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Abstract— The main scope of this paper is to propose data
fusion algorithms suitable for estimation of gantry crane hook
tilt angles based on the MEMS accelerometer and gyroscope
readings. Such methods should merge useful information from
both these sensors into a better estimate than those based on
the measurement from the single device. In the first place,
these algorithms should deal with the typical measurement
noise which the MEMS readings are known to suffer from.
Besides these errors, also the impact of the angular acceleration
caused by the crane hook motion and translational acceleration
due to cart motion distorting the gravitational vector sensing
should be taken into account when designing the data fusion
algorithm. The presented methods will be compared by means
of experimental tests using a wireless inertial measurement unit
developed at our workplace. The goal is to verify practical
viability of the algorithms aiming at delivery of tilt angles infor-
mation which may be used in an active anti-sway stabilization
system.

I. INTRODUCTION

Crane systems are used extensively for pick-and-place
operations in various application domains ranging from
construction, factory automation to assembly or ship cargo
transfer. A fundamental difficulty with unwanted motion-
or disturbance-induced oscillations of the hanging load in-
herently comes from the underactuated dynamics of the
crane. Extensive research is devoted to the development of
intelligent control systems allowing either full automation of
the motion tasks or at least providing assistance to a human
operator.

Crane control is now a well-established research field
and several approaches with regards to load sway prob-
lem were proposed in the last few decades. They can be
classified into two main groups as passive (or feedforward)
and active (feedback) methods. The passive approach is to
modify the trajectory of the hoist drive in such a way that
the oscillatory modes of the system are not excited. Input
shaping filters or input-output inversion techniques have
been used extensively for this purpose [1]-[5]. On the other
hand, active methods employ a feedback compensator which
enforce a well-damped closed-loop dynamics by means of
a proper load-sway sensor. Several control strategies were
proposed in the literature ranging from classical PID [6] or
LQR/LQG control [7] to model-predictive [8], sliding-mode
[9] or nonlinear and adaptive control algorithms [10], [11].
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Fig. 1. Problem formulation - reconstruction of the load-sway angle 6 in the
global coordinate system C'S1 from the inertial measurement unit providing
angular rates w and accelerations a in the local coordinate system C'Sa of
the load-attached sensor, p,v denotes hoist position and velocity

An extensive survey of crane control methods is given in
[12].

The feedback approach comes with a significant advan-
tage of active disturbance rejection capability. This may be
relevant for cranes operating outdoors that are subject to the
environmental effects. A fundamental problem is to detect
the load-side motion correctly by means of a proper sensory
system in order to supply the information to the feedback
controller. The load-side motion can be estimated indirectly
by observing the hoist behaviour and using a dynamical crane
model [13], [14]. This avoids the necessity of installation of
complex instrumentation at the cost of performance degra-
dation because of the lack of direct load-side measurement.
A commonly used direct approach is to use an optical image
sensor [15]-[19] which, complemented by advanced signal
processing algorithms, can provide high-fidelity feedback
information. High cost and sensitivity to environmental con-
ditions should be considered as potential drawbacks. As an
alternative, cheaper sensory systems were proposed including
laser sensors [20], inclinometers [21], accelerometers [13],
gyroscopes [22] or special-purpose devices [23] providing
cost-efficient and robust solution. With the recent advances in
MEMS technology, utilization of inertial measurement units
(IMUs) combining multi-axis acceleration and angular rate
sensors in one compact package seems to be a viable way of
implementing the feedback system. The IMUs are routinely
used in the field of unmanned aerial vehicles to deliver
attitude information to the flight controller. Various data-



fusion algorithms were proposed to combine the readings
from accelerometers, gyros and eventually magnetometers
in order to improve the overall motion sensing accuracy
[24]-[26]. They can be, in principle, used in the same
manner in crane systems for the load sway measurement.
However, practical experience shows that severe performance
deterioration can occur because of the large translational
accelerations which deflect the gravity vector sensed by the
accelerometer sensor in steady state and cause a systematic
error when not treated properly. The goal of the paper is to
provide a data-fusion algorithm suitable for the estimation
of the load tilt angles and their derivatives by combining the
raw IMU data with the dynamic model of the plant.

The paper is organized as follows. Section II deals with the
description of the proposed algorithms. Section III presents
experimental results achieved with a small-scale crane model
and a proprietary wireless sensory system developed at our
workplace. Concluding remarks are given in the last part.

II. ALGORITHMS

In this section, two distinct algorithms dealing with the tilt
angle estimation are described. Both these methods adopt the
Extended Kalman filter (EKF) for angle estimation. However,
they differ in the problem formulation.

First, a modification of a standard algorithm [27] tailored
to the single angle estimation is presented (i.e. we consider
the rotation about a single axis which is the case of a
single axis crane). However, as it turns out, this method
is not appropriate for the application of pendulum (gantry
crane) sway angle estimation since such a formulation does
not consider the acceleration contributions from rotational
pendulum motion and cart translational motion into the total
IMU reference frame acceleration which is expected to be
measured by the accelerometer. For this reason, such an
approach may produce misleading and incorrect estimate.
This was the motivation for the development of a pendulum-
on-cart model-based algorithm.

The proposed method employs a pendulum and cart
velocity-loop model in the state equations and maps the
output equations to the IMU measurements. This allows to
include all the expected contributions from the acceleration
caused by pendulum and cart motion, which is the major
difference to the standard algorithm mentioned previously.
Besides the improved angle estimate accuracy, the algorithm
provides also the estimated angular velocity of the pendulum
which is needed e.g. for a full-state feedback control. The
latter property of the proposed method is desirable because
we get smoothed angular velocity estimate without having to
rely on the noisy gyroscope readings that could cause trou-
bles in the control algorithm itself (e.g. a necessary restriction
of the closed-loop bandwidth due to noise amplification).

In the following text, the state-space problem formulation
of the two aforementioned approaches is given followed by
the outline of the EKF algorithm which gives a common
framework for both methods.

A. Problem formulation

1) Standard tilt angle estimation - Algorithm 1: In this
case, the state equation is given simply as

E(t) = far(wy(t)) = wy(?), (1)

with z(t) = éy(t) the estimated tilt angle and wy(t) the
gyroscope measurement of the angular velocity about the y-
axis (Fig. 1).

The output equations can be obtained by transforming the
gravitational acceleration vector (with the magnitude g) from
the world frame of reference to the IMU coordinate system
(provided that for ,(t) = 0 all the axis of both reference
frames are perfectly aligned) resulting in

cos(x(t))g

where i/(t) = [§2(t), 9-(t)]7 is the expected projection of the
gravitational acceleration vector to the x- and z-axis of IMU
reference frame (C'Ss in Fig. 1). This generally corresponds
to the accelerometer measurements only if no translational
and angular acceleration of the IMU is assumed.

The measurement vector needed for the update in the EKF
algorithm is then considered as Z(t) = [ax(t), a.(t)]T with
a,(t) and a,(t) designating the accelerometer measurements
in x- and z-axis respectively.

2) Formulation based on pendulum-on-cart model - Algo-
rithm 2: We will assume the undamped pendulum motion
described by differential equation

F(t) = har (2(1)) = [ —sin(z()g ] .o

,(1) = Lsin(0,() + Jo(eos(6,(1), )

with [ denoting the perpendicular distance from the pendu-
lum axis of rotation to the pendulum center of gravity and
v(t) being the cart velocity along the ZT-axis of the global
reference frame (C'S7 in Fig. 1).

The state equation of this formulation can be now obtained
by modification of (1) in these respects:

1) The state variable representing the estimate of angular
velocity &, (t) is added by utilizing (3).

2) The state equations are extended by another variable
representing the cart velocity along the x-axis. This
state equation realizes the cart velocity loop needed
for the practical implementation. The velocity loop
dynamics is approximated by a first-order lag described
by a time constant 7 and static gain K.

3) The gyroscope measurement wy(t) is replaced by the
angular velocity estimate x2(t) = @w,(t) in the state
equations.

The state equations then have a form

1 (t)

2109)
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with z1(t) = 0,(t), z2(t) = &, (t) and z3(t) = ().
To shorten the equations we introduce the notation c; £
cos(x1(t)) and s = sin(z1(t)).

The output equations are given as

G(t) = haa(Z(t), vsp(t)) =

(1)
_ Kseilvsp (D) —Kscirvsp(t)+gs1Tl—s1gr7—cilzs(t)+eiras(t)
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where 7(t) = [0y (t), ax(t), a5 (), 9(t)]T and r is the perpen-
dicular distance from the pendulum axis of rotation to the
position of the IMU which does not necessarily have to be
the same as the pendulum length [, i.e. the distance from the
pendulum axis of rotation to the pendulum center of gravity.
The first element of the vector is the expected gyroscope
measurement. The second element is the x-axis acceleration
affecting the accelerometer attached to the pendulum and it
is given as a sum of three contributions:

« X-axis projection of the gravitational acceleration vector,

« the tangential component of the angular acceleration,

« the x-axis projection of the cart acceleration.
The third element of the vector is analogously the z-axis
acceleration expected to be measured by the accelerometer
and can be obtained as a sum of three contributions:

 z-axis projection of the gravitational acceleration vector,
« the centripetal component of the angular acceleration,
« the z-axis projection of the cart acceleration.

Finally, the fourth element of the vector %(¢) is the expected
cart velocity.

The measurement vector needed for the update in
the EKF algorithm is then considered as Z(t) =
[wy (), az(t), a.(t),v(t)]T with w,(t) giving the gyroscope
measurement, a,(¢) and a,(t) denoting the accelerometer
measurements in x- and z-axis respectively and v(t) being
the measured cart velocity.

B. Extended Kalman filter

Now, the nonlinear filtering problem has to be solved
to merge the useful information from the model and the
measurements. For this purpose, a standard choice is to
employ an Extended Kalman filter to be further introduced.

The state-space models described by state equations (I,
4) and output equations (2, 5) can be discretized by some
appropriate method (e.g. Euler method) and extended by
the stochastic part (describing the measurement or model
uncertainty) leading to

T = f(Zp—1,Wyk—1, Vsph—1, Wk—1), 6)

gk = h(fka Wyk, vspk) + 17k @)

where @, and v}, is considered to be zero-mean Gaussian
random noise with covariance matrices Q and R. The EKF

algorithm is usually formally divided into two separate steps
called prediction and update.

In prediction step, we determine the a priori estimate
Tpr—1 and a priori error covariance matrix Py using
the model dynamics from equations

-1 = f(Th—1jr—1, Wyk—1, Vspk—1);

of
Fii= 0| .®
Lk—1 Th—1|k—1,Wyk—1,Vspk—1
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Ly 1= 78 = . ’
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Pii-1 = Fi1Pr 1 1Feo1” + L1 QL

In update step, we use the output equations and measure-
ment vector 2J, to calculate the Kalman gain Ky, a posteriori
estimate fk‘ % and a posteriori error covariance matrix Py
as follows

_ on
01, fk,wyk,vspk7
Kk = Py 1Hi (HiPy—1HE + R)_l ,
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III. EXPERIMENTAL RESULTS

A pendulum on a cart system (Fig. 9) was used as a small-
scale model simulating the gantry crane dynamics. For the
experiments, the IMU was attached to the pendulum and
the acquired raw data were transmitted to the controller
via a wireless communication with 10 ms sampling rate.
The moving cart is driven by a linear motor with a high-
precision position sensor (1 um resolution). The pendulum
arm angle is measured by an incremental rotary encoder
(IRC, 0.001° resolution). All the sensors are connected to
a single controller unit [28] equipped with the REXYGEN
control software [29]. More details about the instrumentation
can be found in [30].

By this arrangement, we were able to acquire “true”
reference values of the pendulum angle and cart position
from very precise encoders and measured raw values from
the IMU sampled at the sychronized time instants which
allows direct evaluation of the estimators performance. The
data fusion algorithms to process the data obtained from
IMU were then run offline in MATLAB environment and
the results were compared with the reference values.

The system was excited by the velocity set-point vg,(t)
which is displayed at the top of Fig. (2) together with the
measured velocity v(t). The corresponding pendulum angle
0, (t) (the reference value obtained from IRC) is then shown
in the bottom part of the Figure. The respective accelerometer
and gyroscope measurement can be seen in Fig. 3. The
data from IMU are received with a period that is ten times
larger than the control period (1 ms velocity-control loop).
Therefore, the update step of EKF is performed once per
ten prediction steps and for the Algorithm 1 the gyroscope
measurement is held constant in the prediction until the new
value is received. The model parameters were determined as
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[l =041 m, r = 1 and
7 =0.002.

First, Algorithm 1 was run with the initial value Zo_; =

0.47 m, g = 9.81 m/s?, K, =

1.3, initial state error variance Py_; = 0.01 and the
covariance matrices
6.94-107% 4.82-107°
Q=0.0011, R = 4.82.107° 4.45.1074 (10)

statistically estimated from the gyroscope and accelerometer
measurements (we will denote this as Setting I). Such a
choice of the covariance matrices corresponds to the ac-
tual physical interpretation of the measurement noises. The
comparison of the pendulum angle estimate éy(t) with the
reference value 6, (t) is shown in Figure 4. We can observe
quite poor performance of the estimate which clearly does
not track the reference value well, giving a significant error
in both phase and amplitude.

Better results in terms of the estimation error can be
achieved with a different choice of matrices Q and R.
However, these matrices have no longer a clear physical
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interpretation and their appropriate setting is a matter of
designer intuition. Among all the settings of Q and R we
tried, the best results were achieved for Q = 1 and R = 10-1
(hereafter denoted as Setting 2) where I is the identity matrix.
Figure 5 shows the comparison of the estimated angle éy(t)
with the reference value 6,(t) which are also displayed in
detail between times t; = 25.5s and t5 = 28.5s.

Further, Algorithm 2 was applied to the measured data with
the initial state error Py _; = 0.01-1, the output covariance
matrix R statistically estimated from the gyroscope and
accelerometer measurements and the state covariance matrix
having a form of Q = ¢ - I. For convenience, the free
parameters (i.e. elements of matrix Q) were reduced to one
user parameter ¢ which can be interpreted as a measure of
model confidence (i.e. how much we trust the model).
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A sum of squared errors of the angle estimates is introduced
as

N
J = (0,(k) — 6,(k))?, (1)

1

where 6, (k) and 6, (k) for k = 1,..., N are the sequences
of the pendulum angle estimate and the reference value
respectively. Fig. 6 shows the squared error J achieved by
Algorithm 2 as a function of the user parameter g denoted by
the solid blue line. The dashed lines then belong to the values
of J achieved by Algorithm 1 with Setting 1 and Setting 2.
Note that in this case the algorithms were run from the initial
conditions 50\—1 = [0 0 0]T and 50‘_1 = 0 respectively
in order to avoid the transient effect at the beginning that
could distort the squared error value. It can be observed that
by using Algorithm 2 we are able to achieve better or at
least equal performance (evaluated by the squared error J)
compared to the case when employing Algorithm 1 for a
wide range of parameters q. Moreover, with the proper choice
of parameter ¢ a significant improvement can be obtained,
reducing the error in the order of two to three magnitudes.

Next, Algorithm 2 was applied to the measured data
with the initial value 7o, = [1.3 0 0], initial state
error Py_3 = 0.01 - I, the output covariance matrix R
statistically estimated from the gyroscope and accelerometer
measurements and the state covariance matrix having a form
Q = ¢q - I with ¢ set as the optimal value obtained from
Fig. 6, i.e. ¢ = 1 - 1078 Fig. 7 shows the time plot
of the estimated pendulum angle obtained by Algorithm 2
in comparison with the reference value and also with the
estimate achieved by Algorithm 1 with Setting 2. Figure 7
confirms that by employing Algorithm 2 we can achieve a
significant performance enhancement compared to the case
when using Algorithm 1.

The Algorithm 2 provides also the estimated angular veloc-
ity of the pendulum which is shown in Fig. 8 in comparison
with the gyroscope measurement. Advantageously, the filter
results in smoothed angular velocity estimates which are
more suitable for feedback control applications than the raw
readings from gyros. Potential problems with propagation
of the measurement noise into the control action as well as
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inherent offset and drift errors are avoided in this manner.
The same benefit can be expected also for the cart velocity
since the filter offers also the estimate of this quantity.

IV. CONCLUSION

The paper proposes a systematic approach to observer
design for the estimation of load tilt angles in crane control
applications. The main result is a combination of the raw
acceleration and angular rate data obtained from IMU with
the predictive model governing the hoist-crane dynamics.
This allows to mitigate the systematic errors caused by large
transversal acceleration introduced by the load oscillations
that affect the accelerometer sensor. Performance of the
algorithm is demonstrated by means of an experimental
benchmark. The proposed algorithm is compared in terms
of performance with the standard solution for tilt angle
estimation that does not consider neither the pendulum-on-
cart dynamics nor the impact of rotational and translational
acceleration distorting the gravitational acceleration sensing.
Experimentally, it is shown that, when properly set, the
proposed approach significantly outperforms the standard
solution. Even with a suboptimal choice of the tuning param-
eter, an angle estimate of comparable quality can be obtained



Fig. 9.

Experimental setup - small-scale pendulum-on-cart model

with respect to the case of the standard algorithm with the
best achievable setting. Future work will be directed towards
extension of the algorithm to planar and 3D crane scenarios
followed by full-scale plant experiments.
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