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We consider a fluid-saturated porous medium subjected to deformation waves which generate
peristaltic driven flow. The deformation is actuated by piezoelectric elements periodically dis-
tributed in the structure and controlled locally by electrodes inducing the electrostatic field. The
presented research is aimed to explore functionality of such metamaterial structures by in silico
experiments. For this we employ a two-scale modelling approach based on the homogenization
method [1] combined with the sensitivity analysis. We extend the homogenized model of the
fluid-saturated piezo-poroelastic medium equipped with the controlling conductor networks [5]
to describe the fluid-structure interaction respecting influence of the deformation of the micro-
configuration.

The computational model arises from the homogenization of the fluid-saturated porous
medium. To treat the large deformation phenomenon, we follow the Eulerian approach leading
to the updated-Lagrangian incremental formulation in the two-scale setting [2, 3]. In the con-
text of locally periodic structures, local cell problems are obtained which provide characteristic
responses of the microstructures with respect to macroscopic strains, fluid pressure and electric
potentials. Within the homogenization scheme introduced for the incremental fluid-structure
interaction problem, the macroscopic nonlinearity of the device is captured using the first order
expansions of the homogenized coefficients with respect to macroscopic variables [6], cf. [4].
For this, the sensitivity analysis approach is employed. We present examples of microstructures
and results of the simulations as the proof of concept aimed at designing smeared peristaltic
pumps in a bulk medium.

The heterogeneous periodic structure of the two-phase medium is constituted by a piezoelec-
tric skeleton interacting with a viscous fluid saturating the pores in the skeleton. The structure
characterized by the pore size `ε ≈ ε, where the parameter ε → 0 is related to the asymptotic
analysis leading to a model of the homogenized fluid saturated piezo-poroelastic medium.

Micromodel In the piezoelectric (PZ) solid, the Cauchy stress tensor σε and the electric dis-
placement ~Dε = (Dε

i ) depend on the strain tensor e(uε) = (∇uε + (∇uε)T )/2 defined in terms
of the displacement field uε = (uεi ), and on the electric field ~Eε = ∇ϕε defined in terms of the
electric potential, Eε

i = ∂xi ϕ
ε, such that

σε(uε, ϕε) = AAεe(uε)− gT ~Eε(ϕε) ,

~Dε(uε, ϕε) = gεe(uε) + dε ~Eε(ϕε) ,
(1)

where AAε = (Aε
ijkl) is the elasticity fourth-order symmetric positive definite tensor of the solid,

where Aijkl = Aklij = Ajilk, the deformation is coupled with the electric field through the 3rd
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Fig. 1. The periodic microstructure with two electrodes (left); the representative unit cell Y (right)

order tensor gε = (gεkij), gεkij = gεkji and dε = (dεkl) is the permittivity tensor. The skeleton
includes also conducting elastic parts (electrodes) constituting equipotential surfaces. Obvi-
ously tensors gε and dε vanish in these electrodes which are used to control deformation of the
PZ solid, thus, modifying the shape of the pores saturated by an incompressible viscous fluid
characterized by the viscosity µε = ε2µ̄. The fluid flow in the pores is governed by the lin-
earized Navier-Stokes equations. On the fluid-solid interface, standard interaction conditions
are prescribed guaranteeing continuity of the velocities and traction stresses of the two-phase
medium.

In order to account for the localized electric field control inducing steep electric potential
gradients ≈ 1/ε, a proper scaling of the PZ material parameters must be considered when
passing to the limit ε→ 0, as suggested in [5], such that

gε(x) = εḡ , dε(x) = ε2d̄ . (2)

Homogenized model The limit macroscopic equations obtained for ε → 0 involve the ho-
mogenized coefficients expressed in terms of the characteristic responses which are obtained
upon solving the so-called local problems imposed in the representative cell Y , comprised of
the solid and fluid parts, see Fig. 1.

The homogenization procedure leads to a model describing the fluid flow in the deforming
PZ-poroelastic medium situated in the macroscopic domain Ω ⊂ R3. Due to the non-stationary
characteristic flow response , the hydraulic permeability KH depends on time and constitutes the
dynamic Darcy law governing the fluid seepage. The scaling (2) leads to a macroscopic model
of a porous medium with a modified constitutive law involving the macroscopic potentials ϕ̄k,
k = 1, . . . , k̄ which provide a control handle. The model is represented by following system of
equations imposed in a time-space domain, x ∈ Ω, t > 0, involving the macroscopic fields, the
displacements u, the fluid seepage velocity w, and the pore fluid pressure p satisfying

ρ̄ü + ρf ẇ−∇ · σH(u, p) = 0 ,

where σH(u, p) = AAHe(u)− pBH +
∑

k

Hkϕ̄k ,

BH : e(u̇) +MH ṗ+∇ · w =
∑

k

Zk ˙̄ϕk ,

where w = −
∫ t

0

KH(t− τ)[∇p(τ, ·) + ρf ü(τ, ·)]dτ ,

(3)

whereby the voltage potentials ϕ̄k(t, x), k = 1, . . . , k∗ are assumed to be known functions of
time t and macroscopic position x. This model involves homogenized coefficients AAH ,BH ,
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Pressure p(x, t) along x-axis seepage velocity w(x, t) along x-axis

Cumulative flux Q(t) [m3/m2] (right end) solid velocity u̇(x, t) along x-axis

Fig. 2. Characterization of the peristaltic flow in the 1D continuum due the PZ actuation controlled by
electric field

KH , MH , Z, H, further denoted by IH in a generic sense. The inertia effects are pronounced by
the terms involving effective densities ρ̄ and ρf , and also by the dynamic permeability.

Geometrical nonlinearity Since the peristaltic flow is driven by the pore deformation, it
is crucial to capture the influence of the deformation on the permeability and other effective
model parameters, though it is derived using the linear kinematics framework. As a compromise
between the linear modelling leading to model (3) and a fully nonlinear treatment, cf. [2], we
suggest to apply the approach proposed in [6] which is based on the domain method of the
shape sensitivity analysis of the characteristic responses defining homogenized coefficients IH.
This enables to introduce perturbed coefficients ĨH(e(u), p, {ϕ̄k}) using the first order expansion
formulae which have the generic form applicable to each of the homogenized coefficients,

ĨH(e(u), p) = IH0 + δeIH
0 : e(u) + δpIH

0p+
∑

k

δϕ,kIH0ϕ̄k . (4)

Although the two-scale problem becomes nonlinear, for a periodic initial configuration all the
characteristic responses and the sensitivities are computed for the unperturbed cell Y , thus,
independently of the macroscopic solutions.

Numerical illustration To illustrate capability of the material to transport the fluid against
the pressure slope, a 1D macroscopic model was considered, whereby the effective material
parameters are computed for a 3D microstructure, see Fig. 1, where the skeleton is made of
the piezoceramic PZT-5 material. In this example we neglect the inertia effects. A pressure
slope ∆p = p̄2 − p̄1 > 0 is prescribed, which defines the boundary conditions p(0, t) = p̄1 and
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p(L, t) = p̄2 of the 1D homogenized continuum. The reduced 1D model of a prism obtained
from (3) due to the symmetry assumptions involves displacement u = u1, seepage w = w1,
strain e(u) = e11(u) = u′ and voltage ϕ being functions of (x, t), whereby the prime ()′

denotes d/dx. Noting that the total stress σ = −p̄2 is constant, the following equations hold

σ := Ae(u)− pB +Hϕ = −p̄2 ,
Mṗ+ w′ +Be(u̇) = Zϕ̇ ,

w = −K̃p′ , where K̃(e, p, ϕ) = K0 + ∂eK0e+ ∂pK0p+ ∂ϕK0ϕ .

Upon eliminating e(u), we obtain the following equation for p(x, t) to be solved for a given the
electric potential wave ϕ(x, t),

Cṗ− (K0 + ∂eK0A
−1σ +Kpp+Kϕϕ)p′′ + (Kpp

′ +Kϕϕ
′)p′ = Fϕ̇ ,

where

C = M +BA−1B , F = Z +BA−1H ,

Kp = ∂eK0A
−1B + ∂pK0 , Kϕ = ∂eK0A

−1H + ∂ϕK0 .

In Fig. 2, the response is depicted in terms of pressure p(x, t), the fluid seepage velocity w(x, t),
the bulk material velocity u̇(x, t) and the cumulative flux Q(t) =

∫ t

0
w(0, τ)dτ which reveals

the pumping effect. The pressure slope was p̄2 − p̄1 = 103 Pa.

Conclusions and perspectives Respecting the geometrical nonlinearity by virtue of the solution-
dependent homogenized coefficients of the model is crucial to capture the performance of the
peristaltic pump, i.e., a “smart structure” transporting the fluid against the flux due to the pres-
sure gradient. Several issues to be explored in the further research include the control through
the potential ϕ(x, t), fully collapsible pores, and the influence of the acoustic wave propagation.
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