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An effective MATLAB minimizer of nonlinear energies arising
from different scalar and vector problems
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1 Introduction
Nonlinear energy functionals appearing in the calculus of variations can be discretized

by the finite element (FE) method and formulated as a sum of energy contributions from local
elements. In Matonoha et al. (2022) we suggested the first version of the solver which was able
to solve scalar problems and later extended to solving vector problems (Moskovka and Valdman
(2022)). A fast evaluation of energy functionals containing the first order gradient terms is a

central part of this contribution. We describe a vectorized implementation using the simplest
linear nodal (P1) elements in which all energy contributions are evaluated all at once without
the loop over triangular or tetrahedral elements. Furthermore, in connection to the first-order
optimization methods, the discrete gradient of energy functional is assembled in a way that the
gradient components are evaluated over all degrees of freedom all at once. The key ingredient
is the vectorization of exact or approximate energy gradients over nodal patches. It leads to a
time-efficient implementation at higher memory-cost. Provided codes in MATLAB related to
2D/3D hyperelasticity and 2D p-Laplacian problem are available for download and structured
in a way it can be easily extended to other types of vector or scalar forms of energies.

2 Scalar and vector problems
We introduce a p-Laplace equation as the basic example of scalar problems given by

∆pu = f in Ω ,

u = g on ∂Ω
(1)

for some p > 1. It is knows that solving (1) is equivalent to finding the minimum of the
corresponding energy functional

J(u) = min
v∈V

J(v) , J(v) :=
1

p

∫

Ω

|∇v|p dx−
∫

Ω

f v dx , (2)

where
V = W 1,p

g (Ω) = {v ∈ W 1,p, v = g on ∂Ω}.
Fig. 1 depicts the solution of (2) for the L-shape domain and the constant right-hand side.
One of the most well-known vector problems from mechanics is the nonlinear elasticity which
describes the deformation of the material loaded by a force. The corresponding energy func-
tional is given by

J(v) = Jgrad(v)− Jlin(v) ,
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Jgrad(v) =
∫

Ω

W
(
F(v(x))

)
dx, Jlin(v) =

∫

Ω

f(x) · v(x) dx +

∫

ΓN

g(x) · v(x) dx ,

where v : Ω → Rdim is a deformation mapping, F = ∇(v), f is a loading, g is an external load
on the Neumann part of the boundary and W (F) is a density function which depends on the
model choice. Fig. 2 depicts the time dependent deformation of a 3D cuboid which is twisted
around the x-axis. The torsion is induced by the nonhomogenious Dirichlet boundary condition
on the right wall.

Figure 1: A triangulation of the L-shape domain (left) and the solution of p-Laplace problem
for p = 3 and constant loading f(x) = −10 (right).

(a) Initial state.

(b) 2 turnings.

(c) 4 turnings.

Figure 2: A triangulation of the 3D cuboid (top) and its torsional deformation around the ’x’
axis.
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