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Abstract
This work aims to design an agent to play a mechatronic model of table football.
This work is divided into two parts theoretical and practical. The theoretical part
of this work presents reinforcement learning methods, a simulation environment
in ROS in combination with Gazebo, and the results of learning the agent. The
practical part introduces methods for player pose and rotation estimation as well
as ball position estimation, these are necessary for the model to work. And results
of the model in the real-world arena. Most of the code for this thesis was written
in Python with the help of OpenCV, NumPy, and PyTorch libraries.
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Chapter 1

Introduction

The problem that we will try to tackle is the defense on simplified table football.
The number of approaches to tackle this problem is vast. From recording game
sessions and trying to mimic the players to the finely tuned expert systems. But
the one that stands out is the reinforcement learning approach. The reason is that
we do not need to collect or annotate training data. The initial thought was to
let the machine play against the machine in silico, monitor the improvements, and
then transfer the model and let it play against a human. This had to be slightly
altered as the defined game is not symmetrical, thus it would require two models.
Altering brought out the possibility to only define the shot set, which would keep
the reinforcement learning for defense as it has no prior knowledge. But defined
shot set could potentially limit the model’s ability to improve.

The choice of reinforcement learning was motivated by papers, that reported
successful implementation in a variety of games. One of the most known examples
of reinforcement learning is AlphaGo. AlphaGo is the first computer program to
defeat a professional human Go player, the first to defeat a Go world champion,
and is arguably the strongest Go player in history [2]. Another mentionable article
from Deepmind includes advancements in protein folding [3]. Or the newest one
which was able to introduce improvements in the field of video compression [4].
This algorithm was firstly used to play computer games. The games are used as
a great testbed for creating general-purpose algorithms.

In this work, we focus on exploring the potential of reinforcement learning
as it could get better results than the other approaches. And we will try to
apply reinforcement learning to the problem of simplified table football, firstly in
simulation and then in real world application.

1.1 Master Thesis Objectives
The objectives of this study are:

1. to research current reinforcement learning algorithms

2. to develop a baseline method

3. to further improve the baseline method
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4. to use the model in real-world application

5. to evaluate obtained results both qualitatively and quantitatively

1.2 Thesis outline
This thesis is divided into 6 chapters. Chapter 2 brings essential knowledge and
introduction to the Reinforcement learning, and presents core concepts in section
2.1 and some limitations in 2.5.

Then the environment used for in silico training is shown in chapter 3 as well
as the state-of-the-art algorithms in section 3.2. The section 3.2 also includes the
selection of suitable algorithm and its results during training.

Hardware and software parts for the realization of real-world application are
presented in 4. The hardware for my work includes the camera and industrial
computer. Part of this chapter is also image processing and its results, together
with the solution to issues with the industrial computer. Finally, the results for
three variants of defending are presented.

Chapter 5 comes with the discussion about results. Comparison of results
obtained by in silico training and real-life application. The theory relevance and
limitations of the chosen approach. The Master Thesis is concluded in chapter 6.

All the codes and specifications of the environment are accessible in the GitHub
repository: https://github.com/sieberm111/master_thesis_sieberm

2

https://github.com/sieberm111/master_thesis_sieberm


Chapter 2

Reinforcement learning

Reinforcement learning is one of the machine learning areas, based on rewarding
desired outcomes and punishing undesired ones. Basic scheme is in Figure 2.1.
An agent has a set of actions that result in a new state and reward. Via trial
and error is the agent able to understand the environment and act accordingly to
maximize the reward.

Figure 2.1: Basic RL scheme

Reinforcement learning recalls how people and animals learn by interacting
with the environment. This differs from other types of learning it is rather active
than passive. RL is sequential (future interactions can depend on earlier ones).
It can learn without examples of optimal behavior instead of copying examples it
optimizes the reward signal. Concurrently RL is based on the reward hypothesis.
The reward hypothesis states that any goal can be formalized as the outcome of
maximizing cumulative reward.

Examples Reward
Fly a helicopter air time

Video games win, score
Board games win

Table 2.1: RL examples
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2.1 Core concepts
Now lets introduce some core concepts regarding RL which will be further ex-
plained.

• Environment: representing dynamics of a problem

• Reward signal: specifying goal

• Agent: containing

– Agent state

– Policy

– Value function estimate - optional

– Model - optional

2.2 Reinforcement learning formalisation
Per Figure 2.1, at each time step t agent receives observation Ot, reward Rt, and
executes action At. The environment receives action At and emits new observation
Ot+1 and reward Rt+1. Reward is scalar feedback, and represents how well is agent
doing at time step t. Goal is to maximise this cumulative reward for the future
called return.

Gt = Rt+1 +Rt+2 +Rt+3 + ... (2.1)

It is possible to define utility of states and actions with expected cumulative reward
E from state s with value v(s).

v(s) = E[Gt|St = s] (2.2)

And can be further defined recursively.

Gt = Rt+1 +Gt+1 (2.3)

v(s) = E[Rt+1 + vSt+1|St = s] (2.4)

Now that the utility of states is known, we can pick action a, that maximize value
v. It is important to note that some action may have long term effect and reward
may be delayed. In this case it is better to sacrifice immediate reward to gain
more long-term reward. A mapping from states to actions is called policy. It is
also possible to map reward directly to actions. We have letter v for value function
of states and letter q for value function of states and action. Letter q is used for
historical reasons.

q(s, a) = E[Rt+1 +Rt+2 +Rt+3|St = s, At = a] (2.5)
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2.3 Inside the Agent
Components of the agent were described in Section 2.1. The inside of the agent is
visualized in Figure 2.2. The agent makes predictions and policy based on state,
which is influenced by observation. From policy the action is chosen.

Figure 2.2: RL agent scheme

We can define a history of the agent as equation (2.6). This history is used to
construct agent state St.

Ht = O0, A0, R1, O1, ..., Ot−1, At−1, Rt, Ot (2.6)

2.3.1 Agent state

This brings up the observability of an environment. In the case of a fully observable
environment Ot = St, this condition is rare as the agent usually has limited sensors.
But it is useful because if we have a fully observable environment then the process
of interaction becomes Markovian. This means that the state contains everything
we need to know and adding history does not help. We can define, that process is
Markov if equation (2.7) is satisfied. Thus if the state St is known the history Ht

can be omitted.
p(r, s|St, At) = p(r, s|Ht, At) (2.7)

Typically, the agent state St is compression of Ht as the full observation and
agent state is Markov, but they are too large to compute. Similarly the full
history Ht is Markov but keeps growing. Usually, we have a partially observable
environment, for example, a poker game, where part of the game is hidden from
the agent. This is called a partially observable Markov decision process and it is
a common occurrence. In this case the agent state St is a function of the history,
equation (2.8), where u is a state update function.

St+1 = u(St, At, Rt+1, Ot+1) (2.8)

Update function gives us compression of the history and observation, which de-
scribes state St with reasonable size. For example, if we have a maze as in Figure
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2.3. With red squares representing the possible placement of the agent and the
goal being the green square. Let us assume the agent is able to inspect its sur-
roundings two squares up, down, left, right creating his St. In this case, all these
states are the same. So these 3 states are not Markov. So to solve this we can
update the function with buffer, which solves this issue. The moment when the
agent reaches the top row, his state becomes Markov (and the buffer can be emp-
tied) as he either reached the goal or can determine where he is located because
the positions are unique.

Figure 2.3: Example maze

2.3.2 Policy function

With state St of the agent, it is time to describe the policy. Let’s dive deeper into
the agent and policy function. Policy function conventionally notes as π. There
are two types of policy functions, a deterministic policy that maps states to actions
shown in equation (2.9) and stochastic policy which is more common and useful,
shown in equation (2.10).

A = π(S) (2.9)

vπ(A|S) = p(A|S) (2.10)

2.3.3 Value function

The next component which needs to be explained is the value function. The
actual value function is the expected return, shown in equation (2.11). Greek
letter γ ϵ [0, 1] introduces discount factor. The discount factor helps us with the
importance of immediate vs long-term rewards. So when γ = 0 we only care
about immediate rewards, if γ = 1 we care about all rewards, and all are equally
important. The best way is between these two extremes to tackle the problem
you are solving. The value depends on a policy and we want to optimize it. Value
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function can be used to evaluate the desirability of states and also can be used to
select between actions.

A(A|S) = E[Gt|St = s, π]

= E[Rt+1 + γRt+2 + γ2Rt+3 + ...|St = s, π]
(2.11)

Expected return has a recursive from Gt = Rt+1+γGt+1 and so does the value
equation (2.12). Here a a ∼ π means action chosen by policy π in state s.

vπ(s) = E[Rt+1 + γGt+1|St = s, At ∼ π(s)]

= E[Rt+1 + γvπ(St+1|St = s, At ∼ π(s)]
(2.12)

This is known as Bellman equation [5]. A similar equation hold for the optimal
value (2.13). This equation does not depend on policy. Thus is heavily exploited
and used to create algorithms.

v∗(s) = maxaE[Rt+1 + γv∗(St+1)|St = s, At = a] (2.13)

Agent approximate value functions, with accurate value function agent, can
behave optimally. And with suitable approximation, the agent can behave well,
even in big domains.

2.3.4 Model

The last part inside the agent is a model. The model will not be covered in much
depth as it is an optional part of the agent and is unused in my work. A model
predict what the environment will do next E.g. predict next state P or next
immediate reward R both examples shown in equation (2.14).

P(s, a, s′) ≈ p(St+1 = s′|St = s, At = a)

R(s, a) ≈ E[Rt+1|St = s, At = a]
(2.14)

2.4 Agent categories
This terminology is widely used in academic journals so it is good to know the
differences between agents. Value-Based agent has an explicit Value Function,
but the Policy Function is based on Value Function. Policy-Based agent has an
explicit policy Function but no Value Function. Actor-Critic agent has both Value
and Policy functions, actor corresponds to the policy part and acts and the Critic
evaluates the policy and updates it based on the Value function and helps to
select better policies over time. Model Free agent has one or both Value and
Policy functions but does not have a dynamics model. This term is often used
in reinforcement learning, but it is not a great division. Model-Based agent has
a dynamics model and can have one or both Value function and Policy function.
Summary is presented in Table 2.2
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Agent category Policy function Value function Model
Value-Based implicit ✓ ✗

Policy-Based ✓ ✗ ✗

Actor-Critic ✓ ✓ ✗

Model-Free optional optional ✗

Model-Based optional optional ✓

Table 2.2: Agent categories

2.5 Exploration and exploitation
This chapter addresses one of the problems of RL. That is how to select the next
action a for the learning agent, whether to select one with the best rewards so
far and exploit it or to select a sub-optimal strategy and explore action-space [6].
This is one of the differences from supervised learning where data is not in our
control, whereas in RL data is under control in some sense. The control is indirect
thru actions as data are sequential, it is not possible to just pick some data as it
is in clustering, for example. Some of the algorithms are listed below and will be
further explained.

• Greedy

• ϵ-greedy

• Policy gradients

2.5.1 Formalising the problem

For simplicity of introduction lets assume following:

• environment: has no state

• actions do not have long-term effect

• other observations can be ignored

Now we defined the multi-armed bandit. This term comes from historical reasons
regarding slot machines in Las Vegas as in Figure 2.4 where can be seen, a one-
armed bandit.
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Figure 2.4: One armed bandit [7]

We can imagine a multi-armed bandit as a set of such slot machines or as a
slot machine with multiple levers. Such multi-armed bandit has the following:

• Set of distributions Ra|aϵA

• A is a set of actions ("arms"/levers)

• Ra is distribution on rewards, given action a

• At each time-step t agent selects and action At ϵA

• The environment generates a reward Rt ∼ RAt

• The goal is to maximise cumulative reward
∑t

i=1Ri

• We achieve this by learning policy: a distribution of A

The useful concept is to denote action value for action a as the expected reward
equation (2.15). The optimal value is maximization of q overall actions, equation
(2.16). Another useful concept is regret, which is equation (2.17). Regret describes
how good or bad we are doing. If regret is zero or close to zero we are doing well.
The problem is we do not know v∗, it is useful in this scenario where it depicts how
much regret does algorithm gain over the learning episode. Therefore maximizing
cumulative reward ≡ minimizing total regret.

q(a) = E[Rt|At = a] (2.15)

v∗ = maxa ϵAq(a) = maxaE[Rt|At = a] (2.16)

∆ = v∗ − q(a) (2.17)

Greedy and ϵ-greedy use action value estimates Qt ≡ q(a). All necessary values
will be introduced in following section 2.5.2 .
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2.5.2 Greedy algorithm

Firstly, let us introduce action value. Action value is expected reward for action
a equation (2.15). One simple estimate of function value can be average of the
sampled rewards equation (2.18), where I(·) is indicator function, whether action
a was selected.

Qt(a) =

∑t
n=1 I(An = a)Rn∑t
n=1 I(An = a)

(2.18)

This can be also calculated incrementally as remembering all time-steps and ac-
tions selected is not optimal equation (2.19), where we update the only value of
selected action, update learning rate α and increment counter Nt. Learning rate α
can be constant, which leads to tracking if the problem is not stationary, or could
be dynamic as is and leads to averaging.

Qt(At) = Qt−1(At) + αt(Rt −Qt−1(At))

∀a ̸= At : Qt(a) = Qt−1

αt =
1

Nt(At)

Nt(At) = Nt−1(At) + 1

(2.19)

Now onto the Greedy policy. It is one of the simplest policies. Action is selected
according to equation (2.20). It is a simple action with the highest value of all
actions.

At = argmax Qt(a) (2.20)
This algorithm prioritizes exploitation above exploration as is shown in example
reward Table 2.3. This is an example where two action a and b are available and
rewards are either 1 or 0. Assume that P (+1|a) = 0.8 and P (+1|b) = 0.2. And
if Q(a) = Q(b) then the action is chosen randomly. Now in Table 2.3 are 4 time
steps.

time-step 1 2 3 4
a 0 - - -
b - 1 0 0

Table 2.3: Example reward table

After these observations Q4(a) = 1/3 and Q4(b) = 0, so action b will never
be selected again and regret keeps linearly rising as greedy algorithm stuck with
non-optimal action ∆a = 0 and ∆b = 0.6 .

2.5.3 ϵ-greedy algorithm

As was shown Greedy algorithm can get stuck on sub-optimal action forever with
linear expected total regret. ϵ-greedy algorithm addresses this issue.

πt(a) =

{
(1− ϵ) + ϵ/|A| if Qt = maxbQt(b)

ϵ/|A| otherwise
(2.21)
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ϵ-greedy algorithm selects optimal action according to observation with prob-
ability (1 − ϵ) and selects other action with probability ϵ shown with policy in
equation (2.21). This enables more exploration but ϵ-greedy algorithm still has
linear expected regret.

2.5.4 Policy gradients

Lets sidestep action values for a moment. Can we learn policies π(a) directly,
instead of learning values. For instance, define action preferences Ht(a) and a
policy in equation (2.22) called softmax. Softmax is a well defined policy as it
normalizes, so all probabilities are positive and sum to 1.

πt(a) =
eHt(a)∑
b e

Ht(b)
(2.22)

The preferences are not values, they are just learnable policy parameters. The
goal is to learn by optimizing the preferences. The idea behind that is to update
policy parameters such that expected values increase. Gradient ascent is ideal
for that. In the bandit case it is equation (2.23) where θ are the current policy
parameters.

θt+1 = θt + α∇θE[Rt|πθt ] (2.23)

The issue here is that we cannot compute the gradient of the expected value,
because we do not know the expected value. But there is a trick that lets us
create a stochastic sample. This trick is called REINFORCE trick introduced in
this paper [8] and is shown in equation (2.24).

∇θE[Rt|πθt ] = ∇θ

∑
a

πθ(a)E[Rt|At = a]

=
∑
a

q(a)∇θπθ(a)

=
∑
a

q(a)
πθ(a)

πθ(a)
∇θπθ(a)

=
∑
a

πθ(a)q(a)
∇θπθ(a)

πθ(a)

= E
[
Rt

∇θπθ(At)

πθ(At)

]
= E[Rt∇θlogπθ(At)]

(2.24)

The trick is straightforward firstly we expand the equation, secondly substitute
E[Rt|At = a] per equation (2.15). The next step is multiplication by 1, then
restructuring the equation. The last step is according to the chain rule. The
whole equation (2.24) can be condensed into (2.25), and now we can sample this
and create a stochastic gradient ascent on the value of the policy, equation (2.26).

∇θE[Rt|πθt ] = E[Rt∇θlogπθ(At)] (2.25)
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θ = θ + αRt∇θlogπθ(At) (2.26)

With stochastic gradient ascent and sampled rewards it is possible to define
soft-max policy, equation (2.27) or can be defined case by case in equation (2.28).
Cases in equation (2.28) represent firstly, the preference for the selected value will
increase, secondly, the preference for all other actions will decrease.

Ht+1(a) = Ht(a) + αRt
∂logπt(At

∂Ht(a)

= Ht(a) + αRt(I(a = At)− _t(a))

(2.27)

Ht+1(At) = Ht(At) + αRt(1− πt(At))

Ht+1(At) = Ht(a)− αRtπt(a) if a ̸= At

(2.28)

There is one more useful thing to define and that is baseline subtraction. This
will not affect the expected update but will change the variance. This updates
defined equation (2.26) to new (2.29) where b represents baseline. However b must
not depend on θ or a, but can depend on state St.

θ = θ + α(Rt − b)∇θlogπθ(At) (2.29)
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Chapter 3

Experiments

With insight on RL from Chapter 2, lets move to the experiments. The experi-
ments are divided into simulation and real-world application. In the simulation
part, I will introduce the simulation environment setup and the results of the ex-
periments. In the real-world application, I will firstly, briefly describe the arena,
secondly describe image processing and lastly show experiment results.

3.1 Setup of the environment
Most research papers and articles use the MuJoCo [9] environment, as it is an
advanced physics simulator. I was, unfortunately, unable to work in this environ-
ment due to insufficient experience and bad documentation. The second choice
was ROS [10] in combination with Gazebo [11]. Gazebo comes with a complete
toolbox of development libraries to make simulation easy. The gazebo also has a
big community, great documentation, and is open source. The Robot Operating
System (ROS), is a set of software libraries and tools that help you build robot
applications, same as Gazebo, ROS is open source. These tools are suitable for
the task of creating robotic table football in combination with Python.

3.1.1 3D Model

To train this model it is crucial to make a 3D model first. The size of the arena and
players is relevant to real table football. Basically a cutoff of real table football.
Model can be seen in Figure 3.1.
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Figure 3.1: 3D model of table football

This model is too detailed, for simulation in ROS it had to be simplified.
Simplification is shown in Figure 3.2.

Figure 3.2: Simplified 3D model for ROS

Most of the parameters, such as weight were calculated by Autodesk Fusion
360 [12] after specifying the material, but parameters like friction and controllers
had to be specified for the simulation to run smoothly. The gazebo is best suited
for real-time applications, which means simulation will usually run at 0.8-1.5x
times the real-time. This can be partly solved with the usage of Simulation time,
where update frequency does not depend on real-time but on computer hardware
capabilities. All experiments were run locally on my personal computer for op-
timization and to prevent any errors. An effort was made to run experiments
on Metacentrum, which has much higher computing power and is suited for such
tasks. To run experiments on Metacentrum, a Docker image had to be made.
Docker is the name for open source software that aims to provide a unified inter-
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face for isolating container applications. More about Docker is available at their
documentation [13]. Unfortunately, it was not possible to run experiments on
Metacentrum due to numerous problems.

3.2 Tested algorithms
With the simulation environment running, it is possible to define the attacker’s
input. Two sets of shots were defined, a validation set, and a training set. The
training set contains direct shots, pull shots, and a few misses as it is common
that human attacker sometimes misses. The validation set has the same types of
shots as the training set without the misses. Due to controller settings in Gazebo,
the shots were not always the same, but as it turned out it was not problematic
but rather useful as it introduced some random noise to the set. With the shot
set defined, it was possible to start testing RL algorithms.

3.2.1 State-of-the-art algorithms

An overview of the current state-of-the-art algorithms is presented in Stable Base-
lines [14]. It is a library with good documentation and GitHub repository [15].
These algorithms are great as a starting point and can be further customized.
Some of the algorithms available include the following.

• Augmented random search (ARS) [16]
• Actor critic (A2C) [17]
• Deep deterministic policy gradient (DDPG) [18]
• Deep Q learning (DQN) [19]
• Soft actor critic (SAC) [20]
• Proximal policy optimalization (PPO) [21]

These algorithms work in Gym interface [22]. Gym provides unified framework for
RL and more general AI training. Thus it was necessary to wrap the Gazebo sim-
ulation in Gym environment for successful training. Communication with Gazebo
was realized with internal rosservices and self-made reference links. Unfortunately,
the internal rosservices do not provide a symmetric coordination system, it was
necessary to create linear transformation to have data symmetric around 0.

3.2.2 Selecting of suitable algorithms

The experiments require a reward function. The first version of the reward function
was a negative reward for player movement and receiving a goal. It is best shown
in pseudo-code 3.1.

1 def calcualte_reward(ball_pos , player_pos):
2 reward = 0
3 if player_pos.defender +- epsilon == ball_pos:
4 reward += 1
5
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6 action_penalty = how much players moved from last position
7 reward -= action_penalty
8

9 if ball_pos == goal:
10 reward -= 100
11 new_game ()
12

13 while True:
14 [ball_pos , player_pos] = GetDataRosModel ()
15 reward = calculate_reward ()
16 [goalie_pos , defender_pos] = RLmodel.predict ([ball_pos ,

player_pos ])
17 SendDataToRos ([goalie_pos , defender_pos ])

Listing 3.1: Negative reward function pseudo code

The first experiment was a simple over-fitting of the model on one shot as a
proof of concept that the training algorithm and overall setup is working. The
defenders had a disabled rotation for faster convergence of results. This led to the
selection of desired algorithms. So from mentioned algorithms in section 3.2.1 that
seem to be good starting point only A2C and PPO were suitable. And algorithm
of choice was PPO, as it was less fragile with the introduction of clipping the
gradient update [21]. Other algorithms turned out to not learn efficiently or they
are not compatible with the input and output formats that are desired. The input
data format is continuous values attackers pose and rotation (−1 : 1) and ball
coordinates (−1, 1). The output format is discrete values 0− 99 for defenders and
the same for the goalie. The progression of the reward function in over-fitting is
in Figure 3.3, the episode is composed of either 64-time steps or shorter if the ball
leaves the arena. The success rate of defending was 80%. Since this was initial
test of convergence the validation set was not tested. The success rate is only 80%
because the shot was noisy, due to controllers as was mentioned. All figures are
smoothed with running average of 20 samples.

Figure 3.3: Cumulative reward of over-fit model on one shot (PPO model)
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3.2.3 Experimenting with reward function

Further experiments with negative reward function, full training set, and disabled
rotation, did not yield sufficient results as the model became stationary and was
able to defend a portion of shots and discarded reaction to the rest of the set. And
the progression of reward function in Figure 3.4 and 3.3 are similar.

Metric Data
Success rate training set 23.3 %

Success rate validation set 46.6 %

Table 3.1: Results with negative reward function

Figure 3.4: Cumulative reward on training data set with negative reward function

The setup of learning is shown in pseudo-code 3.1, the reward function will
be further described similarly with only the depiction of the reward function.
The second version of the reward function 3.2 was meant to balance positive and
negative rewards such that the reward would reflect on the fact, whether the
defense was successful and managed to either keep the ball in the field or shot it
behind the attack.

1 def calcualte_reward(ball_pos , player_pos):
2 reward = 0
3

4 if player_pos.defender +- epsilon == ball_pos:
5 reward += 10
6 if player_pos.goalie +- epsilon == ball_pos:
7 reward += 10
8

9 action_penalty = how much players moved from last position
10 reward -= action_penalty
11
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12 if ball_pos == goal:
13 reward -= 200
14 new_game ()
15

16 if ball_pos == in_field:
17 reward += 100
18 pass
19

20 if ball_pos == out_of_filed:
21 reward += 100
22 new_game ()

Listing 3.2: Second version of reward function

Metric Data
Success rate training set 33.4 %

Success rate validation set 49.3 %

Table 3.2: Results with augmented reward function

Figure 3.5: Cumulative reward of model on training data set with augmented
reward function

This change did not solve the issue of players becoming stationary. This is
apparent from Figure 3.5, where the trend shows over-fitting. Success rate is
evaluated in Table 3.2. After the analysis of the reward function, the rewards
remained mostly negative and it is apparent that the players became stationary
because the gradient policy was descending. In chapter 2.5.4 is this algorithm
shown and because of the negative reward, the algorithm was gradient descent
instead of gradient ascent. The agent after exploring action space chose to exploit
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the most beneficial position and avoided additional negative rewards with a sta-
tionary position. This led to maximizing overall reward. The cumulative reward
was similar to the on in Figure 3.3. The next step was to change the reward func-
tion to be positive most of the time. The biggest negative impact on the reward
function was the action penalty and it was removed. The new reward function is
shown in code snippet 3.3. The reward function in 3.3 also presents a new positive
reward for goalie and defenders to be close to each other, this lets the players cover
more of the goal line.

1 def calcualte_reward(ball_pos , player_pos):
2 reward = 0
3

4 if player_pos.defender +- epsilon == ball_pos:
5 reward += 10
6 if player_pos.goalie +- epsilon == ball_pos:
7 reward += 10
8

9 if player_pos.defender +- epsilon == player_pos.goalie:
10 # reward for covering area close together
11 reward +=10
12

13 if ball_pos == goal:
14 reward -= 500
15 new_game ()
16

17 if ball_pos == in_field:
18 reward += 200
19 pass
20

21 if ball_pos == out_of_filed:
22 reward += 500
23 new_game ()

Listing 3.3: Third version of reward function

The third version of the reward function proved to be more suitable as the rewards
were changing from positive to negative, this can be seen in Figures 3.6 and 3.7. In
case of a goal, the overall reward was negative otherwise it was positive. This led
to altering between gradient ascend and descend. Gradient ascend set preferences
for chosen action to be higher and for others to be lower. Gradient descent set
preferences for chosen action to be lower and for other actions to be higher. This
led to the incorporation of rotation into the model. Up to this experiment, the
rotation was disabled.
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Figure 3.6: PPO model with positive reward after 2.5 milion time steps

Figure 3.7: PPO model with positive reward after 4.5 milion time steps

With rotation introduction, the model performed worse as the state space that
the agent had to explore became bigger. The change in reward function this time
was to reward the position of players only if they had low rotation and would be
still able to catch the ball. The drop in reward function can be seen in Figure 3.8.
Other metrics can be seen in Table 3.3. Due to these results the rotation had to
be discarded.

1 def calcualte_reward(ball_pos , player_pos):
2 reward = 0
3

4 if player_pos.defender +- epsilon == and rotation.defender ==
+-0.1 : #rotation in rad

5 reward += 10
6 if player_pos.goalie +- epsilon == ball_pos and rotation.

goalie == +-0.1 : #rotation in rad:=
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7 reward += 10
8

9 if player_pos.defender +- epsilon == player_pos.goalie:
10 # reward for covering area close together
11 reward +=10
12

13 if ball_pos == goal:
14 reward -= 500
15 new_game ()
16

17 if ball_pos == in_field:
18 reward += 200
19 pass
20

21 if ball_pos == out_of_filed:
22 reward += 500
23 new_game ()

Listing 3.4: Reward function with enabled rotation

Metric Data
Success rate training set 35.2 %

Success rate validation set 30.3 %

Table 3.3: Results on model with implemented rotation

Figure 3.8: Cumulative reward of model with enabled rotation

3.2.4 Model with best performance

The best performing model is with disabled rotation and reward function from
code snippet 3.3. The evaluation of the model will be based on reward function,
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training, and validation set. And will be compared to another reference than static
players, because results from Table 3.1 show that the results are not sufficient. The
comparison will be with Random action chosen.

From Figures 3.6 and 3.7 it looks like the model is not learning however overall
average value across all episodes is slowly rising as is shown in Table 3.4. This is
a reflection of fact that RL models are sometimes trained over up to one billion
time steps. Evaluation of validation and training set will be the success rate of
defending and can be seen in Table 3.5 on the training set and in Table 3.6 on
the validation set. Model trained for 500K steps performed only marginally better
on training data set and worse than random on validation data set. This is most
likely caused by exploration of action space and effort to find the optimal actions.
However the model trained for 4.5M steps was performing better on both data sets.
Reasons for Random action having such performance are described in Chapter 5.3.
Performance in the real arena will be evaluated using the success rate of defending
as well.

Model Average reward per episode
Model after 500k time steps 51
Model after 1M time steps 65

Model after 1.5M time steps 95
Model after 2.5M time steps 105
Model after 3.5M time steps 112
Model after 4.5M time steps 124

Table 3.4: Average reward over time steps
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Shot Success rate 500k steps Success rate 4.5M steps Random action
Pass shot 1 77 % 84 % 88 %
Pass shot 2 89 % 86 % 83 %
Pass shot 3 96 % 100 % 93 %
Pull shot 1 83 % 93 % 71 %
Pull shot 2 96 % 97 % 80 %
Pull shot 3 97 % 96 % 83 %
Pull shot 4 97 % 98 % 81 %
Straight shot 1 34 % 83 % 39 %
Straight shot 2 36 % 61 % 50 %
Straight shot 3 40 % 77 % 36 %
Straight shot 4 40 % 85 % 38 %
Straight shot 5 62 % 70 % 62 %
Straight shot 6 42 % 47 % 38 %
Diagonal shot 1 36 % 29 % 30 %
Diagonal shot 2 61 % 76 % 54 %
Miss 1 97 % 100 % 95 %
Miss 2 97 % 98 % 95 %
Overall Success rate 69.4 % 81.2 % 65.6 %

Table 3.5: Success rate of defending on training data set

Shot Success rate 500k steps Success rate 4.5M steps Random action
Straight shot val 1 91 % 73 % 67 %
Straight shot val 2 7 % 62 % 41 %
Straight shot val 3 0 % 15 % 25 %
Straight shot val 4 37 % 55 % 39 %
Straight shot val 5 91 % 81 % 79 %
Pull shot 1 43 % 68 % 61 %
Pull shot 2 77 % 74 % 75 %
Overall Success rate 49.4 % 61.2 % 55.3 %

Table 3.6: Success rate of defending on validation data set
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Chapter 4

Realisation of the Arena

In this chapter, I will elaborate on the software and hardware. Hardware parts
for my work are a camera and a partly industrial computer. The hardware also
includes arena assembly and electric actuators. The arena assembly and electric
actuators setup and tuning is in my colleague’s work [23]. Regarding software, the
Python flow chart of the program will be shown, how calibration was realized and
how fast was the whole program. As well as results for random actions, trained
models and expert system.

4.1 Camera
The camera chosen for this task is an industrial camera from IDS [24]. This
camera was paired with suitable lens. To operate this camera IDS driver and pyuey
bindings for uEye API [25] had to be installed. I also installed the uEyeCockpit,
which is software from IDS that provides GUI for setup, saving camera settings
to file, and initial experiments with the camera. The camera has the following
specifications shown in Figure 4.1. All listed software from IDS can be downloaded
from [24], but registration is mandatory.
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Figure 4.1: Camera data sheet from vendor [26]

I had to change the parameters from factory settings to suit this task. The
most influential parameters are presented in Table 4.1.
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Parameter Set Value
Width 800 px
Height 600 px

Pixelclock 128 Hz
Framerate 50 fps
Exposure 20 ms

Long exposure ON
Colormode ON
GainBoost 0

Table 4.1: Used camera settings

The lowering of resolution from 1600x1200 px to 800x600 px enabled for higher
FPS and faster pattern matching. The connection to this camera is a USB 3.0
micro-B that allows for high transfer speeds and volumes of data. To mount this
camera, a frame was built from aluminum profiles and a holder had to be 3D
printed because the camera does not have any standard mount. The model of the
holder can be seen in Figure 4.2. Final product is in Figure 4.3. The image taken
with the camera with my settings is in Figure 4.4

Figure 4.2: Holder for camera
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Figure 4.3: Aluminium profile frame with mounted camera

Figure 4.4: Image of arena taken with IDS camera with my settings

4.1.1 Image processing

This section is dedicated to image processing and this topic was core in my Bach-
elor’s Thesis [1]. So only the used algorithms will be mentioned. Image processing
was involved in several tasks, such as defense and goalie rotation calibration, track-
ing of ball, and tracking of attacking players.
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Rotation calibration

Calibration of players is realized while players rotate at stable velocity, with frame
cropping and HSV thresholding. Firstly frame is cropped on specified coordinates
to have only the defense or goalie player in the frame, secondly, a HSV thresholding
is applied. HSV color space can be seen in Figure 4.5. HSV color space is more
convenient for thresholding.

Figure 4.5: HSV color space [27]

The mask after thresholding is summed over the white pixels resulting in size
of calibrated player, examples of different rotations can be seen in Figure 4.6.

Figure 4.6: Examples of thresholding

The sum of masked players has a maximum and minimum depending on ro-
tation. This fact was used to send information to the industrial computer that
players have reached their minimum. The minimum was angle with a stable offset
from 0◦ that was compensated. The calibration began with a collection of samples
over a fixed time to evaluate the minimum, afterwards the signal was sent to stop
rotation and end calibration. Graphs from both calibration are in Figures 4.7 and
4.8.
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Figure 4.7: Calibration of goalie

Figure 4.8: Calibration of defender

The same principle of thresholding is applied to the pose estimation of attack
players. Further improved with binary image moments returning the centroid of
the blob. The centroid of the blob gives us information about the linear and
rotational position. Cropped attacking row can be seen in Figure 4.9. Cropping
the whole row yields good results in rotation estimation however it is noisy in
linear motion. For linear motion, only a thin strip around the player’s bar was
cropped, solving the noise issue. Graph of linear tracking can be seen in Figure
4.10 where players were moved by hand from one side to another and roughly to
the center. Graph of rotation tracking is in Figure 4.11. Both rotation and linear
motion of attack players are normalized to range (−1, 1).
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Figure 4.9: Cropped image of attack players

Figure 4.10: Example of tracking linear motion for attack players

Figure 4.11: Example of tracking rotation for attack players
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Ball tracking

For ball tracking, pattern matching was used. Pattern matching is a method
for the localization of smaller templates in an image. This method is based on
evaluating all pixels and locating the best match. Output is also a matrix with
values representing a match for the center pixel (a higher value represents a better
match). The output matrix is usually thresholded for noise cancellation. In my
case, there is only one ball in the arena so the location of the ball is coordinates
of max value. In documentation [28] are various criteria for match evaluation.
The best one for my application is TM-CCOEF-NORMED (Template Matching
Correlation Coefficient Normed) as its range of match is limited between 0-1 (0 is
no match and 1 is an absolute match). The frame from the camera was cropped
because the white walls of the arena were interfering, cropped image is in Figure
4.12. This method can find the ball correctly 97% of the time and with ideal
illumination even higher. The speed of the whole setup from 1000 frames processed
is on average 0.0235s.

Figure 4.12: Cropped image for pattern matching of ball

4.2 Software setup
The initial idea was to export RL model as well as image processing onto the
industrial computer. And the Python script would run in REXYGEN software
[29]. This was not possible as the camera is not working with Linux. The industrial
computer uses a Linux Debian 10 and Python in version 3.7.5. Because of this,
the resolution was to let the image processing and RL model run on my computer
and to apply network protocol to send data over to the industrial computer. The
protocol of choice was Modbus TCP/IP, as it is implemented in both REXYGEN
and Python and is easy to configure. This modification required the creation of
ports, that will be transferring messages between my computer and the industrial
computer. The created ports are presented in Table 4.2.
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Port Write Port Read
0 Linear Setpoint Defender 10 Start Game (start of main loop)
1 Rotation Setpoint Defender 11 Start Calibration Defender
2 Linear Setpoint Goalie 12 Start Calibration Goalie
3 Rotation Setpoint Goalie 13 Error state
4 Initialization of Defender DONE
5 Initialization of Goalie DONE
6 Start motors
7 Defender switch regulators
8 Goalie switch regulators

Table 4.2: Modbus port choice

With specified states, it was time to design the program. Best summary is
flow chart in Figure 4.13. Camera initialization consists of loading a .ini file
specifying fps, resolution, and other adjustable parameters for the camera. The
start of motors represents starting REXYGEN and simultaneously it starts linear
calibration of defense and goalie. Calibration is done by reaching the end switch.
Rotational calibration is done via camera as is described in 4.1.1 and lastly, the
start game as the name suggests starts the game.

Figure 4.13: Flow chart of Python code
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4.3 Performance on real arena
The performance in the real arena was measured by the success rate of defending
as is mentioned in 3.2.4. Performance was measured on Random output, Model
output, and Expert system output for comparison. The static player baseline was
not tested. The reason for that is the shots are not strictly defined but created
by the player, which aims for open space. In this scenario, static players would
fail. The Expert system was created on my Bachelor thesis baseline [1], with the
use of Kalman Filter [30]. The Kalman filter was set up by my colleague Martin
Jandík and is described in his Master Thesis [23]. Evaluation is based on 50 shots
from slow straight shots to pull shots to capture the whole spectrum of shots and
utilize all players. Results are presented in Tables 4.3 and 4.4.

Model Success rate of defense
Random 28%
RL model 62%
Expert system 70%

Table 4.3: Success rate on real arena with no rotation

Model Success rate of defense
Random 30%
RL model 40%
Expert system 66%

Table 4.4: Success rate on real arena with rotation

The success rate on RL and the Expert system is lower with rotation enabled.
This is due to the occasional own goal by the defending players. The evaluation
was meant to be across more than 50 shots, unfortunately, one of the motors
stopped working.
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Chapter 5

Discussion

The objectives of the thesis consisted of four subtasks:

1. to research current reinforcement learning algorithms

2. to develop a baseline method and further improve it

3. to use the model in real-world application

4. to evaluate obtained results both qualitatively and quantitatively

5.1 Baseline method and improvements
The research started with RL introduction and formalisation in Chapter 2. Later
a list of state-of-the-art algorithms were presented in Section 3.2. Of these al-
gorithms, only PPO algorithm was suitable and had measurable improvement.
Developing a baseline method required the specification of the reward function.
It also included the creation of training data set and validation data set, which
were later used for model performance evaluation. The baseline method was a
negative reward function presented in pseudo-code 3.1. This baseline method
proved successful after over-fitting to one shot. Further experimenting with the
reward function in Section 3.2.3 proved the relevance of the theory. The final
version of the reward function was designed with respect to gradient ascend policy
characteristics.

5.2 Deployment of the model on the real arena
For deployment, it was necessary to extract all the information the model requires
from the camera. While deploying the model to the real arena two major problems
occurred. The first one was the fact that electric actuators did not work the way
the manufacturer specified. The second was the incompatibility of the camera
with the industrial computer and the incompatibility of models trained on different
versions of Python. These problems were solved with network communication of
my computer and an industrial computer. The protocol used for this was Modbus
TCP/IP.
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5.3 Summary of results
Incremental improvements were seen, but a breakthrough did not occur. This
is mostly due to my lack of experience with reinforcement learning. Another
obvious limitation is the need to create a data set of shots. Despite all this, the
final model performed quite well. The model also showed characteristics that were
incorporated into the reward function, such as defending close to each other and
staying in front of the ball, this is a qualitative observation. Quantitative results
in Table 5.1, are success rates for real arena and simulation. Even though in
simulation the model looks like it is quite close to random action on the validation
set, in the real arena it performed much better. This is possible since simulation
actuators are faster, and thus the random action could perform so well while the
players were flying from one side to other. This fast movement was not possible
on the real arena, where trained model had the advantage of tracking the ball.
The next possible explanation is that the validation set is fixed and cannot aim
for open space, whereas in the real arena the aim was always open space. The
initial thought was to use the same regulators in simulation and the real arena.
This was not possible due to the late arrival of electric actuators.

Model Success rate of defense in arena Success rate of defense in model
Random 28 % 60.5 %
RL model 62% 71,2 %

Table 5.1: Comparison of success rates
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Chapter 6

Conclusion

This thesis is about reinforcement learning and its applicability to real-world ap-
plication. In our case the simplified mechatronic table football The purpose was
to explore the potential of reinforcement learning and show the qualities of this
approach.

We selected a suitable algorithm, defined a data set, and trained the model
with multiple reward functions. We found out that reinforcement learning requires
long training periods and can produce sufficient results.

With proper hardware setup, we were able to use it in a real-world application,
while retaining the results learned in simulation.

To sum up the thesis, it is a good insight into reinforcement learning and
its possibilities. The property of retaining the results gained in simulation is
promising for real-world applications. I think we have opened new questions,
and further experiments with this approach will be necessary, to fully unlock the
reinforcement learning potential.

6.1 Future work
Some of the ideas and improvements for the future work are listed below.

• Further experiment with reward functions.

• Automatic shot creation.

• Tune the Docker image to run on cloud servers.

• Change the simulation to include camera and make end to end system.

• Create a symmetrical game, to enable in silico RL agents to play against one
another. Eliminating the need to create a data set of shots.
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