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Cumulation of plastic strain due to cyclic loading, so called ratcheting, experimentaly observed
as Baushinger effect, is possible cause of problems in range of engineering applications. This
phenomenon occurs during unsymmetric cyclic loading in structures such as facilities pipes,
offshore structures, etc., whenever occasional overloads occur. This can cause problems of
structures service, or even their failure. To capture physical process of multiaxial ratcheting
(MR) evolution, wide range of advanced plasticity models was developed. In this work we
are focused on phenomenon of non-linear kinematic hardening (KH). Models for capturing of
KH are based on concept of multi-component backstress [1]. There are many of these mod-
els published. In this work we present a model of Multicomponent Armstrong–Frederick with
Threshold with r modification (MAFTr) published in [2]. For reason of MR prediction on com-
plex structures, the model is implemented into FE code Abaqus through UMAT subroutines
coded in FORTRAN programming language.
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Fig. 1. Numerical examples used to test performance of UMAT subroutine with implemented
MAFTr model into Abaqus FE code
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Table 1. Material parameters of MAFTr model [2]

a11 a12 a13 a14 a21 a22 a23 a24

[−] [−] [−] [−] [MPa−1] [MPa−1] [MPa−1] [MPa−1]

225 353.7 12 123.0 3 004.0 56 338.0 0.05917 0.02199 0.004437 0.0591

Within the MAFTr model, an additive decomposition of small, rate independent strains is
assumed as in εtot = εpl + εel. Elastic behavior of material follows Hooke’s law in the form
σ = λItrεel + 2µεel, where σ is a stress tensor, λ and µ are Lamé elastic parameters and I is a
unit second-order tensor. Hereafter, however, to keep the notion simple, we use Hooke’s law in
general form σ = Cεel. Hence, further in this work, the term λ denotes exclusively the loading
index. In this work we adpot classical von Mises yield criterion is used as

f =

√
3

2
(s−α) : (s−α) − k2. (1)

Further we omit change in the isotropic hardening by keeping k̇ = 0. We adpot the associative
flow rule, which may be written as

ε̇pl = λ
∂f

∂σ
. (2)

The MAFTr KH rule reads
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where a1i, a2i and ā are material parameters, and n denotes the unit norm of the yield surface.
Parameter ri is a weighting factor and evolves along the loading history.

The implementation via UMAT follows the scheme published in [5]. This algorithm is
built on predictor-corrector method with radial return onto the yield surface. Implementation of
MAFTr was verified by comparison with closed form solution
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derived for the case of uniaxial loading. To test performance of subroutines, two numerical
examples were done. First one was planar plate with hole loaded by a pressure in single direc-
tion. Second one was simulation of elbow pipe preloaded by a pressure and cyclicly loaded by
displacement according to experiment in [4]. These examples are depicted in Fig. 1.
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Fig. 2. Biaxial ratcheting predicted by MAFTr model and prediction of ratcheting as a function of number
of cycles. Set of experimental data was meassured on CS 1026 published in [3]. Ratcheting simulations
with previously estimated stress increment and their comparison with the experimental data are depicted
in subfigures (a) – (d)

Prameters of MAFTr model were calibrated on experimental MR data published by Hassan
et al. [3], reported in [2] and given in Table 1. With calibrated model, range of simulations of
MR was performed. Results of some of them are depicted in Fig. 2. In Fig. 2(a), tests differ in
amplitude of prescribed axial strain εxa. The evolution of ratcheting by FEA with implemented
MAFTr model is underpredicted for εxa = 0.65 %, and overpredicted if εxa = 0.4 %. Accurate
results were obtained for case of εxa = 0.5 %. To check importance of prescribed axial strain,
tests with different load and preload stress were performed. Results of these set-ups are shown
in Figs. 2(b) and 2(c). So far, less promising situation is depicted in Fig. 2(d), which shows
evolution of ratio between circumferential mean strain εΘm and axial mean strain εxm, when the
specimen is preloaded by circumferential stress σxm and axial stress σΘ, and cyclicly loaded by
axial stress σxa.

This work presented the use of advanced KH rule to predict multiaxial ratcheting by FEM.
The departure between prediction and experimental data in Fig. 2(a) and its dependency on
prescribed axial strain εxa leads to the need of study of calibration procedure. Hence, in fu-
ture work, the identification of model parameters will be studied more deeply. Subsequentaly,
evolution of ratcheting in complex structures, such as aforementioned elbow pipe [4], and its
prediction by FEM in combination with advanced plasticity laws will be modeled.
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