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Fluid-structure interaction algorithm
for an elastic structure with large deformations
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NTIS — New Technologies for the Information Society, Faculty of Applied Sciences, University of West Bohemia,
Univerzitni' 8, 301 00 Plzeri, Czech Republic

This contribution introduces a fluid-structure interaction (FSI) methodology where the structure
is considered elastic. One of the main requirements for the FSI algorithm is a high level of
modularity, meaning that the fluid and structure solvers are independent of each other and the
meshes do not need to align on the fluid-solid interface. For this reason, a partitioned approach
was adopted with the option of either weak or strong coupling.

Compressible Navier-Stokes equations in the arbitrary Lagrangian-Eulerian formulation are
considered as the mathematical model for the fluid flow. The fluid dynamics is simulated using
an implicit discontinuous Galerkin finite-element scheme with Newton’s iterative procedure.
The interior penalty method is used to approximate viscous fluxes. The discontinuous Galerkin
solver is being developed by the authors of this contribution under the name FlowPro [1]. Flow-
Pro is a multipurpose numerical software that solves system of hyperbolic and parabolic partial
differential equations. The elastic structure is described by nonlinear equations of elastodynam-
ics that allow for large deformations. The system is solved by an implicit finite-element scheme
with Newton’s iterative procedure. The finite-element structure solver is also a product of the
authors of this contribution.

Since the fluid and structure meshes are mutually nonconforming on the fluid-solid interface,
the aerodynamic stress tensors needs to be interpolated from the fluid mesh to the structure
mesh. The interpolation is achieved by radial basis functions. Likewise, the displacement
determined by the structure solver needs to be interpolated onto the fluid mesh on the fluid-
solid interface. The interpolation is taken care of by the mesh-deformations algorithm, which is
also based on radial basis functions.

The FSI algorithm is validated on the well-known Turek-Hron benchmark, which was first
proposed in [2] and then again published in [3]. The benchmark consist of three FSI problems
with a 2D incompressible laminar flow around a fixed cylinder with elastic cantilever embedded
in the cylinder. The vortices that are shed from the cylinder excite oscillations in the cantilever.
The geometric parameters are tabulated in Table 1 (left). The no-slip boundary condition is
prescribed at the walls - the fixed cylinder, the elastic cantilever and the upper and lower walls.
At the inlet on the left-hand side of the fluid domain, a parabolic velocity profile is prescribed as
i (y) = 35.69 ',y ("H —y) with mean inlet velocity 5;,. The outlet pressure is chosen such that
the free-stream Mach number is 0.05 and thus the flow can be considered incompressible. The
reason for the choice of an incompressible-flow benchmark for the compressible-flow solver is
the lack of benchmarks for FSI problems.

The structure and fluid parameters found in Table 1 (right) are chosen such that for FSI1
the flow stabilises at the steady state, whereas FSI2 and FSI3 lead to periodic oscillations of
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Fig. 1. Coarse mesh with size h = 0.02 m and 3040 elements (fop) and fine mesh with size h = 0.01 m
and 12 092 elements (bottom)

Table 1. Geometric parameters (left) and physical parameters (right)

symbol value [m] symbol units  FSIl FSI2 FSI3

channel length i 2.5 ) g 103 10 103
channel height 'H 0.41 ‘B & 1410 1.4-10% 5.6-10°
cylinder centre C [0.2,0.2] Sv Hlf—fg 0.4 0.4 0.4
cylinder radius r 0.05 b g 103 103 10°%
cantilever length 5L 0.35101 i X8 1073 1073 1073
cantilever height SH 0.02 i o 0.2 1 2
reference point A [0.6,0.2] Re - 20 100 200

the structure at a frequency close to the second lowest natural frequency of the structure. The
added-mass effect occurs in the case for FSI1 and FSI3, where % = . The added-mass effect
is a numerical instability that occurs when the density of the structure is similar to or lower than
the density of the fluid. FSI1, as it is a steady-state problems, does not cause significant stability
issues, whereas FSI3 does. Therefore, subitarations need to be performed for FSI3, otherwise
the solver would not converge. On the other hand, weak coupling is sufficient for FSI2.

In order to compare displacement of the structure, a reference point (point A) was chosen
at the end of cantilever in the middle of its thickness. The displacement of the structure (at
point A) for the FSI1, FSI2 and FSI3 benchmarks is shown in Table 2 and Figs. 2 and 3,
respectively. FSI1 benchmark was performed with two different meshes, shown in Fig. 1, and
different degrees of basis polynomials. The FSI2 and FSI3 benchmarks were performed with
the finer mesh and cubic basis polynomials. An agreement with Turek and Hron benchmark
in all the cases is indisputable. We can see that the y-component agrees better than the x-
component, since the z-component of the amplitude is one order of magnitude lower than the
y-component. A sequence of velocity fields during half a period is shown in Fig. 4 for FSI2 and
FSI3 benchmarks.
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Table 2. FSI1 benchmark: z and 3 components of displacement at point A. Values 2.2708 - 1075 m and
8.2086 - 10~* m are considered exact x and i components of displacement, respectively

h [m] elements order d, [m] d, error [%] d, [m] d, error [%]
0.02 3040 2 1.995-107° 12.2 6.709 - 10~ 18.3
0.02 3040 3 2.221-107° 2.2 7.568 - 10~* 7.8
0.02 3040 4 2.253-107° 0.8 8.004 - 1074 2.5
0.01 12092 2 2.112-107° 7.0 7.467 - 1074 9.0
0.01 12092 3 2.252-107° 0.8 7.863 - 1074 4.2
0.01 12092 4 2.271-107° 0.0 8.024 - 10~ 2.3
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Fig. 2. FSI2 benchmark: displacement at point A
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Fig. 3. FSI3 benchmark: displacement at point A
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Fig. 4. Contours of velocity magnitude during half a period for the FSI2 (left column) and FSI3 (right
column) benchmark
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