
Applied and Computational Mechanics 15 (2021) 105–122

Natural frequencies analysis of functionally graded circular
cylindrical shells

N. Alshabatata,∗, M. Zannonb

aMechanical Engineering Department, Tafila Technical University Tafila 66110, Jordan
bApplied Mathematics Department, Tafila Technical University Tafila 66110, Jordan

Received 11 November 2020; accepted 28 June 2021

Abstract

In the present work, a study on natural frequencies of functionally graded materials (FGM) circular cylindrical
shells is presented. The FGM is considered to be a mixture of two materials. The volumetric fractions are considered
to vary in the radial direction (i.e., through the thickness) in compliance with a conventional power-law distribution.
The equivalent material properties are estimated based on the Voigt model. The analysis of the FGM cylindrical
shells is performed using the third-order shear deformation shell theory and the principle of virtual displacements.
Moreover, the third-order shear deformation shell theory coupled with Carrera’s unified formulation is applied
for the derivation of the governing equations associated with the free vibration of circular cylindrical shells. The
accuracy of this method is examined by comparing the obtained numerical results with other previously published
results. Additionally, parametric studies are performed for FGM cylindrical shells with several boundary conditions
in order to show the effect of several design variables on the natural frequencies such as the power-law exponent,
the circumferential wave number, the length to radius ratio and the thickness to radius ratio.
c© 2021 University of West Bohemia.
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1. Introduction

Functionally graded materials (FGMs) are composite materials made of a mixture of at least
two base materials with a continuous variation of their volumetric fraction in accordance with
a prescribed function. Therefore, the material properties of the FGM, such as the Young’s
modulus and density, continuously and smoothly vary by means of the volume. The smooth
variation of the material properties overcomes the delamination problem, which is common
in conventional laminated composites. The first FGM was introduced in Japan in 1984 for
designing a thermal barrier to endure high-temperature gradient conditions [32]. Since then
FGMs have attracted much interest in other fields such as the biomedical, nuclear, power plant
and structure engineering fields. Optimal designs of FGM structures have been previously
presented in [2, 3, 25].

Cylindrical shells are commonly employed in many engineering and industry applications
such as the aerospace, automobile, pressure vessels and ships industries. The free vibration
study of these structures is an important aspect of their design procedure. In the past two de-
cades, many researchers studied the free vibration characteristics of FGM cylindrical shells.
Some authors used the classical shell theory (CST) to study the free vibration of FGM circular
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cylindrical shells. For example, Loy et al. [27] were pioneers in the study of the vibration of
functionally graded cylindrical shells. They studied FGMs whose constituents have volumetric
fraction gradients through the thickness direction based on simple power-law. The governing
equations were derived using Love’s thin shell theory. The Rayleigh-Ritz method was employed
to obtain the eigenvalue equation for simply-supported cylinders. A similar study was conduc-
ted by Pradhan et al. [34] for various boundary conditions but with modified expression for a
spatial displacement field. A similar approach was adopted by Arshad et al. [4] to investigate the
vibration characteristics of FGM cylindrical shells under several types of volumetric fraction
laws. Haddadpour et al. [20] researched the free vibration of FGM cylindrical shells through
temperature variation. In [20], the material properties were considered to be function of the
temperature. The governing equations were obtained on the basis of the Love’s shell theory with
von Karman-Donnell’s nonlinearity type, and the Galerkin method was employed to solve the
equations. Using the wave propagation approach, Iqbal et al. [21] investigated the free vibration
of FGM cylindrical shells. The first-order shear deformation theory (FSDT) has been adopted by
some authors. For example, Tornabene [42] investigated the free vibration of FGM cylindrical
shells using the FSDT with the generalized differential quadrature method. The constituents of
base materials were considered to vary in the direction of the thickness, in compliance with four-
parameter power-law distributions. Su et al. [40] presented a unified solution method for free
vibration analysis of functionally graded cylindrical and conical shells and annular plates using
FSDT and Rayleigh-Ritz method. A four-parameter power law gradation along the thickness
direction for material properties was employed. Kim [24] studied free vibrations of FGM cylin-
drical shells with material gradient through thickness following the four-parameter power-law.
The cylinders were partially resting on an elastic foundation. The motion was represented by
having as basis the first-order shear deformation theory. The motion equation for the eigenvalue
problem was obtained using Rayleigh-Ritz method as well as the variational approach. Sha-
hbaztabar et al. [38] investigated the free vibrations of FGM cylinders implanted into a Pasternak
elastic foundation, based on the first-order shear deformation theory and the Rayleigh-Ritz me-
thod. The cylindrical shells were in partial or full contact with a fluid. Recently, Liu et al. [26]
investigated the free vibrations characteristics of FGM circular cylinders based on the first-order
shear deformation shell theory. The displacements were expressed as wave function expansions.
The base materials were considered to vary in the direction of the thickness, in compliance with
a four-parameter power-law distribution. Najafizadeh and Isvandzibaei [29] studied the free
vibration of FGM thin cylindrical shells with ring supports using third-order shear deformation
theory (TSDT), and the governing equations were obtained using an energy functional with the
Rayleigh-Ritz method. Matsunaga [28] investigated the vibration and stability of functionally
graded cylindrical shells, by means of a two-dimensional higher-order theory. The Hamilton’s
principle was employed for the derivation of the governing equations, while accounting for
the effects of transverse shear, normal deformations, and rotational inertia. By decreasing the
number of terms in the power series expansion, several higher-order theories were used to solve
the eigenvalue problem. Shen [39] investigated the nonlinear free vibration of FGM cylindri-
cal shells embedded in an outer elastic medium and in thermal environments using Reddy’s
third order shear deformation theory with von Karman nonlinear kinematics. The equations of
motion were solved using perturbation technique. Punera and Kant [35] studied the free vib-
rations of FGM open cylindrical shells using several higher-order theories. Then, the Navier’s
method was employed to transform the partial equations into an eigenvalue problem. Elasticity
based solutions have been used, as well. Chen et al. [16] investigated the free vibration of
simply supported, fluid-filled FGM cylindrical shells. Using the three-dimensional fundamental
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equations of anisotropic elasticity, a state equation with variable coefficients was derived in
a unified matrix form and a laminate approximate model was employed. Alibeigloo et al. [1]
studied the free vibration of piezoelectric layers embedded in a FGM cylindrical shell using the
state space method for simply supported boundary conditions and the differential quadrature
method for non-simply supported boundary conditions. The constituents of materials were
assumed to vary along the thickness according to an exponential law with Poisson’s ratio held
constant. Jin et al. [22] adopted the first-order shear deformation shell theory model to FGM
cylindrical shells. In [22], the Haar-wavelet discretization was employed in the axial direction,
and the Fourier series were adopted for the circumferential direction. The partial differential
equations were transformed to algebraic equations. Then, the natural frequencies of the FGM
cylinders were attained by solving algebraic equations. Ni et al. [31] used the Hamiltonian
approach to find the exact solution for the free vibration of FGM circular cylindrical shells
embedded in an elastic medium. Based on the Reissner shell theory and symplectic mathematics,
solutions were determined analytically. Furthermore, the finite element method was employed
by Ram et al. [37] to study the free vibration of a cylindrical shell with a cut out. Golpayegani
et al. [19] employed the FEM to determine the natural frequencies of FGM cylindersnwith a
variable thickness.

In the present work, an analysis of a FGM closed circular cylindrical shell is performed using
the higher-order shear deformation shell theory and the virtual displacements principle in a strong
form based on the collocation of radial basis functions. The eigenvalues governing equation
is obtained using the Carrera’s unified formulation (CUF) [30]. The CUF was introduced by
Carrera [4–15, 30] for multilayered composite structures. Generally, it provides a procedure
for implementing many structural theories and finite elements in a unified manner. Another
major advantage of the CUF is that the governing equations are expressed in terms of several
fundamental nuclei. These nuclei are independent of the order of thickness functions employed
in the transverse direction. The CUF was extensively employed in previous studies, more
details about it are available, e.g., in [41]. In the present work, the volumetric fractions of
the constituents of the base materials follow a conventional power-law distribution through
the thickness. The current analysis is examined by comparing the obtained results with those
of previous studies. In addition, parametric studies are performed for FGM cylindrical shells
considering several boundary conditions in order to show the effect of several design variables
on the natural frequencies.

2. Functionally graded material

The FGM circular cylindrical shells employed in this research are made of two materials. The
volumetric fractions of the base materials gradually vary in the radial direction of the cylinder
in compliance with the simple power-law. The volumetric fraction of the first base material is
assumed as

V1(z) =

(
z

h
+
1
2

)P

, (1)

where P ≥ 0 is the power-law exponent, h is the thickness of the cylinder, z is the radial
coordinate of the cylinder, and z ∈

[
−h
2 ,

h
2

]
. The volumetric fraction of the second base material

is given by V2(z) = 1− V1(z). Equivalent material properties are estimated by the Voigt model
as
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E(z) = E1V1(z) + E2V2(z) = (E1 − E2)

(
z

h
+
1
2

)P

+ E2, (2)

ρ(z) = ρ1V1(z) + ρ2V2(z) = (ρ1 − ρ2)

(
z

h
+
1
2

)P

+ ρ2, (3)

ν(z) = ν1V1(z) + ν2V2(z) = (ν1 − ν2)

(
z

h
+
1
2

)P

+ ν2, (4)

where E is the modulus of elasticity, ρ is the mass density, ν is the Poisson’s ratio, and the
subscripts 1 and 2 refer to materials 1 and 2, respectively. According to (2)–(4), the material
properties vary gradually from those of material 1 at the outer surface (z = h/2) to those of
material 2 at the inner surface (z = −h/2). The variations of the volumetric fraction of material 1
through the thickness of the cylinder are shown in Fig. 1.
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Fig. 1. Variations of the volumetric fraction of the first constituent along the cylinder thickness

3. Mathematical formulation

3.1. Governing equations and boundary conditions

Let us consider a circular cylindrical shell shown in Fig. 2, where R is the radius, L is the length,
and h is the thickness. In this study, the third-order shear deformation theory was applied while
considering transverse shear and rotary inertia. Hence, the displacements can be written in the
following polynomial form [36, 44]

u(x, θ, z, t) = u0(x, θ) + zψα(x, θ) + z3ϕα(x, θ),

v(x, θ, z, t) = v0(x, θ) + zψθ(x, θ) + z3ϕθ(x, θ), (5)
w(x, θ, z, t) = w0(x, θ) + zψz(x, θ),

where u0, v0 and w0 are the middle surface displacements of the shell, ψα, ψθ, ψz are the middle
surface rotations, and ϕα, ϕθ are thee higher-order terms in the Taylor’s series expansion that
represents the higher-order transverse deformations field [36,44]. In this section, the fundamental
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nuclei, which allow the derivation of the equations of motion and the boundary conditions in
compliance with the CUF, are obtained in a strong form [30]. The aim is the collocation of the
present radial basis functions, see [23, 30].

The functionally graded shell is divided into a number (NL) of uniform-thickness layers.
The square of the infinitesimal linear segment in the κ-layer, its associated infinitesimal area
and its volume are given by [25]

df 2κ =dx
2 +

(
1 +

z

R

)
dθ2 + dz2, dΩκ =

(
1 +

z

R

)
dx dθ,

dVκ=
(
1 +

z

R

)
dx dθ dz.

(6)

Note that the formulation of a shell theory can be followed from [25]. The stresses and strains
are split into in-plane and normal components, which are then denoted by the subscripts p and n,
respectively.

Fig. 2. A circular cylindrical shell

The mechanical strains in the κ-th layer can be related to the displacement field u(κ) =[
u
(κ)
x , u

(κ)
θ , u

(κ)
z

]T
by the geometrical relations

ε
(κ)
pG =

⎛
⎜⎝

ε
(κ)
xx

ε
(κ)
θθ

ε
(κ)
xθ

⎞
⎟⎠ = (

D(κ)p + A(κ)p

)
u(κ),

ε
(κ)
nG=

⎛
⎜⎝

ε
(κ)
xz

ε
(κ)
θz

ε
(κ)
zz

⎞
⎟⎠ = (

D
(κ)
nΩ +D(κ)nz − A(κ)n

)
u(κ),

(7)

where G denotes the geometrical relations. The differential matrix operators D
(κ)
p , D

(κ)
nΩ , D

(κ)
nz ,

A
(κ)
n and A

(κ)
p are expressed as follows [23]

D(κ)nz =

⎡
⎣ ∂z 0 0
0 ∂z 0
0 0 ∂z

⎤
⎦ , D(κ)p =

⎡
⎣ ∂x 0 0
0 ∂θ

1+z/R
0

∂θ
1+z/R

∂x 0

⎤
⎦ ,
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D
(κ)
nΩ =

⎡
⎣ 0 0 ∂x
0 0 ∂θ

1+z/R

0 0 0

⎤
⎦ , A(κ)n =

⎡
⎣ 0 0 00 −1

R
0

0 0 0

⎤
⎦ , A(κ)p ≡ [0].

The three-dimensional constitutive equations are given by [36, 44] as

σα=Q11εα +Q12εβ +Q13εz +Q16γαβ,

σβ =Q12εα +Q22εβ +Q23εz +Q26γαβ,

σα=Q13εα +Q23εβ +Q33εz +Q36γαβ,

σβz =Q44γβz +Q45γαz,

σαz =Q45γβz +Q55γαz,

σαβ =Q16εα +Q26εβ +Q36εz +Q66γαβ.

(8)

The case considered in this study is a particular case in which the material has the following
properties: Q16 = Q26 = Q16 = Q36 = Q45 = 0. The matrices of the three-dimensional elastic
constants Q

(κ)
pp , Q

(κ)
pn , Q

(κ)
np , and Q

(κ)
nn are presented as follows [23, 30, 44]

Q(κ)pp =

⎡
⎢⎣

Eκ(1−(νκ)2)
1−3(νκ)2−2(νκ)3

Eκ(νκ+(νκ)2)
1−3(νκ)2−2(νκ)3 0

Eκ(νκ+(νκ)2)
1−3(νκ)2−2(νκ)3

Eκ(1−(νκ)2)
1−3(νκ)2−2(νκ)3 0

0 0 Eκ

2(1+νκ)

⎤
⎥⎦ ,

Q(κ)pp =

⎡
⎢⎣

Eκ

2(1+νκ) 0 0
0 Eκ

2(1+νκ) 0

0 0 Eκ(1−(νκ)2)
1−3(νκ)2−2(νκ)3

⎤
⎥⎦ ,

Q(κ)pn =

⎡
⎢⎣
0 0 Eκ(νκ+(νκ)2)

1−3(νκ)2−2(νκ)3

0 0 Eκ(νκ+(νκ)2)
1−3(νκ)2−2(νκ)3

0 0 0

⎤
⎥⎦ ,

Q(κ)np =

⎡
⎣ 0 0 0

0 0 0
Eκ(νκ+(νκ)2)
1−3(νκ)2−2(νκ)3

Eκ(νκ+(νκ)2)
1−3(νκ)2−2(νκ)3 0

⎤
⎦ .

(9)

In this work, the strong form of the governing differential equations and boundary conditions is
obtained in terms of displacement components and their derivatives. This is done by means of
the principle of virtual displacements (PVD) [17, 30]

δL
(κ)
i = δL(κ)p + δL

(κ)
ξ . (10)

The virtual variation of the strain energy is considered as the sum of two contributes [23,30,44]

Nl∑
k=1

δL
(κ)
i =

Nl∑
k=1

∫
Aκ

∫
Ωκ

δεκT

nGσκ
nC dΩκ dz +

Nl∑
k=1

∫
Aκ

∫
Ωκ

δεκT

pGσκ
pC dΩκ dz, (11)

whereΩκ and Aκ are the integration domains in the (x, θ) plane and the z-direction, respectively.
Here T denotes the transposition of the relevant vector, δL

(κ)
i is the external work for the κ-th

layer, and C denotes the constitutive equations.
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The three displacement components ux, uθ, and uz and their relative variations can be
modelled as [30]

(ux, uθ, uz)=Fτ (uxτ , uθτ , uzτ),

(δux, δuθ, δuz)=Fτ (δuxτ , δuθτ , δuzτ),
(12)

where Fτ are the functions of the thickness coordinate z, and τ is the sum index. By resorting to
the displacement field in (8), the vectors Fτ =

[
1 z z3

]
are selected for the displacements u, v,

w. Then, all the terms of the motion equations are obtained by integrating through the thickness
direction.

By replacing the geometrical relations (7), the material constitutive equations (8), and the
approximation of the displacement components (5), and after integrating by parts (11), the
governing equations for the κ-th layer shell subjected to mechanical loadings are given as

Kκ
uuu

κ
τ −Mκüκ

τ = 0, (13)

where the double dots denote the accelerations, and the fundamental nucleus K(κτs)
uu is obtained

in the form [23, 30]

K(κτs)
uu =

∫
Aκ

⎡
⎢⎢⎢⎣
(Ap − Dp)T Q

(κ)
pp (Ap +Dp)+

(Ap − Dp)T Q
(κ)
pn (DnΩ +Dnz − An)+

(−DnΩ +Dnz − An)T Q
(κ)
np (Ap +Dp)+

(−DnΩ +Dnz − An)T Q
(κ)
nn (DnΩ +Dnz − An)

⎤
⎥⎥⎥⎦FτFs

(
1 +

z

R

)
dz, (14)

where
∫

Aκ
. . . dz =

∫ hκ/2
−hκ/2 . . . dz,

(Kκτs
uu )11 = − Eκ(1− (νκ)2)

1− 3(νκ)2 − 2(νκ)3
Jκτs

β/α∂s
α∂τ

α − Eκ

2(1 + νκ)
Jκτs

α/β∂s
β∂τ

β +

Eκ

2(1 + νκ)
(Jκτzsz

αβ − Jκτzs
β − Jκτsz

β + Jκτs
β/α),

(Kκτs
uu )12 = − Eκ(νκ + (νκ)2)

1− 3(νκ)2 − 2(νκ)3
Jκτs∂τ

α∂s
β − Eκ

2(1 + νκ)
Jκτs∂s

α∂τ
β ,

(Kκτs
uu )13 = − Eκ(1− (νκ)2)

1− 3(νκ)2 − 2(νκ)3
Jκτs

β/α∂τ
α − Eκ(νκ + (νκ)2)
1− 3(νκ)2 − 2(νκ)3

1
R

Jκτs
αα

∂τ
α −

Eκ(νκ + (νκ)2)
1− 3(νκ)2 − 2(νκ)3

Jκτs
β ∂τ

α +
Eκ

2(1 + νκ)
(Jκτzs

β ∂s
α − Jκτs

β/α∂s
α),

(Kκτs
uu )21 = − Eκ(νκ + (νκ)2)

1− 3(νκ)2 − 2(νκ)3
Jκτs∂s

α∂τ
β − Eκ

2(1 + νκ)
Jκτs∂τ

α∂s
β,

(Kκτs
uu )22 = − Eκ

2(1 + νκ)
Jκτs

β/α∂s
α∂τ

α +
Eκ

2(1 + νκ)

(
Jκτzsz

αβ − 1
R

Jκτzs
α − 1

R
Jκτsz

α +
1
R2

Jκτs
α/β

)
,

(Kκτs
uu )23 = − Eκ(νκ + (νκ)2)

1− 3(νκ)2 − 2(νκ)3
Jκτs

ββ
∂τ

β − Eκ(νκ + (νκ)2)
1− 3(νκ)2 − 2(νκ)3

Jκτs
α ∂τ

β +

Eκ

2(1 + νκ)

(
Jκτzs

α ∂s
β − 1
R

Jκτs
α/β∂s

β

)
,
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(Kκτs
uu )31 =

Eκ(1− (νκ)2)
1− 3(νκ)2 − 2(νκ)3

Jκτ
β/α∂s

α +
Eκ(νκ + (νκ)2)
1− 3(νκ)2 − 2(νκ)3

(
1
R

Jκτ
α ∂s

α + Jκτzs
β ∂s

α

)
−

Eκ

2(1 + νκ)

(
Jκτsz

β ∂τ
α − Jκτs

β/α∂τ
α

)
,

(Kκτs
uu )32 =

Eκ(νκ + (νκ)2)
1− 3(νκ)2 − 2(νκ)3

Jκτs
βk

∂s
β +

Eκ(νκ + (νκ)2)
1− 3(νκ)2 − 2(νκ)3

Jκτzs
α ∂s

β −

Eκ

2(1 + νκ)

(
Jκτsz

α ∂τ
β − 1

R
Jκτs

α/β∂τ
β

)
,

(Kκτs
ul )33 =

Eκ(1− (νκ)2)
1− 3(νκ)2 − 2(νκ)3

+
Eκ(1− (νκ)2)

1− 3(νκ)2 − 2(νκ)3
Jκττ sz

αβ +

2
Eκ(νκ + (νκ)2)
1− 3(νκ)2 − 2(νκ)3

1
R

Jκτs
1 +

Eκ(νκ + (νκ)2)
1− 3(νκ)2 − 2(νκ)3

(
Jκτzs

β + Jκτsz
β

)
+

Eκ(νκ + (νκ)2)
1− 3(νκ)2 − 2(νκ)3

1
R
(Jκτzs

α + Jκτz
α )− Cκ

44J
κτs
α/β∂s

β∂τ
β − Eκ

2(1 + νκ)
Jκτs

β/α∂s
αατ

α,

where

(Jκτs, Jκτs
α , Jκτs

β , Jκτs
α/β, Jκτs

β/α, Jκτs
αβ ) =

∫
Aκ

FτFs ·
(
1, 1, 1 +

z

R
,
1
1 + z

R

, 1 +
z

R
, 1 +

z

R

)
dz,

(Jκτzs, Jκτzs
α , Jκτzs

β , Jκτzs
α , Jκτzs

β/α , Jκτzs
αβ ) =

∫
Aκ

∂Fτ

∂z
Fs ·

(
1, 1, 1 +

z

R
,
1
1 + z

R

, 1 +
z

R
, 1 +

z

R

)
dz,

(Jκτsz , Jκτsz
α , Jκτsz

β , Jκτsz

α/β , Jκτsz

β/α , Jκτsz
αβ ) =

∫
Aκ

Fτ
∂Fs

∂z
·

(
1, 1, 1 +

z

R
,
1
1 + z

R

, 1 +
z

R
, 1 +

z

R

)
dz,

(Jκτzsz , Jκτzsz
α , Jκτzsz

β , Jκτzsz

α/β , Jκτzsz

β/α , Jκτzsz
αβ ) =

∫
Aκ

∂Fτ

∂z

∂Fs

∂z
·

(
1, 1, 1 +

z

R
,
1
1 + z

R

, 1 +
z

R
, 1 +

z

R

)
dz,

and Mκ is the fundamental nucleus for the inertial term given by

M
(κτs)
11 =M

(κτs)
22 =M

(κτs)
33 = ρκJ

(κτs)
xθ ,

M
(κτs)
12 =M

(κτs)
13 =M

(κτs)
22 =M

(κτs)
23 =M

(κτs)
31 =M

(κτs)
32 = 0,

(15)

where ρκ is the mass density of the κ-th layer, and J
(κτs)
xθ =

∫
Aκ

FτFs

(
1 + z

R

)
dzκ.

The Navier-type closed form solution [23,30,41] is applied to obtain the natural frequencies
of the FGM circular cylinder shell. Placement of the Navier-type closed form solution into the
governing equation (13) results in an algebraic system of ordinary differential equations in the
time domain, which can be written as an eigenvalue problem. The resulting equations can be
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written in the following matrix form

∣∣∣∣K(κτs)
uu −

(
K(κτs)

uσ

(
K(κτs)

uσ

)−1
K(κτs)

σu

)
− λM

(κτs)
ij

∣∣∣∣ = 0, where λ = ω2mn.

The above eigenvalue equation can be solved for the various eigenvalues and associated
eigenvectors, and the lowest eigenvalue gives the square of the fundamental frequency of
vibration.

3.2. Collocation with radial basis functions

We apply collocation with radial basis functions to interpolate the algebraic form of the motion
equations. Unless otherwise stated, a Chebyshev grid is employed [13, 18, 23, 30]. For all the
examples presented in this paper, the following Wendland function is considered

φ(x) = (1− cr)8 + (32(cr)3 + 25(cr)2 + 8cr + 1),

where the shape parameter is obtained by an optimization procedure, as detailed in the study by
Ferreira and Fasshauer [18].

4. Results and discussion

The method discussed in Section 3 is herein employed to study the free vibration of a circular
cylindrical shell composed by FGMs, whose material properties vary through the thickness in
compliance with the simple power-law. In this section, a validation study is conducted. Then, a
parametric study is performed to investigate the influence of different parameters on the natural
frequencies of FGM cylindrical shells.

4.1. Validation studies

The accuracy and efficacy of the proposed approach are examined by comparing the present
results of the free vibration of FGM cylindrical shells with other results published in previous
studies. The FGM considered here is composed of stainless steel and nickel. The material
constituents vary through the thickness of the cylinders according to a simple power-law (1).
The material properties of the stainless steel are Est = 207.788 GPa, νst = 0.317 756, and
ρst = 8 166 kg/m

3. The material properties of the nickel are Eni = 205.098 GPa, νni = 0.31,
and ρni = 8 900 kg/m

3. Tables 1 and 2 show comparisons of the natural frequencies of simply-
supported FGM cylindrical shells with those of Loy et al. [27], Jin et al. [22], and Xiang et
al. [43]. The dimensions of the cylindrical shells are: radius (R) = 1 m, length to radius ratio
(L/R) = 20, thickness to radius ratio (h/R) = 0.05 (results in Table 1), and h/R = 0.002
(results in Table 2). The circular cylinders have stainless steel on their inner surface and nickel on
their outer surface. Table 3 shows comparisons of the natural frequencies of clamped-clamped
FGM cylindrical shells made with those of Iqbal et al. [21] and Ni et al. [31]. The circular
cylinders have stainless steel on their outer surface and nickel on their inner surface. The results
of [21,27,43] are based on the classical shell theory, while the results of [22,31] are based on the
elasticity approach. As can be seen from Tables 1–3, the current results are in good agreement
with the existing results of [22, 27, 31, 43].
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Table 1. Natural frequencies [Hz] of a circular cylindrical shell with circumferential wave number n for
SS–SS end conditions with h/R = 0.05, L/R = 20, and R = 1 m

P
n

1 2 3 4 5 6 7 8 9 10
Present 13.123 32.142 89.712 171.791 277.58 407.47 560.71 737.44 937.94 1 162.09

0.5 Ref. [27] 13.126 32.151 89.818 171.970 277.95 407.62 560.94 737.87 938.42 1 162.60
Ref. [43] 13.114 32.038 89.716 171.870 277.85 407.53 560.85 737.78 938.33 1 162.50
Present 13.342 32.678 91.201 174.639 282.46 414.24 570.09 749.87 953.57 1 181.27

2 Ref. [27] 13.344 32.683 91.309 174.830 282.57 414.39 570.25 750.13 954.00 1 181.90
Ref. [43] 13.337 32.579 91.211 174.740 282.47 414.30 570.16 750.03 953.90 1 181.80
Present 13.525 33.148 92.545 177.201 286.46 420.16 578.17 760.41 967.06 1 198.18

15 Ref. [27] 13.528 33.157 92.617 177.330 286.61 420.31 578.40 760.84 967.63 1 198.80
Ref. [43] 13.512 33.041 92.517 177.230 286.51 420.22 578.31 760.74 967.53 1 198.70
Present 13.547 33.214 92.727 177.481 287.00 420.97 579.14 761.77 968.84 1 200.19

30 Ref. [27] 13.549 33.221 92.795 177.660 287.15 421.12 579.50 762.30 969.48 1 201.00
Ref. [43] 13.528 33.120 92.692 177.570 287.05 421.03 579.40 762.19 969.38 1 201.00

Table 2. Natural frequencies [Hz] of a circular cylindrical shell with circumferential wave number n for
SS–SS end conditions with h/R = 0.002, L/R = 20, and R = 1 m

P
n

1 2 3 4 5 6 7 8 9 10
Present 13.103 3 4.441 6 4.119 8 6.979 4 11.152 0 16.334 0 22.488 5 29.616 2 37.732 4 46.858 9

0.5 Ref. [27] 13.103 0 4.438 2 4.115 2 6.975 4 11.145 0 16.317 0 22.447 0 29.524 0 37.548 0 46.517 0
Ref. [22] 13.104 0 4.440 8 4.118 0 6.977 0 11.146 0 16.317 0 22.447 0 29.524 0 37.547 0 46.514 0
Present 13.321 2 4.515 5 4.188 2 7.095 2 11.336 8 16.604 8 22.861 1 30.107 4 38.358 6 47.351 5

2 Ref. [27] 13.321 0 4.511 4 4.182 7 7.090 5 11.329 0 16.587 0 22.454 0 30.014 0 38.171 0 47.288 0
Ref. [22] 13.322 0 4.514 1 4.185 5 7.092 2 11.330 0 16.587 0 22.818 0 30.013 0 38.170 0 47.285 0
Present 13.505 5 4.578 1 4.247 9 7.197 3 11.499 9 16.844 2 23.190 4 30.535 9 38.910 4 48.322 4

15 Ref. [27] 13.505 0 4.575 9 4.245 1 7.194 3 11.494 0 16.827 0 23.147 0 30.446 0 38.720 0 47.968 0
Ref. [22] 13.506 0 4.578 6 4.247 9 7.195 9 11.494 0 16.827 0 23.147 0 30.445 0 38.718 0 47.965 0
Present 13.526 3 4.585 4 4.255 8 7.211 2 11.522 6 16.876 7 23.235 6 30.600 4 38.986 2 48.416 6

30 Ref. [27] 13.526 0 4.583 6 4.253 6 7.208 5 11.516 0 16.859 0 23.192 0 30.505 0 38.795 0 48.061 0
Ref. [22] 13.527 0 4.586 3 4.256 4 7.210 1 11.517 0 16.859 0 23.192 0 30.504 0 38.793 0 48.058 0

4.2. Parametric studies

To acquire some knowledge regarding the natural frequencies of FGM cylindrical shells, it is
important to study the effect of selected design parameters, such as the power-law exponent
(P ), the circumferential wave number (n), the length to radius ratio (L/R), and the thickness to
radius ratio (h/R), on these natural frequencies. The radius of the cylinder is assumed constant
and equal to 1 m. In the subsequent examples, the FGM circular cylindrical shells are composed
of a metal as a first base material and of a ceramic as a second base material. The material
properties of the constituents are summarized in Table 4, where the material properties vary
through the cylinder thickness in accordance with (2)–(4). The considered boundary conditions
are SS–SS, C–C, and C–F.
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Table 3. Natural frequencies [Hz] of a circular cylindrical shell with circumferential wave number n for
C–C end conditions with h/R = 0.002, L/R = 20, and R = 1 m

P
n

1 2 3 4 5
Present 27.221 30 9.647 00 5.888 20 7.526 30 11.513 30

0.3 Ref. [31] 27.210 68 9.644 38 5.893 39 7.530 45 11.509 20
Ref. [21] 28.999 60 9.784 30 5.907 20 7.536 10 11.515 20
Present 26.860 90 9.517 50 5.807 20 7.422 00 11.354 00

1 Ref. [31] 26.847 68 9.516 27 5.815 10 7.430 80 11.352 61
Ref. [21] 28.613 20 9.654 74 5.830 10 7.435 40 11.358 90
Present 26.336 40 9.330 60 5.694 00 7.276 00 11.129 40

10 Ref. [31] 26.328 10 9.331 21 5.701 22 7.281 33 11.124 85
Ref. [21] 28.049 60 9.462 32 5.711 01 7.284 56 11.131 00
Present 26.300 80 9.318 00 5.686 10 7.264 80 11.112 00

15 Ref. [31] 26.299 63 9.316 97 5.694 10 7.267 10 11.103 50
Ref. [21] 28.011 40 9.449 00 5.701 80 7.272 31 11.112 60

Table 4. Material properties of FGM constituents

Property Metal (Aluminum) Ceramic (Alumina)
E [GPa] 70 350
ρ [kg/m3] 2 700 3 900
ν 0.3 0.24

Figs. 3–5 show the variations of the natural frequencies with the changes of the circumferen-
tial wave number n and the power-law exponent P , assuming that L/R = 20 and h/R = 0.05.
It can be noted that the natural frequencies of the FGM cylinders increase with increasing
power-law exponent in all considered boundary conditions. This was expected because incre-
asing the power-law exponent decreases the amount of aluminum and increases the amount of
alumina, which has a greater modulus of elasticity. Moreover, it can be noted that at a high wave
number, the natural frequencies for all the considered boundary conditions, are close to each
other. However, at low wave numbers, the natural frequencies of the C–C boundary conditions
are the greatest, followed by those of the SS–SS boundary conditions and then by those of the
C–F boundary conditions.

The variations of the fundamental frequency [Hz] with the length to radius (L/R) ratio
and the power-law exponent are shown in Figs. 6–8 (the thickness to radius ratio is constant
and equals to 0.05). As shown for L/R ≤ 5, increasing the length or decreasing the radius
of the FGM cylinders significantly decreases the fundamental frequency. Also for the low
values of the L/R ratio, the power-law exponent effect was great, but this effect decreases with
increasing L/R ratio. Moreover, it is obvious that by increasing the L/R ratio, the influence of
the boundary conditions decreases, and the fundamental frequencies become close to each other
when L/R ≥ 20.
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Fig. 3. Variations of the natural frequencies [Hz] with circumferential wave number n for SS–SS FGM
cylindrical shell (L/R = 20, and h/R = 0.05)
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Fig. 4. Variations of the natural frequencies [Hz] with circumferential wave number n for C–C FGM
cylindrical shell (L/R = 20, and h/R = 0.05)
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Fig. 5. Variations of the natural frequencies [Hz] with circumferential wave number n for C–F FGM
cylindrical shell (L/R = 20, and h/R = 0.05)
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Fig. 6. Variations of the fundamental frequencies [Hz] with L/R ratio for SS–SS FGM cylindrical shell
(h/R = 0.05)
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Fig. 7. Variations of the fundamental frequencies [Hz] with L/R ratio for C–C FGM cylindrical shell
(h/R = 0.05)
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Fig. 8. Variations of the fundamental frequencies [Hz] with L/R ratio for C–F FGM cylindrical shell
(h/R = 0.05)
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Fig. 9. Variations of the fundamental frequencies [Hz] against h/R ratio for SS–SS FGM cylindrical
shell (L/R = 20)
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Fig. 10. Variations of the fundamental frequencies [Hz] with h/R ratio for C–C FGM cylindrical shell
(L/R = 20)
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Fig. 11. Variations of the fundamental frequencies [Hz] against h/R ratio for C–F FGM cylindrical shell
(L/R = 20)
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Figs. 9–11 show the variations of the fundamental frequencies [Hz] with the thickness
to radius (h/R) ratio and the power-law exponent. The length to radius ratio was conside-
red to be constant (i.e., L/R = 20). As shown in the figures, all the cylinders with the
different boundary conditions show similar trends. By increasing the h/R ratio, the funda-
mental frequency increases to a certain limit. Then, any additional increase in the h/R ratio
would not result in any noticeable increase in the frequencies. In all cases of different geo-
metries and boundary conditions of the FGM cylindrical shells, the natural frequencies have
intermediate values between those of the cylindrical shells composed by aluminum and alu-
mina.

5. Conclusion

In this work, the free vibration of FGM circular cylindrical shells was investigated for different
boundary conditions such as SS–SS, C–C, and C–F. The material volumetric fractions were
varied through the thickness, in compliance with the simple power-law and the Voigt model
was adopted to evaluate the equivalent material properties. Moreover, the third-order shear
deformation shell theory was employed with the Carrera’s unified formulation to derive the
equations governing the free vibrations of circular cylindrical shells. The presented numerical
results were validated by comparing them with results published in previous studies. In addition,
the effects of the power-law exponent, the circumferential wave number, the length to radius
ratio as well as the thickness to radius ratio on the natural frequencies of the FGM circular
cylindrical shells were studied. Overall, the conducted parametric study should provide a guide
for design engineers.

The future extension of this work will investigate the natural frequencies of FGM cylindrical
shells considering other volumetric fraction laws as well as the design of FGM cylindrical shells
with optimal natural frequencies.
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