, Barrel Shifter, Leading One Predictor (LOP), Compound

Adder, Normalized, Denormalized and Mixed numbers

I. INTRODUCTION

Floating Point Adders form the basic block of many
application-specific as well as general-purpose processors.
Hence, performance of such systems largely depends on
processing speed, area and power dissipation of the Floating
Point adders. State-of-the-art Floating Point adders use the
‘Far and Close Data Path Addition’ as the basic algorithm and
improvements have been made to its various components like
rounding, normalization etc. over the years. This paper
discusses the improvements over the ‘Standard Floating Point
Addition’ (SA) [1,2], the baseline algorithm for floating-point
addition to more advanced ‘Far and Close Data Path Addition’
(FCA) [3,4] and proposes an architecture that aims at
improving the existing FCA with further parallelism and new
functionalities.

To this end, a high-speed Floating Point Adder is
implemented which makes two major improvements to the
FCA. The first improvement exploits the concept of
parallelism within the Floating Point adder to increase the
overall speed of the design. The second improvement
increases the accuracy of computation of ‘mixed’ type of
inputs which is discussed in detail in subsequent Sections.
Other optimizations such as improvement in shifter design,
mantissa addition, rounding logic have also been
implemented. It makes use of the FCA architecture to achieve
high performance in case of ‘normalized’ type of operation.
Since, the ASIC results of SA and FCA are not available they
have been implemented on the ASIC platform according to the
theory. The proposed design is validated and benchmarked
against the mentioned SA and FCA designs giving the best
results in terms of delay.

Section II gives the Floating Point representation
technique. Section III gives the standard addition algorithm
while Section IV presents the proposed addition-algorithm for

Floating Point numbers. Section V discusses the results and
gives a comparison with candidate designs. Lastly Section VI
concludes the paper.

II. FLOATING POINT REPRESENTATION

The Institute of Electrical and Electronics Engineering
(IEEE) issued standards for binary Floating Point arithmetic
in 1985 [5]. Among these standards, Single-precision format
uses 1-bit for sign bit (S), 8-bits for exponent (E) and 23-bits
to represent the fraction/mantissa (F) as shown in Figure 1.

Fig.1. IEEE 754 Single Precision Format

 The encoding of a single-precision Floating Point number
to its decimal value is summarized in Table I.

TABLE I. IEEE 754 SINGLE PRECISION ENCODING

Sign
(S)

Exponent
(E)

Fraction
(F) Value

Description

S 0xFF
0x00000

000 (−1)S×∞
Infinity

S 0xFF F≠0 NaN Not a Number

S 0x00
0x00000

000 0
Zero

S 0x00 F≠0 (−1)S×0.�×2-126
Denormalized

S
0x00<E

<0xFF
F (−1)S×1.�×2E-127

Normalized

 For normalized and denormalized numbers, the first bit
just left to decimal is the implicit bit and is not encoded in the
Floating Point representation. It is set to ‘1’ or ‘0’ respectively
during operations.

 The rounding mode used in all the implementations
mentioned in this paper is ‘Round to nearest Even’. [5] In this
mode, if the two nearest representable values are equally near,
the one with its least significant bit equal to zero is chosen.

III. STANDARD FLOATING POINT ADDITION ALGORITHM

Following steps (reference, Figure 2) gives the basic steps
followed in standard Floating Point addition algorithm. [1]

• Initially, both the numbers are decomposed to get

their respective sign, exponent, and mantissa. The

extra implicit bit is also appended.

20
21

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 A

pp
lie

d
El

ec
tr

on
ic

s (
AE

) |
 9

78
-8

0-
26

1-
09

73
-0

/2
1/

$3
1.

00
 ©

20
21

10
.2

39
19

/A
E5

15
40

.2
02

1.
95

42
88

1

• The exponents are then compared and the difference

between the two is obtained. This difference is used

to adjust the mantissa of the lesser number to obtain

the same exponent value for both the numbers. The

adjusted mantissa is added or subtracted based on

the sign bit.

• The result obtained is normalized if necessary and

rounding is performed accordingly.

• This result is combined with the larger exponent to

get the final output.

Fig. 2. Standard Floating Point Algorithm

IV. PROPOSED FLOATING POINT ADDITION

Proposed design can be visualized from an algorithm point
of view as shown below in Figure 3.

Fig.3. Basic Layout and Flow Diagram

 This layout mainly takes advantage of the concept of
parallelism and improves the accuracy of computation of
certain input cases. The algorithm, implementation of each
block, optimizations performed, analysis, comparison and
final results are discussed in the following sections. The main
flow of the system is as follows [6].

• ‘Enabler’ block takes the two inputs and identifies

the type of operation i.e. input case.

• The output is calculated assuming the inputs to be

‘Normalized’, ‘Denormalized’, ‘Mixed’ and

‘Exception’ and the necessary computations are

carried out in the individual blocks.

• Based on the type of operation identified, the

selector block outputs the correct case calculated in

the previous step.

For this design, we have categorized all input cases into

the following types of operation:

• Normalized: Both inputs are normalized numbers

• Denormalized: Both inputs are denormalized

numbers

• Mixed: One input is normalized and the other is

denormalized

• Exception: Handling exceptional cases as defined by

IEEE 32-bit single precision Floating Point format.

A. Enabler

This block identifies the input case as described earlier

and based on this, generates the select line ‘sel’ and the

control signals ‘outa’ and ‘outb’ to indicate the type of

Floating Point input.

B. Exception

This block outputs the results directly for exceptional

cases (Table II). This path avoids the extra delays incurred

due to utilization of entire hardware for simple computations

(for example, addition of a number with zero)

TABLE II. IMPLEMENTED EXCEPTIONAL CASES

Input 1 Input 2 Result
zero number number

infinity number infinity

infinity infinity Infinity (if same sign)

infinity infinity NaN (if different sign)

NaN NaN NaN

C. Denormalized

This block computes the sum assuming denormalized

case. Here, mantissas of the two numbers are added directly

without any shifting since the exponents are zero. A 24-bit

Kogge-Stone adder is implemented to carry out this addition.

The LSB of the exponent is also appended as MSB of the

input, to account for overflow of output into normalized

number. [7]

D. Normalized /Mixed

This block computes the sum of the Floating Point inputs

assuming Normalized/Mixed operation. This is the most

complex block that has been divided two major stages which

are discussed below:

1) Preparation: Following figure shows the

‘Preparation’ stage which is connected to the ‘Computation’

stage.

Fig.4. Preparation Stage

• ‘norm_pre’ adds the implicit bit ‘1’ at the end of

exponent and beginning of mantissa resulting in the

output of two 33-bit numbers.

• ‘mixed_pre’ prepares the inputs for the ‘mixed’

case. Initially, normalized and denormalized

numbers are identified based on the control signals

generated in ‘Enabler’ and the implicit bit is added

i.e. ‘1’ for normal and ‘0’ for denormal number. The

denormal number is partially normalized by left

shifting (done using Barrel Shifter) the mantissa

such that the MSB is ‘1’. The amount left shifted

(counted using an LOD i.e. Leading One Detector

[8]) is set as the exponent, but mathematically it will

be considered as a negative bias. However, it

violates the IEEE format as negative biased

exponents don’t exist as seen in Table I. This step is

essential for addition in mixed case to achieve

higher accuracy [6]. Its significance at a hardware

level is illustrated in the ‘Results’ section. The

outputs of this block are the normalized and the

partially normalized number (originally denormal).

• norm_mix_sel selects the required ‘prepared

inputs’ and the ‘mixed’ flag is set to ‘1’ in case of

mixed inputs, else it is ‘0’ for normal inputs. This

mixed flag is used to indicate a negative biased

exponent in further calculations.

• norm_mix_pre performs final preparation of

inputs. Determines effective operation, identify far

or close path for computation stage, resulting

exponent difference, larger exponent and larger

number to determine the output sign bit.

2) Computation: This stage is based on the ‘Far-and-

Close-Datapath-Algorithm’ for Floating Point Addition. It

calculates the addition output based on the ‘prepared inputs’

generated in ‘Preparation’ stage and the path identified. It has

been briefly discussed as follows.

Fig.5. Computation Stage

• Close Path: Close Path output is taken if exponent

difference is ‘0’ or ‘1’ and effective operation is

subtraction. Following optimizations/ modifications

to existing ‘Close Path’ architecture have been

carried out: Determination of ‘leading one’ using an

LOP (Leading One Predictor [9]) to reduce delay,

implementation of the Compound Adder, Shifters

designed using Barrel Shifter [10] design, rounding

logic incorporated into Compound Adder to remove

redundant calculations.

• Far Path: Far Path output is taken if exponent

difference is more than one. Optimizations to the

Compound Adder and shifters are same as that of

Close Path

Addition in Far path and Close Path is carried out by 24

-bit Kogge-Stone adder which has 5 stages. Only black cells

are used in this adder so that ‘Group Propagate’ and ‘Group

Generate’ are obtained in parallel [11]. These results are used

to compute ‘Sum’ and ‘Sum+1’ as follows:

Si = Pi ⊕ Gi−1:0

S1i = Si ⊕ P i−1:0

E. Selector

Based on the select line generated from ‘Enabler’ block, it
chooses the desired output based on the type of input case.

V. RESULTS

The adder modules are implemented using Verilog HDL,
synthesized using Cadence Genus and physically verified
using Cadence Innovus in GDSII under ASIC platform. The
proposed design is compared with ‘Standard Floating Point
Adder (SA)’ and ‘Far and Close Path Floating Point Adder
(FCA)’. Table III shows the synthesis results obtained in
Genus. Table IV provides the Physical Verification (Post
Layout-Routing Optimization) Innovus result of the proposed
design.

TABLE III. CADENCE GENUS SYNTHESIS RESULTS

Design

Timing

(ps)

Power

Leakage

(nW)

Dynamic

Power (nW)

Total

Power

(nW)

Proposed 6347 110.539 145097.841 145208.380

FCA 7596 64.630 113154.262 113218.892

SA 8892 38.984 90261.969 90300.953

Design

Area

Cells

Count

Total

Area

Sq. nm.

Logic (%)
Inverter

(%)

Proposed 2190 3639.156 93.9 6.1

FCA 1248 2306.584 95.2 4.8

SA 818 1446.796 95.6 4.4

Fig.6. Schematic of Proposed Design (Courtesy Genus)

TABLE IV. POST IMPLEMENTATION RESULTS

Internal Power (mW) 0.1746

Switching Power (mW) 0.2623

Total Power (mW) 0.4371

Leakage Power (mW) 0.0001345

Capacitance (F) 6.01E-012

Fig.7. Physical Verification of Proposed Layout (Courtesy Innovus)

 The simulation results are calculated for each input case
using ‘ISim’ Simulator and displayed below where ‘a’ and ‘b’
are the inputs and ‘s’ is the output. It should be noted in Fig. 8
that for the 3rd case (Mixed), the result ‘s’ would have been
input ‘b’ itself, i.e., 02081cea without the ‘Mixed’ logic.
Normally, these special cases are taken care of by software,
but the proposed design can take care of such special cases at
the hardware level itself, improving accuracy by introducing
new functionality.

VI. CONCLUSION

The proposed Floating Point adder modifies upon existing

designs to further reduce the delay and increases the accuracy

of computation by introducing the ‘mixed’ block. The delay

reduction is largely implemented by using parallel paths for

operation of different input cases which demand different

hardware requirement. This leads to an increase in the area

and power. However, we gain additional functionality to

handle ‘mixed’ numbers directly at a hardware level thereby

increasing accuracy. In addition to this, a further reduction in

delay is achieved by other optimizations such as the usage of

a parallel prefix adder for faster summing and rounding

operations, and using a state-of-the-art Barrel Shifter. The

operations on mixed numbers seem to violate the IEEE

format by having a negative exponent bias as described

earlier but this assists in the calculations and results in a more

accurate computation as shown in the simulation waveforms

(Case 3). Coming to timing performance, after synthesis

using Cadence Genus, it is found that the proposed design is

28.62% is faster than the SA adder and 16.44% faster than

the FCA adder making it a high-speed 32-bit Floating Point

Adder.

REFERENCES

[1] Djordje Pesic and Ivan Ratkovic, “An efficient FPGA implementation

of Floating Point addition,” 2015 23rd Telecommunications Forum
Telfor (TELFOR), Belgrade, Serbia, pp. 1-3, 24-26 Nov. 2015

[2] P M Drusya and Vinodkumar Jacob, “Area efficient fused Floating
Point three term adder,” 2016 International Conference on Electrical,
Electronics, and Optimization Techniques (ICEEOT), Chennai, India,
pp. 1-4, 3-5 March 2016

[3] Ali Malik and Seok-bum Ko, “A Study on the Floating-Point Adder in
FPGAS,” 2006 Canadian Conference on Electrical and Computer
Engineering, Ottawa, Ont., Canada, pp. 2-4, 7-10 May 2006

[4] Ali Malik, “Design Tradeoffs Analysis of Floating-Point Adder in
FPGAs,” PhD thesis, University of Saskatchewan, Department of
Electrical Engineering, August 2005

[5] IEEE Standard Board and ANSI, “IEEE Standard for Binary Floating-
Point Arithmetic,” 1985, IEEE Std 754-1985.

[6] Castillo, Arturo Barrabés, “Design of single precision float adder (32-
bit numbers) according to IEEE 754 standard using VHDL.” PhD
thesis, Bratislava, April 25th 2012

[7] E. M. Schwarz, M. Schmookler and S. D. Trong, "Hardware
implementations of denormalized numbers," Proceedings 2003 16th
IEEE Symposium on Computer Arithmetic, Santiago de Compostela,
Spain, pp. 70-78, 2003

[8] V. G. Oklobdzija, “An Algorithmic and Novel Design of a Leading
Zero Detector Circuit: Comparison with Logic Synthesis.” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, pp.
124-128, Vol. 2, No. 1., 1994

[9] J. D. Bruguera and T. Lang, “Leading-One Prediction with Concurrent
Position Correction,” IEEE Transactions on Computers, pp. 1083–
1097, vol. 48, no.10., 1999

[10] Matthew Rudolf Pillmeier, “Barrel shifter design, optimization, and
analysis,” PhD thesis, Lehigh University, 2001

[11] Neil Weste and David Harris. 2010. CMOS VLSI Design: A Circuits
and Systems Perspective (4th. ed.). Addison-Wesley Publishing
Company, USA. pp. 46

 Fig.8. Simulation waveforms for all input cases

		2021-09-27T12:20:32-0400
	Certified PDF 2 Signature

