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Abstract: Herein, we studied the novel and emerging group of 2D materials namely MXene along
with its nanocomposites. This work entails detailed experimental as well as computational study of
the electrochemical behavior of vanadium carbide (V2CTx) MXene and MnO2-V2C nanocomposite
with varying percentages of MnO2. A specific capacitance of 551.8 F/g was achieved for MnO2-V2C
nanocomposite in 1 M KOH electrolyte solution, which is more than two times higher than the
gravimetric capacitance of 196.5 F/g obtained for V2C. The cyclic stability achieved for the MnO2-
V2C nanocomposite resulted in a retentivity of 96.5% until 5000 cycles. The c-lattice parameter
achieved for MXene is 22.6 Å, which was 13.01 Å for MAX phase. The nanocomposite resulted in a
c-lattice parameter of 27.2 Å, which showed that the spatial distance between the MXene layers was
efficiently obtained. The method of wet etching was used for the preparation of pristine MXene and
the liquid phase precipitation method was opted for the synthesis of the MnO2-V2C nanocomposite.
Density functional theory calculation was exercised so as to complement the experimental results
and to understand the microscopic details, such as structure stability and electronic structure. The
current report presents a comprehensive experimental and computational study on 2D MXenes for
future energy storage applications.

Keywords: V2C MXene; energy storage; supercapacitors; two-dimensional materials; density func-
tional theory

1. Introduction

Two-dimensional (2D) materials involve uncommon and rare electronic, mechanical
as well as optical properties [1–5], that have led to its wide-ranging analysis for versatile
applications in the past decade. In addition, they aid to an expedient building block
for diverse layered structures, membranes and composites [6–10]. MXenes—the fresh
and newest accoutrement to the world of 2D materials—are basically early transition
metal carbides, nitrides and carbonitrides [11–15]. Generally, the formula for MXenes
is Mn+1XnTx (n = 1 to 3), whereas M symbolizes an earlier transition metal (Ti, Nb, Ta,
Mo, V), X is carbon and/or nitrogen and Tx denotes the surface terminations (hydroxyl,
oxygen or fluorine) [16]. Examples may include V2CTx [17], Ti3C2Tx [18] and Nb4C3Tx [15].
MXenes involve (n + 1) M layers that are enfolded ‘n’ layers of X in an [MX]nM sequence.
MXenes are obtained from selective etching of ‘A’ layers from their lamellar precursors,
known as MAX. MXenes are a huge class of ternary carbides and nitrides, including more
than 70 reported phases until now, along with various solid solutions and ordered double
transition metal structures [19–25].
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Vahid et al. studied electrical and optical properties of two-dimensional V2C, revealing
intriguing possibilities and opening the door for versatile energy storage applications [26].
Yoon et al. reported delaminated V2C MXene with phosphorus obtained from triph-
enylphosphine intercalated in sheets, for activation of hydrogen evolution reactions from
a non-metallic electron donor [27]. Shan et al. recently reported V2C MXene as an effi-
cient electrode in various aqueous electrolytes for supercapacitor applications, revealing
a different energy density and the highest power density of the V2C electrode in several
electrolytes [28]. The theoretical insights of V2C have also been studied, which reveal it is a
capable anode material for lithium-ion batteries and shows a theoretical storage capacity
of 940 mAh/g [29–32].

This article elaborates on the experimental and computational details and insights
of pristine V2C and the MnO2-V2C nanocomposite. It observes the trends of vanadium-
based MXene when MnO2 is adsorbed on the pristine MXene and analyzes the density of
states and bandgap via density functional theory [33–35], for suitability in energy storage
applications.

2. Experimental Methods

Figure 1a shows an XRD of selective etching of Al layer from V2AlC to obtain V2CTx.
One gram of V2AlC MAX (300 mesh) was treated with 49% concentrated hydrofluoric acid
for various time periods at room-temperature from which wet-etching for 116 h showed
favorable results. The etched sample was washed via centrifugation and vacuum filtration
with a powdered sample of V2C. However, Pristine V2C cannot exist due to its high surface
reactivity and readily oxidizes at ambient temperatures. Therefore, MXene with surface
terminations was obtained after drying in a vacuum oven for 24 h. The MnO2-V2CTx
nanocomposite was synthesized by the liquid-phase precipitation method. Two hundred
milligrams of V2CTx powder was dispersed in 100 mL of a 1 mM aqueous solution of MnO2
with constant magnetic stirring at 40 ◦C for a time period of 6 h. A precipitate was collected
by centrifugation and rinsing with ethanol and DI water separately three times with the
help of vacuum filtration. The powder obtained was then dried out in the vacuum oven at
55 ◦C for 24 h. With this method, five different samples of varying percentages, namely
10%, 20%, 30%, 40% and 50%, were synthesized as the amount of MnO2 was increased.

3. Results and Discussion

The XRD patterns of the MAX phase and MXene etched with 49% HF solution for dif-
ferent times and divulging structural evolution are shown. The sharp peaks at 2Ө= 13.28◦,
41.09◦ and 55.7◦ of the MAX precursors represents its high crystallinity and purity. Ex-
posure to HF results in shifting of the (002) peak in the XRD pattern of V2AlC to a lower
angle, indicating the increased interlayer spacing of synthesized V2CTx MXene (JCPD 03-
065-2628). The sample etched for 116 h shows the strongest intensity and the lowest angle
of (002) diffraction peaks at 2Ө= 7.4◦. The shifting of the peak is the result of an increased
c-lattice that is 22.6 Å instead of 13.01 Å for pristine MAX. Small peaks of MAX phase in
MXene represent the unetched MXene as suggested by previous studies [36–39]. The peak
at 55.7◦ persists in MXene due to the presence of traces of MAX in MXene. Additionally,
there is a small peak at 57.6◦ which indicates the presence of V2C. Further increase in etch-
ing time results in decreased intensity and shifting of the (002) diffraction peak towards a
larger angle due to the dissolved V2C sheets. The XRD patterns of nanocomposite samples
shown in Figure 1b confirm the presence of MnO2 along with V2CTx. The broadening
of the (002) diffraction peak and the shift towards a lower angle suggests that there is
increased interlayer spacing of composite material. The presence of additional broad peaks
of the MnO2-V2CTx nanocomposite material at a 2Өvalue of 35.5◦ and 39.6◦ are ascribed to
the (112) and (101) planes of polycrystalline orthorhombic MnO2 (JCPD 00-0300820) [40].
This broadening of peaks is a result of reduced crystallinity of MnO2 over V2CTx sheets.
A small peak of V2O5 near a 2Өvalue of 42.7◦ can be observed, which is produced as a
result of heat produced during the etching process [41]. Vanishing of the (002) diffraction
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peak with the increased weight percent of MnO2 is a result of decreased crystallinity of the
MnO2-V2CTx nanocomposites.
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Figure 1. (a) XRD of pristine V2AlC and prepared V2CTx etched for varying time periods, (b) XRD of V2C MXene
nanocomposites with varying weight percentages of MnO2, (c) bandgap analysis of V2C and MnO2-V2C nanocomposite,
(d) EDX for the elemental analysis of MnO2-V2C nanocomposite, (e) micrograph for pristine V2C, (f) micrograph for
MnO2-V2C nanocomposite. (g) TEM image of V2C at 200 nm, (h) TEM image of V2C at 10 nm, (i) TEM image of MnO2-V2C
nanocomposite.

The bandgaps of pristine V2C and MnO2-V2C samples in Figure 1c depict that, similar
to pristine MXene, the MnO2-V2C nanocomposite has shown a direct optical bandgap.
The values of energy gained after calculations reveal that pristine V2C had a bandgap of
2.22 eV and was reduced to 1.67 eV after the formation of the nanocomposite. The decrease
in bandgap is observed upon intercalation of MnO2 due to the Mn bonding with the
termination sites of V2C. The MXene in general are covered with the termination sites that
may include -H -O, -F, -OH and -OF [42]. Mn bond with the termination sites of V2C thus
lead to the creation of defects in the layered MXene. Figure 1d shows the elemental analysis
of the MnO2-V2C nanocomposite. Furthermore, the images obtained from the scanning
electron microscope (SEM) in Figure 1e show the layered structure of V2C obtained after
HF treatment of MAX phase resulting in fanning out and spreading of basal planes, which
is a clear indication of a successful etching process. The layered structure in Figure 1f
persists even in 10% MnO2-V2C sample which signifies that the structure of V2C has not
been destroyed during the formation of the nanocomposite. Figure 1g reveals the TEM
image of V2C at 200 nm which, when further magnified, clearly shows the layered structure
of pristine MXene as in Figure 1h. Moreover, the presence of a whitish carbon layer is
observed in Figure 1i, whereas the dark patch is clearly seen over V2C sheets in Figure 1i,
indicating the presence of MnO2; Tang et al. report MnO2-Ti3C2 nanocomposite which



Nanomaterials 2021, 11, 1707 4 of 10

reveals a dark patchy structure formed by MnO2 over Ti3C2 sheets [39], similar to that of
the MnO2-V2C nanocomposite.

In Figure 2, a peak is observed at 394 cm−1, which is the characteristic peak for Al-V
vibrations [43], that confirms the presence of V2AlC, whereas several broad peaks arise in
the MXene phase at 657 cm−1, 1339 cm−1, 1704 cm−1, and 2143 cm−1 which contribute to
V-C vibrations [44]. Along with the peaks of V-C, vibrational peaks of Al-V have also been
observed in the nanocomposite samples. This occurs because of the presence of a little
amount of MAX phase even after etching. The intensity of modes was enhanced in the
MnO2-V2C nanocomposite when MnO2 percentage is increased, compared to pristine V2C.
In 10% MnO2-V2C nanocomposite, the peak is much broader compared to 20%, 30% and
40%. This might occur due to the enhancement of motions of atoms after the formation of
the nanocomposite. The peaks of MnO2 arise around 200 cm−1 and 500–600 cm−1 [45] while
for pristine V2C, the peaks arise around 600–2100 cm−1. As previously discussed regarding
graphene as a parental family to MXenes, Chen et al. reports an MnO2/Graphene-Oxide
nanocomposite peak around 1750 cm−1 [46], which is close enough to vary from the
percentage of the MnO2-V2C nanocomposite peak that is around 1767 cm−1. Moreover, for
the pristine V2C optical modes, the foremost three optical branches in phonon spectrum
show considerably lesser frequencies and are near to three acoustic phonon branches,
which results in a phonon gap among the lower three and upper three optical branches.
This is one of the typical properties of MXene, which is observed in numerous MXene
families [47]. Furthermore, substantial contribution comes from vibrations of V-atoms. It
can be observed that the motion of V-atoms is weakened by vibrations of the terminal
atoms, which concludes a noticeable difference between pristine V2C system and V2CTx.
Since no robust signal of vanadium oxide was detected in MnO2-V2C samples, this shows
that either the V2CTx sheets are not oxidized, or limited MXene flakes are oxidized beyond
the detection of Raman technique, indicating the low density of vanadium oxide on the
surface of V2CTx. The remaining peaks shown in the varying percentage samples are of
Al-V vibrations, as a little amount of aluminum persists in the pristine MXene sample.
Moreover, Figure S1 in Supplementary Materials discussed the FTIR graphs for pristine
V2C MXene and (10%, 20%, 30% 40%, 50% weight) MnO2-V2C nanocomposites. The peaks
fairly signify the MXene formation and presence of MnO2 peaks in MXene plots.

Figure 2. Raman spectroscopy for V2AlC, pristine V2C and MnO2-V2C nanocomposite at varying
percentages.

Computational Framework: The computational analysis was carried out with the help
of the ab initio all-electron FLAPW method, as executed in the WIEN2k code [33,34]. The
calculations were performed using Perdew–Burke–Ernzerhof (PBE) generalized gradient
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approximation (GGA) exchange-correlation functional [35,48,49]. Ground state structure
for V2C MXene was attained by relaxation of internal coordinates. Furthermore, the
density of states (DOS), band structure, and electronic density was calculated for the
relaxed structure using GGA. For a clear description of the experimental observations
and to the point information about the structure, the c-lattice parameter was increased
up to 22.6 Å. Consequently, the V2C MXene nanocomposite relaxed structure had to be
generated, for which we used GGA-PBE with 64 k-points in the irreducible Brillouin zone
(IBZ). DOS along with the band structure was calculated and analyzed for doped and
adsorbed Mn atom on MXene. Wave function in the interstitial regions was expanded
in plane waves, with the plane wave cut-off chosen as RMTKmax = 7.0. RMT represents
the smallest radius of the atomic sphere and Kmax as the largest wave-vector magnitude.
The RMT were taken as 1.86 a.u. for V-atoms, 1.55 a.u. for O-atoms, 1.68 a.u. for F-atoms,
1.63 a.u. for C-atoms and 1.80 a.u. for Mn-atom. The K points for structure relaxation is
2 k-points in irreducible Brillouin zone (IBZ) with k-grid of 2 × 2 × 1. In addition to that,
k-points for energy convergence are 54 k points in IBZ with k grid of 6 × 6 × 3. Moreover,
the forces relaxation criteria were kept at 10−4 Ryd and energy convergence criteria was
fixed at 10−5 Ryd.

The system of V2C-OF is modelled by a supercell of slabs. Bowman et al. explains
the crystal structure of V2C [50]. Ideally, simple V2C structure could have been considered
but herein we inculcated V2C along with its surface terminations in order to complement
the experimental analysis, because pristine V2C cannot exist in ordinary atmospheric
conditions. The carbon atom is sandwiched between vanadium layers. The oxygen and
fluorine atomic layers were added to the system as functional terminations on to the surface,
as shown in Figure 3a. A supercell of 2 × 2 × 1 was initially constructed to examine the
stability of manganese in slab using different positions of the Mn atom. For obtaining
a stable position of the Mn atom in the V2C-OF system, we constructed two different
configurations that are by adsorption of the Mn atom and by doping of the Mn atom
in the V2C-OF system, as shown in Figure 3b,c respectively. The electronic structure of
Mn-adsorbed atom was then studied using 4 × 4 × 1 supercell as in Figure 3d.

Figure 3. (a) Structure of pristine V2C, (b) structure of Mn-doped V2C, (c) structure of Mn-adsorbed
V2C in 2 × 2 × 1 supercell, (d) structure of Mn-adsorbed V2C in 4 × 4 × 1 supercell.

The electronic structure of the Mn-adsorbed atom was then studied using 4× 4× 1 su-
percell. In the Mn-adsorbed structure, the Mn atom forms a bond with the termination sites,
i.e., O and F, while in a doped structure, the Mn-atom substitutes the V-atom. Figure 4a
illustrates the density of states (DOS) vs. energy plots for V2C-OF and Mn-adsorbed V2C-
OF. Figure 4a clearly shows that the density of states has been drastically increased in the
conduction band around 0 to 2 eV for Mn-adsorbed V2C-OF structure as compared to a
simple V2C-OF system. The increase in major peaks of V in the conduction band is because
of the presence of Mn-adsorption sites which are nearer to the V-atomic sites.
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Figure 4. (a) DOS vs. energy V2C-OF and Mn-adsorbed V2C-OF, (b) total DOS vs. energy V2C-OF and Mn-adsorbed
V2C-OF, (c) electronic bandgap structure for Mn-adsorbed V2C-OF.

From Figure 4b, it is seen that Mn peaks are existing in the conduction band around
0–1 eV and are contributing to the total density of states (TDOS) which is the reason for
an increase in the density of states. Moreover, Figure 4c shows the bandgap structure for
Mn-adsorbed V2C-OF that shows complete metallic behavior, since the bandgap theoreti-
cally obtained for pristine MXene is zero [51–53]. The experimentally obtained bandgap,
however, is found to be different from the one theoretically explained. Since the experi-
mentally obtained data of the bandgap structure has shown a decrease in bandgap, it thus
concludes the enhancement in the electronic properties of V2C structure.

Electrochemical Analysis: The cyclic voltammetry (CV) reveals the I-V curves of
pristine V2C and the MnO2-V2C nanocomposite, which was discerned at a potential
window of 0.0 V to +0.9 V while the scan rate was fixed as 100 mV/s. V2C however oxidizes
rapidly due to its surface reactivity [54,55] but the oxidized samples can be investigated
by storing diluted samples of V2C in sealed Eppendorf vials at room temperature and
analyzing the samples first. Furthermore, MnO2 adsorption in V2C helps in omitting
unwanted surface attachments. Figure 5a shows the current vs. voltage graph, which
reveals that the gravimetric capacitance for V2C is about 196.5 F/g, larger than the value
reported in [29], and the highest gravimetric capacitance obtained for the MnO2-V2C
nanocomposite is about 551.8 F/g. The enhanced value of gravimetric capacitance of the
MnO2-V2C nanocomposite is more than twice that obtained for pristine MXene.

MnO2-V2C nanocomposite exhibited high values of specific capacitance compared to
pristine V2C. It is encompassing all other factors, i.e., a high specific area and increased stor-
age ability, due to its morphology which is generally a flake-like structure. At comparably
higher current density, K+ ions are diffused from the 1 M KOH electrolyte into the nanocom-
posite and gain access i.e., they penetrate into the gaps available between nanocomposite
layers easily, which leads to an efficient charge–discharge ratio [56]. Until 5000 cycles, the
results are excellent as the 5000th cycle’s gravimetric capacitance obtained was 532.6 F/g.
The reason for decreased efficiency is the degradation of electrode material, though it
signifies that retentivity is very high, at about 96.5% of the original value. Figure 5b shows
a comparison of the nanocomposite’s 1st cycle and 5000th cycle curve, which reveals that
theoretical study has complemented the experimental data. The theoretical results stated
that with the enhancement of electronic density and the stability of adsorbed Mn-atom
in MXene, which is fairly seen by the comparison graph of current-voltage cycles, a high
specific capacitance has been achieved after Mn adsorption with viable stability up to
5000 cycles. Bare V2C cannot show such a high specific capacitance due to hydrophilicity
and thus readily oxidizes in the atmosphere. Figure 5d adds to the argument of cyclic
stability of the nanocomposite, which also reveals that a very high retentivity percentage



Nanomaterials 2021, 11, 1707 7 of 10

of specific capacitance has been achieved, even after 5000 cycles. Moreover, the obtained
galvanostatic charge–discharge triangular curves for pristine V2C and MnO2-V2C can be
seen in Figure 5c, revealing an outstanding and improved performance of the nanocompos-
ite electrode material, as it is providing a high gravimetric capacitance even after a longer
time period.

Figure 5. (a) Current vs. voltage of pristine MXene and MnO2-V2C nanocomposite, (b) comparison of 1st and 5000th cycle
of MnO2-V2C nanocomposite, (c) galvanostatic charge–discharge curves of V2C and MnO2-V2C, (d) specific capacitance vs.
number of cycles.

4. Conclusions

The two-dimensional materials with the general formula V2CTx were synthesized
after wet-chemical etching from the bulk parent compound MAX. This article reported ex-
perimental as well as theoretical outcomes on structural, morphological and optoelectronic
properties of pristine MXene and MnO2-MXene nanocomposites. XRD revealed that the
c-lattice parameter increased from 13.01 Å to 22.6 Å for MAX and MXene respectively, and
then reached 27.2 Å for the MnO2-V2C nanocomposite, signifying adsorption-dominant
properties. SEM, EDX, and bandgap analysis demonstrated that the adsorption of MnO2 in
V2C, which showed an intriguing gravimetric capacitance in the MnO2-MXene nanocom-
posite of approximately 551.8 F/g, has a retentivity of about 96.5% after 5000 cycles. The
computational analysis supported the experimental data as the density of states inevitably
increased when MnO2 was adsorbed in V2C.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nano11071707/s1, Figure S1 in Supplementary Materials discussed the FTIR graphs for
pristine V2C MXene and (10%, 20%, 30% 40%, 50% weight) MnO2-V2C nanocomposites. The peaks
fairly signify the MXene formation and presence of MnO2 peaks in MXene plots.
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